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D. Heinert,1 A. G. Gurkovsky,2 R. Nawrodt,1 S. P. Vyatchanin,2, ∗ and K. Yamamoto3, †

1Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany
2Faculty of Physics, Moscow State University, Moscow, 119991 Russia

3Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Via Marzolo 8, 35131 Padova, Italy

We present an analytical solution for the effect of thermorefractive noise considering finite-sized
cylindrical test masses. For crystalline materials at low temperatures the effect of finite dimen-
sions becomes important. The calculations are independently performed using the Fluctuation-
Dissipation-Theorem and Langevin’s approach. Our results are applied to the input test mass of
the current and future cryogenic gravitational wave detectors CLIO, LCGT, and ET and are com-
pared to the respective standard quantum limit. For a substrate temperature of 10K we find that
the thermorefractive noise amplitude of the silicon input test mass in ET is only a factor of 2 below
the standard quantum limit for frequencies above 500Hz. Thus, thermorefractive noise of the input
test mass could become a severe limitation if one uses techniques to beat the standard quantum
limit like, e.g., squeezing. In contrast the effect of thermorefractive noise of the input test mass is
negligible for CLIO and LCGT.

PACS numbers: 04.80.Cc, 04.30.Db, 04.80.Nn

I. INTRODUCTION

Thermal noise basing on the change of the refractive
index on temperature - thermorefractive (TR) noise - is
one key noise process in the design of interferometric
gravitational wave detectors [1–3]. Wherever the laser
beam passes matter, the temperature fluctuations within
the substrate will cause a change of the refractive index
and, consequently, will change the phase of the traveling
beam. In the case of a Michelson interferometer with
Fabry-Perot cavities in its arms the beam splitter and
the input test mass (ITM) of the arm resonators repre-
sent two components that are probed by the light and,
thus, introduce TR noise to the interferometer’s output.
TR noise is increasingly important in optical high-Q mi-
croresonators [4, 5] as it was measured in optical fibers
[6], in optical microspheres [7], and in microtoroids [8]. It
can also play a role in the frequency stabilization of lasers
[9], where the beam passes the cavity mirror substrates.
Braginsky et al. were the first to realize the influence

of TR noise on the field of gravitational wave detection
[10]. They investigated the effect of TR noise of the mul-
tilayer coating stacks attached onto the optical compo-
nents. In 2004 Braginsky and Vyatchanin presented an
analytical solution for the TR noise of an infinite disc
with finite thickness [11]. While these first publications in
the field used the Langevin approach, Levin introduced a
new direct approach of noise calculation [12] utilizing the
Fluctuation-Dissipation-Theorem and applied it on TR
noise in 2008 [13]. In that work he validated the result
of the model of the infinite disc. With the same model of
the infinite disc the TR noise level of the GEO600 beam
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splitter was determined in 2009 [14]. There the effect of a
standing wave emerging in the substrate was considered.
Recent TR noise investigations [15, 16] were related to

the Einstein telescope (ET) as a planned third generation
gravitational wave detector. For the ET low frequency
detector the ITM and ETM (end test mass) are proposed
to be made from crystalline silicon instead of fused silica
and should be operated at cryogenic temperatures. The
change of the material and the temperature regime dras-
tically alters the thermal parameters of the substrate, on
which a TR noise calculation bases. Thus, it is impor-
tant to extend the current model to consider the finite
radial dimension of the substrate. Our analysis reveals
that the effect of the finite size is to be taken into ac-
count for cooled and crystalline substrates. Next to ET
also CLIO and LCGT [2] exhibit crystalline substrates
at low temperatures and are under investigation in this
work.
In this paper we present an analytical solution of TR

noise for a finite-sized cylinder. The results are de-
rived independently by the Langevin approach as well as
Levin’s approach. Section II refers to the simplified case
of a readout that is homogeneous along the cylindrical
axis, while section III takes the effect of standing waves
into account. The analytical results are finally applied
to several interferometer geometries and confirmed by a
finite element analysis in section IV. For this purpose
we focus on silicon and sapphire as promising cryogenic
substrate materials.

II. SIMPLE MODEL

This section shows the derivation of TR noise of a
finite-sized cylinder for the case of a pure travelling wave.
In this simple model we neglect the interferometric effect
of standing waves. To perform this calculation we use
the coordinate system shown in Fig. 1. For the problem
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is completely radial symmetric we choose cylinder coor-
dinates (r, ϕ, z) to obtain an easy formulation of the
problem.

FIG. 1. Problem geometry with the substrate (height H ,
diameter 2R), the laser beam (diameter 2r0), and the radial
coordinate system (r, z).

Let us remember the main process again. Light is ap-
proaching from the left, then travels through the sub-
strate, where it probes the refractive index N of the
medium and is transmitted to the right.
The transmitted beam experiences an optical path dif-

ference z due to the temperature field T (~r) in the sub-
strate. At a homogeneous temperature T0 this path is
assumed to have the length z0. For small temperature
fluctuations the path change can be calculated in a first
order approximation with the intensity profile of the laser
beam

z − z0 =
1

πr20

∫

β(T0)(T (~r)− T0)e
− r2

r2
0 dV (1)

=

∫

t(~r)(T (~r)− T0)dV . (2)

Here β = dN/dT represents the thermo-optical parame-
ter and r0 is the laser beam radius where intensity drops
to 1/e. The factor in front of the integral arises from
the fact, that a constant thermal field T (~r) = T leads
to z − z0 = βH(T − T0), where H is the height of the
cylinder. Using this definition of z the resulting TR noise
spectrum Sz(ω) is expressed as an equivalent mirror dis-
placement. Such a choice allows an easy comparison of
the TR noise level with other noise sources.

A. Levin’s approach

The typical way to calculate TR noise via the
Fluctuation-Dissipation-Theorem by Levin [13] consists
of three steps. At first one has to apply a virtual source
of entropy. Using this source term the heat equation is
solved in a second step to obtain the temperature distri-
bution within the substrate. Then the temperature field
allows to calculate the rate of energy dissipation Wdiss.
Finally, the power spectral density Sz(ω) for fluctuations

of the optical path length z at the frequency ω follows
from

Sz(ω) =
8kBT0
ω2

Wdiss

F 2
0

. (3)

In this equation kB is Boltzmann’s constant, T0 is the
ambient temperature, and F0 is a normalization constant
ensuring that the noise spectrum does not depend on the
amplitude of the virtually applied entropy. As Levin’s
approach is a direct formulation of the fluctuation-
dissipation theorem by Callen and Welton it is valid for
any linear system at arbitrary frequencies [17]. Only the
calculation of the dissipated power may vary with respect
to different frequency regimes. This point is further dis-
cussed in Sec. IVB.
Following Levin’s approach we start with the applica-

tion of an imaginary heat density q with the profile t(~r)
given by Eq. (2). This heat term reads

q (~r, t) = T (~r, t)F0 cos (ωt) t(~r) (4)

= T (~r, t)F0 cos (ωt)
β

πr20
e
− r2

r2
0 , (5)

with temperature T and the scaling constant F0. Here
the cylinder is oriented in a way that its axis of radial
symmetry coincides with the z-axis. Eq. (5) can be fur-
ther simplified by considering only small temperature
fluctuations. In this case we can treat T (~r, t) as nearly
constant and replace it by the constant ambient temper-
ature T0 with a negligible error. In the approximation of
the simple model the inserted heat is independent from
z and reads

q(~r, t) = ℜ
(

β

πr20
T0F0e

− r2

r2
0 eiωt

)

= ℜ
[
q(r)eiωt

]
, (6)

where ℜ represents the real part. The last equality of
Eq. (6) defines the spatial heat density q(r).
To obtain an expression for the dissipated power we

have to derive a solution of the heat equation T (~r, t) in
our second step. For a material exhibiting an isotropic
thermal conductivity κ the heat equation reads

CpṪ (~r, t)− κ∆T (~r, t) = q̇(~r, t) , (7)

where Cp is the specific heat per unit volume and q is the
introduced heat density given by Eq. (6). The cylinder
is assumed to satisfy adiabatic conditions at the bound-
ary, i.e., vanishing heat flow through the boundary. A
justification of this assumption is given in App. A. Using
cylindrical coordinates (r, ϕ, z) we obtain

∂T

∂z

∣
∣
∣
∣
z=0,H

=
∂T

∂r

∣
∣
∣
∣
r=R

= 0 . (8)

The heat equation is easily solved by means of a Fourier
transform. But we have to account for the boundary con-
dition by the choice of an adapted set of basis functions.
The new basis is illustrated for the temperature field as

T (r, z) =

∞∑

n=0

∞∑

m=0

TnmJ0(knr) cos(lmz) , (9)
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where J0 represents the Bessel function of the first kind.
The boundary conditions constrain the parameters kn
and lm to the following discrete values

kn =
an
R

, with J1(an) = 0 , (10)

lm = m
π

H
. (11)

With the help of the heat equation [Eq. (7)] we can ex-
press the coefficients Tnm by the coefficients of the in-
serted heat qnm

iωCpTnm + κ
(
k2n + l2m

)
Tnm = iωqnm

⇒ Tnm =
qnm

Cp − i κω (k2n + l2m)
. (12)

Within the simple model discussed in this section the in-
serted heat is independent from z. This leads to a cancel-
lation of all terms qnm with m 6= 0. Consequently, also
the temperature distribution will be independent from
the z-coordinate and we can omit the index m for the re-
maining part of this subsection. To derive the coefficients
qn we make use of the following orthogonality relation for
Bessel functions [18, Eq. 11.4.5]

∫ 1

0

J0(anρ)J0(amρ)ρdρ =
1

2
[J0(an)]

2
δnm , (13)

leading to the following expression for the coefficient qn

qn =
1

R2

2

[J0(an)]
2

∫ R

0

q(r)J0(knr)rdr . (14)

In the last step of Levin’s scheme we have to determine
the amount of dissipated powerWdiss within the cylinder.
As every heat flow is irreversible it consumes mechanical
energy and transforms it into thermal energy. Therefore
the dissipated energy should be linked to the amount of
heat flowing within the cylinder. A rigorous treatment
of this problem [19] yields

Wdiss =
1

2T0

∫

V

κ(∇T )2dV . (15)

Due to the radial symmetry of our problem Eq. (15) sim-
plifies to

Wdiss =
πHκ

T0

∫ R

0

∣
∣
∣
∣

∂

∂r
T

∣
∣
∣
∣

2

rdr . (16)

After inserting the basis decomposition of T (r) the fol-
lowing orthogonality condition for Bessel functions [18,
Eq. 11.4.5]

∫ 1

0

J1(amρ)J1(anρ)ρdρ =
1

2
[J ′

1(an)]
2
δmn , (17)

leads to
∫ R

0

∣
∣
∣
∣

∂

∂r
T

∣
∣
∣
∣

2

rdr =
1

2

∞∑

n=0

|Tn|2 a2n [J ′
1(an)]

2
. (18)

Using the relations [J ′
1(an)]

2 = [J0(an)]
2 and a0 = 0 and

combining Eqs. (3), (12), (14), (16), and (18) we finally
arrive at an expression for the displacement noise for a
read out homogeneous along the z-direction.

S(hom)
z (ω) =

16

π
kBT

2
0

HR2

r40

κβ2

C2
p

×
∞∑

n=1

k2n
[J0(an)]2

K2
n

ω2 + κ2

C2
p
k4n

, (19)

with

Kn =

∫ 1

0

J0(anρ)e
−
(

R
r0
ρ
)

2

ρdρ . (20)

Note that this result is only valid if the substrate is
probed by a single transmission of the laser beam. In
a gravitational wave detector the laser beam passes the
ITM substrate, reaches the coating for the arm cavity at
the end of the ITM, interacts with the cavity, and finally
passes the ITM substrate a second time on its way out of
the arm. Taking this second probe of the substrate into
account we have to multiply the power spectrum of ther-
mal noise Sz(ω) by the factor of 4. On the other hand
we can interpret Sz(ω) in Eq. (19) as the noise spectrum
of an equivalent mirror displacement.

B. Langevin approach

In 1908 Langevin investigated the Brownian motion of
a particle suspended in a fluid [20]. For this purpose he
modeled the statistical impacts of the fluid molecules on
the particle by a fluctuating force term in the equation
of motion.
We fully adopt his approach to the case of temperature

fluctuations as described in Refs. [10, 21]. Therefore, we
have to consider the heat equation with a generalized
fluctuating force term F (~r, t)

Ṫ (~r, t)− a2∆T (~r, t) = F (~r, t) . (21)

The coefficient a2 represents the temperature conductiv-
ity and is given by a2 = κ/Cp, ∆ is the Laplace operator.
In analogy to Langevin the fluctuating force term is as-
sumed to be uncorrelated in time, i.e., the time scale for
a change of temperature is long compared to changes of
F (~r, t). Mathematically this behavior is expressed as

〈F (~r, t)F (~r ′, t′)〉 = C(~r, ~r ′)δ(t− t′) , (22)

where the brackets represent the thermodynamic ensem-
ble average. Braginsky et al. [10] calculated the space
correlator C yielding

C(~r, ~r ′) = −2kBT
2
0

κ

C2
p

∆δ(~r − ~r ′) , (23)
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where the Laplace operator ∆ is acting on the δ-
distribution. The same result was obtained earlier in
Ref. [21].
At this point we introduce a temperature T that is av-

eraged with the spatial profile of the laser beam intensity
as

T (t) =
1

πr20H

∫

V

T (~r, t)e
− r2

r2
0 dV (24)

= T0 +
1

βH
(z − z0) .

The last equality reveals a close connection of this aver-
aged temperature and Eq. (2). The results of the calcu-
lations using Langevin approach coincide with Eq. (19)
as the result from Levin’s method. Some mathematical
details are presented in App. B.

III. ADVANCED MODEL

In contrast to the case of a single transmission, the
beam splitter and the input test mass of an interferomet-
ric gravitational wave detector are probed twice, once by
the incoming light and once by the reflected light. As the
interferometer is locked both waves show a fixed phase
relation leading to the well known phenomenon of stand-
ing waves. Thus, nodes of the electric field emerge within
the substrate, which are insensitive to changes of the re-
fractive index. On the other hand the TR effect at the
antinodes is amplified. In 2009 Benthem and Levin [14]
were the first to bring this idea into the field of gravi-
tational wave detection. As they did only show a few
calculation steps we give a detailed derivation of the ef-
fect of standing waves on TR noise in this section.
A rigorous calculation of the correct averaging is given

in App. D. For our noise variable of an effective mirror
displacement z − z0 it reveals the following expression

2(z − z0) =
1

πr20

∫

V

β(T (~r)− T0)

× 4 sin2
(
2πN

λ0
z + ϕ0

)

e
− r2

r2
0 dV , (25)

where N describes the substrate’s refractive index and λ0
is the vacuum laser wavelength. In the present situation
of an arm cavity in resonance the additional phase shift
ϕ0 reveals to be zero. If we average the effect along the z-
coordinate, the sin2-term should be replaced by the factor
1/2 and we recover the imaginary heat distribution for
the homogeneous case. This approximation is justified if
the thermal path length is large compared to the period-
icity along the z-direction which is roughly given by the
laser wavelength. A detailed discussion about different
thermal regimes can be found in section IV. Eq. (25)
leads to a new z-dependence for the introduced heat

q(r, z) = 2
β

πr20
T0F0 sin

2

(
2πN

λ
z

)

e
− r2

r2
0 . (26)

A. Levin’s approach

To reveal TR noise including the effect of stand-
ing waves via the Fluctuation-Dissipation-Theorem we
can adopt the formalism of the simple model up to
Eq. (12). In the further analysis we cannot neglect the
z-dependence and thus now obtain also factors qnm 6= 0
for m 6= 0. The analytical expression for qnm is derived
from the cosine orthogonality relation

∫ H

0

cos(lmz) cos(lnz)dz =
1 + δm0

2
Hδmn , (27)

and Eq. (13) to read

qnm =
1

HR2

2

[J0(an)]
2

2

1 + δm0

×
∫ H

0

∫ R

0

q(r, z)J0(knr)rdr cos(lmz)dz . (28)

This result allows the calculation of the dissipated power
as

Wdiss =
πκ

T0

∫

V

(∣
∣
∣
∣

∂

∂r
T

∣
∣
∣
∣

2

+

∣
∣
∣
∣

∂

∂z
T

∣
∣
∣
∣

2
)

rdrdz , (29)

for the advanced model. One last orthogonality relation
shows

∫ H

0

sin(lmz) sin(lnz)dz =
1− δm0

2
Hδmn . (30)

Together with Eqs. (13), (17), and (27) this allows the
evaluation of the noise spectrum following the same steps
as for the simple model. Taking the effect of standing
waves into account we obtain our final expression

S(SW)
z (ω) =

16

π
kBT

2
0

κβ2

C2
p

HR2

r40

×
∞∑

n=0

∞∑

m=0

2

(1 + δm0)2
1

[J0(an)]
2K

2
nL

2
m

× (1 + δm0) k
2
n + (1− δm0) l

2
m

ω2 + κ2

C2
p
(k2n + l2m)

2 , (31)

with

Kn =

∫ 1

0

J0(anρ)e
−
(

R
r0
ρ
)

2

ρdρ , (32)

Lm =

∫ 1

0

cos (mπζ) 2 sin2
(
2πN

λ0
ζH

)

dζ . (33)

As a first cross check we can replace the term 2 sin2(x)
by its average value of 1. Then all coefficients Lm vanish
except for L0 = 1. A short calculation respecting l0 = 0
reveals the coincidence of Eq. (31) with the result of the
simple model, i.e., Eq. (19).
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B. Langevin approach

The new readout variable is connected to an averaged
temperature considering the sin2-term for the averaging
along the z-coordinate.

T (t) =
1

πr20H

∫

V

T (~r, t)2 sin2
(
2πN

λ0
z

)

e
− r2

r2
0 dV . (34)

Via the autocorrelation function for T we obtain the spec-
tral noise density ST (ω) and arrive at the result for Sz(ω)
coinciding with Eq. (31) — for details of the calculations
see App. B.

IV. RESULTS

In this section we apply our TR noise expression on
current (CLIO) and future (LCGT, ET) gravitational
wave detector designs. In the case of ET we only con-
sider the low frequency detector [22]. These three de-
tectors are working in the cryogenic temperature range,
where thermal properties significantly differ from every-
day experiences. Mainly, the thermal conductivity κ is
increased and the specific heat Cp is decreased at temper-
atures around 20K compared to their room temperature
values. This implicates an increase of the thermal path
length rth =

√

κ/(ωCp) at cryogenic temperatures. If
the thermal path length reaches the order of the sub-
strate’s radial dimension (rth ≈ R) we will see an effect
of the finite radial dimension.

A. Material properties

Each thermal noise analysis of an interferometer re-
quires knowledge of the thermal properties of the sub-
strate materials. Sapphire is used in CLIO and LCGT
while silicon is the likely choice for ET substrates because
of its availability in large dimensions. Although the ITM
and ETM are operated at low temperatures the beam
splitters of CLIO, LCGT, and ET are made from fused
silica and operated at room temperature. The necessary
thermal properties for a TR noise estimate of these ma-
terials are given in Table I.
Due to the large dimensions of the sample it is likely

that the thermal conductivity is not limited by surface
scattering of phonons. Consequently, we used the bulk
values for the coefficient of thermal conductivity in our
TR noise estimates. While the parameters of specific heat
and thermal conductivity are well known, the thermo-
optic parameter introduces a high uncertainty. For sili-
con β was only measured at temperatures down to 30K
[25]. The assumed values for lower temperatures repre-
sent a conservative extrapolation. Tomaru et al. [26]
measured β for sapphire at temperatures down to 5K.
But in the temperature range from 5K to 40K they were

TABLE I. Assumed thermal properties for silicon and sap-
phire. The values of the refractive index N and density
ρ are assumed to be constant in the temperature region of
T0 < 30K. For fused silica we use the room temperature val-
ues for N (neglecting dispersion) and ρ.

Silicon (N = 3.45, ρ = 2331 kgm−3)

T0 (K) Cp/ρ ( J

kgK
) κ ( W

mK
) β (10−6 1

K
)

10 0.276 [23] 2110 [24] 1.0

20 3.41 [23] 4940 [24] 1.0

30 18.55 [23] 4810 [24] 3.3 [25]

Sapphire (N = 1.75, ρ = 3980 kgm−3)

T0 (K) Cp/ρ ( J

kgK
) κ ( W

mK
) β (10−8 1

K
)

10 0.091 [24] 2900 [24] 9 [26]

20 0.690 [24] 15700 [24] 9 [26]

30 2.557 [24] 20700 [24] 9 [26]

Fused silica (N = 1.45, ρ = 2202 kgm−3)

T0 (K) Cp/ρ ( J

kgK
) κ ( W

mK
) β (10−6 1

K
)

290 746 [24] 1.38 [24] 8

only able to present an upper limit due to the accuracy
of their experimental setup.
The required geometry and optical parameters for the

input test mass and the beam splitter are shown in Ta-
ble II and Table III, respectively.

TABLE II. Assumed geometrical and optical properties for
the input test mass of CLIO, LCGT, and ET. The optical
beam radius w0 (where intensity drops to 1/e2) can be calcu-
lated from r0 as w0 =

√

2r0.

Parameter CLIO LCGT ET

Material Sapphire Silicon

Diameter 2R (mm) 100 250 500

Height H (mm) 60 150 460

Wavelength λ0 (nm) 1064 1064 1550

Beam radius w0 (mm) 4.89 35 90

Arm cavity finesse 3000 1550 885

B. Numerical results

A qualitative summary of all occurring frequency
regimes due to the analytical solution [Eq. (31)] is given
in Fig. 2. To obtain some numbers in the spectrum of
TR noise we apply our theoretical expression to a silicon
test mass at 10K exhibiting the ET geometry.
Let us begin our discussion at low frequencies (1Hz) in

region I. At this point the thermal path length is larger
than the radius of the substrate rth > R. Thus, the vir-
tually inserted heat is able to reach the radial surface of
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TABLE III. Assumed geometrical and optical properties for
the beam splitter of CLIO, LCGT, and ET. The substrate
diameter of the beam splitter does not influence the TR noise
level but is given for completeness.

Parameter CLIO LCGT ET

Material Fused Silica

Diameter 2R (mm) 150 380 500

Height H (mm) 40 120 460

Wavelength λ0 (nm) 1064 1064 1550

Beam radius w0 (mm) 4.9 35.4 90
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FIG. 2. Schematic TR noise spectrum for a finite-sized cylin-
drical test mass. The solid red curve represents the TR noise
of the ITM taking standing waves into account as the dashed
black curve represents the result for a homogeneous readout
neglecting standing waves. The diagram is scaled logarith-
mically on both axes with a factor of 10 between neighbored
dashed lines. For silicon at 10K region III is situated at fre-
quencies above 109 Hz. The heat equation loses validity at
these high frequencies. Thus, regions III and IV show no
physical relevance for silicon. In contrast, for fused silica at
room temperature region III shows physical relevance again
as it starts at a frequency around 1 kHz [14].

the substrate. There the adiabatic boundary condition
constrains the heat flow and, simply spoken, limits the
amount of heat flowing from the center to the outer ra-
dial regions. Thus we have a nearly isothermal behavior
leading to a constant TR noise contribution. Compared
to the model of an infinite disc [11] the amount of dissi-
pated energy and the TR noise level is decreased in the
low frequency region. For our exemplary calculation at
1Hz the model of the infinite disc provides a TR noise
twice as high as our model of a finite-sized cylinder.

For higher frequencies the thermal path length will be-
come short compared to the radial dimension of the test
mass (rth < R). Thus, no remarkable amount of heat
is transported from the virtual heat source in the cen-
ter of the cylinder to its circular boundaries. Therefore,

the approximation of a disc with infinite radius holds
and our calculation should coincide with the results from
Ref. [11]. This consideration is clearly confirmed by re-
gion II of Fig. 2. At frequencies above 100Hz it shows a
decrease of

√

Sz(ω) ∝ 1/ω validating our result.
The standing wave model introduces a modulation of

the inserted heat along the z-direction with a character-
istic length of rSW = 4πN/λ0. Now the same process dis-
cussed above occurs with the new geometric parameter
rth → rSW. Consequently, at a frequency around 109Hz
the dissipation is dominated by the heat flow along the
z-direction. Again the noise spectrum remains at a con-
stant level (region III) up to a frequency of 1014Hz. At
that point rth ≈ rSW and for higher frequencies another
1/f -decay of the TR noise amplitude is predicted (region
IV).
Approaching phonon frequencies the transport theo-

retical derivation of the heat equation is likely to change.
Thus, for our discussion of a silicon test mass at 10K
region III and IV do not play a physical role. But for
fused silica the model of standing waves shows an impact
at frequencies above 1 kHz [14] and should be taken into
account.
Using the trigonometrical identity

sin2
(
2πN

λ0
z

)

=
1

2

(

1− cos

(

2
2πN

λ0
z

))

, (35)

we can achieve an analytical understanding of this behav-
ior. For the sake of simplicity let us assume a value in
the argument of the cosine that corresponds to a specific
lm coefficient. Then the z-decomposition becomes easy
as only two terms Lm appear, i.e., one at m = 0 and one
at

lm̂ = m̂
π

H
= 2

2πN

λ0
⇒ m̂ =

4HN

λ0
≈ 4× 106 , (36)

where the numerical estimate is due to the ET parame-
ters.
An examination of Eq. (31) allows an analytical un-

derstanding of the obtained noise spectrum. Beginning
at low frequencies the constant term (κ/Cpk

2
n)

2 due to
the contribution of m = 0 dominates the denominator
and thus no frequency dependence is observable. With
increasing frequency the ω2-term dominates the denomi-
nator for m = 0 leading to the observed noise reduction.
At even higher frequencies the contribution with m 6= 0
leads to the second plateau. Finally, at ω ≈ κ/Cpl

2
m̂ this

plateau enters a 1/ω decay.

C. Finite element analysis (FEA)

We further performed a finite element calculation of
the dissipated heatWdiss and compared the results to our
analytical calculation scheme. For this purpose we used
the FE package comsol [27]. An efficient computation is
only possible for the simple model as the advanced model
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would require an element size below the wavelength in the
substrate and thus more than 106 elements. The FEA
results for the ET design at 10K are presented as circles
in Fig. 3. We obtain a significant coincidence between
the FE results and the results of our analytical model.
With a deviation of well below 1% the FE calculation
strongly verifies the results of our analytical approach.
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 Braginsky et al. (2004) 
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T=10 K

FIG. 3. The diagram shows the thermorefractive noise am-
plitude

√

Sz(f) for a finite silicon cylinder of ET geometry
(solid blue line) at 10K compared to an FE calculation of the
same geometry (blue circles). At frequencies above 100Hz
a coincidence with the model of an infinite disc [11] (dashed
black line) is shown.

D. TR noise in a simplified interferometer

At this point we apply our results of TR noise to a sim-
plified interferometer consisting of two arms with cavities
and the beam splitter (BS) assuming the parameters of
ET, LCGT, and CLIO. We begin with the calculation
of the TR noise introduced by the ITM. As the ITM
is present in both arms the resulting displacement noise
power adds independently leading to a factor of two in
front of the noise expression Eq. (31). In the cryogenic
temperature range (T0 < 30K) and for interesting fre-
quencies from 1Hz to 10 kHz the contribution of standing
waves to TR noise is negligible. The influence of the fi-
nite radial dimension can be realized at low temperatures
and frequencies, where the growing thermal path length
exceeds the radial dimension of the substrate. In sap-
phire the resulting constant noise level at low frequencies
is extended to higher frequencies than in silicon. This be-
havior arises from the different thermal parameters which
affect the thermal path length.

In addition we also calculated the TR noise introduced
by the beam splitter SBS(ω). As all interferometer de-
signs feature beam splitters made of fused silica at room
temperature, we used the theory described in Ref. [14] to

obtain the beam splitter noise levels

SBS(ω) =
4kBT

2
0 κβ

2

π(Cpr20ω)
2

H

cos(i)

η + η−1

2η2

×
[

1 +
2k2r20η

(η + η−1) (1 + (2krth)4)

]

. (37)

In this expression H is the height of the beam splitter,
i is the incident angle of light within the beam splitter,
and H/ cos(i) is the length of the light’s path through the
beam splitter. η describes the ratio between the long and
the short semiaxis of the elliptical beam within the beam
splitter, k = 2πN/λ0 is the wave vector of light within

the substrate, and rth =
√

κ/(ωCp) is the thermal path
length. The beam splitter introduces TR noise only to
one arm of the interferometer.
We furthermore compare the obtained results to the

standard quantum limit SSQL(ω) of the simplified inter-
ferometer. Assuming identical ITMs and ETMs for a
Michelson interferometer with arm cavities the expres-
sion for the SQL reads [28]

SSQL(ω) =
8

ω2

h̄

M
. (38)

There M denotes the substrate mass, which is accessi-
ble by the information of Table II, and h̄ is the reduced
Planck constant. Within this approach the beam splitter
is considered to possess an infinite mass and, thus, not
to affect the SQL.
A direct comparison of TR noise of the ITM or the BS

with the standard quantum limit is only possible, if we
account for the different positions within the interferom-
eter. While TR noise in the BS and the ITM is situated
outside the arm cavity, the SQL predicts the motion of
the reflecting planes sensed by the light within the cavity.
Consequently, this fact is considered by the introduction
of a weighting factor 2F/π that weakens the effect of noise
occurring outside the cavity. A detailed investigation of
this weighting factor is given in App. E.
Finally, Fig. 4 illustrates the noise of the simple inter-

ferometer’s output SIF(ω) which is sensible to a differen-
tial optical path change in the arms. This noise variable
is to be interpreted as a differential mirror motion of the
arms. The ratio of this motion to the cavity length L
corresponds to the amplitude of a gravitational wave. In
Fig. 4 we compare the weighted TR displacement noise
amplitude of the ITM π/(2F )×

√

2Sz(ω) and the beam

splitter π/(2F )×
√

SBS(ω) to the SQL of the simplified

interferometer
√

SSQL(ω).

V. DISCUSSION

Applying our theory of TR noise for finite-sized test
masses on cryogenic gravitational wave detectors as ET,
LCGT, and CLIO reveals that the ITM TR noise is below
the standard quantum limit for all detectors. For LCGT
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FIG. 4. Numerical results for the thermorefractive noise am-
plitude at the output of a simplified interferometer

√

SIF(f).
Solid lines represent our results considering the finite radial
dimension of the ITM [Eq. (31)] for ET, LCGT, and CLIO at
10K, 20K, and 30K. The dashed line indicates the TR noise
of the fused silica beam splitter at 290K. Also the standard
quantum limit (SQL) of the simplified interferometers using
the corresponding ITM geometry is shown.

and CLIO the TR noise of the ITM is more than one
order below the SQL and, thus, negligible due to the
low thermo-optic coefficient of sapphire and the small
height of the ITM. The situation for the silicon test mass
of ET-LF is different. At a temperature of 10K and
frequencies above 500Hz the TR noise contribution of the
ITM is only a factor of two below the SQL. Consequently,
this noise source becomes important when the SQL is
beaten, e.g., by utilizing squeezing in the detector [29].
At low frequencies the finite radial dimension of the test
mass leads to a constant noise level far below the SQL.
Compared to the theory of the infinite disc our finite
model predicts a lower noise. A factor of 2 between both
models is revealed for a silicon test mass at 10K.
A crucial point in the noise estimate consists in the

knowledge of the thermorefractive parameter β. For sap-
phire only an upper limit of 9 × 10−8 for temperatures
below 40K is known [26]. For silicon at 1550nm only val-
ues down to 30K are experimentally known [25] forcing
us to use extrapolated values at low temperatures. Thus,
a reliable estimate of TR noise in detector components
demands precise experiments on the determination of β
at low temperatures.
In optical micro resonators [4, 5, 8] we find systems

with transmitted media within the cavity. There the ef-
fect of TR noise is amplified mainly by the finesse of the
cavity. Thus, our results can have a possible influence on
the resonator design in this field.
Next to thermorefractive noise also thermoelastic noise

originates from thermal temperature fluctuations in the
test mass. This common origin allows a collective treat-
ment known as thermo-optic noise. It shows a suppres-
sion compared to the independent sum of the single con-
tributions. Evans et al. [30] and Gorodetsky [31] showed
that this treatment brings the single contributions far
below the detectors sensitivity. Also the impact of finite-
sized substrates on coating thermo-optic noise was inves-
tigated in 2009 [32]. A possible extension of our work
involves the determination of the substrate thermo-optic
noise for finite substrate geometries. This task remains
open for future work.

VI. CONCLUSION

Investigating thermorefractive noise for crystalline ma-
terials at low temperatures desires the consideration of
the finite dimensions of the sample. Next to this point
also the interferometric effect of standing waves should
be considered in an noise analysis. Our results con-
taining both requirements were independently derived by
Levin’s and Langevin’s approach. They were confirmed
by a comparison to an FE analysis and to known special
cases in the literature. Applying this model to cryogenic
gravitational wave detectors reveals that thermorefrac-
tive noise in ET could become a problem at frequencies
above 500Hz while it can be neglected for LCGT and
CLIO.
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Appendix A: Radiative heat transport

In the presented analysis the solution of the heat equa-
tion was derived assuming adiabatic boundary condi-
tions. Using this approximation any heat transport via
radiation is neglected. But as we are interested in the
finite-size effects appearing at low frequencies the valid-
ity of the adiabatic assumption has to be proven. In this
appendix we estimate the dissipated energy with respect
to radiation.
In a first step we compare the amount of heat trans-

ported by radiation and conduction as given, e.g., in
Ref. [33]. The amount of radiated heat can be calculated
using the Stefan-Boltzmann law. In a rough approxima-
tion we identify the environmental temperature with the
average temperature of the substrate T0. The radiated
heat flow h normal to the surface then follows the relation

hrad = σ(T 4 − T 4
0 ) ≈ 4σT 3

0 δT , (A1)

where σ is the Stefan-Boltzmann constant and T is the
temperature of the substrate’s surface. Introducing the
temperature deviation δT (t) = T (t)− T0 and expanding
the Stefan-Boltzmann law to the leading order in δT re-
vealed the approximation in the last step of Eq. (A1).
This linear behavior is important as Levin’s approach is
only valid for linear systems. We compare this to the
amount of heat transported to the boundary via conduc-
tion

hcond = −κ ∂
∂r
T ≃ −κδT

rth
. (A2)

Here the thermal path length rth =
√

κ/(ωCp) is used
to estimate a typical value of ∂T/∂r. Inserting the nu-
merical values from the text into these equations con-
firms that the amount of heat radiation is negligibly small
compared to heat conduction (hrad <∼ 10−6hcond). Con-
sequently, the heat, which is virtually inserted at the cen-
ter of the substrate and transported to the boundary by
conduction, cannot be emitted due to radiation. This
behavior justifies to neglect the effect of radiation in the
solution of the heat equation.
Even if the radiated heat does not change the temper-

ature distribution effectively, it produces an increase of

entropy leading to energy dissipation and thermal noise.
At this point we want to give a second and more quanti-
tative estimate of this effect. The first condition to allow
for an effective radiation of heat consists in an effective
heat conduction from the center to the boundary of the
substrate. Thus, due to the periodically inserted heat we
assume an instant temperature equalization within the
substrate. This leads to a spatially constant temperature
within the sample. Mathematically, the Laplace term in
the heat equation [Eq. (7)] vanishes leading to

Cp (T (t)− T0) = q(~r, t) . (A3)

Using the definition of q(~r, t) an integration over the sub-
strate volume V reveals

δT (t) =
1

CpV

∫

V

q(~r, t)dr =
βT0F0

CpV
eiωt = δT̂ eiωt .

(A4)

Here the term δT̂ is introduced as the amplitude of tem-
perature fluctuations. With the knowledge of the sub-
strate temperature at the boundaries the amount of ra-
diated heat can be calculated using Eq. (A1). As shown
in the previous paragraph we can further assume that
the heat transported via radiation is sufficiently small
not to change the temperature distribution within the
substrate.
Following Ref. [19] the increase of entropy is given as

Ṡ = −
∫

V

div

(
~h

T

)

dV , (A5)

where ~h represents the heat flow. Transforming this into
a surface integral, replacing h by Eq. (A1), and expand-
ing the denominator to small temperature changes results
in

Ṡ(t) = −4σT 2
0AδT (t)

(

1− δT (t)

T0

)

, (A6)

whereA represents the surface area undergoing radiation.
In our estimate we consider the whole geometrical surface
of the substrate as A. Only the term quadratic in δT
enters the temporal average of the entropy increase. A
multiplication with the average temperature then reveals
the mean rate of energy dissipation due to radiation as

Wdiss = T0f

∫ 1/f

0

Ṡ(t)dt = 2σT 2
0A
∣
∣
∣δT̂
∣
∣
∣

2

, (A7)

= 2σT 4
0

A

V 2

β2

C2
p

F 2
0 . (A8)

We have performed a numerical evaluation of the above
equation for ET and LCGT at a frequency of 1Hz. The
result shows that the dissipation due to radiation will be
5 or 4 orders of magnitudes lower than the dissipation
due to conduction for ET and LCGT, respectively. The
change of the noise amplitude due to radiation would be
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below 1% and, thus, can be omitted in our calculations
heading for frequencies above 1Hz. The estimate pre-
sented here predicts equal contributions of conduction
and radiation at a frequency around 10−2Hz.

Appendix B: Langevin approach

In this appendix we present details of the TR noise
calculation using the Langevin approach for the simple
and the advanced model.

1. Simple model

On our way to derive the noise spectrum we continue
by calculating the autocorrelation function of the aver-
aged temperature T (t). For this purpose we repeatedly
use means of the Fourier transform of T (~r, t) and insert it
into Eq. (24). Due to the volume integration the depen-
dence from the azimuthal and the z-coordinate vanishes.
That allows us to focus our consideration on the radial
variable. The Fourier coefficients of temperature and
fluctuational force are connected by the heat equation.
Using Eq. (22) a short calculation reveals the correlation
of the remaining Fourier components Fn(ω)

F (~r, t) =

∫ ∞

−∞

dω

2π
eiωt

∞∑

n=0

Fn(ω)J0(knr) , (B1)

to be

〈Fn(ω)Fn′(ω′)〉 = 4kBT
2
0

HR2

× κ

C2
p

k2n

[J0(knR)]
2 δnn′δ(ω − ω′) . (B2)

Please note, that the finite dimensions of the substrate
are implicitly given in the choice of the basis function of
the Fourier transform in Eq. (B1). Finally, we can cal-
culate the autocorrelation function of the averaged tem-
perature as

〈
T (t)T (t+ τ)

〉
=

8

π
kBT

2
0

1

Hr40

κ

C2
p

×
∫ ∞

−∞

dω

2π

∞∑

n=1

k2nR
2eiωτ

ω2 + κ2

C2
p
k4n

K2
n

[J0(knR)]
2 . (B3)

If we apply the Wiener-Khinchin-theorem [34] on the last
expression the one-sided spectral noise density of the av-
eraged temperature T is determined as

ST (ω) =
16

π
kBT

2
0

1

Hr40

κ

C2
p

×
∞∑

n=1

k2nR
2

ω2 + κ2

C2
p
k4n

K2
n

[J0(knR)]
2 . (B4)

With the relation

Sz(ω) = β2H2ST (ω) , (B5)

the result coincides with Eq. (19).

2. Advanced model

To take the standing wave effect into account, we have
to consider the z-dependence of the averaged tempera-
ture in the Langevin approach. Therefore, we have to
expand the correlation factor of the Fourier components
to an additional index m, describing the z-dependence

〈Fnm(ω)Fn′m′(ω′)〉 = 4kBT
2
0

HR2

κ

C2
p

(2 − δ0m)

× k2n + l2m

[J0(knR)]
2 δnn′δmm′δ(ω − ω′) . (B6)

By inserting the Fourier transform of T (~r, t) into Eq. (34)
the averaged temperature T can be rewritten as a sum

T (t) =
2πR2

πr20

∫ ∞

−∞

dω

2π
eiωt

∞∑

n,m=0

Tnm(ω)KnLm . (B7)

Taking into account the relation

Tnm(ω) =
Fnm(ω)

iω − (κ/Cp)(k2n + l2m)
, (B8)

and the correlators (B6) one can calculate the correlation
function of T

B(τ) ≡ 〈T (t)T (t− τ)〉 (B9)

=

∫ ∞

−∞

dω

2π
eiωτ

8

π
kBT

2
0

κ

C2
p

R2

Hr40

×
∞∑

n=0

∞∑

m=0

2

(1 + δm0)2
1

[J0(an)]
2

× (1 + δm0) k
2
n + (1− δm0) l

2
m

ω2 + κ2

C2
p
(k2n + l2m)

2 K2
nL

2
m .

Now applying the Wiener-Khinchin-theorem on the last
expression one can find the one-sided spectral noise den-
sity ST (ω) of the averaged temperature and recalculate
it into Sz(ω) = β2H2ST (ω). The result coincides with
Eq. (31) originating from Levin’s approach.

Appendix C: Semi-qualitative considerations on the
Langevin model

In this appendix we derive the dependence of the TR
noise formula due to purely qualitative considerations.
TR noise can be described as an effective mirror motion

∆z, which is given by

∆z = βH
√

〈∆T 2〉V,τ . (C1)
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Please note that in contrast to the rest of the article
the symbol ∆ denotes variations instead of the Laplace
operator throughout this appendix. Consequently, ∆T
characterizes the temperature fluctuation within the sub-
strate and the brackets denote a spatial averaging over
the laser beam volume V ≃ r20H as well as a temporal
averaging over a time τ .
Assuming a characteristic time τ∗ for thermal relax-

ation processes allows us to give an approximation for
the averaged temperature fluctuations

〈∆T 2〉V,τ ≃ kBT
2
0

CpV
×







τ
τ∗
, if τ ≪ τ∗

1 , if τ ≃ τ∗

τ∗

τ , if τ ≫ τ∗
. (C2)

At short observation times τ < τ∗ the thermal mass pre-
vents an effective propagation of heat through the bor-
ders of the sample volume, that is probed by the laser
beam and, thus, leads to a vanishing temperature change
for τ → 0. At long observation times τ > τ∗ the pertur-
bations are quickly balanced and averaged to zero for
τ → ∞. In between both limits heat is effectively flow-
ing out of the probed volume while the time τ is short
enough to avoid an averaging to zero. According to this
behavior we find a maximum of temperature fluctuations
at τ ≃ τ∗.
We denote the minimum size of the probed volume

V as a. Note that the thermal relaxation time is con-
nected to this size a via τ∗ ≃ a2Cp/κ. Now we apply our
considerations to the different noise regimes, illustrated
in Fig. 2. Beginning at long observation times at first
the laser beam radius is the significant length (a ≃ r0,
τ∗r ) while at shorter observation times the standing wave
pattern along the laser beam becomes important (a ≃ λ,
τ∗λ).
Range I (τ ≫ τ∗r ≫ τ∗λ) From Eqs. (C1) and (C2) we

find an effective mirror displacement of

∆z ≃ βH

√

kBT 2
0

Cp r20H

√

τ∗

τ
. (C3)

Taking into account the definition of the power noise
spectrum Sz(ω)

∆z2 ≃ Sz(ω)∆ω , (C4)

and using ∆ω ≃ ω ≃ 1/τ yields

SI(ω) ≃
∆z2

ω
≃ β2H

kBT
2
0

κ
. (C5)

The same result is obtained by utilizing a second
approach employing the thermal path length rth =√
κ/(ωCp). There we consider volumes of ≃ r3th to show

independent temperatures. The total number of inde-
pendent regions in the probed volume is about ≃ H/rth.
The averaged temperature fluctuation is proportional to
the reciprocal of this number and reads

〈∆T 2〉 ≃ rth
H

× kBT
2
0

Cpr3th
. (C6)

This result leads to the same noise spectrum as given
before in Eq. (C5).
Range II (τ∗r ≫ τ ≫ τ∗λ) By using the corresponding

term in Eq. (C2) and following the same scheme as above
we obtain

SII(ω) ≃ β2H
kBT

2
0 κ

C2
pr

4
0ω

2
. (C7)

Range III (τ∗r ≫ τ ≫ τ∗λ) In this frequency range
the fluctuations due to the standing waves dominate the
spectrum. To take standing waves into account we only
have to replace τ∗r by τ∗λ in the results of Range I and II.
This leads to

SIII(ω) ≃ β2H
kBT

2
0 λ

2

κ r20
. (C8)

Range IV (τ∗r ≫ τ∗λ ≫ τ) At very short observation
times we find

SIV(ω) ≃ β2H
kBT

2
0 κ

C2
pr

2
0λ

2ω2
. (C9)

Compared to the analytical results all our semi-
qualitative time domain considerations provide the cor-
rect dependence on physical parameters.

Appendix D: Standing wave term

To obtain Levin’s sin2-term in the inserted entropy
one has to consider the phase change of the reflected
light due to a temperature variation within the substrate.
These temperature variations lead to a variation of the
refractive index dN = βdT . For simplicity we start with
the case where only a small area is affected by an index
change dN .

1. Model

For the calculation of the phase change we apply the
analogy of optical layer stacks to electrical transmission
lines [35]. This analogy is easily illustrated for the special
case of normal incidence. There we assume the incoming
electromagnetic wave to travel along the z-direction and
the electric field E to be polarized along the y-direction.
For homogeneous and isotropic optical layers, then the
magnetic field H reveals to be polarized along the x-
direction. Perpendicular to the z-direction the layer ge-
ometry is homogeneous. Thus, we postulate only a z-
dependence for E and H . Applying Maxwell’s equations

∇× ~E = −µ0µr∂t ~H , (D1)

∇× ~H = −ǫ0ǫr∂t ~E , (D2)

and utilizing the Fourier transform into the frequency
domain yields a description of the electromagnetic fields
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within a single layer

∂zEy(z) = µ0µr iωHx(z) , (D3)

∂zHx(z) = ǫ0ǫr iωEy(z) . (D4)

Here µ0 and µr are the vacuum and the relative perme-
ability, respectively, and ǫ0 and ǫr are the vacuum and
the relative permittivity, respectively. The differential
equations describing an electric transmission line show
the same structure. We find them by replacing Ey as
voltage and Hx as current. The final step in the anal-
ogy compares the boundary conditions of both problems.
Maxwell’s equations predict a continuous transition for
Ey and Hx as they are perpendicular to the normal of
the boundary between two layers. In the transmission
line model voltage and current also show a continuous
behavior at the boundaries completing our analogy.
Following these steps we find a wave resistance of

ρ =

√
µ0µr
ǫ0ǫr

. (D5)

We are only interested in the ratio between two
impedances and, thus, can omit the constant factors µ0

and ǫ0. Furthermore we approximate our layer mate-
rials as non-magnetic, i.e., µr = 1. Using the relation
N2 = ǫr one has to identify the wave resistance with the
inverse refractive index (ρ = 1/N) in the transmission
line model. Then the coefficients of amplitude reflectiv-
ity are connected to impedances of the subsystems Zi.
Fig. 5 illustrates the transmission line analogue of the

ITM. In this sketch light is approaching from the left
and is reflected to the left again. In our calculation we
neglect the left boundary of the ITM as it shows an anti-
reflective coating in the detector. At z = 0 we assume
the disturbed region with a slightly differing resistance
ρ + δρ with δρ ≪ ρ. Its length ℓ should be small in a
way to satisfy k0ℓ/ρ ≪ 1. Here k0 = 2π/λ0 represents
the vacuum light wave vector.
The disturbation should be the length L apart from

the right boundary of the ITM. Thus from z = ℓ to z =
L + ℓ we assume an undisturbed substrate. Finally at
z = L+ℓ there occurs an approximately perfect reflection
due to the resonant arm cavity, which is accounted for by
a short-circuited end in the transmission line model.

2. Calculations

The analysis is performed from the short-circuited end
to the left, i.e., in decreasing z-direction. We further
introduce the following variables

φ =
k0ℓ

ρ
, ψ =

k0L

ρ
, (D6)

ϑ = eiφ , θ = eiψ , (D7)

ϑ̄ = eik0ℓ/(ρ+δρ) ≃ ϑ

(

1− iφ
δρ

ρ

)

. (D8)

ρ ρ
ρ+ dρ

zℓ L+ ℓ0

FIG. 5. Sketch of the ITM geometry underlying the derivation
of the sin2-term due to standing waves. A small temperature
fluctuation at a distance L apart from the end of the ITM is
assumed.

At the short-circuited end (z = L + ℓ) the impedance
ZL+ℓ and the amplitude reflectivity RL+ℓ are

ZL+ℓ = 0 , (D9)

RL+ℓ =
ZL+ℓ − ρ

ρ+ ZL+ℓ
= −1 . (D10)

At the boundary to the disturbed substrate region (z =
ℓ) the impedance and the reflectivity are

Zℓ = ρ
1 +RL+ℓθ

2

1−RL+ℓθ2
= ρ

1− θ2

1 + θ2
, (D11)

Rℓ =
Zℓ − ρ− δρ

ρ+ δρ+ Zℓ
= − 2ρθ2 + δρ(1 + θ2)

2ρ+ δρ(1 + θ2)

≃ −θ2
(

1 +
δρ

2ρ

[
1

θ2
− θ2

])

. (D12)

In the last equation we used the approximation of small
fluctuations δρ≪ ρ.
Finally, at our coordinate origin (z = 0) we obtain the

reflectivity R0 as the main point of our interest

R0 =
Z0 − ρ

ρ+ Z0
, Z0 = (ρ+ δρ)

1 +Rℓϑ̄
2

1−Rℓϑ̄2
. (D13)

Now we expand the expression forR0 into a series keep-
ing only terms proportional to δρ, φ, and the cross term
φ δρ. We end up with the following expression

R0 ≃ −θ2
(
1 + 2iφ

)
− iφ

δρ

ρ

[
1− θ2

]2

= −θ2
(

1 + 2iφ+ iφ
δρ

ρ

[
1

θ
− θ

]2
)

= −θ2
(

1 +
2ik0ℓ

ρ
− 4ik0ℓ δρ

ρ2
sin2

k0L

ρ

)

. (D14)

Here the last term in brackets including δρ is responsi-
ble for TR noise. There we find the characteristic sin2-
dependence emerging from standing waves in the sub-
strate.
From the relation N = 1/ρ it follows that δN =

−δρ/ρ2 and, thus,

R0 ≃ −θ2
(
1 + 2ik0ℓN + ik0ℓ δN 4 sin2(kL)

)
. (D15)
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Note the difference between the wave vector in vacuum
k0 and in the substrate k = k0N in the above expression.

3. Thermorefractive noise phase shift

From the previous subsection we know the phase
change due to a temperature change in a thin layer of
thickness ℓ. The phase change of the reflected beam ∆φ
then reads

∆φ = 4k0 δN ℓ sin2(kL) . (D16)

In our linear analysis this behavior can be generalized
to the case of steady refractive index characteristics
N(z) = N + δN(z). Then the length of the disturbed
piece becomes a differential ℓ→ dz. For a substrate with
height H we find

∆φ ≃
∫ H

0

4k0 δN(z) sin2(kL) dz , (D17)

where the length L becomes dependent from the z-
coordinate (L → H − z). This introduces an additional
angular component ϕ0 = kH into our final equation

∆φ ≃
∫ H

0

4k0 δN(z) sin2 (kz − ϕ0) dz . (D18)

As our problem – and especially the fluctuation of the
refractive index δN – exhibits a mirror symmetry with
respect to the plane at z = H/2 we can perform a variable
transformation z → H − z without affecting the results.
Then we obtain Eq. (D18) with ϕ0 = 0, i.e., we can
neglect the effect of a phase shift. If the arm cavity is
brought out of resonance, the phase shift ϕ0 will have to
be considered again.

Appendix E: Weighting factor for noise sources
inside and outside the arm cavity

To compare our obtained noise level with the noise
spectrum of an end mirror, we have to consider that op-
tical components within the arm cavity are probed more
often than the components outside the cavity. Thus the
weighting factor should depend on the finesse as a mea-
sure of effective roundtrips of light within the cavity.
A rigorous calculation bases on the investigation of the
phase of the reflected light.
In this section we calculate the total noise for one opti-

cal device outside the cavity (e.g., TR noise of ITM) to-
gether with the cavity mirrors (the known noise processes
for an end mirror are transformed to effective mirror mo-
tions). The problem geometry is presented in Fig. 6.
Thereby the electric field amplitudes of the incoming and
reflected light Ein and Eout satisfy the equation

Eout

Ein
= e2iϕei2kx1

r1 + r2e
2iθ

1 + r1r2e2iθ
. (E1)

FIG. 6. Schematic view of an interferometer arm with noise
variables inside the arm cavity (mirror positions x1, x2) and
outside the cavity (ϕ, e.g., TR noise of ITM).

Here θ = k(L+x2−x1) represents the phase change due
to a single pass of the cavity while r1 and r2 represent
the amplitude reflectivities of the mirrors. The phase
advance ϕ can be interpreted as an equal position change
kxout. Expanding this expression to linear terms around
the resonant state [exp(2ikL) = −1] results in

Eout

Ein
= A0 + 2ik [Aout∆xout +A1∆x1 +A2∆x2] ,

(E2)

with

A0 =
r1 − r2
1− r1r2

, (E3)

Aout =
r1 − r2
1− r1r2

, (E4)

A1 = r1
1− 2r1r2 + r22
(1− r1r2)2

, (E5)

A2 = r2
−1 + r21

(1− r1r2)2
. (E6)

From the coefficients Ai one can easily calculate the
weighting factor and perform a direct comparison be-
tween thermal noise sources inside (x1, x2) and outside
the cavity (xout). Thermal noise Sout introduced via the
position xout can be transformed to an equivalent inner
cavity noise spectrum as

Sx1
=

∣
∣
∣
∣

Aout

A1

∣
∣
∣
∣

2

Sout , (E7)

Sx2
=

∣
∣
∣
∣

Aout

A2

∣
∣
∣
∣

2

Sout . (E8)

The coefficients above reveal to be
∣
∣
∣
∣

A1

Aout

∣
∣
∣
∣
=

∣
∣
∣
∣

r1
r2 − r1

+
1

1− r1r2
− 1

∣
∣
∣
∣
, (E9)

∣
∣
∣
∣

A2

Aout

∣
∣
∣
∣
=

∣
∣
∣
∣

r1
r2 − r1

+
1

1− r1r2

∣
∣
∣
∣
. (E10)

One can further simplify these expressions with the help
of the cavity finesse F , which is defined as the ratio be-
tween the spectral distance of two neighboring transmis-
sion maxima and the width of such a maximum. The
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finesse of a Fabry-Perot-cavity can be expressed as

F = π

√
r1r2

1− r1r2
. (E11)

Assuming a perfect end mirror r2 = 1 and a high reflec-
tive input mirror r1 ≈ 1 one can show the equivalence
of

∣
∣
∣
∣

A2

Aout

∣
∣
∣
∣
≈ 2

π
F . (E12)

For cavities with moderately high finesse (F > 100) we
can further neglect the difference for the input and the
end test mass and obtain a practical approximation for
the weighting factor of

∣
∣
∣
∣

A1

Aout

∣
∣
∣
∣
≈
∣
∣
∣
∣

A2

Aout

∣
∣
∣
∣
≈ 2

π
F . (E13)

Appendix F: Approximations

In this section we specialize our results to regimes well
known from former publications. At first we derive useful
equations remembering the general steps of our analysis.
Here we start with the introduced heat q concerning only
the radial r-dependence

q(r) = Q exp

(

−r
2

r20

)

. (F1)

Then a Fourier transform was applied utilizing basis func-
tions (r = ρR)

fn(ρ) = J0(anρ) , (F2)

and the scalar product of

〈f(ρ), g(ρ)〉 =
∫ 1

0

f(ρ)g∗(ρ)ρdρ , (F3)

where the star denotes the complex conjugate. From the
choice of our basis functions fn we obtain the normaliza-
tion

〈fn, fm〉 =
1

2
[J0(an)]

2
δnm . (F4)

Consequently, the Fourier coefficients of q(r) read

qn =
2

[J0(an)]
2 〈q(r), fn(r)〉
︸ ︷︷ ︸

=QKn

. (F5)

Now we apply Parseval’s theorem on the function q(r)
obtaining

〈q(ρ), q(ρ)〉 =
〈

∞∑

n=0

qnfn(ρ),

∞∑

m=0

qmfm(ρ)

〉

=

∞∑

n=0

2

[J0(an)]
2 |QKn|2 . (F6)

On the other hand the integration of q(r) reveals

〈q(ρ), q(ρ)〉 =
∫ 1

0

|Q|2 exp
(

−2
ρR

r0

)

ρdρ

= |Q|2 r20
4R2

[

1− exp

(

−2
R2

r20

)]

. (F7)

As the second term in brackets is closely connected to
clipping loss of a mirror and gravitational wave detectors
are designed to show clipping losses far below 1% we
can neglect this term in the further analysis. Using this
approximation we arrive at a first important relation

∞∑

n=0

2 |Kn|2

[J0(an)]
2 ≈ r20

4R2
. (F8)

In a second step we repeat the same calculation with the
spatial derivative of the introduced heat q → q′ = ∂rq(r).
Using Eq. (17) we obtain

∞∑

n=0

4a2n |Kn|2

[J0(an)]
2 ≈ 1 , (F9)

as the second relation necessary for our approximations.
We begin with the simplification of Eq. (19) neglecting

the effect of standing waves as

Sz(ω) =
4

π

kBT
2
0

ω2

H

r40

κβ2

C2
p

×
∞∑

n=0

4K2
n

[J0(an)]2
a2n

1 + κ2

C2
pω

2

a4n
R4

. (F10)

In the above expression we find the thermal path length
in the denominator as

rth =
√

κ/(Cpω) . (F11)

For the adiabatic case rth approaches zero and no heat
is transported within the substrate. As the analytical
equivalent of this behavior we can simplify the denomi-
nator to the value of 1. Utilizing Eq. (F9) reveals

Sz(ω) ≈
4

π

kBT
2
0

ω2

H

r40

κβ2

C2
p

, (F12)

coinciding with the adiabatic result presented by Bragin-
sky and Vyatchanin [11].
A useful second approximation can be applied to

Eq. (31) where standing waves were considered. In a
typical substrate we find about a million periods of the
imaginary heat inside the substrate. Thus, the influence
of the boundary on the heat flow along the z-direction
is negligibly small and we can omit the boundary condi-
tions along the z-direction. Then only two values for Lm
remain (cf. argumentation in Sec. IVB), i.e., L0 = 1 and
Lm̂ = 1/2. For typical laser beam radii and substrate
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radii only the first values for kn show a remarkable im-
pact on the result. These values are small compared to
the coefficient lm̂ for the standing wave effects. Consid-
ering the relation kn ≪ lm̂ we arrive at an approximate
noise spectrum

S(SW)
z (ω) ≈16

π
kBT

2
0

κβ2

C2
p

HR2

r40
×

(
∞∑

n=0

1

[J0(an)]
2

k2n
ω2 + κ2

C2
p

k4n
K2
n+

∞∑

n=0

2K2
n

[J0(an)]
2

l2m̂
ω2 + κ2

C2
p
l4m̂

1

4

)

. (F13)

The first sum in brackets reveals to be the result from

the simple case [cf. Eq. (19)]. Using Eq. (F8) and the
relation lm̂ = 2k, where k is the wave vector within the
substrate material we find

S(SW)
z ≈ S(hom)

z +
4

π

kBT
2
0

ω2

κβ2

C2
p

H

r20

k2

1 + (2krth)4
. (F14)

The effect of standing waves shows only an adding con-
tribution to the result of the simple case. This additional
contribution coincides with the result presented by Ben-
them and Levin [14] for normal incidence. It marks a
useful approximation taking into account the substrate’s
finite radial dimension as well as standing waves within
the substrate.
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