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We formulate the Babinet Principle (BP) as a relation between scattering amplitudes and combine
it with multiple scattering techniques to derive new properties of electromagnetic Casimir forces.
We show that the Casimir force exerted by a planar conductor or dielectric on a self-complementary
perforated planar mirror is approximately half that on a uniform mirror independent of the distance
between them. Also the BP suggests that Casimir edge effects are generically anomalously small.
Furthermore, the BP can be used to relate any planar object to its complementary geometry, a
relation we use to estimate Casimir forces between two screens with apertures.

In 1948, Casimir predicted an attractive force between
metal plates arising from vacuum fluctuations of the
electromagnetic field [1]. A systematic understanding
of the Casimir effect is important for a vast range of
physical problems from high energy to condensed matter
physics[2]. The advent of precision experimental mea-
surements of Casimir forces [3–6] and the possibility of
applications to microelectromechanical devices has stim-
ulated interest in developing efficient ways to compute
these forces both analytically [2, 7–9] and numerically
[10–12]. In particular, a multipole scattering method
has been developed and used to compute Casimir forces
among multiple objects of various shapes and electromag-
netic properties [8, 13]. The essential ingredient in this
formalism is the amplitude, expressed in a convenient
basis, for electromagnetic waves to scatter from the in-
dividual objects. While the conceptual foundations of
the method harken back to earlier formalisms [14], the
successful implementation is quite recent.

The classical BP relates the diffraction patterns of
waves scattering from two complementary screens, taken
to be flat surfaces, the holes in one being filled in the
other and vice versa. The screens are assumed to have
negligible thickness and to enforce boundary conditions
(BC) on the scattering field, either Dirichlet (D), or Neu-
mann (N) for scalar fields, or perfectly conducting (EM)
for electromagnetic waves. The conflicting assumptions
of perfect conductivity and negligible thickness place re-
strictions on the conditions where the BP can be applied.
At the end we estimate these conditions for a good con-
ductor like gold.

We first state the BP in a form suited to our purposes,
as a relation between scattering amplitudes. Then we
show how the BP can be combined with the scattering
theory approach to Casimir forces to make predictions
for physically interesting configurations. We start with
self-complementary geometries in which the screen Σ and

its complement, Σ̃, are identical up to a translation or
rotation. In this case we use the BP to show that the
electromagnetic Casimir force between such a screen and
a perfect mirror is approximately half the force between

two perfect mirrors. Subject to a proviso about the local-
ity of Casimir forces, we suggest that Casimir edge effects
are anomalously small in electromagnetism. Finally we
show how the BP can be used to compute the Casimir
force between perforated screens.

The scattering of waves from a screen is described in
terms of a scattering amplitude, F, related to the unitary
S-matrix by F = 1

2 (S− I). In the absence of the screen
F vanishes. It is convenient to distinguish the contribu-
tion to F corresponding to transmission of waves across a
screen, denoted by T, from the contribution correspond-
ing to waves that are reflected, denoted by R. Thus, a
plane wave |k〉 incident from the left on a screen Σ gives
rise to a reflected wave, R|k〉, on the left and a transmit-
ted wave, T|k〉, on the right.

For the sake of simplicity and clarity, we discuss the
case of a scalar field and then quote the generalization
to electromagnetism, where the predictive power of the
BP is considerably greater. Without loss of generality,
we assume a planar incident wave |k〉 impinging on the
screen from the left side, kz > 0. The scattering off the
screen Σ is defined by the ansatz

|φ〉 =

{
|k〉+

∑
k′ Rk′,k |k′〉 on the left ,

|k〉+
∑

k′ Tk′,k |k′〉 on the right .
(1)

Note that the trivial forward scattering is separated out
from the diffraction described by R and T. If the same
incident wave, |k〉, shines on the complementary screen,

Σ̃, the scattering can be described by a similar ansatz
with the corresponding scattering amplitudes denoted by

R̃ and T̃. The scattering is determined by the BC that
the scalar field obeys on the screen, which we take to be
either Dirichlet or Neumann. Applied to scalar fields, the
BP relates the diffraction of a field that obeys a Dirichlet
boundary condition on Σ, to the diffraction experienced
by a field that obeys a Neumann boundary condition on

Σ̃, and vice versa.
The proof of the BP is discussed in many textbooks

where it is usually assumed that one screen has compact
support, while its complement extends to infinity. We
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have extended the BP for both scalar and electromag-
netic fields to the case where neither screen has compact
support, e.g. each is a half-plate. The proof is inspired
by an argument in Ref. [15], and is based on the fact that
a general solution to the wave equation can be cast as a
sum of terms even or odd in z. In the Dirichlet (Neu-
mann) case the odd (even) solution is trivial. It is not
hard to show that an odd solution in the Neumann case
for screen Σ can be constructed from the even solution
for Σ̃ in the Dirichlet case and vice versa. Uniqueness of
solutions to the Helmholtz equation fixes the correspon-
dence of solutions to be one-to-one. A linear combination
of even and odd terms sets up the scattering ansatz with
incoming wave only on the left side of the screen, and is
the unique solution of the scattering problem. The result
is a relation between transmission and reflection matrices
for the screen and its complement. For the scalar case,

RD/Nk′,k − R̃N/Dk′,k = ∓Ik′,k, where Ik′,k ≡ (2π)2δ(k′‖ − k‖)

with k‖ being the component of the planar wave parallel
to the screen. As a check, if the screen Σ is the entire

plane so the screen Σ̃ is the null set, then RD/Nk′,k = ∓Ik′,k

as expected. For the other channel, the BP dictates

TD/Nk′,k + T̃N/Dk′,k = −Ik′,k . Once again this can be checked
in the limiting case where Σ is either a full screen or the

null set. For example in the former case TD/Nk′,k = −Ik′,k,
which cancels the incident wave on the right side of the
screen.

Similar equations hold for electromagnetism. However,
a slight complication arises since the scattering from a
screen generally mixes electric (E) and magnetic (M) po-
larizations. The BP must then be cast in a matrix form,RMM − R̃EE RME + R̃EM

REM + R̃ME REE − R̃MM

 = I

(
−1 0
0 1

)
, (2)

TMM + T̃EE TME − T̃EM

TEM − T̃ME TEE + T̃MM

 = I

(
−1 0
0 −1

)
, (3)

where the labels {k,k′} have been suppressed. To sum-
marize, the scalar version of the BP relates Dirichlet to
Neumann BC and vice versa, while electromagnetic ver-
sion relates scattering with conducting BC back to itself,
merely interchanging polarizations.

The BP can be used to learn electromagnetic prop-
erties of new geometries based on their complementary
partners. We can exploit this for geometries where we
understand one side of the complementarity for example
(see below) relating the Casimir force on a disk to that
on an aperture. However it can be used even when the
scattering properties of neither side are known, namely

when the screens are self-complementary, i.e. Σ = Σ̃, up
to a translation or rotation. An example of such a geom-
etry is a semi-infinite plate, whose complement is also a
half-plate, infinitely extended in the opposite direction.
Other examples include a regular array of strips (with
their size being the same as the gap between the strips),

a checkerboard (an array of diagonally placed squares),
and various angular subdivisions of the plane (see Fig. 1),
all with a filling factor of 50%. Since these geometries are
self-complementary, their scattering matrices are equal to
their complement’s.

d
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Figure 1: Self-complementary geometries, each facing an in-
finite plate.

To incorporate the BP into the Casimir interaction,
we take advantage of an expansion in multiple scatter-
ings [26]. The Casimir interaction energy of two objects
is given by E = ~c

2π

∫∞
0
dκ tr ln (I− F1 U12F2 U21) where

the Fs are scattering amplitudes and the Us are trans-
lation matrices which capture the appropriate transla-
tions and rotations between the scattering bases for each
object [7, 8]. When expanded in F1 U12F2 U21, this ex-
pression gives a series in multiple reflections which con-
verges very rapidly in all cases that have been stud-
ied [16–18]. In the case of parallel plates, for example,
the first reflection captures about 93% of the total en-
ergy, and in other cases like sphere-plate, it does even
better. We therefore focus on the first reflection term,
E1 ≡ − ~c

2π

∫∞
0
dκ tr (F1 U12F2 U21), where we can directly

apply the BP. Below we argue that corrections due to
higher reflections are at most a few percent.

Consider an infinite plate, either dielectric or conduc-
tor, opposite a conducting, self-complementary screen
(See Fig. 1). Only the reflection amplitudes come into

play in this configuration. For an infinite plate RPP ′

0 is

diagonal in polarization, hence RP ′P
0 = RPP0 δP ′P . So are

the translation matrices UP ′P = UPP δP ′P . The Casimir
energy in the first reflection then becomes

E1 = − ~c
2π

∑
P=E,M

∫ ∞
0

dκ tr
(
RPP0 UPPRPPsc UPP †

)
(4)

where Rsc is the reflection amplitude for the self-
complementary geometry. Equation (2) relates the reflec-

tion matrices of opposite polarizations, RMM−R̃EE = −I
and REE − R̃MM = I. Using this, one can show that the
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sum E1 + Ẽ1 is equal to the energy of two infinite plates
in the first reflection. However, for a self-complementary

geometry Rsc = R̃sc up to a trivial translation or rota-

tion matrix. E1 and Ẽ1 are therefore equal and both equal
to half the interaction of two infinite plates in the first
reflection approximation. For a perfect conductor, this
reads

E1 =
1

2
E1(parallel-plates) = − ~cA

16π2d3
, (5)

independent of any internal length scale that character-
izes the self-complementary geometry. Thus, for exam-
ple, the size of the strips, the squares, or the wedges in
Fig. 1 does not enter the expression for the energy in the
first reflection.

The higher-reflection corrections to Eq. (5) are no
worse than the case of two parallel plates, where they
are less than 8%. This is because the higher reflection
terms involve higher powers of the Rsc. The absolute
value of the eigenvalues of Rsc are all less than (or equal
to) unity (whereas those of an infinite reflecting plate, are
all unity), so higher reflections’ contributions are further
suppressed.

If the separation between Σ and the reflecting plate
is much smaller than the length scale of the structure on
the screen (d� a in Fig. 1), then Eq. (5) follows from the
(first reflection approximation to the) proximity force ap-
proximation (PFA) and is expected [19]. This approxima-
tion treats the objects locally as parallel plates and is ex-
act in the limit of close proximity. When the separation is
comparable to or larger than the length scales of Σ, then
our result is by no means obvious. In fact, one might have
thought that a mesh like the checkerboard completely re-
flects electromagnetic waves with wavelength ∼ d, when
d � a leading to E1 → E1(parallel-plates) as is the case,
for example, for corrugated or pitted conductor when d
is large compared to the length scale of the corrugations
or pitting [20].

An interesting special case is a half-plate. On dimen-
sional grounds the energy can be separated into two con-
tributions, E = Earea + Eedge, the first proportional to
the area and the second proportional to the edge length.
The former is given by Earea = −π2~cA/720d3. Equa-
tion (5) rules out the edge term in the first reflection for
electromagnetism, Eedge 1 = 0, since the energy differs
from parallel plates only by a trivial factor of one-half —
which accounts for the area of the half-plate. Likewise
the scalar Dirichlet and Neumann edge terms are equal
in magnitude and opposite in sign in the first reflection
approximation. The absence of the edge term in the first
reflection for a half-plate geometry was first observed in
Ref. [17], as a limiting case of a wedge with zero opening
angle.

We believe this argument can be generalized further.
Consider a screen Σ with structure characterized by a
minimum length scale, a. Then as the separation from a
reflecting plate, d, goes to zero, the leading contribution
to the Casimir interaction energy, proportional to A/d3,

is captured, as always, by the PFA. If the next term in
the expansion in 1/d is also determined locally, then it
must be proportional to the perimeter of the screen Σ,

E ∼
d→0
−~c(αAA/d3 + αPP/d

2 + · · · ). (6)

The coefficient of the first term is set by the PFA,
αA = π2/720. Locally as d→ 0 any edge looks like a half-
plate so we can conclude that αP is zero in first reflection,
so the edge effects are very small. More precisely, if edge
effects are local, for electromagnetism |αP | � αA, while
for Dirichlet and Neumann BC (for which, the edge term
is not absent in the first reflection), we have |αP | ∼ αA
[17, 21]. The absence of an edge term in the electromag-
netic Casimir energy for a piston geometry [22] supports
this conjecture.

Finally we consider a screen with small apertures. The
BP relates diffraction by an aperture to diffraction by its
complement. If the aperture is small, then its comple-
ment is a small object whose Casimir interactions can be
computed in the Casimir-Polder limit [23]. The exact re-
lation involves interchanging polarizations (see Eqs. (2,
3)). For a screen with a small hole opposite an infinite re-
flecting plate it is easy to show that in the first reflection
approximation, the energy is given by the interaction of
two infinite plates minus the interaction of the comple-
mentary object with the infinite plate. This gives a small
correction to the force between parallel plates.

An interesting case is the lateral force between two
screens with perforations. The energy can be written as
the sum of the interaction between parallel plates (with-
out the holes), the hole-plate and plate-hole interactions,
and the hole-hole interaction, plus higher reflections,
E = Eplates + Eplate−hole + Ehole−plate + Ehole−hole + · · · .
Only the interaction between the holes can give rise to a
lateral force between the two plates and Ehole−hole is given
by the electromagnetic interaction between two objects
of the same size and position as the holes. If the holes are
small compared to the interscreen separation the higher
reflections are negligible.

As an application, consider two parallel perforated
plates separated by a distance d, each with a square array
of small circular holes of radius R and center-to-center
separation ∆. According to the BP and in leading or-
der in R/d and R/∆, the lateral force between the two
plates is identical to the lateral force between two arrays
of discs with the same size and spacing as the holes. The
Casimir interaction between two objects with electric po-
larizability [27] matrices α1 and α2 is given by [24, 25]

E = − ~c
8πr7

(13 tr(α1α2)− 56 tr(α1α2Ω) + 63 tr(Ωα1Ωα2)) ,

(7)
where Ω = n̂n̂T with n̂ being the unit vector connecting
the two dipoles separated by a distance r. The force
between the two arrays of dipoles can be computed easily.
For a perfect conductor α1 = α2 = diag {α, α, 0} where
α = 4R3/3π; only the polarizability components parallel
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Figure 2: The lateral force per area as a function of the dis-
placement δ. For this graph, we chose d = 2∆. The point
δ = 0 is an stable equilibrium of this configuration.

to the disk are nonzero. Figure 2 shows the lateral force
as a function of the lateral displacement δ.

Finally we comment on the physical conditions that
must be satisfied for the BP to apply to a screen made of
a good conductor like gold. On the one hand the screen
thickness, t, should be large compared to the skin depth,
δ. On the other hand, t should be negligible compared
to the separation d. So the thickness t should satisfy
δ � t � d. δ is determined from the frequency by δ =√

2/µ0ωσ, where ω ∼ 2πc/d, and the inequalities become√
d/πcµ0σ � t � d. For gold the skin depth is δ ≈

5nm at d ≈ 1µm and decreases proportional to
√
d as

d decreases. For measurements in the d ∼ 0.5 − 1.0µm
range a thickness of 100nm should suffice.
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