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We present a formalism for performance forecasting and optimization of future CMB experi-
ments. We implement it in the context of nearly full sky, multi-frequency, B-mode polarization
observations, incorporating statistical uncertainties due to the CMB sky statistics, instrumental
noise, as well as presence of the foreground signals. We model the effects of a subtraction of
these using parametric maximum likelihood technique and optimize the instrumental configuration
with pre-defined or arbitrary observational frequency channels, constraining either a total number
of detectors or a focal plane area. We showcase the proposed formalism by applying it to two
cases of experimental set-ups based on the CMBpol and COrE mission concepts looked at as
dedicated B-mode experiments. We find that if the models of the foregrounds available at the
time of the optimization are sufficiently precise, the procedure can help to either improve the
potential scientific outcome of the experiment by a factor of a few, while allowing to avoid excessive
hardware complexity, or simplify the instrument design without compromising its science goals.
However, our analysis also shows that even if the available foreground models are not considered
to be sufficiently reliable, the proposed procedure can guide a design of more robust experimental
set-ups, which while better suited to cope with a plausible greater complexity of the foregrounds
than that foreseen by the models, could ensure the science results close to the best achievable,
should the models be found to be correct.

I. INTRODUCTION

Cosmic Microwave Background (CMB) B-mode polar-
ization offers some of the most exciting goals for the next
stage of observational and experimental effort in cosmol-
ogy. These goals are already aimed at by an entire slew
of current, forthcoming, and planned CMB observations,
e.g., [1–5]. Probably most importantly, CMB B-mode
measurements could open up a window, as direct as likely
ever possible, onto the physics of the very early Universe,
giving us unique insights on the physical laws governing
at the highest energies. Such outstanding, anticipated
consequences seem to be however matched by difficulties,
which need to be overcome, first, to deliver an incontro-
vertible, reliable detection and sufficiently precise char-
acterization of the primordial B-mode signal, and later
to interpret it. The obstacles are of fundamental and
instrumental origins and stem from the fact that the an-
ticipated B-mode amplitudes are expected to be nearly
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two orders of magnitude below those of CMB E-mode
polarization and up to 10 times lower than the B-mode
signal generated by the Galactic foregrounds. To meet
and successfully address such a challenge progressively
more sophisticated and advanced observatories have to
be devised and built. Their complexity results in a num-
ber of design choices and decisions instrumental teams
have to make in the course of their development. As
those have often a direct impact on the science output of
the instrument, this is the latter, which should drive the
decision-making process. Though such a situation is by
far not new, the sheer size, complexity, and precision of
the modern instruments and data sets call for novel, more
robust ways of addressing the instrumental optimization
problem.

In this paper we propose a general, methodological
framework for the experiment optimization and then ap-
ply it in specific cases of CMB B-mode observatories. We
note that however sophisticated an adopted optimization
procedure may be, it is likely to always come up short
in giving justice to all the complexity of an instrument
under considerations. The goal of such a procedure, as
we pursue here, is therefore not just to find a single best,
in some sense, instrumental configuration, but rather to
provide, on the one hand, a reference against which to
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judge actual hardware designs and, on the other, guide-
lines of, first, how to propose, given some science goals, a
suitable and viable experimental design and, later, how
to modify it to implement inevitable, real-life limitations
and constraints in a way, which will have a minimal im-
pact on its scientific performance.

Though the discussed formalism lends itself straight-
forwardly to a number of generalizations, in this paper
we demonstrate it in the context of the B-mode detec-
tion by multi-frequency observatories taking into account
presence of the astrophysical (diffuse) foregrounds, leav-
ing a study of some of the most common instrumental ef-
fects to a future work. We note that even in this limited
context a result of the instrument optimization problem
will depend on a number of factors: scientific goals as set
for the experiment in question, models of the physical ef-
fects, e.g., foregrounds, specific techniques, and assump-
tions they require, selected to be used for component
separations step. This emphasizes the need for using the
state-of-the-art physical models of the foregrounds and
the separation techniques in this kind of problems, as
well as for continuing effort aiming at better, more reli-
able understanding of the foreground physics.

As the optimization requires a capability to predict the
performance of an instrument given its characteristics it
is very closely connected with performance forecasting.
In fact, in most of the similar work to date, the problem
of selecting the most suitable experimental configurations
is typically treated as a performance forecasting problem
applied to some pre-defined, and limited, set of potential
candidate experimental set-ups, relative merits of which
are subsequently evaluated and compared, e.g., [6–11].
This is in contrast with this paper, which employs an ac-
tual optimization procedure. In this respect our approach
is most similar to the one by Amblard et al. [12]. Here we
generalize and extend the latter work on both method-
ological and implementation levels. We consider broader
parameter space and optimization strategies, search for
families of acceptable configurations, and by adopting the
parametric component separation approach as the com-
ponent separation technique of the choice, we manage to
propagate realistic ensemble-averaged errors to our se-
lected figure of merit indicators in a statistically sound
manner.

The paper is organized as follows. In the next Sec-
tion we first describe a general framework of our ap-
proach and then specialize it to our specific science case
of CMB B-mode observations. In that Section we show
how the parametric component separation technique can
be used to assess the performance of CMB experiments
in the presence of galactic foregrounds, developing the
approach to a performance forecasting in such cases. In
Sect. III we detail the foreground model we use in this
work. Section IV describes applications of the proposed
formalism to two fiducial satellite experiments, based on
the CMBpol [4] and COrE [3] proposals. In Sect. V we
present our conclusions. Some of the lengthy calculations
are collected in Appendices A and B.

II. METHOD

Our approach is as follows. We start off from express-
ing our science goals in terms of acceptable ranges of
values of some proposed figures of merit, hereafter FOM,
(Sect. II B), which are chosen to reflect the physical con-
text of the considered experiment. We then first treat
all FOMs separately and for each of them perform a
strict optimization procedure (Sect. II C), i.e., minimize
or maximize it over a set of considered instrumental pa-
rameters. This is usually done in presence of some exter-
nal constraints arising for instance due to some hardware
requirements but also some other science-driven restric-
tions, (Sect. II C). This first step aims at determining
the best possible instrument performance from the per-
spective of the considered FOM and their corresponding
configurations. If for any of the FOM the best perfor-
mance value does not fulfill our science goals, the proce-
dure halts and either the set of instrumental parameters
have to be enlarged or the science goals/FOMs rethought.
Otherwise, for each FOM, but one, we select a thresh-
old value, which need to be attained by any acceptable
configuration and perform the optimization of the one
left-over FOM over the parameter space under additional
constraints, requiring that all or some of the remaining
FOMs are not worse than their established thresholds.
If the optimization fails, we may need to adjust some
of the thresholds and repeat the procedure again. This
may be also the case if the solution found does not en-
sure an acceptable value for the FOM, which is used in
the optimization. If the tuning of the thresholds suc-
ceeds, the solution obtained via the above procedure is
used as a starting point for further post-processing and
the corresponding set of values of all FOMs used as a ref-
erence to compare any other configuration against. The
post-optimization processing is used to implement some
additional constraints and/or simplifications, which for
some reason could not have been imposed on the formal
optimization procedure.

Below we present a specific implementation of this gen-
eral framework in the context of primordial CMB B-mode
observations by multi-frequency multi-detector observa-
tories in the presence of Galactic foregrounds. In this
case our FOMs need to account for some effects arising
due to the component separation procedure, which has to
be applied to data to recover a genuine CMB signal. We
therefore start below from discussing a specific compo-
nent separation approach, so called parametric maximum
likelihood technique, and its impact on a CMB B-mode
detection.

A. Effects of foreground separation

An estimation of the presence of the foregrounds in-
volves two main steps. On the first step, we estimate the
error incurred while constraining the spectral parame-
ter values from the data. on the second, we translate
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that error into some figures of merit expressing the over-
all quality of the separation process and which are then
used in our optimization procedure.

1. Formalism

Hereafter we use the parametric maximum likelihood
component separation approach implemented as in [13].
We thus assume a linear data model, where a signal mea-
sured in each pixel p is given by,

dp = A sp + np, (1)

where for each pixel p,

• dp is a multi-frequency data vector with each entry
corresponding to a different frequency channel;

• sp is a multi-component sky signal vector each en-
try of which corresponds to a different sky compo-
nent and which is to be estimated from the data;

• A is a mixing matrix defining how the components
need to be combined to give a signal for each of the
considered frequency channels;

• np is a vector containing the instrumental noise and
assumed to be Gaussian and uncorrelated with a
dispersion given by N.

Here both A and N are assumed to be pixel independent
for simplicity, with an exception of Sect. IV D 7.

In the parametric approach, one assumes that A is
parametrized by a set of spectral parameters, β, which
need to be determined together with the sky signal esti-
mates. The noise level per channel, number of frequency
channels, etc are all dependent on instrument proper-
ties, which thus will affect the results of the component
separation process and could therefore serve as optimiza-
tion parameters. Some other effects such as calibration,
beam-sizes, band-widths are also typically relevant and
may need to be included in the modeling, as even if not
necessarily an object of the optimization could affect its
outcome. We leave a thorough evaluation of those effects
for future work, while neglecting them in this paper.

Given values of β and defined instrumental parameters
we can estimate the component signal using a standard
Maximum Likelihood solutions,

sp ≡
(
At N−1 A

)−1
A N−1 dp. (2)

To estimate the spectral parameters we will use a pseudo
(or profile) likelihood [13] given as,

−2 ln L = −
∑
p

(
A N−1 dp

)t (
At N−1 A

)−1
A N−1 dp.(3)

We will refer to this likelihood as the spectral likelihood
and will identify its peak value with the best estimate
of the spectral indices and the curvature matrix at its
peak as the measure of the uncertainties expected for
the spectral parameter estimation. These will be used
to construct our figures of merit.

2. Spectral parameter uncertainty

The profile likelihood derivatives with respect to the
spectral parameters can be readily computed and the rel-
evant formulae are collected in Appendix A. As our pur-
pose is to gain some insight in the constraining power of
different plausible experimental set-ups rather than ana-
lyze any specific data set we will average over the possible
noise realization assuming that the noise correlation ma-
trix, N, is known. Using Eq. (A1) from the Appendix we
then arrive at,

〈
∂ lnL
∂β

〉
noise

=
∑
p

(A,β s̄p)
t

N−1
(
Â ŝp −A s̄p

)
(4)

for the first derivative. In this equation, as well as ev-
erywhere hereafter, we will use a hat over a quantity to
mark that we refer to its true, rather than just an es-
timated value. s̄ is a sky signal estimate in the case of
the noiseless data and it is defined in Eq. (A7). If the
data model in Eq. (1) is correct both in terms of assumed
scaling laws but also a number of components, the first
derivative in Eq. (4) vanishes for the true values of the

parameters, β ≡ β̂, emphasizing that the estimator is on
average unbiased. Indeed in such a case we have Â = A
and s̄ = ŝ. Under the same assumptions the second order
derivatives taken at the true values of the parameters can
be then written as, see Eq. (A10),

〈
∂2 lnL
∂β ∂β′

〉
noise

∣∣∣∣
β=β̂

= tr

{[
At
,β N−1 A

(
AtN−1A

)−1
AtN−1A,β′ − At

,β N−1 A,β′

]∑
p

ŝp ŝtp

}
. (5)

Hereafter we will use the inverse of this matrix to ap-
proximate the error matrix, Σ, for the recovered scaling

parameters, i.e.,[
Σ−1

]
ββ′
' −

〈
∂2 lnL
∂β ∂β′

〉
noise

∣∣∣∣
β=β̂

. (6)
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FIG. 1: 1- and 2-σ contours in the βdust - βsync space of the
spectral likelihood, L, calculated using Eq. (3) for a random
realization of the CMB and noise contributions, shaded areas,
and compared against the Gaussian approximation with a dis-
persion as given by Eq. (5), solid lines. The former likelihood
has been recentered at the true values of the parameters.

We note that the spatial morphology of the sky com-
ponents enter the calculation of the errors only in a form
of pixel averaged correlations,

F̂ ≡ 1

Npix

∑
p

ŝpŝ
t
p. (7)

Moreover, only those of the columns and rows of this
correlation matrix matter, which correspond to sky com-
ponents characterized by the scaling laws including some
unknown parameters. Mathematically, this just follows
from the fact that only columns of the derivatives of the
mixing matrix, A,β , corresponding to such components
do not vanish. Physically, this indicates that the com-
ponents for which the scaling laws are known unambigu-
ously, e.g., CMB, are subtracted cleanly during the sep-
aration process and do not affect the result of spectral
indices estimations. The immediate consequence of this
is that though the averages taken, while deriving Eqs. (4)
and (5) were formally performed only over an ensemble
of different noise realizations, the resulting expressions
are indeed equivalent to those obtained while averaging
over an ensemble of realization of noise and CMB signal.

We note that though our conclusion about the impact
of different components on the spectral parameter esti-
mation is general, a simple form of the dependence of the
latter on the foreground signal morphology is due to our
simplifying assumption of a pixel-independent noise level.
In general, the relation is more complex, with noise lev-
els selective (de)emphasizing the contributions of some of
the pixels on the sky. Though the formalism developed
here is general and can be straightforwardly adopted to
a case of arbitrary and correlated noise it can quickly be-
come computationally heavy. We will therefore leave a

discussion to more complex and realistic cases for future
work.

In Fig. 1 we show examples of the contours likelihoods,
Eq. (3), computed for dust and synchrotron spectral in-
dices for simulated data as described in Sect. III and
for some fiducial nearly full sky experiment. They are
compared with a Gaussian approximation based on the
variance derived with help of the error matrix, Eq. (6).
Generally we find a very good agreement. This may
breakdown somewhat in cases with very few pixels when
the actual spectral likelihoods typically become some-
what skewed [13]. Nevertheless, we find that even in
those cases though the Gaussian approximation may fail
to reproduce properly the tails of the distributions, its
overall performance is still rather good. In applications
of interest for this paper a sufficient number of pixels is
always granted.

An interesting question is then how the precision of the
spectral parameter estimation depends on the matrix F̂.
The short answer is that given the noise levels the higher
density contrast of the components, i.e., larger diagonal
elements of F̂, the better precision of estimated β, while
large cross-correlation terms tend to increase the error.

3. Residuals

From the discussion in the previous section it is clear
that the precision of the spectral parameters determina-
tion though relevant is clearly not a single factor impor-
tant in quantifying the component separation effects on
the B-mode science. This is due to the fact that better
precision is usually related to a higher foreground con-
trast and vice versa making it not straightforward to infer
an effective foreground contribution left over in the CMB
map after the separation process, given just the spectral
indices errors. However, given the estimated value of the
spectral parameters, β, we can always calculate the level
of the foreground residuals, i.e., a mismatch between the
estimated and true sky components. This can be ex-
pressed as follows [10],

∆ = s − ŝ = (Z (β)− I) ŝ, (8)

where

Z (β) ≡
(
At (β) N−1 A (β)

)−1
At (β) N−1 A(β̂), (9)

I is a unit matrix and as usual a hat over a quantity
denotes its true underlying value.

The foreground residuals left in the CMB map are just
one component of the vector, ∆, which for definiteness
is assumed to be the 0th one. We will now restrict our-
selves to the CMB component and linearize the problem,
assuming that the errors in spectral parameter determi-
nation are small. We thus obtain,

∆CMB =
∑
k,j

δβk α
0j
k ŝj , (10)



5

where

αijk ≡
∂ Zij(β̂)

∂βk
, (11)

and we assumed that the CMB component is stored as
first (i.e., with an index equal to 0) in the component vec-
tor, s. We can now characterize the level of the residuals
either simply by its rms value or, in a more informative
way we can estimate the noise average (though noiseless)
foreground residual power spectrum, which reads,

C∆
` ≡

∑
k,k′

∑
j,j′

Σkk′ α
0j
k α0j′

k′ Ĉjj′

` . (12)

Given that as mentioned before (see also, [10]) no CMB
signal is left in the CMB map residuals, which combine
just the foreground signals, the noise ensemble averages
coincide with those made over full CMB+noise set of re-
alizations. Clearly to compute the residual spectra we
need to make assumptions concerning the spatial mor-
phology of the considered foregrounds, i.e., the knowledge
beyond the F̂ matrix defined earlier. This is reflected in
Eq. (12) by the presence of true auto- and cross- spectra

for each considered foregrounds, Ĉjj′ . However, the F̂
matrix provides a sufficient description necessary to cal-
culate the rms value of the residuals. This can be seen
noting that,

∆CMB
rms

2
=
∑
k,k′

∑
j,j′ 6=0

Σkk′ α
0j
k α0j′

k′ F̂jj′ . (13)

In the following we will use the C∆
` quantity to construct

our FOMs making some specific assumptions about the
foregrounds spatial properties as described in Sect. III.
We point out that the formulae presented above are just
a special case of those already studied in [10]. The im-
portant difference is however that the spectral indices
uncertainties used in this work are computed effectively
as the full CMB+noise, ensemble averages rather than
derived in a single, particular study case as in that pre-
vious work.

B. Figures of merit

Given the estimates of the foreground residuals pro-
vided in the previous Section, we can now define our
figures of merit. Hereafter, we will use three FOMs: two
referring to the effects of the foreground residuals found
in the recovered CMB map as a consequence of the sep-
aration process, and the third related to the noise level
of that map. As our scientific goals here are related to
the primordial B-mode signal two of the proposed FOMs
express the effects of the foreground residuals on a tensor-
to-scalar ratio (of the respective CMB spectra), r. The
third one is more generic and is just to ensure that the
least-noisy map of the sky is produced.

a. FOM#1: rstat – an r value detectable on 95%
confidence level incorporating the component separation
uncertainties.
This FOM is computed in two steps. First, we use a
generalized Fisher matrix expression to estimate the un-
certainty of estimating the tensor-to-scalar ratio, r, for
any given assumed r value, and subsequently we deter-
mine a value of r ≡ rstat, which is detectable on 95%
confidence level. This limiting value is defined as,

rstat ' 2F−1/2
rr (rstat) . (14)

The Fisher matrix we propose to use here accounts
for usual cosmic, sampling, and noise variance, but also
for an extra error resulting from the shortcomings of the
foreground component separation, which is presumed to
be applied to the maps beforehand. We model the sep-
aration residuals following the formalism introduced in
Sect. II A 3 and which treats the map-level residuals as
a linear combination of the foreground templates with
Gaussian distributed amplitudes.

The detailed derivation of the Fisher formula is pre-
sented in Appendix B. Recalling that C∆

` denotes the
power spectrum of the residuals, the final expression for
the Fisher matrix, Frr, reads then,

Frr =

`max∑
`,`′

∂C`
∂r


(2`+ 1) δ``′

2 f−1
sky C

2
`

−
(2`+ 1)C−3

` C∆
` δ``′(

1 +

`max∑
`′′

(2`′′ + 1)
C∆
`′′

C`′′

) +
(2`+ 1) (2`′ + 1) C∆

` C
∆
`′

2C2
`C

2
`′

(
1 +

`max∑
`′′

(2`′′ + 1)
C∆
`′′

C`′′

)2


∂C`′

∂r
(15)

where for shortness we set C` ≡ CCMB
` + Cnoise` .

A choice of experimental parameters will in general
affect both the noise level as quantified by Cnoise` but
also the level of residuals resulting in different rstat values

derived for different proposal configurations.

We note that if the level of residuals is very high as a re-
sult of the errors on spectral parameters being large then
the first order expansion used to obtain Eqs. (10) & (12)



6

may not be any more sufficient. Likewise, if the fore-
ground contributions are large so their residuals are com-
parable to the CMB signal, sufficiently precise knowledge
of the foregrounds would become necessary to ensure that
the above formulae produce reliable results. As one may
not be completely comfortable with such a presumption,
we will introduce another FOM designed to penalize such
configurations.

b. FOM#2: reff – an effective r value of the fore-
ground residuals.
We use a proposal of [12] and we characterize any ob-
tained foreground residuals using its effective value of r
defined as,

s(reff ) ' u, (16)

where

s (r) ≡
`max∑
`

Ccmb` (r)− Ccmb` (0),

u ≡
`max∑
`

C∆
` .

We note that due to a missing factor of 2`+ 1 this crite-
rion does not compare power contained in the primordial
B-spectrum with that of the residuals (up to `max), and
in contrast to the latter it gives more weight to low mul-
tipoles.

c. FOM#3: σnoiseCMB - noise level of the recovered
CMB map.
When the true values of the spectral parameters are avail-
able the only uncertainty of the recovered component
maps, Eq. (2), is due to the instrumental noise and reads,

N =
(
At N−1A

)−1
, (17)

and therefore depends on the number of detectors and
frequency channels. With our focus on the CMB we will
therefore use the diagonal element of N corresponding to
the CMB component as one of our criterions, which we
would like to keep as low as only possible. We thus have,(

σnoiseCMB

)2 ≡ N00. (18)

We note that only when A is a unit matrix the
above formulae corresponds to a standard, ’inverse-noise-
coaddition’. This in turn can only happen if no sky com-
ponents are mixed together, implying no foregrounds. In
any other case the final noise of the CMB map is higher
than the inverse noise weighting would imply [14] and its
exact value will depend on the details of the component
scalings and experimental set up. We note that unlike
two other FOMs implemented here this applies on a map
rather than a power spectrum level. Moreover, as the
spectral parameters, β, are assumed to be known ahead
of the computation, this FOM may lead to configura-
tions in which the estimation of those is not feasible and
thus rendering the residuals effectively arbitrary and un-
known. Nevertheless, though it needs to be used with a
care, it provides a meaningful reference against which to
gauge other configurations.

C. Optimization procedure

1. Parameters and optimization approaches

In this work typically we will optimize a number of
detectors in each of the pre-defined frequency channels.
This is clearly one of the most basic hardware parameters
one would like to know designing a B-mode experiment.
Though the central frequency of the channels are often
constrained from the onset by some hardware constraints,
we will also consider more general optimization problems
in which a number of frequency channels, their central
frequencies, and a number of detectors per channel are
all to be optimized with respect to.

In the former case we perform a single global optimiza-
tion operation. Our numerical codes use a minimization
algorithm for constrained nonlinear multivariate func-
tion, as implemented in matlab, which is based on a
line-search algorithm with constraints introduced via a
quadratic approximation to the Lagrangian function.

In the second type of the optimization problems we
have found that attempts of performing a global opti-
mization are often frustrated by numerical issues and
the results are consequently not very reliable. Instead
we have devised a multi-step approach which is shown
schematically in Fig. 2. In the proposed method we start
from a configuration consisting of a focal plane overpop-
ulated with a large number of mock channels uniformly
covering the requested interval of frequencies. Each of
these channels is assigned the same number of detectors
or a fraction of the focal plane area, depending on which
hardware constraint we use (step 1). We then optimize
the number of detectors or focal plane area as in the stan-
dard case with the fixed frequency channels with respect
to a given FOM (step 2). As the obtained detector distri-
bution is typically rather inhomogeneous we then merge
the channels with close central frequencies, e.g., closer
than the expected band-width of the anticipated chan-
nels. In the process of merging we replace some subsets
of channels by a new channel, centered at the barycenter
of the previous frequencies as weighted either by a num-
ber of detectors or focal plane assigned to each of the
merged channels, and assign to it either their detectors or
the corresponding focal plane area (step 3). We optimize
this new configuration again with respect to numbers of
detectors per channel, and go back to step 2 whenever
the resulting configuration is found very inhomogeneous.
Then we repeat this process again. We find however that
usually a single pass over the optimization sequence pro-
duces satisfactory results.

2. Constraints

The constraints can be imposed straightforwardly via
Langrangian multipliers therefore permitting a wide va-
riety of those, which can, and sometimes have to, be in-
troduced.
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FIG. 2: Schematic illustration of our optimization procedure
in a case of an adjustable number of channels, a number of
detectors per channel, and their central frequencies.

These include some trivial constraints stemming from
the physical interpretation of the optimized parameters,
e.g., ensuring non-negative values for detector numbers
or focal plane area, which have to be usually included
explicitly.

There are also some fundamental constraints without
each the convergence could not be reached at all. These
typically followed from the hardware restrictions. As an
example of the hardware constraint, hereafter we will use
either a constraint on a total area of the focal plane or on
a total number of detectors, corresponding to cases where
we have full freedom to fill in the entire focal plane as
densely as only needed or when such freedom is restricted,
for instance, by capability of our read-out systems..

Yet another type of constraints invoked in the opti-
mizations studied here includes those driven by the sci-
ence goals rather than hardware requirements. For in-
stance, we could require that some specific frequency
channel map has a noise level better than some pre-set
level in order to make such a map good enough to investi-
gate some sky objects or features of interest. This kind of
constraints are often needed in the post-processing phase
described later.

In addition, while considering multiple FOMs simulta-
neously we will typically use some of them as constraints
restricting the optimization to such configurations for
which the required values of these FOMs is better than
some suitable threshold.

D. Post-optimization processing

The optimized solution formally determined as de-
scribed hereto in most of the cases will require further

adjustments and tuning, before it could become a basis
for an actual instrument design and later its potential
development.

Specific instances of such post-optimization processing,
which we consider hereafter include:

• design simplification – including either rounding
of numbers of detector per channels and/or remov-
ing some channels altogether, in particular those
assigned a small number of detectors.

• addition of some ad-hoc frequency channels
– for instance, either to improve the overall robust-
ness of the derived configuration with respect to
potential surprises concerning physical properties
of the foregrounds, or to extend the science goals
beyond what is already encoded in the FOMs.

In all these cases a crucial question is how significant
modifications from the initial optimized set-up are al-
lowed before the science goals, as expressed by the FOMs,
are compromised too significantly to be acceptable. Be-
low we outline a general approach devised to answer such
questions in some specific cases relevant to the applica-
tions considered here, leaving a more detailed descrip-
tion of its practical implementation in our study cases to
Sect. IV.

1. Detector number rounding

Let us consider only channels for which the optimiza-
tion procedure has assigned non-zero number of detec-
tors. Moreover we start from the channels for which we
want to decrease a number of detectors, as a result of the
rounding procedure, and postpone the treatment of the
remaining ones for later. For time being we also relax
all the constraints imposed on the optimization, with an
exception of the ones ensuring positivity of a number of
detectors or focal plane area. Removing some of the de-
tectors decreases the instrument sensitivity and thus will
affect our science goals, unavoidable rendering the experi-
ment less competitive. For any specific configuration
we can always calculate exactly its performance
in terms of the adopted FOMs. However, on the
experiment designing stage, when many such con-
figurations may need to be considered and often
quickly discarded, the need for the case-by-case
computation may be a hinderance. In such a
context a fast, even if rough and approximate,
approach could be therefore a handy substitute
permitting, on the one hand, to zoom quickly on
an interesting family of potential solutions, and,
on the other, to reject configurations which are
clearly of no interest. One way to address such
a need could be to construct, for each FOM, a
series of hyper-volumes, Vk, (k = 0, ..., nV −1), cen-
tered on the optimized configuration and such
that V0 ⊂ V1 ⊂ · · · ⊂ VnV−1. To each volume, Vk,
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we can assign uniquely a value, ṽk, such as,

ṽk ≡ min
{di}∈V(vk)

{
FOM

(
{di}

)}
, (19)

i.e., which defines the worst performance plau-
sible within the volume. The values ṽk are di-
rectly arranged in a descending order given that
any volume contains all the previous ones. If now
a configuration of our interest belongs to the k-
th volume and does not to the (k − 1)-th one we
immediately can infer that its performance, ṽ,
expressed in terms of the given FOM, is brack-
eted by the two values corresponding to these two
hyper-volumes, i.e., ṽk−1 ≤ ṽ ≤ ṽk.

Two features are essential to make such a
scheme useful. First, we have to have an easy
way to identify whether a given configuration is
or is not contained in a given hyper-volume. Sec-
ond, the volumes have to be defined in such a
way that the values of ṽk assigned to them span a
range of interesting values and do so sufficiently
densely. Given potential high-dimensionality of
the parameter space we consider here, none of
these two requirements is straightforward to sat-
isfy. To address the first of them we propose to
use as the volumes hyper-ellipsoids defined as,

Vk ≡
{{
di
}∣∣∣∑

i

(di − dopti )2

σ
(k)
i

2 ≤ 1, di < dopti

}
, (20)

where the last condition on the right hand side
narrows the volume to the cases of our interest
here. The semi-axes of the ellipsoid, σ

(k)
i , need to

reflect the fact that the rate at which the given
FOM changes will be in general different in differ-
ent directions in the parameter space. We there-
fore determine them for every direction corre-
sponding to varying detector numbers in a single
channel separately and we do it for each channel
of relevance here, i.e., for which dopti 6= 0. The pro-
cedure here involves two steps. First, we select a
grid of values of the considered FOM, vk, which
covers the range of its values of our interest and
does that with a sufficient density. This grid is
used consistently for all directions and channels.
Subsequently, for every channel, i, we find numer-
ically a dependence between a value of FOM and
a distance from the optimized solution along i-th
axis of the parameter space and use this relation

to determine σ
(k)
i so FOM

(
σ

(k)
i

)
= vk. Typically,

the grid point values, vk, will provide a good ap-
proximation to the worst case values, ṽk, defined
earlier. The latter are therefore expected to be
automatically well-spaced and to span a sufficient
interval of FOM values. In actual applications, we
compute more precise estimates of ṽk than those
provided by vk, This is done by using Eq. (19)

and randomly sampling the volume of the corre-
sponding hyper-ellipsoid.

The proposed construction therefore obeys the
two requirements we defined earlier and provides
a quick and easy way to find out how far the
configuration can be tweaked, without compro-

mising the science goals. The parameters σ
(k)
i

and ṽk constitute an additional and important
piece of information, which should be determined
and provided alongside any optimized configu-
ration to render the optimization process help-
ful. We demonstrate this in actual applications
in Sect. IV D 5.

So far we have neglected the hardware constraints.
Those would require that any subtraction of the detec-
tors from some of the channels needs to be accompanied
by adding detectors somewhere else. However, as adding
detectors can only improve our FOMs, the procedure out-
lined above is conservative as the final outcome of the
rounding with the constraints fulfilled can be only better
than what the procedure implies.

We can now get back to the channels for which we
might have wanted to round up the number of channels.
This can be done but only by appropriately distribut-
ing the detectors we have removed earlier, as the overall
hardware constraint has to be fulfilled. If we do not have
however strong preferences regarding their distribution
we may try to perform second round of the optimization
to find out how it can be done in an optimized way. This
could be done by solving the optimization problem as the
initial one but adding extra constraints fixing the num-
ber of detectors to their rounded value in all the channels,
where the rounding has been applied.

2. Low-populated channels

The formal optimization procedure proposed here may
result in configurations, which include a number of chan-
nels with a relatively low number of detectors. As extra
frequency channels contribute to an overall complexity of
the instrument, it could be advantageous to remove those
if there is no strong science driver behind them. Remov-
ing entire channels is more delicate than a removal of
some fraction of the detectors as discussed above. This
is because it can render the separation process singular
or nearly so with separation errors growing rapidly. The
singularities however can be usually avoided by keeping
track of a number of channels needed to separate some
specific number of components, each described by a well-
defined number of parameters. We will therefore assume
throughout that this is indeed the case. We then pro-
ceed as follows with the underpopulated channels. We
remove such a channel or contiguous group of those and
either redistribute the extra detectors between the ad-
jacent channels or create a new channel with a central
frequency computed as a detector (or focal plane area)
weighted average of the frequencies of the channels to be
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replaced. We then test the change in the FOM values. If
either of the options is not satisfactory, we can try to fur-
ther to improve on it by performing formal optimization
but now using only channels which contain a non-zero
number of detectors. If that still turns out to be much
worse than the optimized values of the FOM, we sub-
sequently need to identify, which of the low-populated
channels are crucial from the performance point of view
and retain them in our final configuration, while remov-
ing or merging the others.

3. Ad-hoc extra channels

Clearly our optimized configuration is only as good as
the foreground model assumed in the optimization pro-
cess. The impact of some of the uncertainties in the fore-
ground modeling can be discussed directly within the for-
malism presented here as, for example, that of details of
the foreground correlation matrix and/or shape of their
power spectra. It is more difficult however to investigate
the role of our assumptions about a number of spectral
parameters and/or a number of foreground components.
In that respect one may feel more at ease with the con-
figurations, which have the entire frequency range acces-
sible to the instrument sufficiently populated, as they, at
least on the intuitive level, may appear more robust with
regard to the unknown.

If the optimization does not lead to a configuration,
which satisfies such a condition on its own, one may
want to impose it by adding one or more ad-hoc fre-
quency channels in the areas they are missing. This can
be done straightforwardly by adding a constraint requir-
ing at least some predefined and non-zero number of de-
tectors in those channels. If this number is fixed exactly,
it will be obviously not anymore a parameter of the op-
timization, however the channel will still take part in the
optimization process as it will be taken into account in
the FOM computation. We use this approach to answer
an important question, i.e., how close such a new config-
uration would perform as compared to the original, opti-
mized one. In other words, should the foreground model
used turn out to be correct, would we lose much by try-
ing to make the configuration more robust ? Ideally, the
loss of performance will not be significant, permitting us
to reach both these goals simultaneously: near optimal-
ity whenever our modeling is correct, and ability to meet
the surprises. In Sect. IV D 5 we discuss how the parame-
ters of such ad-hoc channels can be proposed in a specific
application.

E. Design robustness

A problem closely related to the one discussed above
is that of the robustness of the final configuration. Given
some unavoidable failure rates in a technological process
involved in the instrument design and development, a

final version of the instrument typically comes short of
the actual design target. An important and valid ques-
tion then is how robust the science goals posed for the
experiment are assuming that the target has been de-
fined using the procedure described here. We address
this problem in a specific case in which we admit some
failure rate for the detector production process, ε. For a
set of realistic values of ε we perform a random sampling
of the parameter space randomly drawing a number of
failed detectors. We then evaluate full set of FOMs for
each of the samples and find what is an average, likely
on 95% confidence level, etc, impact of the considered
failure rates on the FOM values.

III. FOREGROUND MODELLING

As discussed earlier in our formalism there are two
key quantities needed to describe completely the effect
of foregrounds. These are the auto- and cross- spectra
characterizing the spatial distribution of the foreground
components and the component correlation matrix, F̂.
To calculate these we will rely on a specific model of the
Galaxy and since we are interested in the B modes, we
will consider only diffuse foregrounds, synchrotron and
dust, with known and non-negligible polarization emis-
sion.

To simulate these emissions in polarization we imple-
ment the same recipe as in [10], which starts off from
deriving reliable total intensity templates from the avail-
able data (the Haslam map [15] for the synchrotron and
the combined COBE-DIRBE and IRAS for the dust [16]),
rescales them using some constant overall polarization ef-
ficiency factor, fixed to 10% in order to match the large
scale E and B spectra of [17], therefore producing polar-
ization intensity templates. The polarization angles on
the largest scales are then determined using a combina-
tion of the WMAP data and 3D modeling of the Galactic
magnetic field as in [17], while on the small angular scales
( <∼ 1◦), by randomly simulating those using their angu-
lar power spectra as derived from the data [18].

We assume spatially constant frequency scalings: a
power law with index βs = −3 for the synchrotron, i.e.,

Async (ν, νref ) =

(
ν

νref

)βs
(21)

and a uniform greybody scaling law, as in the Model 3
of FDS [19],

Adust (ν, νref ) =

(
ν

νref

)βd+1 exp
hνref
kTd

− 1

exp hν
kTd
− 1

, (22)

where Td = 18.0 K and βd = 1.65 for the dust.
As pointed out in [10], by adopting this model a large

amount of correlation is expected between dust and syn-
chrotron both because the Galactic magnetic field is a
common ingredient and because of the lack of high res-
olution data that forces us to extend the correlation to
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FIG. 3: Three foreground masks as used in this work. Yellow,
dark red, and dark blue mark the masked out pixels for mask
ii, P06, and mask i, respectively.

mask fsky F̂dust−dust F̂dust−sync F̂sync−sync

P06 mask 0.73 3.20 0.082 0.0025

mask i 0.82 1.12 0.029 0.00084

mask ii 0.51 1.74 0.053 0.0019

TABLE I: F̂ matrix elements computed for two foreground
components, dust and synchrotron, at the fiducial frequency
of 70GHz for the three masks used in this work and all pix-
elized using HEALpix scheme with nside = 128.

small scales. This is reflected in the fact that the off-
diagonal terms of F̂ are of the same order of the diagonal
terms. However, as we discuss in Sect. II A 2 large off-
diagonal terms inflate the errors on spectral parameters,
so from the perspective of foreground residuals the em-
ployed model can be considered conservative.

To investigate the effects of different foreground con-
trasts and morphology we consider here three different
sky masks. mask i and mask ii are tailored in such
a way that they have the possible total polarized fore-
ground contrast (synchrotron plus dust) lower than a pre-
defined threshold equal to 0.86 and 0.36µK, respectively.
We also employ more standard the P06 mask from the
WMAP team, which is optimized for the low frequency
coverage of WMAP, i.e. it is skewed toward cutting out
more the synchrotron than the dust emission. All three
masks are shown in Fig. 3, while in n Table I we list the
elements of the matrix F̂ for each of them.

These masks are thought to be applied a posteriori to
the full sky map, assumed to be homogeneously observed
by the experiments. This means that the noise level per
pixel, described in Sect. IV B, will be the same for each
of them and thus the results of the FOM#3 optimization
will be the same in all three cases.

IV. APPLICATIONS

As an illustration of the method detailed in the pre-
vious sections, we will consider the optimization of two
different full sky satellite designs: Cosmic Origins Ex-
plorer (COrE) proposed in response to the European
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  E modes

  mask II

primordial
B−modes
(r = 0.001)

   mask P06

   mask I

  total B−modes

FIG. 4: Pseudo-power spectra of the foreground templates
for the three different masks considered in this work and con-
trasted with the CMB B-mode power spectrum. For each
mask the three lines show dust (solid), synchrotron (dashed),
and their cross-correlation (dotted). The foreground signals
are computed at the 65GHz. All the spectra used in this
work are computed from HEALpix-pixelized maps
with nside = 512.

Space Agency Cosmic Vision 2015-2025 Call [3], and
CMBpol [4, 20], proposed as part of the NASA mission
concept study. The respective frequency channels and
a number of detectors per channel corresponding to the
original designs are summarized in Table II for CMBpol
and III for COrE. In our analysis we will assume the
same noise levels per detector for each of the experiments,
Sect. IV B, and that they scan the sky homogeneously
with all the detectors observing simultaneously over the
course of 4 years. With an exception of Sect. IV E we
will aim at optimizing a number of detectors per chan-
nel, assuming that the latter are fixed and known, and
keep either the effective area of the focal plane or total
number of detectors constant. The assumed values for
the two constraints are derived given the proposed con-
figurations of COrE (Table III) and CMBpol (Table II).
In the case of the focal plane area we assume that an area
of the focal plane occupied by a single, diffraction-limited
detector operating at frequency, ν, can be expressed as,

A ∼ c2

ν2
. (23)

The total focal plane area is then obtained by summing
over the contribution coming from all the detectors. We
note that this gives at the best some effective area be-
cause we do not take into account any kind of filling fac-
tor, which is usually driven by technical constraints such
as the shape of the detectors, the wiring, etc. Fig. 5
shows the fractional area as occupied by each channel in
the case of the proposed versions.
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frequency [GHz] 30 45 70 100 150 220 340 500 850

# of detectors 84 364 1332 196 3048 1296 744 938 1092

TABLE II: CMBpol distribution of detectors among the different channels.

frequency [GHz] 45 75 105 135 165 195 225 255 285 315 375 435 555 675 795

# of detectors 64 300 400 550 750 1150 1800 575 375 100 64 64 64 64 64

TABLE III: COrE distribution of detectors among the different channels.

FIG. 5: Breakdown of the focal plane area between the fre-
quency channels as originally proposed for the COrE, left,
and CMBpol, right, satellites. In the case of COrE all the
channels with frequencies larger than 250 GHz represent less
than 10% of the total focal plane area.

Hereafter we neglect the effects of the E-B leakage,
e.g., [21], both in the calculations of the foreground spec-
tra as well as the CMB variance. In the former case
this is justified given the fact that E and B spectra for
foregrounds are on comparable levels and the leakage is
usually harmless. For the CMB variance we assume that
the effects of such a leakage can be largely removed using
one of the methods proposed in the literature. Though
corrections of this sort usually lead to some extra preci-
sion loss, this is typically only a fraction of the standard
cosmic variance and, at least for experiments with a suffi-
cient large sky coverage, small enough not to change our
results in a significant way. For small-scale observations
the effect may not be negligible and should be taken into
account, e.g., [10, 21].

For some alternative analyses of performance of these
two experiments see, e.g., [8, 9, 14].

A. Mixing matrix

To define the mixing matrix, Eq. (1) relevant for the
problem at hand, we will use the component frequency
scaling laws as defined in Sect. III. We set the refer-
ence frequency, i.e., frequency at which all the compo-
nent maps are recovered as equal to 150 GHz. We also
account for frequency band-shapes. For this we will as-
sume that they are top-hat-like with a width equal to 1/3
of the central value. Therefore, an element, Aij of the

mixing matrix will be given as,

Aij ≡
∫

dν Φj (ν, νref )WTH

(
|ν − νi| ,

1

3
νi

)
, (24)

where νi is a frequency of the ith channel, Φj (ν, νref )
is a photon flux as measured at frequency ν relatively to
νref , and WTH(·, σTH) is a top hat window centered at 0
and with a width σTH . As mentioned earlier we assume
hereafter that the scaling laws adopted on this stage coin-
cide with the true ones modulo the unknown parameters.
Nonetheless we will limit the frequency range of the chan-
nels included in our discussion below to between 30 and
400GHz, to, on the one hand, avoid channels where the
CMB is completely swamped by the foregrounds and, on
the other, not to stretch the adequacy of the frequency
scaling model of the dust over a too broad interval.

B. Noise levels

We assume sky-noise limited detectors. Their noise
level, in antenna units, is taken to be independent on
a detectors operating frequency and set to be equal to
σt ∼ 30µK

√
s [3]. A single detector noise level per

pixel will then be given by an observation total length,
Tobs and pixel area. The detector noise per channel will
also depend on a number of detectors operating at a given
frequency. The number of detectors for each channel,
{di}(i=0,...,nf−1), are the parameters we will be most fre-

quently trying to optimize in the reminder of this paper.
The noise correlation matrix will be then assumed to be
diagonal and the diagonal elements will be given by,

Nii =
4σ2

t N
tot
pix

Tobs di
, (25)

here, N tot
pix is a total number of observed pixels (to be dis-

tinguished from Npix a number of pixels included in the
analysis (Npix will depend on the mask we will consider,
see Sect. III).

C. Resolution

So far we have ignored completely the fact that detec-
tors operating at different frequencies will likely to have
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a different resolution, in particular if they are diffraction-
limited. As the parametric maximum likelihood compo-
nent separation approach adopted here is pixel-based all
the channel maps will have to be however smoothed to
some common resolution before the separation can be
accomplished. The extra smoothing required here is not
generally lossless and may introduce noise correlation be-
tween the pixels. Hereafter we will ignore such effects and
keep on using Eq. (25) to compute the noise levels with
only the pixel size, and thus a number of pixels, adjusted
accordingly. As far as the sky signals are concerned, given
that our science goals are mostly constrained by the large
angular scales, we will mimic the common resolution by
setting a hard limit on the considered value of ` to be
`max = 500, as we have found that for the considered
noise levels there is no information beyond that range.
We note that in a more refined approach one may want
to introduce the resolution as an optimization parameter
and constraint it by requiring that the gain due to its
decrease is larger than some threshold. All the power
spectra used in this work have been derived using
HEALpix pixelized maps with the HEALpix res-
olution level, nside = 512. This is clearly sufficient
given the hard `-space cut off we have adopted
here. We stress that this resolution is higher than
the one used in Sect. III for the determination of
the matrix F̂. This is because in the latter calcu-
lation only pixel-domain quantities are involved,
which are overwhelmingly dominated by the large
scale fluctuations for which nside = 128 maps are
entirely sufficient.

D. Fixed number of channels with pre-defined,
fixed frequencies

In this Section, we describe the optimization of the
two experiments, assuming that the frequency channels
are fixed ahead of the procedure. The results are sum-
marized in Tables IV and V for COrE and CMBpol re-
spectively, and for each FOM (called there for shortness
as F1, F2 or F3), three considered sky masks (P06, mask
i or mask ii), and two hardware constraints (total area
or total number of detectors), and are contrasted with
results obtained for the original designs of the experi-
ments, as shown in the rightmost columns of the Ta-
bles. We note that though the latter configurations are
mask-independent, the corresponding FOMs values differ
somewhat from a mask to a mask due to differences of the
sky included in the analysis. For each of the optimized
configuration the Tables show a corresponding total num-
ber of detectors, focal plane area, effective noise levels,
spectral index determination precision, and values of the
three FOMs. A selection of these results is also depicted
in Figs. 6-9, showing, as bars, a number of detectors for
each of the considered channel, left panels, and power
spectra of the residuals corresponding to each configura-
tion, right panels. The visualized cases are those based

on the P06 mask, however the other cases would look
similar. In each Figure the upper left panel shows a cor-
responding original configuration followed by three pan-
els displaying configurations optimized with respect to
each of the three FOMs. Four general observations are
in order here.

1. the optimized configurations depend on the FOM
used for the optimization.

2. the constraints imposed on the problem affect the
results. Constraining the focal plane area gives
preference to the high frequency channels with de-
tectors occupying a small area and thus leads to
a worse determination of the synchrotron signal,
what in turn leads to a higher level of residuals,
if these are left unconstrained, i.e. in cases of
FOM#1 and #3. Also the overall noise, FOM#3,
tends to be higher.

3. the final configurations obtained for each of the
three masks are essentially identical, though the
actual values of FOMs do differ mostly due to a
different number of pixels with mask ii containing
the fewest of those.

4. the optimized configuration contain significantly
fewer frequency channels than allowed for in the
optimization and therefore than proposed in the
original versions of the both these experiments.

Below we comment on some of the result in more de-
tail and leaving a general discussion for the conclusions,
Sect. V.

1. FOM#1 optimization - rmin

For all configurations shown in Tables IV and V for
which FOM#1 could be computed, i.e., those containing
more than just 3 channels, rmin is found to be on order
of 10−4 and varying from case to case by no more than
a factor of 2. This is also the case for the original de-
signs of the COrE and CMBpol satellites. The values of
FOM#1 optimized under the constraint of the total num-
ber of detectors tend to be somewhat better (worse) than
those derived under the total focal plane area constraint
for COrE (CMBpol). The differences are however small
across the board and probably irrelevant in practice.

In both the COrE and CMBpol cases, the optimization
of FOM#1 leads to configurations for which also FOM#3
is close to the optimum, as the latter is found to be within
5%-10% of its best value for the respective hardwarel
constraints. This suggests that this is the variance due
to the noise rather than the foreground residual, which
contributes to the recovered value of the FOM#1 more
significantly, (see also [10]). Conversely, as a consequence
in such cases the level of the foreground residuals is not
tightly controlled and therefore the FOM#1-optimized
configurations result in values of FOM#2, which are at
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FIG. 6: Left : Optimized distributions of numbers of detectors per channel derived under the total focal plane area constraint
for the COrE satellite, including only channels below 400GHz. From top to bottom we show first the original distribution
followed by the three optimized ones derived using FOM#1 to #3, respectively. Right : Corresponding power spectra of the
residuals and the noise computed for the optimized configurations shown on the left and compared against the spectrum of the
CMB B-modes with r = 0.001.

FIG. 7: As in Fig. 6 but imposing the constraint on the total number of detectors.

least one order of magnitude above the best achievable
reff , and worse than the values derived for the proposed
designs. As we normally would prefer to avoid too high
residuals we conclude that FOM#1 is not sufficient as a
stand-alone optimization criterion and preferably should
be combined with some other indicator, efficient in en-

forcing low value of the residuals. We will get back to
this issue later on in this Section.
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FIG. 8: As in Fig. 6 but for the CMBpol satellite.

FIG. 9: As in Fig. 7 but for the CMBpol satellite.

2. FOM#2 optimization - reff

From Eqs. (10)–(12) it follows that a good determina-
tion of the spectral parameters βdust and βsync is nec-
essary and sufficient to ensure a low level of the fore-
ground residuals. We therefore expect, see also [12],
that in the FOM#2-optimized configuration the detec-
tors should populate predominantly low frequency band,
which are dominated by the synchrotron signal, the CMB
band, and high frequency band, dominated by the dust.
As we require at least 4 channels in the case at hand

to avoid problem singularity and impose the hardware
constraint the actual answer is somewhat more com-
plex, nevertheless the overall detector distribution con-
form with the above intuition. Indeed the FOM#2-
optimized configurations include channels below 50GHz,
around 100− 130GHz, and above 250GHz. This applies
for both the experiments and for every mask. The details
of the distribution depend on a type of the constraint.
As the high frequency detectors have smaller area we find
that the dust is better estimated (δβdust lower) under to-
tal area constraint case as more high frequency detectors
can be had. The opposite can be seen for the synchrotron
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channels P06 mask mask I mask II proposed version

constraint area total # area total # area total #

(GHz) F1 F2 F3 F1 F2 F3 F1 F2 F1 F2 F1 F2 F1 F2 P06 mask mask I mask II

45 45 22 48 610 87 382 45 21 610 72 45 22 607 88 64 - -

75 - 370 - 1775 827 - - 366 1775 778 - 37 1759 832 300 - -

105 - - - 3027 - 4876 - - 3026 - - - 3042 - 400 - -

135 3160 1872 3918 - 2313 - 3161 1886 - 2322 3124 1871 - 2315 550 - -

165 1092 - - - - - 1091 - - - 1146 0 - - 750 - -

# of 195 - - - - - - - - - - - - - - 1150 - -

detectors 225 - - - - - - - - - - - - - - 1800 - -

255 - - - - 2081 - - - - 2141 - - - 2073 575 - -

285 - 4623 - - - - - 4669 - - - 4610 - - 375 - -

315 - - - - - - - - - - - - - - 100 - -

375 3281 3186 2859 717 820 870 3281 3156 717 816 3294 3188 719 820 64 - -

total area 0.023 0.023 0.023 0.081 0.032 0.057 0.023 0.023 0.081 0.031 0.023 0.023 0.080 0.032 0.023 - -∑
[# of dets] 7579 10073 6824 6128 6128 6128 7577 10099 6128 6128 7608 10062 6128 6128 6128 - -

45 0.085 0.042 0.091 0.34 0.12 0.30 0.085 0.040 0.34 0.10 0.085 0.042 0.36 0.12 0.12 - -

75 - 0.25 - 0.35 0.42 - - 0.25 0.35 0.41 - 0.25 0.35 0.42 0.21 - -

105 - - - 0.31 - 0.69 - - 0.31 - - - 0.31 - 0.14 - -

135 0.67 0.40 0.83 - 0.358 - 0.67 0.40 - 0.37 0.66 0.40 - 0.36 0.12 - -

fractional 165 0.15 - - - - - 0.15 - - - 0.16 - - - 0.11 - -

area 195 - - - - - - - - - - - - - - 0.12 - -

225 - - - - - - - - - - - - - - 0.14 - -

255 - - - - 0.090 - - - - 0.097 - - - 0.090 0.034 - -

285 - 0.22 - - - - - 0.22 - - - 0.22 - - 0.018 - -

315 - - - - - - - - - - - - - - 0.0039 - -

375 0.090 0.088 0.079 0.006 0.016 0.010 0.090 0.087 0.0057 0.017 0.090 0.088 0.0057 0.016 0.0018 - -

45 0.37 0.524 0.354 0.099 0.263 0.125 0.37 0.53 0.099 0.30 0.37 0.52 0.099 0.26 0.31 - -

75 - 0.127 - 0.058 0.085 - - 0.13 0.058 0.088 - 0.13 0.058 0.085 0.14 - -

105 - - - 0.044 - 0.035 - - 0.044 - - - 0.044 - 0.12 - -

135 0.044 0.057 0.039 - 0.051 - 0.044 0.056 - 0.051 0.044 0.036 - 0.051 0.10 - -

noise 165 0.074 - - - - - 0.074 - - - 0.072 - - - 0.089 - -

per 195 - - - - - - - - - - - - - - 0.072 - -

channel 225 - - - - - - - - - - - - - - 0.058 - -

[µKantenna] 255 - - - - 0.054 - - - - 0.053 - - - - 0.10 - -

285 - 0.036 - - - - - 0.036 - - - 0.036 - - 0.13 - -

315 - - - - - - - - - - - - - - 0.24 - -

375 0.043 0.043 0.046 0.091 0.085 0.083 0.043 0.044 0.091 0.086 0.043 0.043 0.091 0.085 0.31 - -

δβd [10−3] 0.96 0.12 - 0.95 0.16 - 0.83 0.074 0.82 0.10 1.47 0.19 1.48 0.25 0.28 0.18 0.45

δβs [10−3] 30 2.9 - 4.3 2.2 - 26 1.9 3.7 1.4 38 3.9 5.6 2.9 3.4 2.2 4.5
δβdδβs
δβd×δβs

-0.918 -0.44 - -0.92 -0.57 - -0.96 -0.46 -0.96 -0.58 -0.91 -0.44 -0.91 -0.57 -0.67 -0.70 -0.67

F1
[
10−3

]
0.22 0.26 - 0.21 0.24 - 0.20 0.23 0.19 0.21 0.31 0.37 0.29 0.34 0.28 0.25 0.40

F2
[
10−3

]
0.95 0.0097 - 0.16 0.011 - 1.06 0.0057 0.18 0.0065 0.79 0.086 0.14 0.0094 0.028 0.018 0.025

F3
[
nKcmb

]
5.4 10 5.3 3.6 7.4 3.4 5.4 10 3.6 7.7 5.4 10 3.6 7.4 14 14 14

TABLE IV: Summary of the optimization results in the case of COrE considering channels only below 400 GHz. For each of
the three masks, we present results for each of the three FOMs optimized under one of the two constraints, either fixing the
focal plane area or the total number of detectors. The results for FOM#3 are quoted only once as they do not depend on the
choice of the mask.The rightmost columns show the results computed using the original version of COrE as proposed in [3]. In
the latter case the configuration is always the same, whatever the choice of the mask.

estimation. The resulting levels of the residuals are how-
ever essentially identical in both these cases. More ag-
gressive masking clearly helps, mask i, but a balance has
to be maintained between lowering the overall foreground
level and the precision of the spectral index determina-
tion. The latter, unlike the former, benefits from a larger
number of pixels and higher foregrounds and, otherwise,
can therefore start driving the effective residual up, e.g.,
mask ii.

The FOM#2-optimized configurations usually render
good values for FOM#1 (within 10 − 15% of the best
achievable values), but result in the CMB map noise lev-
els (FOM#3) up to twice higher than the best ones. The
original versions of the considered experiments also yield
the values of reff close to the best ones.

3. FOM#3 optimization

For this FOM, and in every considered here case, the
optimization of the focal plane with respect to the noise
in the CMB map ends up with only 3 non zero channels:
two at frequencies as extreme as only allowed for, and
one at an intermediate one contained in the CMB fre-
quency band. The precise position of the latter is found
again to be dependent on a type of the hardware con-
straint used. For the CMBpol satellite the values of the
central frequencies are 70 or 150GHz for the constraint
on the total number of detectors and the area, respec-
tively. For COrE they are 105 and 135GHz, respectively.
We recall that in the case of this FOM all the spectral
indices are assumed to be known, otherwise the 3 channel
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channels P06 mask mask I mask II proposed version

constraint area tot # area tot # area tot #

(GHz) F1 F2 F3 F1 F2 F3 F1 F2 F1 F2 F1 F2 F1 F2 P06 mask mask I mask II

30 35 62 52 472 185 601 33 61 448 168 56 62 672 187 84 - -

45 - 491 - - 1016 - - 493 - 975 10 491 1240 1021 364 - -

# of 70 - - - 4861 - 7646 - - 4935 - - - 3643 - 1332 - -

detectors 100 1970 4056 - 2776 3546 - 1400 4101 2579 3567 6311 4049 2583 3544 2196 - -

150 13159 - 16995 - - - 14639 - - - 3518 - - - 3048 - -

220 823 8328 - - 3164 - - 8228 - 3207 178 8340 - 3157 1296 - -

340 10364 4525 13210 954 1154 817 11586 4259 1102 1148 7988 4566 926 1154 744 - -

total area 0.084 0.084 0.084 0.16 0.10 0.20 0.084 0.084 0.16 0.099 0.084 0.084 0.21 0.10 0.084 - -∑
[# of dets] 26352 17462 30258 9064 9064 9064 27658 17143 9064 9064 18061 17508 9064 9064 9064 - -

30 0.042 0.074 0.063 0.29 0.18 0.30 0.040 0.073 0.28 0.17 0.068 0.074 0.32 0.18 0.10 - -

45 - 0.26 - - 0.44 - - 0.26 - 0.44 0.0054 0.26 0.26 0.44 0.19 - -

fractional 70 - - - 0.55 - 0.70 - - 0.57 - - - 0.31 - 0.29 - -

area 100 0.21 0.44 - 0.15 0.31 - 0.15 0.44 0.15 0.32 0.68 0.44 0.11 0.31 0.24 - -

150 0.63 - 0.81 - - - 0.70 - - - 0.17 - - - 0.15 - -

220 0.018 0.19 - - 0.057 - - 0.18 - 0.060 0.0040 0.19 - 0.057 0.029 - -

340 0.097 0.042 0.12 0.0046 0.0088 0.0032 0.11 0.040 0.0054 0.0090 0.074 0.043 0.0034 0.0087 0.0069 - -

30 0.41 0.31 0.34 0.11 0.18 0.010 0.42 0.31 0.12 0.19 0.33 0.31 0.094 0.18 0.27 - -

45 - 0.11 - - 0.077 - - 0.11 - 0.078 0.77 0.11 0.070 0.077 0.13 - -

noise 70 - - - 0.035 - 0.028 - - 0.035 - - - 0.041 - 0.067 - -

per 100 0.055 0.038 - 0.046 0.041 - 0.065 0.038 0.048 0.04 0.031 0.038 0.048 0.041 0.052 - -

channel 150 0.021 - 0.019 - - - 0.020 - - - 0.041 - - - 0.044 - -

[µKantenna] 220 0.085 0.027 - - 0.044 - - 0.027 - 0.043 0.18 0.027 - 0.044 0.068 - -

340 0.024 0.036 0.021 0.079 0.072 0.086 0.023 0.038 0.074 0.072 0.027 0.036 0.080 0.072 0.090 - -

δβd [10−3] 0.25 0.086 - 0.71 0.13 - 0.37 0.055 0.62 0.055 0.41 0.14 0.0.66 0.21 0.16 0.10 0.25

δβs [10−3] 2.39 0.51 - 1.5 0.38 - 3.2 0.33 1.4 0.33 2.7 0.68 0.67 0.50 0.55 0.36 0.73
δβdδβs
δβd×δβs

-0.66 -0.46 - -0.96 -0.48 - -0.10 -0.48 -0.88 -0.49 -0.88 -0.46 -0.54 -0.48 -0.63 -0.65 -0.62

F1 [10−3] 0.19 0.20 - 0.19 0.20 - 0.17 0.18 0.17 0.18 0.27 0.28 0.27 0.29 0.20 0.18 0.29

F2 [10−3] 0.024 0.0018 - 0.059 0.0023 - 0.076 0.0011 0.069 0.0014 0.020 0.0016 0.012 0.0020 0.0041 0.0026 0.0036

F3
[
nKcmb

]
1.5 2.7 1.4 1.6 3.1 1.5 1.4 2.7 1.6 3.2 1.6 2.7 1.7 3.14 3.0 3.0 3.0

TABLE V: As in Table IV but for CMBpol [4].

configurations derived here would be singular and would
not permit a determination of the spectral indices. The
achieved noise levels are better when the total number of
detectors is constrained, and are lower by a factor up to
∼ 1.6. The original versions of the satellites result in quite
high noise (higher by a factor of 2.5 − 4) in comparison
with the one derived for the optimized configurations.

4. Consensus configuration

Having postulated three different FOMs we have ob-
tained three different, optimized configurations. More-
over, as we have already mentioned earlier there is clearly
tension between some of the considered FOMs. The is-
sue now is therefore how to find a compromise between
them in order to select a single configuration as a result
of our procedure. To do so we first recall that in our
case the configurations preferred from the point of view
of FOM#1 fail to ensure a satisfactory level of the resid-
uals, as quantified by FOM#2, while optimization of the
latter yields a rather high level of noise, i.e., FOM#3.
Simultaneously however optimizing FOM#1 effectively
ensures a near optimization of FOM#3. Therefore we
will retain the former as part of the optimization and
drop the latter, which from now on will be used only
as a benchmark to compare the obtained configurations
against. As FOM#1 on its own is not fully satisfac-

tory we will therefore optimize it, while imposing a con-
straint based on a value of FOM#2. Clearly if more
FOMs are used more constraints can be introduced in
the same way. What values to choose for the thresholds
is a somewhat debatable question, an answer to which
will depend on a specific application. In our case, we
first note that for the FOM#2-optimized configuration
the resulting reff is an order of magnitude lower than the
respective value of rmin. The latter is moreover typically
20% higher than its corresponding best value. From the
viewpoint of these two indicators the FOM#2-optimized
solution looks therefore quite satisfactory. This is partic-
ularly true for the CMBpol case for which this solution
can be accepted as indeed the final outcome of the proce-
dure. For COrE the potential remaining problem could
be the noise level. In search of the consensus configura-
tion we may therefore want to let the residual grow in
particularly relatively to the value of rmin and gain in
terms of the noise. Clearly more we compromise on reff
more we can gain on σ2

CMB . As for COrE the values of
rmin are close to 2 × 10−4 we will allow rmin to be as
large as 10−4, and re-optimize the problem with respect
to FOM#1 with the constraint that reff ≤ 10−4. This
specific choice is in fact arguably rather high. In fact we
find that imposing more strict limits of reff ≤ 2.5× 10−5

or 5 × 10−5 already can ensure satisfactory noise levels,
4.0 and 3.9 nKCMB , respectively, and thus could be pre-
ferred for the actual experiment optimization. We will
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however use hereafter the threshold of 10−4 as it is more
useful for the demonstration purposes.

The resulting configuration is shown in Fig. 10 and
summarized in Table VI, where we show the results ob-
tained for the two hardware constraints. The spectra of
the noise and residuals are also displayed in the right
panel of the Figure. We conclude that the detector dis-
tribution indeed resemble a hybrid between two solutions
obtained earlier as a result of the optimization of FOMs:
#1 and #2 separately with a respective hardware con-
straint, Figs. 6 & 7. As anticipated above the overall
level of the foreground residual spectrum is rather high
as compared to both the B-mode spectrum and its respec-
tive variance due to the noise and the sky. However, as
intended, the noise level has been successfully suppressed
to the levels close to those computed for FOM#3 opti-
mized configurations.

5. Post-processing

For definiteness in this Section we focus on a sin-
gle, specific configuration, and choose for it the opti-
mized COrE set-up obtained from the optimization of
the FOM#1 value, while constraining the corresponding
value of FOM#2 to be no more than 10−4 and keeping
the total number of detectors fixed, as discussed at the
end of the previous Section. The details of this configura-
tion are listed in the fourth column of Table VI together
with the respective FOMs values.

The procedure employed in this Section follows the
steps outlined in Sect. II D. In Fig. 11 we show an im-
pact of a fractional change of a number of detectors in
one channel at the time on the values of the FOMs. The
latter are given relatively to their optimized values and
therefore all the curves shown in the Figure are expected
to start from a FOM value equal to one for a fractional
change equal to zero, i.e., the optimized configuration it-
self, and typically monotonically grow with an increasing
value of the fractional change parameter. In addition,
for reference we also show how the FOMs values would
change if numbers of detectors in all the channels are
decreased by the same fraction. We note that at least
for the two of the FOMs, i.e., FOM#2 and #3, the lat-
ter dependence can be straightforwardly predicted using
Eqs. (5), (12), & (17) and shown to be inversely pro-
portional to an actual number of detectors in the corre-
sponding configurations and thus inversely proportional
to (1−fractional change of detectors). This indeed is ad-
hered to by our numerical results.

The most striking features of some of the results is their
apparent flatness extending on occasions to a rather high
values of the fractional change. At a face value that sug-
gests that one is at liberty to change a number of detec-
tors in some of the channels rather drastically but with-
out noticeably penalizing the performance of the instru-
ment. However, though some freedom indeed exists, it
has to be exploited carefully. In particular, significantly

changing a number of detectors in one selected channel,
will usually have an effect of removing any freedom in
adjusting the number of detectors in the remaining chan-
nels. Therefore if one’s goal is to round-up the optimiza-
tion results in a way to make them more amenable to an
actual implementation that may not be the right way to
go. Below we showcase some of these issues in the specific
case at hand.

Probably most conspicuous thing about the configura-
tion considered here is the presence of a channel centered
at 255GHz, to which are assigned only 17 detectors, as
opposed to a few thousands in some of the other channels.
A natural question to ask is therefore whether this chan-
nel is needed at all. In fact, the two outermost panels of
Fig. 11 seem to confirm our feeling that this channel is in
practice irrelevant as both the FOMs #1 and #3 effec-
tively do not depend on its being present or not. This is
not so however for the FOM#2 as shown in the middle
panel. In this case removing this channel altogether will
boost the value of this FOM, and thus the level of the
foreground residual by a factor of ∼ 1.5. Though not
overwhelmingly large it is substantial enough to justify
holding on to this channel (unless of course the hard-
ware cost of having the extra channel tips the balance
the other way). These expectations are confirmed by di-
rect calculations, results of which as shown a 5th column
in Table VI. (We note that an attempt to re-optimize the
resulting 4-channel system ”a posteriori” does not bring
much improvement either, Table VI, column 6). We note
that trying to keep the level of residuals down in this case
can be of particular importance given that already in its
original, optimized version (Table VI) the resulting val-
ues of rmin and reff are close enough to each other that
this is probably the latter, i.e, the level of residuals, which
would drive the actual limit on a detectable r value for
this set-up, rather than statistical estimate provided by
FOM#1. Letting reff grow any further would therefore
directly affect our science goals. Instead we can therefore
try to trim a number of detectors in either 45 or 375GHz
channel. We see that we can potentially reject up to
∼ 70% of the detectors in the former or ∼ 80% in the lat-
ter, without affecting the residuals level (FOM#2) in any
appreciable manner. This would have an effect of increas-
ing FOM#1 value by no more than ∼ 5% and FOM#3
by no more than ∼ 50%, both of which may therefore
look perfectly acceptable. Whichever option we opt for,
we can then re-use the spare detectors by distributing
them to some of the existing channels or creating some
additional ones, say at 165GHz, in order to be better
equipped to face some potential surprises (Sect, II D).
However a special care then has to be taken if a number
of detectors in some other channels needs to be concur-
rently decreased. This is because, as illustrated by lines
marked with circles in Fig. 11, not all directions in the
parameter space are similarly flat.

If our aim is to just round-up the detector numbers we
can proceed as outlined in Sect. II D. We first postulate
a set of fractional changes from the optimized values. In
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FIG. 10: Left panel: Result of the optimization of FOM#1, under the constraint FOM#2 ≤ 10−4, in the case of COrE,
considering only channels below 400 GHz and the P06 mask. Upper (lower) histogram corresponds to the optimization of the
number of detectors under the total area (total number of detectors) constraint.
Right panel: illustration of the optimization result described in table VI and shown on the left panel. We see power spectra of
the proposed COrE and the optimized versions. This has been obtained in the case of COrE, considering only channels below
400 GHz for the P06 mask.The FOM#1 optimization has been done under total area constraint (blue curves) and total number
of detectors constraint (magenta curve). Residuals for both constraints are the same.

channels F1-optimized no 255GHz channel cases extra channels original

(GHz) + constraint no optimization F1-optimized + F1 optimized + version

F2 ≤ 10−4 F2 ≤ 1.5 × 10−4 F2 ≤ 10−4 [3]

45 607 607 592 366 64

75 1771 1771 2112 47 300

105 3021 3021 2801 4551 400

135 - - 0 - 550

165 - - 0 - 750

# of 195 - - 0 200 1150

detectors 225 - - 0 - 1800

255 17 0 0 - 575

285 - - 0 200 375

315 - - 0 - 100

375 711 711 623 764 64

δβd [10−3] 0.74 0.95 0.91 0.35 0.28

δβs [10−3] 3.5 4.3 4.1 8.1 3.4
δβdδβs
δβd×δβs

-0.88 -0.92 -0.92 -0.66 -0.67

F1 [10−3] 0.21 0.21 0.21 0.21 0.28

F2 [10−3] 0.10 0.16 0.15 0.10 0.028

F3
[
nKcmb

]
3.6 3.6 3.6 3.6 14

TABLE VI: Comparison of performance of the variants of the COrE set-ups considered in Sect. IV D 5. All the optimization
runs have been performed while keeping the total # of detectors constant, used the P06 mask and only the channels below
400GHz. The configurations in the Table include, from left to right, (1) a result of the optimization procedure with respect to
FOM#1 with a constraint on FOM#2 of ≤ 10−4, (2) the same configuration but with the 255GHz channel suppressed, (3) a
configuration with the same frequency channels as in (2), but with numbers of detectors re-derived via an optimization with
respect to FOM#1 and a constraint FOM#2 ≤ 1.5 × 10−4, and (4) a re-optimized configuration with the channels as before
plus two extra ones with a fixed number of detectors (= 200 each). The very last column shows the original COrE configuration
for comparison.

our case these could be [vk] = [1.025, 1.05., 1.1, 1.15] for
FOM#1 and [vk] = [1.05, 1.25., 1.5, 2.0] otherwise, and
then use Fig. 11 to read off the corresponding values of
the fractional change for each channel and each FOM.
These are values denoted σ in Sect. II D. In our case for

FOM#1 they read,

{
σ

(k)
j

}
=



409 496 555 577

1017 1664 1771 ∞
880 1477 2236 2697

∞ ∞ ∞ ∞
442 549 624 654


, (26)
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FIG. 11: Dependence of the values of FOM#1 (left), #2 (middle), and #3 (right), on a fractional change of a number of detectors
in the hardware configuration as detailed in the 4th column of Table VI. The solid lines show cases when a number of detector
in only one selected channel being gradually decreased (left to right) and all the others being kept fixed at their optimized
values. The circles show the case with a number of detectors in all channels decreasing by the same fraction simultaneously.
The color schemes for the lines are the same in all the panels and described in the legend.

FIG. 12: The worst values of each FOM, ṽ, computed for
each of the concentric hyper-ellipsoids, Eq. 20, defined by the
threshold values, v, as shown on the horizontal axis. The
dotted line shows ṽ = v case. Clearly, ṽ ' v in all shown
cases, where the latter approximate equality holds to within
10%. The values of ṽ and v given here are relative to the
optimized values of the respective FOMs.

where kth column corresponds to the kth value of vk and
thus gives values of σ for each of the five channels with
non-zero number of detectors in the optimized configu-
ration (see 2nd column of Table VI). We can use these
values to define, Eq. (20), hyper-ellipsoidal volumes, Vk,
in the parameter space centered on the optimized config-
uration. We note that the infinity sign marks the cases,
where the desired value of vk could not have been reached
due to the parameter space boundary. For instance, the
values in the 4th row of Eq. (26) are all infinite as in the
neighborhood of the optimized configuration the value of
FOM#1 does not depend on a number of detectors in

this channel as can be seen in Fig. 11.
To find the worst case value of the FOM for a kth

hyper-ellipsoid, ṽk, we use random sampling of first an
entire volume of the ellipsoid followed by that of only
its surface. The latter requires fewer samples to ensure
proper sampling density and is more efficient if we have
some expectation of the FOM values being monotonically
deteriorating away from the optimized configuration. As
anticipated in Sect. II D the corrected values, ṽk, and ini-
tial ones, vk, are indeed found to be quite close, typically
within 20% of each other as illustrated in Fig. 12.

The series of the concentric hyper-ellipsoids con-
structed here gives us a quick, though approximate,
way to estimate the performance of some proposed con-
figurations derived from the optimized one via small
changes of all or some optimization parameters. As
an example, consider an configuration with [dj ] =
[600, 1700, 3000, 17, 700] detectors in each of the five
channels considered here respectively. Given that for
FOM#1,

∑
k

(
dj − doptj

)2
σ

(k)
j

2 ≤ 1 (27)

is fulfilled for any k, we conclude that the respective value
of FOM#1 for this case will not be larger than by a factor
ṽk=1

<∼ 1.025 than the optimized value. Indeed a direct
calculation renders a value 1.002 times higher than the
optimized one in agreement with our quick estimation.
Similarly, we can deduce the performance of this config-
uration as expressed by the two other FOMs. These are
more sensitive at least to changes in some of the channels
however we find that for this specific configuration we can
lose no more than a factor of 1.05 for both of them. These
could be compared to the actual values of 1.01 and 1.02,
respectively, all relative to the corresponding optimized
values.
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In this case overall the loss of performance seems rather
benign and acceptable. Moreover, as a result of rounding-
down the detector numbers we have gained around 100
of those, which we can arbitrarily assign to any of the
existing channels or even create a new one to saturate
the constraint on the total number of detectors. What-
ever decision we make we will not compromise any of the
performance figures derived earlier.

To illustrate a process of adding some ad-hoc channels
at this time we start from a configuration more drasti-
cally stripped-down than the one discussed above. Let
that be for instance [dk] = [500, 1500, 3000, 0, 600], where
we not only reduced numbers of detectors per channel
more substantially but also removed the 4th channel al-
together. Using the hyper-ellipsoid formalism we get
quickly a helpful insight into how much we have lost as a
result of choosing this configuration. As we already dis-
cussed that earlier the biggest loss is found with regard
to the value of FOM#2, which is boosted by more than
50% (but less than 100%) with FOM#1 and #3 chang-
ing by <∼ 1.05 and ∼ 1.1 respectively. (The actual values
being 1.01, 1.81 and 1.09 for FOMs: #1, #2, & #3.)
However we have also gained as many as 400 detectors,
which can be distributed at our discretion to fill the con-
straint. Let us do so by introducing two extra channels
at 195 and 285GHz with 200 detectors each. This im-
proves the performance of the considered configuration,
an improvement, which we can ameliorate even further
by performing the optimization with respect to the detec-
tor numbers in the four original channels and keeping the
detector numbers of the new channels fixed to 200. We
indeed find that the new set-up performs nearly as well as
the initial optimized one (Table VI, column 3 vs. 7) but
possesses a more uniform frequency coverage. If we now
want to perform a controlled detector number rounding
and analyze its impact on the configuration performance
we would need to restart the entire procedure described
above.

6. Robustness tests

As explained in Sect. II E, for each FOM, we start
from the optimized configurations, as determined earlier
and check how the values of the FOMs depend on a ran-
dom suppression a number of detectors in each channel
by some fraction. Specifically, we assume here that the
distribution of the anticipated detector failures is Gaus-
sian with the dispersion equal to ε of which is the same
for each of the considered channel and taken to change
from 5%, 10%, 25%, and 50 %. We randomly draw some
large number of samples, here 104, and histogram the re-
sults for each of the FOMs. We then compute the most
likely value of the FOMs, 95%-confidence limit, and the
worst drawn value. In the case of the COrE configura-
tion studied in the previous Section we collect the results
in Fig. 13. We conclude, as probably could have been
anticipated from the results of the previous Section, that

FIG. 13: Summary of our robustness tests applied to the
COrE configuration obtained via the optimization of FOM#1
with constraints of FOM#2 ≤ 10−4 and a fixed number of
detectors. The lines of different colors correspond to different
FOMs and different lines show: average (dotted), 95% c.l.,
(dot-dashed), and the worst value (solid).

for failures rate as large as 30% we will not compromise
on the FOM values by more than 50% with respect to
the optimized ones, while failure rate of 10% will result
in their 10% increase. These result affirm the practical
soundness of the derived configuration.

7. Robustness with respect to the foreground modeling

Results of the optimization procedures as the one con-
sidered here are usually only as good as the foreground
models used in their course. In the specific case studied
here we expect that our results are fairly robust as far
as foreground morphology is concerned. Our estimates
are driven by two compact description of those, the fore-
ground correlation matrix, F̂, and the foreground power
spectra, which are not expected to be wildly different
than what we have assumed here. We note in particular
that an increasing amplitude of the foregrounds leading
to an increase of both the elements of the matrix, F̂,
and overall normalization of the foreground power spec-
tra would decrease the errors on the spectral parameters
and result in the amplitude of the residuals virtually un-
changed. These expectations are confirmed by the results
obtained hereto for the three different masks.

It is more difficult to assess, though potentially more
crucial, an impact of increasing a number of spectral pa-
rameters. This could be either due to a more complicated
spectral dependences of true foreground components, or
as a result of a spatial dependence of spectral parameters.
The former problem is inherent to all parametric com-
ponent separation approaches as the one assumed here.
In general, a wrong parametrization or frequency scaling
laws assumed in such approaches may invalidate separa-
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tion results. In practice, the effects are more subtle but
arising biases can affect an interpretation of the results.
This is therefore important that the scaling laws assumed
in the optimization are kept on being improved on re-
flecting any relevant, new observational data and more
detailed, theoretical models of the foreground physics as
they become available. In a case of some doubts a rather
conservative approach of restricting channel frequencies
to a range for which the scaling laws are known to pro-
vide at least good approximations to the actual ones, can
be fruitful. This is in fact an approach we used in this
work by selecting a parametric model for the dust signal
with a single parameter and reduced the frequency range
to those lower than 400GHz.

A spatial dependence of the scaling parameters can be
treated more directly. We will implement that by divid-
ing the observed sky into multiple disjoint regions and
introduce one set of parameters for each of those. To
abstract from details of the regions shape and position,
we assume that they are defined in such a way that the
errors on spectral parameters are the same for each of the
regions, i.e., that the differences of the overall magnitude
of the matrix F̂ are compensated by a respective number
of pixels in each area. In general this assumption would
imply that more, though smaller by area, regions are de-
fined in high foreground contrast sky areas. This indeed
could well be the case as the high-contrast foreground
regions are expected to be more complex and may re-
quire more parameters to ensure sufficient accuracy. For
demonstration purposes we assume that we have 10 re-
gions with the corresponding errors on spectral param-
eters being

√
10 times larger than in the single region

case as studied before. We note that cutting the sky into
regions will unavoidably affect the foregrounds and thus
residual power spectrum on the scales larger than a typ-
ical size of the region. We will ignore this effect here,
motivated by the fact that our earlier results did not find
any strong dependence on the shape of the power spec-
trum. We also neglect here all practical difficulties such
as matching the results on the map level coming from the
different regions and which will have to be addressed in
any actual application of the discussed method. We limit
here ourselves to the COrE-like configuration as defined
earlier, calculate the FOMs as before, and optimize the
configuration following the steps outlined before. As ex-
pected we find that the optimal configurations found this
time are not very different from the ones obtained earlier.
This is because FOM#1 and #3 are mostly trying to op-
timize the overall noise level, and which is the same now
as before, and though the value of FOM#2 increased by a
factor 10 due to increase of the spectral index errors this
is the same configuration, which ensures its minimum.
As a consequence the new value of reff is now higher
than that of rmin. This clearly does not invalidate re-
sults of the optimization procedure as such, however a
care has to be exercised, while interpreting the obtained
values of rmin, which may not be taken directly as the
performance forecasts for the set-up as far as detecting r

is concerned.

E. Varying the number of channels and their
frequencies

We present here some results based on an imple-
mentation of the scheme proposed in Sect. II C. We
start from ∼ 70 channels evenly spaced between 45 and
375GHz every 5GHz, with ∼ 6000 detectors (total num-
ber of the COrE proposed version) equally distributed
among those, as shown in Fig. 14. Then we preform
the optimization with respect to FOM#1, while keeping
FOM#2 ≤ 10−4 and the total number of detectors fixed.
As a result we obtain a highly clustered distribution of
detectors in between the initial channels, with many of
these being empty. We therefore combine together de-
tectors of neighboring channels and replace them by a
new channel with the central frequency set as a weighted,
by a number of detectors, mean of the optimized distri-
bution. The new channels are defined to ensure proper
spacing between them. Once the new channels are deter-
mined we perform a second round of the optimization,
this time invoking only the new channels and aiming at
optimization of the detector distribution between them.
The result is shown in the left bottom panel of Fig. 14.
We note that the procedure not only improved on the
values of the FOMs with respect to the starting (origi-
nal) configuration, i.e., FOM#1 has been decreased by
∼ 17% (∼ 25%), while the noise by a factor ∼ 4 (∼ 3),
but also, and arguably most importantly, it resulted in
a configuration significantly simpler than the initial one
with the number of channels reduced from 70 down to 9.

We note that maybe somewhat surprisingly both the
configurations derived here, the final one as well as the in-
termediate one obtained after the first optimization step,
show only a minor, ∼ few percent, gain over the 5-channel
configuration we have considered earlier, see, e.g., first
column of Table VI. This is due to our setting the thresh-
old for FOM#2 rather high, while the main advantage of
the significantly larger set of the initial channels used here
is that it permits finding in principle more satisfactory
compromises between the three FOMs, characterized by
values of FOM#2 lower than what could be achieved with
more modest set-ups discussed earlier.

V. CONCLUSIONS

In this work we have proposed a general scheme for a
performance optimization and forecasting of the CMB B-
mode experiments in the presence of astrophysical fore-
grounds. Our approach is based on a maximum like-
lihood parametric technique for component separation,
for which we have derived Fisher-like error estimates
for spectral parameters. We use the latter to calcu-
late the residual level of the foregrounds in cleaned CMB
maps given assumed, instrument characteristics and fore-
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FIG. 14: Demonstration of the optimization results derived with respect to a variable number of channels, numbers of detectors
per channel, and their central frequencies, while constraining the total number of detectors (= 6128 as in the proposed
COrE version). Upper left panel shows, from top to bottom, (1) the starting configuration with all the detectors evenly
distributed among a fine-grid of channels; (2) a configuration after the first optimization of FOM#1 constrained to ensure that
FOM#2 ≤ 10−4, (3) the re-optimization of configuration (2) restricted only to channels with a number of detectors larger
than 5 and after adjacent channels merging and re-centering as described in Sect. IV E. Right panel shows power spectra
corresponding to these configurations contrasted against the expected CMB signals.

ground model. We then optimize the former by minimiz-
ing a set of proposed figure of merit (FOM) indicators,
which reflect our science goals. Subsequently we have
applied this approach to two specific cases of recently
proposed CMB B-mode satellites: American CMBpol [4]
and European COrE [3]. We have discussed in detail the
choices and trade-offs inevitable in such an optimization
process. We have demonstrated how such a procedure
can help to simplify the resulting hardware design, while
ensuring the same (or nearly the same) science outcome.

We emphasize that results of such a procedure can be
only as reliable as the foreground models, which are ap-
plied. This underlines the import of developing better
understanding of the polarized foregrounds, in particu-
lar, and characteristically of the parametric methods, as
far as the functional form of the foreground component
scaling laws is concerned. However, our approach is ex-
pected to be relatively robust as far as other details of the
foreground signals are concerned, such as, spatial distri-
bution or spatial variability of the spectral parameters,
with the latter playing a major role in determining the
scientific reach of the experiment but not affecting its
configuration.

We also note here that the presented framework could
be extended to work with any component separation
method, which implements the separation by first es-

timating the mixing matrix, in a parametric or non-
parametric way, and which is capable of producing es-
timates for the errors of the spectral parameters for
any hardware configuration. One could, and ideally
would, therefore use the formalism proposed here to de-
fine configurations, which would ensure that many of
the available component separation methods perform
well. Though the component separation methods usu-
ally conform with the first requirement, the second is
more demanding and typically it can be done only via
computationally-heavy Monte Carlo simulations. Those
may be often impractical for the optimization purposes,
making an implementation of such a program difficult. A
related, but simpler to address, problem is whether the
configurations optimized with one method will work for
satisfactorily with the others. We will leave an investiga-
tion of both these issue to future work.

As we point out in the introduction, FOMs required
for the optimization procedure are also suitable for the
performance forecasting. This also clearly applies to the
FOMs proposed here and in particular FOM#1 and #2
seem relevant to the primordial signal detection produc-
ing values of rmin and reff on order of O

(
10−4

)
for

the considered optimized configurations. However, given
that each of these two FOMs reflects a somewhat differ-
ent aspect of the problem – a statistical uncertainty in
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former cases versus a systematic one in the latter – a care
has to be taken while interpreting these values. Never-
theless, as is, our results seem to support at least the
contentions made elsewhere suggesting that r ' 10−3 is
a realistic goal for the experiments considered here.

Finally, we point out that the science goals we
have posed for the considered CMB experiments are
clearly more modest than those targeted by the original
CMBpol and COrE designs. This is responsible, at
least in part, for the more complex and advanced
instrumental configurations as proposed in the original
proposal. More diverse science goals can, and should,
be studied in the presented framework. We leave this
as well as considerations of other possible extensions,

e.g., an inclusion of some of the instrumental effects, to
future work.
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APPENDIX A: SPECTRAL LIKELIHOOD DERIVATIVES.

We present here some details of the derivation of Eqs. (4) & (5).
First from Eq. (3) we have,

∂ lnL
∂β

=
∑
p

(A,β s̄p)
t

N−1 (dp −A s̄p) (A1)

from which the second derivatives of the spectral likelihood follow as,

∂2 lnL
∂β ∂β′

=
∑
p

{
(A,ββ′ sp + A,β sp,β′)

t
N−1 (dp −A sp) − (A,β sp)

t
N−1 (A,β′ sp + A sp,β′)

}
(A2)

And the noise ensemble average reads,〈
∂2 lnL
∂β ∂β′

〉
noise

=
∑
p

{
tr
[
At
,ββ′ N

−1
〈
(d−A sp) stp

〉
noise

]
− tr

[
At
,β N−1 A,β′

〈
sp stp

〉
noise

]
(A3)

+ tr
[
At
,β N−1 〈(dp −A sp) stp,β′〉noise

]
− tr

[
A′

t
,β N−1 A 〈sp,β′stp〉noise

]}
.

From Eqs. (1) & (2) we now have,〈
sp stp

〉
noise

= s̄p s̄tp +
(
At N−1 A

)−1
, (A4)〈

sp stp,β′
〉
noise

= − s̄p s̄tp
(
At
,β′N

−1A + AtN−1A,β′
) (

AtN−1A
)−1

+ s̄p q̄tp (β′)

−
(
AtN−1A

)−1 (
At
,β′N

−1A
) (

AtN−1A
)−1

(A5)

〈(dp −A sp) stp〉noise =
(
Â ŝ − As̄p

)
s̄tp

〈(dp −A sp) stp,β′〉noise = −
(
Â ŝ − As̄p

)
s̄tp
(
At
,β′N

−1A + AtN−1A,β′
) (

AtN−1A
)−1

+
(
Â ŝ − As̄p

)
q̄tp (β′) + A,β′

(
AtN−1A

)−1

+ A
(
AtN−1A

)−1 (
AtN−1A,β′

) (
AtN−1A

)−1
(A6)

where Â and ŝ are the true mixing matrix and sky components, respectively, s̄ is a component estimate in a case
of noiseless experiment, i.e.,

s̄p ≡
(
At N−1 A

)−1
A N−1 Â ŝp (A7)

and q̄(β) is defined as,

q̄p (β′) ≡
(
At N−1 A

)−1
A,β′ N

−1 Â ŝp. (A8)

Hence,〈
∂2 lnL
∂β ∂β′

〉
noise

= −
∑
p

{
(A,ββ′ s̄p)

t
N−1

(
A s̄p − Â ŝp

)
+ (A,β s̄p)

t
N−1 (A,β′ s̄p) (A9)

+ tr
[
At
,β N−1

(
Â ŝp − A s̄p

)
s̄tp
(
At
,β′N

−1A + AtN−1A,β′
) (

AtN−1A
)−1
]

− tr
[(

A,β q̄p,(β′)
)t

N−1
(
Â ŝp − A s̄p

)]
− tr

[
At
,β N−1 A

(
AtN−1A

)−1 (
At
,β′N

−1A + AtN−1A,β′
)

s̄p s̄tp

]
+ tr

[
At
,β N−1 A q̄p (β′) s̄tp

]}
. (A10)
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Moreover assuming now the true values of the spectral indices, i.e., β = β̂,

〈
∂2 lnLprofile

∂β ∂β′

〉
noise

∣∣∣∣
β=β̂

= − tr

[
At
,β N−1 A,β′

∑
p

ŝp ŝtp

]

+ tr

[
At
,β N−1 A

(
AtN−1A

)−1 (
At
,β′N

−1A + AtN−1A,β′
) ∑

p

ŝp ŝtp

]

− tr

[
At
,β N−1 A

(
At N−1 A

)−1
At
,β′ N

−1 A
∑
p

ŝp ŝtp

]

= tr

{[
At
,β N−1 A

(
AtN−1A

)−1
AtN−1A,β′ − At

,β N−1 A,β′

]∑
p

ŝp ŝtp

}
, (A11)

from which Eq. (5) follows.

APPENDIX B: FISHER MATRIX ALGEBRA.

The Fisher matrix can be expressed as [24],

Fαβ ≡
〈
∂2lnL
∂λα∂λβ

〉
=

1

2
Tr[C,αC−1C,βC−1] (B1)

where C is the covariance matrix and λ is some param-
eter.

In our case, λα = λβ = r, the tensor-to-scalar ratio,
while the covariance matrix in a harmonic space, C, is
given by,

C ≡ Cjj′ ≡ 〈alma
†
l′m′〉, (B2)

where,

j = `2 + `+m,

` = round[(−1 +
√

1 + 4j)/2], (B3)

m = j − ` (`+ 2) ,

and thus j goes from 0 to (`max + 1)2 − 1. The function
round rounds a real number to a closest integer. The
Fisher matrix expression can be now specialized as,

Frr =
1

2

∑
j,j′

∂C`
∂r

[
C−1

]2
jj′

∂C`′

∂r
. (B4)

where j (j′) is related to ` (`′) as in Eqs. (B3).
As there are three uncorrelated contributions to the

overall signal, which are CMB, noise and foreground
residuals, we can write,

Cjj′ = 〈aCMB
lm aCMB, †

l′m′ 〉+ 〈anoiselm anoise, †l′m′ 〉+ 〈areslm a
res, †
l′m′ 〉

= CCMB
l δjj′ + Cnoisel δjj′ + fj f

†
j′

≡ Djj′ + fj f
†
j′ (B5)

where fj stands for a vector of ares`m coefficients ar-
ranged according to the j index.

To compute the C−1 matrix used in equation (B1), we
can use the Sherman-Morrison formula obtaining,

C−1 = D−1 −D−1f(1 + f†D−1f)−1f†D−1 (B6)

where (1 + f†D−1f)−1 is a number and hence,

C−1 = D−1 − D−1ff†D−1(
1 + f†D−1f

) , (B7)

what given that [D−1]jj′ = (1/C`)δjj′ becomes,

[
C−1

]
jj′

=
δjj′

C`
−

C−1
` C−1

`′ fjf
†
j′

1 +

`max∑
`′′=0

(2`′′ + 1)
C∆
`′′

C`′′

, (B8)

where C∆
` is a residuals power spectrum, Eq. (12), de-

fined here as,

C∆
` ≡

1

2`+ 1

`2+2`∑
m=`2

|fm|2. (B9)

So now we have finally,
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[
C−1

]2
jj′

=
δjj′

C2
`

−
2 fjf

†
j

C3
`

(
1 +

`max∑
`′′=0

(2`′′ + 1)
C∆
`′′

C`′′

) δjj′ +
f2
j f
†
j′

2

C2
` C

2
`′

(
1 +

`max∑
`′′=0

(2`′′ + 1)
C∆
`′′

C`′′

)2 , (B10)

which inserted into Eq. (B4) gives Eq. (15).


