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Abstract

The bicycle model of Lorentz noninvariant neutrino oscillations without neutrino masses

naturally predicts maximal mixing and a 1/E dependence of the oscillation argument for νµ →
ντ oscillations of atmospheric and long-baseline neutrinos, but cannot also simultaneously fit

the data for solar neutrinos and KamLAND. We examine all nineteen possible structures of

the Standard Model Extension for Lorentz noninvariant oscillations of massless neutrinos that

naturally have a 1/E dependence at high neutrino energy. Due to the lack of any evidence for

direction dependence, we consider only direction-independent oscillations. Although we find a

number of models with a 1/E dependence for atmospheric and long-baseline neutrinos, none

can also simultaneously fit solar and KamLAND data.
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1 Introduction

Neutrino data from atmospheric, long-baseline, solar and reactor experiments are easily explained

by oscillations of three active, massive neutrinos [1]. Lorentz-invariance and CPT violating inter-

actions originating at the Planck scale can also lead to neutrino oscillations. The Standard Model

Extension (SME) [2] includes all such interactions that may arise from spontaneous symmetry

breaking but still preserve Standard Model gauge invariance and power-counting renormalizability.

Studies of neutrino oscillations with Lorentz invariance violation have been made both for mas-

sive [3, 4, 5] and massless [6, 7, 8] neutrinos. A model with nonrenormalizable Lorentz invariance

violating interactions and neutrino mass has also been proposed [9]. However, no viable model

has been found that does not require at least one nonzero neutrino mass. The purpose of this

paper is to determine if Lorentz invariance violation alone can account for the verified oscillation

phenomena seen in atmospheric, long-baseline, solar and reactor neutrinos. We do not attempt to

fit the possible oscillation signals seen in the LSND [10] and MiniBooNE [11] experiments.

In the SME, the evolution of massless neutrinos in vacuum may be described by the effective

Hamiltonian [6]

(heff )ij = Eδij +
1

E

[

aµLpµ − cµνL pµpν
]

ij
, (1)

where pµ = (E,−Ep̂) is the neutrino four-momentum, p̂ is the neutrino direction, i, j are flavor

indices, and aL → −aL for antineutrinos. The coefficients aL have dimensions of energy and the cL

are dimensionless. Direction dependence of the neutrino evolution enters via the space components

of aL and cL, µ or ν = X,Y,Z, while direction independent terms have µ = ν = T . The Kronecker

delta term on the right-hand side of Eq. (1) may be ignored since oscillations are insensitive to

terms in heff proportional to the identity.

The two-parameter bicycle model [6] can be defined as follows: (cL)ij has only one nonzero

element in flavor space and the only nonzero (aL)ij are (aL)eµ = (aL)eτ . These interactions can

be nonisotropic, which could lead to different oscillation parameters for neutrinos propagating in

different directions. In Ref. [8] it was shown that the pure direction-dependent bicycle model is

ruled out by solar neutrino data alone, while a combination of atmospheric, solar and long-baseline

neutrino data excludes the pure direction-independent case. A mixture of direction-dependent

and direction-independent terms (with 5 parameters) is also excluded when KamLAND data are

added [8].

The key feature of the bicycle model is that even though the terms in heff are either constant

or proportional to neutrino energy, at high neutrino energies there is a seesaw type mechanism that

leads to 1/E behavior for the oscillation argument for atmospheric and long-baseline neutrinos. In

this paper we examine the general case of direction-independent Lorentz invariance violation in the

Standard Model Extension for three neutrinos without neutrino mass, i.e., Eq. (1) with only cTT
L
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and aTL terms. We do not consider possible direction-dependent terms since there is no evidence

for direction dependence in neutrino oscillation experiments (see, e.g., the experiments in Ref. [12]

and the analysis of Ref. [6]). For notational simplicity we henceforth drop the L subscript and T

superscripts from the cTT
L and aTL in our formulae.

We first look for textures of the cij in flavor space that allow a 1/E dependence of the oscillation

argument at high neutrino energy. We then check the phenomenology for atmopheric, long-baseline,

solar and reactor neutrino experiments. We were unable to find any texture of heff that could

simultaneously fit all the data.

In Sec. 2 we review the constraints on the direction-independent bicycle model. In Sec. 3

we list all possible textures of the c coefficients and find which ones allow a 1/E dependence of

the oscillation argument at high neutrino energies. For those that do, we first check the oscillation

amplitude for atmospheric and long-baseline neutrinos, and if suitable parameters are found we then

check the ability of the model to fit KamLAND and solar neutrino data. In Sec. 4 we summarize

our results.

2 Neutrino oscillations in the bicycle model

As an illustrative analysis, we begin with a review of the direction-independent bicycle model and

show how it is inconsistent with a combination of atmospheric, long-baseline and solar neutrino

data.

Neutrino oscillations occur due to eigenenergy differences in heff and the fact that the neutrino

flavor eigenstates are not eigenstates of heff . In our generalization of the direction-independent

bicycle model,

heff =







−2cE + 2a11 a12 a13

a12 0 0

a13 0 0






, (2)

where the c term is CPT -even and the aij terms are CPT -odd. The simple two-parameter bicycle

model [6] has a13 = a12 and a11 = 0. We allow a12 to be different from a13 so that mixing of

atmospheric neutrinos may be (slightly) nonmaximal. The a11 term allows an adjustment of the

oscillation probabilities of low-energy solar neutrinos [6].

For this heff there are two independent eigenenergy differences ∆jk = Ej − Ek given by

∆21 =
√

(a11 − cE)2 + a2 + cE − a11 , ∆32 =
√

(a11 − cE)2 + a2 − cE + a11 , (3)

where a ≡
√

a2
12

+ a2
13
. The effective Hamiltonian is diagonalized via UTheffU by the energy-
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dependent mixing matrix

U =







− cos θ 0 sin θ

sinφ sin θ cosφ sinφ cos θ

cosφ sin θ − sinφ cosφ cos θ






, (4)

where

sin2 θ =
1

2

[

1 +
a11 − cE

√

(a11 − cE)2 + a2

]

, (5)

tan φ =
a12
a13

. (6)

The off-diagonal oscillation probabilities are

P (νe ↔ νµ) = sin2 φ sin2 2θ sin2(∆31L/2) , (7)

P (νe ↔ ντ ) = cos2 φ sin2 2θ sin2(∆31L/2) , (8)

P (νµ ↔ ντ ) = sin2 θ sin2 2φ sin2(∆21L/2) + cos2 θ sin2 2φ sin2(∆32L/2)

−1

4
sin2 2φ sin2 2θ sin2(∆31L/2) , (9)

where ∆31 = ∆32 +∆21.

For large E, appropriate for atmospheric and long-baseline neutrinos, if a2 ≪ (cE)2, then

sin2 θ ≪ 1, cos2 θ ≃ 1 and the only appreciable oscillation is

P (νµ ↔ ντ ) ≃ sin2 2φ sin2(∆32L/2) , (10)

where

∆32 ≃
a2

2cE
. (11)

Thus the νµ → ντ oscillation amplitude has amplitude sin2 2φ and is maximal for φ = π
4
, in which

case a12 = a13 (reproducing the simple two-parameter bicycle model). The energy dependence of

the oscillation argument in this limit is the same as for conventional neutrino oscillations due to

neutrino mass differences, with an effective mass-squared difference

δm2

eff = 2E∆32 =
a2

c
. (12)

The measured value for δm2

eff in atmospheric and long-baseline experiments then places a constraint

that relates a and c.

If E is not too large, then the more general Eqs. (4)-(6) apply. Furthermore, in matter there

is an additional term due to coherent forward scattering [13], which adds a
√
2GFNe term to

the upper left element of heff , where Ne is the electron number density. In matter the angle φ
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is unchanged and θ is now given by Eq. (5) with the substitution a11 → a11 + GFNe/
√
2. For

adiabatic propagation in the sun the solar neutrino oscillation probability is

P (νe → νe) = cos2 θ cos2 θ0 + sin2 θ sin2 θ0 , (13)

where θ0 is the mixing angle at the creation point in the sun (with electron number density N0
e ≃

90 NA/cm
3) and θ is the mixing angle in vacuum. For convenience we define the quantity b ≡

GFN
0
e /(2

√
2) = 1.7× 10−12 eV.

The probability has a minimum value

Pmin =
1

2

a2

a2 + b2
, (14)

which is always less than 1

2
. The minimum P must match the oscillation probability of the 8B

neutrinos (which from the SNO experiment [14] is Pmin ≃ 0.30), which fixes a to be

a = b

√

2Pmin

(1− 2Pmin)
= 2.1 × 10−12 eV . (15)

At very low energies the solar neutrino oscillation probability is

Plow =
1

2

[

1 +
a11(a11 + 2b)

√

a2
11

+ a2
√

(a11 + 2b)2 + a2

]

. (16)

Note that the probability in Eq. (16) is exactly 1

2
for a11 = 0 (e.g., in the simple two-parameter

bicycle model), which is not a good fit to the low-energy solar neutrino data. However, for a11 > 0

or a11 < −2b, the low-energy probability can be made larger than 1

2
. Using the low-energy value

P ≈ 1− 1

2
sin2 2θ12 ≈ 0.57, where θ12 is the usual solar neutrino mixing angle [15], we find a11 = 0.20b

or a11 = −2.2b.

The probability reaches the minimum at

Emin =
1

c
[a11 + b] , (17)

which must occur in the energy region of the 8B solar neutrinos (Emin ≈ 10 MeV), which fixes the

magnitude of c to be

|c| = 1

Emin
|a11 + b| = 1.2 b

Emin
≈ 2.0 × 10−19 . (18)

Using Eq. (12) we may now calculate the value of the atmospheric δm2

eff inferred from solar neutrino

data: δm2 = a2/c = 2.2 × 10−5 eV2, which is two orders of magnitude below the measured value.

One caveat for this calculation is that the low-energy solar oscillation probability is not measured

precisely, and the model prediction may be adjusted by changing a11. This in turn changes c (via

Eq. 18) and the predicted atmospheric δm2

eff (via Eq. 12). The relationship between δm2

eff and

Plow is shown in Fig. 1, where we have assumed 8 MeV < Emin < 12 MeV and 0.27 < Pmin < 0.33.
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Figure 1: Correlation of δm2

eff for high-energy atmospheric and long-baseline neutrinos with the

oscillation probability Plow for low-energy solar neutrinos in the generalized direction-independent

bicycle model (between the solid curves), found by varying the model parameter a11. The left

(right) solid curve assumes Emin = 8.0 MeV (12 MeV) and Pmin = 0.27 (0.33). The region between

the horizontal dotted lines is consistent with atmospheric and long-baseline neutrino experiments.

For the range of δm2

eff allowed by experiment (shown by the horizontal dashed lines), the low-

energy probability is approximately 0.30, which is not consistent with Plow ≈ 0.57 preferred by the

solar data. In fact, any δm2

eff above 10−4 eV2 gives a value for Plow below 0.40. Therefore there

is no acceptable value for a11 that fits both the low-energy solar oscillation probability and δm2

eff

for high-energy atmospheric and long-baseline neutrinos, and the generalized direction-independent

bicycle model is excluded.

3 Other textures for heff

3.1 Classification of models

There are six possible c coefficients in heff : three real diagonal coefficients and three complex

off-diagonal coefficients (the remaining three off-diagonals are fixed by the hermiticity of heff ).

Therefore there are 26 = 64 possible c textures for heff . Since the high-energy behavior of heff

is determined by the c coefficients, we classify the models by the number of nonzero c there are

in heff . Within each main class there are distinct subclasses which depend on the diagonal/off-
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Table 1: A list of the 64 possible c textures for heff . The number in the subclass name corresponds

to the number of nonzero c, while the letters indicate a distinct diagonal/off-diagonal structure (up

to flavor permutation), if applicable. A Di in the structure column indicates that a diagonal cii is

nonzero, while an Ojk indicates that off-diagonal cjk is nonzero. Different latin indices in each case

are distinct, e.g., in the structure DiOjk the diagonal element does not share a row or column with

the off-diagonal element, whereas for DiOij it does.

Number of Subclass Structure Number of flavor

nonzero c permutations

0 0 − 1

1 1A Di 3

1B Oij 3

2 2A DiDj 3

2B DiOij 6

2C DiOjk 3

2D OijOik 3

3 3A DiDjDk 1

3B DiDjOij 3

3C DiDjOik 6

3D DiOijOik 3

3E DjOijOik 6

3F OijOikOjk 1

4 4A DiDjDkOij 3

4B DiDjOijOik 6

4C DiDjOikOjk 3

4D DiOijOikOjk 3

5 5A DiDjDkOijOik 3

5B DiDjOijOikOjk 3

6 6 DiDjDkOijOikOjk 1

diagonal structure; within each subclass there are textures that differ only by permutation of the

flavor indices. In all there are 19 subclasses, which are listed in Table 1.

We note that we may subtract any quantity proportional to the identity from heff , since common

phases in the neutrino equations of motion do not affect the oscillations. In this way a diagonal
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element may be removed or moved from one position to another. Then it is not hard to see that

the following subclasses are strictly equivalent: 3A↔2A, 3C↔3B, 4A↔3B, 4C↔4B, 5A↔4B and

6↔5B.

3.2 Method for analyzing textures

Our analysis proceeds as follows. We assume that |cijE| ≫ |akℓ| for any (i, j, k, ℓ) for the high

energies of atmospheric and long-baseline neutrinos. This assumption is justified since if any a

is similar in magnitude to the cE at high energies, then at lower energies (such as for reactor

neutrinos) the a terms will dominate and the oscillation arguments will be energy-independent,

contrary to the KamLAND data, which measured a spectral distortion (similarly, solar neutrinos

would also not have an energy-dependent oscillation probability, as they must). Furthermore, for

the sake of naturalness, we assume that the c coefficients are all the same order of magnitude, and

that likewise the a coefficients are also the same order of magnitude.

Although for each texture the number of nonzero c is determined, initially we place no restric-

tions on the a. We note that if all off-diagonal c are nonzero, then by a redefinition of neutrino

phases and adding a term proportional to the identity we may take all off-diagonal c to be real and

positive, except for one off-diagonal c that is complex (which we take to be c13 unless otherwise

noted). If any off-diagonal c is zero, the nonzero off-diagonal c may all be taken as real and positive.

A key feature of the bicycle model was that even though the terms in the effective Hamiltonian

were either proportional to energy or constant in energy, one eigenvalue difference was proportional

to E−1, which mimics the energy dependence of the oscillations of atmospheric and long-baseline

neutrinos. Having an eigenvalue difference proportional to E−1 means that if the eigenvalues are

expanded in a power series in neutrino energy,

λi =

∞
∑

j=0

aijE
1−j , for i = 1, 2, 3 (19)

then two eigenvalues must be degenerate at leading order in E (linear in E), and at the next

order in energy (E0, independent of energy). Therefore in our analysis of more general three-

neutrino models with Lorentz invariance violation, we look for model parameters that satisfy these

conditions. Since an L/E dependence has been seen over many orders of magnitude in neutrino

energy [16], it seems likely that this is the only way the Hamiltonian in Eq. (1) will be able to fit

all atmospheric and long-baseline neutrino data.

For each texture we expand the eigenvalues of heff in powers of E (as in Eq. 19), where the

leading E1 behavior comes from the dominant cE terms. Since we want 1/E behavior for at least

one oscillation argument, we require that two of the eigenvalues be degenerate to order E0, with

the first nonzero difference occurring at order E−1. In all cases this requirement puts constraints on
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the c and a coefficients. In our calculations we first find the eigenvalues to order E1 and impose the

constraint that two eigenvalues must be degenerate; then we find the eigenvalues of the simplified

heff to order E0 and again impose the degeneracy condition. In this way the expressions for the

eigenvalues to order E−1 will be made as simple as possible at each stage of the calculation.

If the appropriate 1/E behavior can be achieved, the mixing angles are then calculated to

determine if νµ’s have maximal mixing and νe small mixing for atmospheric and long-baseline

neutrinos. If the model is still viable, the energy dependences of the oscillations of solar and

KamLAND neutrinos are then checked for consistency.

At any time we are allowed to subtract a constant times the identity matrix from heff . Some

cases may then be further simplified, or made equivalent to other cases (see below for specific

examples). Rotations are also sometimes used to show that some cases are equivalent to others.

3.3 No c parameters

In this case, Class 0, heff has only a terms and therefore is independent of energy. This clearly

cannot produce 1/E behavior at high energy, so this category is immediately ruled out.

3.4 One c parameter

3.4.1 Class 1A

This case has the structure

heff =







cE + a11 a12 a13

a∗
12

a22 a23

a∗
13

a∗
23

a33






, (20)

where c11 ≡ c may be taken as real and positive. The eigenvalues to order E0 are then

λ1 = cE + a11 , λ2, λ3 =
1

2

[

a22 + a33 ±
√

(a22 − a33)2 + 4|a23|2
]

. (21)

The difference λ2 − λ3 can only be made zero to order E0 if a22 = a33 and |a23| = 0. Then a33

times the identity may be subtracted from heff ; if a11 − a33 is redefined as a11, this case reduces

to the generalized bicycle model described in Sec. 2, which is excluded by the combined data.

3.4.2 Class 1B

This case has the structure

heff =







a11 cE + a12 a13

cE + a∗
12

a22 a23

a∗
13

a∗
23

a33






, (22)
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where c12 ≡ c may be taken as real and positive. The eigenvalues to order E1 are then

λ1, λ2 = ±|c|E , λ3 = 0 . (23)

Since these are all different at leading order, they cannot give an oscillation argument proportional

to E−1 at high energies, and this case is not allowed.

3.5 Two c parameters

3.5.1 Class 2A

This case has the structure

heff =







c11E + a11 a12 a13

a∗
12

c22E + a22 a23

a∗
13

a∗
23

a33






, (24)

where c11 and c22 are real. The eigenvalues at leading order are

λ1 = c11E , λ2 = c22E , λ3 = 0 , (25)

so that we must have c11 = c22 for degeneracy (having one of the cii = 0 also works, but then it is

in Class 1A instead of 2A). Now if c11E times the identity is subtracted from heff , this reduces to

Class 1A, which is ruled out.

3.5.2 Class 2B

This case has the structure

heff =







c11E + a11 c12E + a12 a13

c12E + a∗
12

a22 a23

a∗
13

a∗
23

a33






, (26)

where c11 and c12 may be taken as real and positive. The eigenvalues at leading order are

λ1, λ2 =
1

2

[

c11 ±
√

c2
11

+ 4c2
12

]

E , λ3 = 0 . (27)

Degeneracy requires (i) λ1 = λ2, which is not possible for nonzero c11 and c12, or (ii) λ3 = λ1 or

λ2, which is not possible for nonzero c12. Therefore this case is not allowed.

3.5.3 Class 2C

This case has the structure

heff =







a11 a12 c13E + a13

a∗
12

c22E a23

c13E + a∗
13

a∗
23

a33






, (28)
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where c22 and c13 may be taken as real and positive, and we have subtracted a term proportional

to the identity so that a22 = 0. The eigenvalues at leading order are

λ1, λ2 = ∓c13E , λ3 = c22E . (29)

Degeneracy requires c13 = c22. If we define c22 = c13 ≡ c, where c is a positive real number; then

the eigenvalues to order E0 are

λ1 = −cE +
1

2
[a11 + a33 − 2Re(a13)] , λ2, λ3 = cE +

1

4

[

x±
√

x2 + 8|y|2
]

, (30)

where x ≡ a11 + a33 + 2Re(a13) and y ≡ a12 + a∗
23
. Degeneracy to order E0 requires x = 0 and

y = 0, which implies a11+a33 = −2Re(a13) and a12 = −a∗
23
. With these conditions the eigenvalues

to order E−1 are

λ1 = −cE + a11 + a33 −
1

2cE
(2|a23|2 + |a13|2 − a11a33) , (31)

λ2 = cE +
1

2cE
(2|a23|2 + |a13|2 − a11a33) , λ3 = cE . (32)

Clearly ∆32 = λ3 − λ2 has the correct energy dependence for atmospheric and long-baseline oscil-

lations. The mixing matrix such that UTheffU is diagonal at leading order is given by

U =







− 1√
2

1√
2
sin θ 1√

2
cos θ

0 cos θ − sin θ

1√
2

1√
2
sin θ 1√

2
cos θ






, (33)

where sin θ = |a11+a13|/
√

2|a23|2 + |a11 + a13|2 and the oscillation probabilities are approximately

given by

P (νµ → νµ) = 1− sin2 2θ sin2
(

1

2
∆32L

)

, (34)

P (νµ → νe) = P (νµ → ντ ) =
1

2
sin2 2θ sin2

(

1

2
∆32L

)

. (35)

Therefore maximal mixing for νµ is possible with δm2

eff = 2E∆23 = (2|a23|2 + |a13|2 − a11a33)/c,

but νµ oscillates equally to νe and ντ , which is excluded by atmospheric neutrino experiments.

Hence this case is not allowed.

3.5.4 Class 2D

This case has the structure

heff =







a11 c12E + a12 c13E + a13

c12E + a∗
12

a22 a23

c13E + a∗
13

a∗
23

a33






, (36)

where c12 and c13 may be taken as real and positive. If a rotation is applied to the µ − τ sector,

then c13 may be rotated away into c12, which reduces this case to Class 1B, which is not allowed.
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3.6 Three c parameters

3.6.1 Class 3A

This subclass has nonzero c in each diagonal term and no off-diagonal c. By subtracting off c33E

times the identity, this case reduces to Class 2A, which is not allowed.

3.6.2 Class 3B

This case has the structure

heff =







c11E + a11 a12 c13E + a13

a∗
12

0 a23

c13E + a∗
13

a∗
23

c33E + a33






, (37)

where c11, c33 and c13 may be taken as real and a22 has been set to zero by a subtraction proportional

to the identity. The eigenvalues at leading order are

λ1, λ2 =
1

2

[

c11 + c33 ±
√

(c11 − c33)2 + 4c2
13

]

E , λ3 = 0 . (38)

There are two possible ways to have a degeneracy. First, if λ1 = λ2, then we must have c11 = c33

and c13 = 0. However, if c11E times the identity is then subtracted from heff , this possibility

reduces to Class 1A. Second, we can have λ2 = 0, so that it is degenerate with λ3. There is a family

of such solutions with c33 = r2c11 and c13 = rc11, where r may be taken as a positive real number.

If we define c11 ≡ c, then to order E0 the eigenvalues are

λ1 = (1 + r2)cE + a11 + a33 − x , λ2, λ3 =
1

2

[

x±
√

x2 + 4y
]

, (39)

where x = [a33 + r2a11 − 2rRe(a13)]/(1 + r2) and y = |ra12 − a∗
23
|2/(1 + r2). Degeneracy is only

possible if x = 0 and y = 0, which requires a33 + r2a11 = 2rRe(a13) and a23 = ra∗
12
, respectively.

The eigenvalues to order E−1 are then

λ1 = (1 + r2)cE + a11 + a33 +
|a13|2 + (1 + r2)|a12|2 − a11a33

(1 + r2)cE
, (40)

λ2 = −|a13|2 + (1 + r2)|a12|2 − a11a33
(1 + r2)cE

, λ3 = 0 . (41)

Thus ∆32 has the correct energy dependence, and gives

δm2

eff = 2E∆32 = 2
|a13|2 + (1 + r2)|a12|2 − a11a33

(1 + r2)c
= 2

|ra11 − a13|2 + (1 + r2)|a12|2
c(1 + r2)

, (42)

for atmospheric and long-baseline neutrinos. We note that λ3 = 0 is an exact result given the

degeneracy conditions, true even when E is not large.
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To leading order the mixing matrix that diagonalizes heff via UTheffU is

U =







cosφ sinφ cos θ − sinφ sin θ

0 sin θ cos θ

sinφ − cosφ cos θ cosφ sin θ






, (43)

where sinφ ≡ r/
√
1 + r2 and tan θ ≡

√
1 + r2|a12|/|ra11 − a13|. This mixing gives the oscillation

probabilities

P (νµ → νµ) = 1− sin2 2θ sin2
(

∆32

L

2

)

, (44)

P (νµ → νe) = sin2 φ sin2 2θ sin2
(

∆32

L

2

)

, (45)

P (νe → νe) = 1− cos2 θ sin2 2φ sin2
(

∆21

L

2

)

− sin2 θ sin2 2φ sin2
(

∆31

L

2

)

− sin4 φ sin2 2θ sin2
(

∆32

L

2

)

. (46)

Maximal νµ oscillations are possible for θ ≃ π/4, which imposes the condition
√
1 + r2|a12| ≃

|ra11 − a13|.
Oscillations of νe at high energies must be small due to the limit on νµ → νe from K2K [17]

and MINOS [18].1 For K2K and MINOS the oscillation amplitude for P (νµ → νe), sin
2 φ sin2 2θ,

has an upper bound of about 0.14, which implies r < 0.43 for θ ≃ π/4. The T2K experiment sees

evidence for νµ → νe at the 2.5σ level [19]; their allowed regions are consistent with this bound.

We note that the conditions c33 = r2c11 and c13 = rc11 require fine tuning. If these conditions

are not exact, they introduce small corrections, which may be absorbed into the a terms, e.g.,

aij → aij + δcijE, where δcij represents the deviation from the exact degeneracy condition. This

effectively introduces an E dependence into δm2

eff , contrary to the atmospheric and long-baseline

data.

For solar or reactor neutrinos the large energy limit does not apply. Then the eigenvalues are

λ1, λ2 =
1

2

[

cE(1 + r2) + a11 + a33 ±
√

[cE(1 + r2) + a11 + a33]2 + 2δm2

eff c(1 + r2)
]

λ3 = 0 . (47)

where δm2

eff is from Eq. (42), and it can be shown that the matrix that diagonalizes heff is

U =







cosφ cos ξ + sinφ cos θ sin ξe−iδ − cosφ sin ξ + sinφ cos θ cos ξe−iδ − sinφ sin θ

sin θ sin ξ sin θ cos ξ cos θeiδ

sinφ cos ξ − cosφ cos θ sin ξe−iδ − sinφ sin ξ − cosφ cos θ cos ξe−iδ cosφ sin θ






, (48)

1Limits on νµ → νe or ν̄µ → ν̄e from experiments such as CHOOZ or KARMEN do not apply here since they

involve lower energy neutrinos. MiniBooNE limits may apply, but only for δm2

eff
>∼ 0.1 eV2, and therefore not at

the ∆32 scale.
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Figure 2: The best fit to the KamLAND data for Class 3B (solid lines) and the standard oscillation

scenario with neutrino masses (dashed lines). For the model parameters see Eq. (49).

where φ and θ are defined as above, tan ξ = |ra11 − a13|/(λ1 cos θ) and δ = arg(ra11 − a13). Note

that in the large energy limit λ1 is large, ξ → 0, and Eq. (48) reduces to Eq. (43). Also, since none

of the mixings are zero, CP violation is possible.

We checked KamLAND phenomenology first. Since we have obtained several conditions from

fitting the atmospheric and long-baseline neutrinos, using these conditions we can vary a11, a13 and

r to fit the KamLAND data [20]. Other parameters in the effective Hamiltonian will be determined

by these three parameters. Scanning the a11, a13 and r parameter space, we find the following

parameter values yield reasonable agreement with the KamLAND data (see Fig. 2):

a11 = −8.7× 10−11 eV , a13 = −9.5× 10−11 eV , r = 0.1 . (49)

However, the fit is not as good as the standard oscillation scenario with neutrino mass.

Next we use these parameter values to check the solar phenomenology. Since the operator for a

breaks CPT , we reverse the sign of a when we apply these parameter values to the solar neutrinos.

However, the prediction does not agree with the solar data at high energies given the upper bound

on r from above (see Fig. 3).

We also searched the a11, a13 and r parameter space to fit the solar data separately. The best

fit still can not yield reasonable agreement with the solar data at high energies for r < 0.43 (see

Fig. 4).2 If we do not impose the constraint on r, the fit to the solar data is improved at high

2In order to understand why the oscillation probability for the high-energy solar neutrinos is so high, we consider

14



Figure 3: The prediction of Class 3B for the oscillation probability of solar neutrinos using the

parameter values obtained from fitting KamLAND data [20]. The solar data points are from an

update of the analysis in Ref. [21].

energies (see Fig. 5). However, we cannot simultaneously fit the KamLAND and solar data even

with larger r. We found that we also need |a11| to become larger in order to fit the solar data, but

larger |a11| yields fast oscillations for KamLAND data with averaged probabilities around 1/2.

the survival probability of solar neutrinos in the high energy limit. As we have noted, the mixing matrix in vacuum

reduces to Eq. (43) in the high energy limit. In matter, we can still write the mixing matrix in the form,

U0 =







cos φ sinφ cos θ0 − sinφ sin θ0

0 sin θ0 cos θ0

sinφ − cos φ cos θ0 cos φ sin θ0






, (50)

except tan θ0 ≡ r
√
1 + r2|a12|/|a33 − ra∗

13|, since we do not have the relation a33 + r2a11 = 2rRe(a13) in matter (but

θ0 is still the same as θ in vacuum). Now the survival probability of the solar neutrinos in the high energy limit is

P (νe → νe) = cos4 φ+
1

2
sin4 φ(1 + cos 2θ cos 2θ0) . (51)

Since θ0 = θ ≃ π/4 in vacuum, we have

P (νe → νe) = cos4 φ+
1

2
sin4 φ =

3

2
(sin2 φ− 2

3
)2 +

1

3
. (52)

Since sinφ ≡ r/
√
1 + r2, applying the constraint for r, r < 0.43 gives sin2 φ < 0.14, and the νe survival probability

approaches 0.75 in the high energy limit. This is the reason that we cannot fit the solar data at high energies with

the constraint on r.
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Figure 4: Best fit prediction for survival probability of νe for solar neutrinos for Class 3B, assuming

r < 0.43. The model parameters for the best fit are a11 = −1.0 × 10−10 eV, a13 = 7.3 × 10−11 eV

and r = 0.4.

Figure 5: Best fit prediction for survival probability of νe for solar neutrinos alone in Class 3B,

assuming r > 0.43. The model parameters are a11 = −5.0 × 10−10 eV, a13 = −3.1× 10−11 eV and

r = 1.0.
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3.6.3 Class 3C

This case has the structure

heff =







c11E + a11 a12 c13E + a13

a∗
12

c22E + a22 a23

c13E + a∗
13

a∗
23

a33






, (53)

where c11 and c22 are real and c13 may be taken as real and positive. By subtracting c22 times the

identity, this case reduces to Class 3B, which was described in the previous section.

3.6.4 Class 3D

This case has the structure

heff =







c11E + a11 c12E + a12 c13E + a13

c12E + a∗
12

a22 a23

c13E + a∗
13

a∗
23

a33






, (54)

where c11, c12 and c13 may be taken as real and positive. If a rotation is applied to the µ− τ sector,

then c13 may be rotated away, which reduces this case to Class 2B, which is not allowed.

3.6.5 Class 3E

This case has the structure

heff =







c11E + a11 c12E + a12 a13

c12E + a∗
12

a22 c23E + a23

a∗
13

c23E + a∗
23

a33






, (55)

where c11, c12 and c23 may be taken as real and positive. This is the first case that cannot be simply

reduced to a previous case, and which requires solving a nontrivial cubic equation to determine the

eigenvalues at leading order. The eigenvalue equation for heff/E at leading order is

λ3 − c11λ
2 − (c212 + c223)λ+ c11c

2

23 = 0 . (56)

For a cubic equation of the form λ3 + aλ2 + bλ + c = 0, if we define q = a2 − 3b and r =

2a3 − 9ab+27c, then for three real roots the cubic discriminant f ≡ 4q3 − r2 must be nonnegative,

with f = 0 when two of the roots are equal. Since the effective Hamiltonian is hermitian, the

eigenvalues must be real, so f ≥ 0. Therefore, if there is a degeneracy, not only must f = 0, it

must be a global minimum of f , i.e., we can search for degeneracies by finding the minima of f .

For this case we have

q = c211 + 3(c212 + c223) , r = c11(−2c211 + 18c223 − 9c212) , (57)
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and the discriminant is

f = 4(c211 + 3c12 + 3c223)
3 − c211(2c

2

11 + 9c212 − 18c223)
2 . (58)

Then,

0 =
∂f

∂c12
= 108c12

[

6c412 + 6c423 + c211c
2

12 + 10c211 + 12c212c
2

23

]

, (59)

requires at least that c12 = 0, which reduces this case to Class 2C, which is not allowed.

3.6.6 Class 3F

This case has the structure

heff =







a11 c12E + a12 c13E + a13

c12E + a∗
12

a22 c23E + a23

c∗
13
E + a∗

13
c23E + a∗

23
0






, (60)

where c12 and c23 may be taken as real and positive, c13 is complex and a33 has been set equal to

zero. This case also requires solving a nontrivial cubic equation to find the eigenvalues at leading

order; with

q = 3(c212 + c213 + c223) , r = −54c12c23|c13|cδ , (61)

where cδ = cos δ and δ is the phase of c13. Searching for a minimum of f = 4q3 − r2:

0 =
∂f

∂c12
= 72c12q

2 + 108r|c13|c23cδ , (62)

0 =
∂f

∂c13
= 72|c13|q2 + 108rc12c23cδ , (63)

0 =
∂f

∂c23
= 72c23q

2 + 108rc12|c13|cδ , (64)

0 =
∂f

∂δ
= −108rc12|c13|c23 sin δ . (65)

The quantity q is explicitly nonzero; if r was zero then Eqs. (62)-(64) would imply that c12, c13 and

c23 would all have to be zero, which is not possible for this case, so r 6= 0. Then the last equation

implies sin δ = 0, or δ = 0 or π. Thus cδ = ±1, i.e., c13 is real, but it might differ by a sign from

c12 and c23; we use cδ to denote this possible sign difference and henceforth take c13 as real and

positive.

It is not hard to show that c12 = c13 = c23 is required for a minimum of f and that this condition

gives f = 0. Therefore degeneracy requires c12 = c13 = c23 ≡ c with cδ = ±1. Then the eigenvalues

to order E0 are

λ1 = 2cEcδ + a11 + a22 − x , λ2, λ3 = −cEcδ +
1

2

[

x∓
√

x2 − 4y
]

, (66)
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where

x =
2

3
[(a11 + a22)− Re(a13)− cδRe(a12 + a23)] , , (67)

y =
1

3

[

a11a22 − |a12|2 − |a13|2 − |a23|2 + 2Re(a12a23 − a22a13)

+ 2cδRe(a12a
∗
13 + a23a

∗
13 − a11a23)] . (68)

Thus degeneracy requires that the quadratic discriminant g = x2−4y be zero. Since the eigenvalues

are real, we know g ≥ 0, and degeneracy can only occur at a minimum of g. It can be shown that

g has a minimum at zero for a11 = a22 = Re(a12) = Re(a13) = Re(a23) = 0 and Im(a13) =

cδIm(a12 + a23). Then

heff =







0 cE + ia12 cδ[cE + i(a12 + a23)]

cE − ia12 0 cE + ia23

cδ[cE − i(a12 + a23)] cE − ia23 0






, (69)

where the aij are now defined as real. The eigenvalues of this matrix to order E−1 are

λ1 = 2cδcE+
2cδ
3cE

(a212+a223+a12a23) , λ2 = −cδcE , λ3 = −cδcE− 2cδ
3cE

(a212+a223+a12a23) ,

(70)

and the mixing matrix that diagonalizes heff is

U =







1√
3

1

N
a23 − cδ√

3N
(a23 + 2a12)

cδ√
3

− cδ
N
(a12 + a23)

1√
3N

(a12 − a23)

1√
3

1

N
a12

cδ√
3N

(a12 + 2a23)






, (71)

where N =
√

2(a2
12

+ a2
23

+ a12a23) is a normalization factor.

At high energies for the fast oscillation ∆31 ≃ ∆21 ≃ −3cδcE, all off-diagonal oscillation prob-

abilities have the same approximate form:

P (να → νβ) =
4

9
sin2

(

3cEL

2

)

. (72)

For this oscillation amplitude, 4/9, the NuTeV limit on νµ → νe [22] gives a 90% C.L. upper bound

on δm2

eff of 3.6 eV2. Since we have δm2

eff = 6cE2 in this case and the average neutrino energy was

74 GeV, the experiment imposes the upper bound c ≤ 1.1 × 10−22.3 On the other hand, in order

for the expansion in powers of E to be valid, we need N/(cE) ≪ 1 for E >∼ 100 MeV, which leads

to the lower bound c > 4 × 10−17. Therefore the structure required for the 1/E behavior at high

energy is inconsistent with accelerator bounds. Since all flavors have the same survival probability

in the fast oscillation, the result is the same even if a different permutation of flavors is taken.

3The NuTeV bound on δm2 is not the most stringent for ordinary massive neutrino oscillations, but because

δm2

eff ∝ E2, the high neutrino energies in NuTeV give the strongest bound on c.
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Furthermore, for the ∆23 oscillations in atmospheric and long-baseline neutrinos, all three flavors

have the probability

P (να → να) =
5

9
− 4|Uα2|2

(

2

3
− |Uα2|2

)

sin2
(

∆23L

2

)

. (73)

This implies that all flavors of downward atmospheric neutrinos would be suppressed by a factor

of 5/9, which is contrary to the data. Therefore this case is excluded.

3.7 Four c parameters

3.7.1 Class 4A

This case has three nonzero diagonal and one nonzero diagonal c. By subtracting a piece propor-

tional to the identity, this case may be reduced to either Class 3B or 3C.

3.7.2 Class 4B

This case has the structure

heff =







c11E + a11 c12E + a12 c13E + a13

c12E + a∗
12

c22E + a22 a23

c13E + a∗
13

a∗
23

a33






, (74)

where c11 and c22 are real and c12 and c13 may be taken as positive. The eigenvalue equation for

heff/E at leading order is

λ3 − (c11 + c22)λ
2 + (c11c22 − c212 − c223)λ+ c22c

2

13 = 0 . (75)

This case has cubic discriminant

f = 4q3 − r2 , (76)

where

q ≡ c211 + c222 − c11c22 + 3c212 + 3c213 , (77)

r ≡ −2c311 + 3c211c22 + 3c11c
2

22 − 2c322 − 9c11(c
2

12 + c213) + 9c22(2c
2

13 − c212) , (78)

The minimum conditions are

0 =
∂f

∂c11
= 12(2c11 − c22)q

2 − 2r
[

−6c211 + 6c11c22 + 3c222 − 9(c212 + c213)
]

, (79)

0 =
∂f

∂c22
= 12(2c22 − c11)q

2 − 2r
[

−6c222 + 6c22c11 + 3c211 + 9(2c213 − c212)
]

, (80)

0 =
∂f

∂c12
= 72c12q

2 + 36rc12(c11 + c22) , (81)

0 =
∂f

∂c13
= 72c13q

2 − 36rc13(2c22 − c11) . (82)
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Clearly q > 0 if none of the cij are zero. If r = 0, then Eqs. (81) and (82) would imply c12 = c13 = 0,

which is not Class 4B; therefore r 6= 0. Then Eqs. (81) and (82) imply

− 1

c11 + c22
=

r

q2
=

1

2c22 − c11
, (83)

which implies c22 = 0. This case then reduces to Class 3D, which is not allowed.

3.7.3 Class 4C

This case has the structure

heff =







c11E + a11 a12 c13E + a13

a∗
12

c22E + a22 c23E + a23

c13E + a∗
13

c23E + a∗
23

a33






, (84)

where c11 and c22 are real and c13 and c23 may be taken as real and positive. By subtracting c11

times the identity this case may be reduced to Class 4B, which is not allowed.

3.7.4 Class 4D

This case has the structure

heff =







c11E + a11 c12E + a12 c13E + a13

c12E + a∗
12

a22 c23E + a23

c∗
13
E + a∗

13
c23E + a∗

23
a33






, (85)

where c11, c12 and c23 may be taken as real, and c13 is complex. The eigenvalue equation for heff/E

at leading order is

λ3 − c11λ
2 +−(c212 + c213 + c223)λ+ c11c

2

23 − 2c12c13c23cδ = 0 , (86)

where cδ ≡ cos δ, c13 → c13e
iδ and c13 is now taken as real and positive. This case has

q ≡ c211 + 3(c212 + c213 + c223) , (87)

r ≡ −2c311 + 9c11(2c
2

23 − c212 − c213)− 54c12c13c23cδ , (88)

where the discriminant is f = 4q3 − r2. The minimum conditions are

0 =
∂f

∂c11
= 24c11q

2 − 2r
[

−6c211 + 9(2c223 − c212 − c213)
]

, (89)

0 =
∂f

∂c12
= 72c12q

2 + 36r(c11c12 + 3c13c23cδ) , (90)

0 =
∂f

∂c13
= 72c13q

2 + 36r(c11c13 + 3c12c23cδ) , (91)

0 =
∂f

∂c23
= 72c23q

2 − 36r(2c11c23 − 3c12c13cδ) , (92)

0 =
∂f

∂δ
= −108rc12c13c23 sin δ . (93)
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Clearly q > 0 if none of the c are zero. If r = 0, then Eqs. (90)-(92) would imply c12 = c13 = c23 = 0,

which is not Class 4D; therefore r 6= 0. Thus Eq. (93) implies sin δ = 0, or cδ = ±1; therefore the

off-diagonal elements are real.

By combining Eqs. (90) and (91), we find c12 = c13, and by combining Eqs. (90) and (92), we

find c2
12

= c2
23

+ c11c23cδ. Then q = (c11 + 3cδc23)
2 and r = −2(c11 + 3cδc23)

3. Clearly then f = 0,

and the conditions for degeneracy at leading order are

c12 = c13 , c212 = c223 + cδc11c23 . (94)

Thus there is a two-parameter set of degeneracies at leading order for this texture; at leading order

heff has the form

heff =







c11 S Scδ

S 0 c23

Scδ c23 0






E , (95)

where S ≡
√

c23(c23 + cδc11). By applying the rotation

V =







1 0 0

0 1√
2

1√
2
cδ

0 − 1√
2
cδ

1√
2






, (96)

and adding a term cδc23E times the identity, at leading order the new Hamiltonian is

h′eff = V TheffV =







c11 + cδc23 0
√
2Scδ

0 0 0
√
2Scδ 0 2cδc23






E . (97)

Equation (97) has the form of Class 3B with r =
√

2c23/(c23 + cδc11). The matrix that diagonalizes

the original heff is therefore U ′ = V U , or

U ′ =
1√
2







√
2 cosφ

√
2 sinφ cos θ −

√
2 sinφ sin θ

cδ sinφ sin θ − cδ cosφ cos θ cos θ + cδ cosφ sin θ

cosφ −cδ sin θ − cosφ cos θ −cδ cos θ + cosφ sin θ






, (98)

where U is from Eq. (43). The oscillation probabilities are

P (νµ → νµ) = 1− (sin θ − cosφcδ cos θ)
2 (cos θ + cosφcδ sin θ)

2 sin2
(

∆23

L

2

)

− sin2 φ (sin θ − cδ cosφ cos θ)2 sin2
(

∆12

L

2

)

− sin2 φ (cos θ − cδ cosφ sin θ)2 sin2
(

∆13

L

2

)

, (99)

P (νµ → νe) = sin2 φ sin 2θ(sin2 φ sin θ cos θ − cδ cosφ cos 2θ) sin2
(

∆23

L

2

)

22



−cδ sinφ sin 2φ(sin θ cos θ − cδ cosφ cos2 θ) sin2
(

∆12

L

2

)

+cδ sinφ sin 2φ(sin θ cos θ + cδ cosφ sin2 θ) sin2
(

∆13

L

2

)

, (100)

P (νe → νe) = 1− sin4 φ sin2 2θ sin2
(

∆23

L

2

)

− sin2 2φ cos2 θ sin2
(

∆12

L

2

)

− sin2 2φ sin2 θ sin2
(

∆13

L

2

)

. (101)

In order to compare with the atmospheric and long-baseline neutrinos data, for large E, we

should have ∆12L,∆13L ≫ ∆23L ∼ 1. Then the oscillation probabilities are

P (νµ → νµ) = 1− (sin θ − cδ cosφ cos θ)2 (cos θ + cδ cosφ sin θ)2 sin2
(

∆23

L

2

)

−1

2
sin2 φ(1 + cos2 φ) , (102)

P (νµ → νe) = sin2 φ sin 2θ(sin2 φ sin θ cos θ − cδ cosφ cos 2θ) sin2
(

∆23

L

2

)

+
1

4
sin2 2φ .(103)

Maximal νe oscillations requires

1 ≃ (sin θ − cδ cosφ cos θ)2 (cos θ + cδ cosφ sin θ)2

= 1− sin2 φ− (cos2 φ+
1

2
cδ cosφ− 1

4
sin4 φ) sin2 2θ (104)

If φ is small and sin 2θ ≃ 0, the probabilities are appropriate for the atmospheric and long-

baseline neutrinos. Since sinφ ≡ r/
√
1 + r2 and tan θ ≡

√
1 + r2|a12|/|ra11 − a13|, this imposes the

conditions: (i) r ≃ 0 and a12 ≃ 0, or (ii) r ≃ 0 and ra11 ≃ a13.

Since this case is equivalent to Class 3B after a rotation in the νµ − ντ sector, the νe → νe

oscillation probability expression is still the same. The results are also similar to Class 3B. While

there are parameter values that yield reasonable agreement with the KamLAND data (see Fig. 6),

they did not agree with the solar data at high energies (see Fig. 7).

Also, we fit the solar data separately. As was the case for Class 3B, we do not find a good fit

to the solar data at high energies (see Fig. 8).

3.8 Five c parameters

3.8.1 Class 5A

This case has three diagonal and two off-diagonal nonzero c. By subtracting a piece proportional

to the identity, this case may be reduced to 4B or 4C.
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Figure 6: Class 4D (solid lines) and the standard scenario (dashed lines) compared to the Kam-

LAND data. The model parameters are a11 = −9.0× 10−11 eV, a12 = 0, a13 = −9× 10−11 eV and

r = 0.02.

Figure 7: The best fit prediction of Class 4D to the solar data. The model parameters are a11 =

9.0× 10−11 eV, a12 = 0, a13 = 9× 10−11 eV and r = 0.02.
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Figure 8: Best fit prediction for survival probability of solar νe for Class 4D. The model parameters

are a11 = −6.0× 10−11 eV, a12 = 7.0× 10−11 eV, a13 = 0.42 × 10−11 eV and r = −0.07.

3.8.2 Class 5B

This case has the structure

heff =







c11E + a11 c12E + a12 c13E + a13

c∗
12
E + a∗

12
a22 c23E + a23

c13E + a∗
13

c23E + a∗
23

c33E + a33






, (105)

where c11 and c33 are real, c13 and c23 may be taken as real and positive, and c12 is complex. At

leading order the cubic equation for the eigenvalues of heff/E is

λ3 − λ2(c11 + c33) + λ(c11c33 − c212 − c213 − c223) + c11c
2

23 + c22c
2

13 − 2c12c13c23cδ , (106)

where the c12 is the magnitude and δ the phase of c12. Then we have

q = c211 + c233 − c11c33 + 3(c212 + c213 + c223) , (107)

r = −2(c11 + c33)
3 + 9c11c33(c11 + c33) + 9c11(2c

2

23 − c212 − c213) (108)

+9c33(2c
2

12 − c213 − c223)− 54c12c13c23cδ . (109)

and the conditions for a minimum of f = 4q3 − r2 are

0 =
∂f

∂c11
= 12(2c11 − c33)q

2 − 2r
[

−6c211 + 6c11c33 + 3c233 + 9(2c223 − c212 − c213)
]

, (110)

0 =
∂f

∂c33
= 12(2c33 − c11)q

2 − 2r
[

−6c233 + 6c11c33 + 3c211 + 9(2c212 − c213 − c223)
]

, (111)
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0 =
∂f

∂c13
= 72c13q

2 + 36r [(c11 + c33)c13 + 3c12c23cδ] , (112)

0 =
∂f

∂c12
= 72c12q

2 + 36r [(c11 − 2c33)c12 + 3c13c23cδ] , (113)

0 =
∂f

∂c23
= 72c23q

2 − 36r [(2c11 − c33)c23 − 3c12c13cδ] , (114)

0 =
∂f

∂δ
= −108rc12c13c23 sin δ . (115)

It can be shown by the usual arguments that q and r are not zero, and cδ = ±1. By eliminating

q and r from Eqs. (112) and (113) we find

c33c12c13 = cδc23(c
2

13 − c212) , (116)

and applying a simlar procedure to Eqs. (112) and (114) gives

c11c13c23 = cδc12(c
2

13 − c223) . (117)

Using the relations in Eqs. (116) and (117) it can be shown that all minimum conditions are met and

that f = 0, so Eqs. (116) and (117) are the degeneracy conditions. Thus there is a three-parameter

set of degeneracies at leading order for this texture. Then, after adding the term c12c23cδ/c13 times

the identity, the effective Hamiltonian at leading order may be written as

heff =
cδ

c12c13c23







c2
12
c2
13

c13c23c
2

12
cδc

2

13
c12c23

c13c23c
2
12

c2
12
c2
23

cδc12c13c
2
23

cδc
2
13
c12c23 cδc12c13c

2
23

c2
13
c2
23






E . (118)

Without loss of generality a22 may be set equal to zero. Then the eigenvalues of heff to order E0

are

λ1 =
cδS

c12c13c23
E + a11 + a33 , λ2, λ3 =

1

2

[

x±
√

x2 − 4y
]

, (119)

where

x ≡ 1

S

[

a11c
2

23(c
2

12 + c213) + a33c
2

12(c
2

13 + c223)

−2Re(a12)c
2

12c13c23 − 2Re(a13)c
2

13c12c23cδ − 2Re(a23)c12c13c
2

23cδ
]

, (120)

y ≡ 1

S2

[

−2a11Re(a23)c12c13c
2

23cδ − 2a33Re(a12)c13c23c
2

12 + a11a33c
2

12c
2

23

− c213c
2

23|a12|2 − c212c
2

13|a23|2 − c212c
2

23|a13|2 + 2Re(a13a23)c13c23c
2

12

+2Re(a13a
∗
12)c12c13c

2

23cδ + 2Re(a23a
∗
12)c12c23c

2

13cδ
]

, (121)

and S ≡ c2
12
c2
13

+ c2
12
c2
23

+ c2
13
c2
23
. Thus degeneracy requires that the quadratic discriminant g =

x2 − 4y be zero. It can be shown that g has a minimum at zero when

y12 = cδc12

(

y13
c13

− y23
c23

)

, (122)
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x12 =
c23a11
2c13

+ cδ
c12(c

2
13

+ c2
23
)

c23(c212 + c2
13
)

(

x23 −
cδc12c33
2c13

)

, (123)

x13 = cδ
c2
12
a33 + c2

23
a11

2c12c23
+

c13(c
2

12
+ c2

23
)

c23(c212 + c2
13
)

(

x23 −
cδc12c33
2c13

)

, (124)

where xij = Re(aij), and yij = Im(aij); these are the degeneracy conditions. The eigenvalues to

order E−1 are then

λ1 =
cδSE

c12c13c23
+− 1

SE
cδc12c13c23

[

a11a33 − |a12|2 − |a13|2 − |a23|2
]

, (125)

λ2 =
1

SE
cδc12c13c23

[

a11a33 − |a12|2 − |a13|2 − |a23|2
]

, λ3 = 0 , (126)

and to leading order the mixing matrix that diagonalizes heff is

U =







cos θ cosφ − cos ξ sinφ− sin ξ sin θ cosφ sin ξ sinφ− cos ξ sin θ cosφ

sin θ cos θ sin ξ cos θ cos ξ

cos θ sinφ cos ξ cosφ− sin ξ sin θ sinφ − sin ξ cosφ− cos ξ sin θ sinφ






, (127)

where

sin θ ≡ 1√
S
c12c23 , sinφ ≡ c23

√

c2
12

+ c2
23

, (128)

sin ξ ≡ cδ
c2
12
c2
23
(a11 + a33)

N3

√

c2
12

+ c2
23

, cos ξ =

√
S

N3

c2
23
a11 − c2

12
a33

√

c2
23

+ c2
12

, (129)

and

N2

3 = a233c
4

12(c
2

13 + c223) + a211c
4

23(c
2

12 + c213)− 2a11a33c
2

13c
2

12c
2

23 , (130)

is a normalization factor. The oscillation probabilities are

P (νµ → νµ) = 1− sin2 ξ sin2 2θ sin2
(

∆21

L

2

)

− cos2 ξ sin2 2θ sin2
(

∆31

L

2

)

− cos4 θ sin2 2ξ sin2
(

∆32

L

2

)

, (131)

P (νµ → νe) = 2 sin 2θ cos θ cosφ sin ξ(cos ξ sinφ+ sin ξ sin θ cosφ) sin2
(

∆21

L

2

)

−2 sin 2θ cos θ cosφ cos ξ(sin ξ sinφ− cos ξ sin θ cosφ) sin2
(

∆31

L

2

)

+2 sin 2ξ cos2 θ(cos ξ sinφ+ sin ξ sin θ cosφ)(sin ξ sinφ− cos ξ sin θ cosφ)

× sin2
(

∆32

L

2

)

. (132)

In order to have nearly maximal νµ oscillations at the atmospheric scale, the ∆32 term must

have amplitude close to unity, or θ ≃ 0, π and ξ ≃ π/4. Then from Eq. (129)

a33c12(c12 + cδc23 sin θ) ≃ a11c23(c23 − cδc12 sin θ) . (133)
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The small value of sin θ implies c2
12
, c2

23
≪ c2

13
. Furthermore, in order to have small νµ → νe

oscillations at the ∆32 scale, sin2 φ ≪ 1, or c2
23

≪ c2
12
, i.e., there is a hierarchy among the off-

diagonal cij . Then Eq. (133) implies a33 ≪ a11 as well. Therefore there is a lot of fine tuning

required to achieve the proper mixing.

For simplicity, we only considered the parameters as real numbers. We have scanned the c12, c13

and c23 parameter space to fit the KamLAND and solar data. Other parameters in the Hamiltonian

can be determined by these three parameters, i.e., c11 and c13 can be determined from Eqs. (116)

and (117). Also, for the atmospheric and long-baseline neutrinos, the ∆23 term has the correct

energy dependence, and gives

δm2

eff = 2E∆23 =
2

S
cδc12c13c23[a11a33 − |a12|2 − |a13|2 − |a23|2] . (134)

The above equation together with Eqs. (124) and (133) determine all aij. Another constraint is

the hierarchy among the off-diagonal cij , c
2
23

≪ c2
12

≪ c2
13
, which is also considered during the

parameter search.

We have varied the range of c13 from the order of 10−20 to 10−16 and take c12 and c23 to be at

least one order of magnitude less than c13 and c12 respectively. We found parameter values that

can fit the KamLAND data (see Fig. 9), but they do not yield reasonable agreement with the solar

data at high energies (see Fig. 10). We also attempted to fit solar neutrinos alone and found there

are no parameter values that can yield reasonable agreement with the solar data. The best fit is

shown in Fig. 11.

3.9 Six c parameters

In this case all c elements are nonzero. By subtracting off a piece proportional to the identity, this

case may be reduced to Class 5B, which is ruled out.

4 Summary

We have examined the general three neutrino effective Hamiltonian in Eq. (1) for the case of

direction-independent interactions and no neutrino mass. We looked for texture classes in which two

eigenvalues were degenerate to order 1/E at high neutrino energy, so that oscillations of atmospheric

and long-baseline neutrinos would exhibit the usual L/E dependence.

Among the classes that had the proper 1/E dependence at high energy, none was also able

to fit the atmospheric, long-baseline, solar and KamLAND data simultaneously. Class 1A (along

with the equivalent Classes 2A and 3A) reduced to the direction-independent bicycle model, which

has been shown to be inconsistent with the solar, atmospheric and long-baseline neutrino data.
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Figure 9: Best fits for Class 5B (solid lines) and for standard oscillations (dashed lines) compared

to the KamLAND data. The model parameters are c23 = 5.9 × 10−23, c12 = 1.0 × 10−22 and

c13 = 8.9 × 10−19.

Figure 10: The prediction of Class 5B for the solar neutrino survival probability using the parameter

values obtained from fitting the KamLAND data.
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Figure 11: Best fit prediction for the νe survival probability in Class 5B. The model parameters for

the best fit are c23 = 1.0× 10−18, c12 = 2.4 × 10−18 and c13 = 1.0 × 10−18.

Classes 2C (and the equivalent 3E) and 3F did not have the proper oscillation amplitudes for

atmospheric neutrinos. Finally, Classes 3B (and the equivalent Classes 3C, 4A and 4D) and 5B

(and the equivalent Class 6) were able to fit atmospheric and long-baseline neutrino data, but could

not simultaneously fit KamLAND and solar data at lower neutrino energies. The major difficulty

in these latter classes was reproducing the low survival probability of high-energy solar neutrinos.

Although we have not made an exhaustive search of the parameter space, the fact that high-

energy neutrinos exhibit an L/E dependence in their oscillations over many orders of magnitude in

E suggests that the only way this can occur in the effective Hamiltonian described by Eq. (1) is via

the degeneracy of two eigenvalues to order 1/E. Since none of the cases where such a degeneracy

occurs are also able to fit all neutrino data simultaneously, it seems extremely unlikely that any

direction-independent SME model without neutrino mass will provide a viable description of all

neutrino oscillation phenmomena. There is also strong evidence against direction-dependent terms.

Furthermore, nonrenormalizable Lorentz noninvariant effective Hamiltonians with higher powers

of energy (as in, e.g., the model of Ref. [9]) and no neutrino masses would require additional

degeneracy conditions. Therefore it appears highly unlikely that Lorentz invariance violation alone

can account for all of the observed oscillation phenomena.
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