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We examine several recent lattice-simulation data sets, asking whether they are consistent with
infrared conformality. We observe, in particular, that for an SU(3) gauge theory with 12 Dirac
fermions in the fundamental representation, recent simulation data can be described assuming in-
frared conformality. Lattice simulations include a fermion mass m which is then extrapolated to
zero, and we note that this data can be fit by a small-m expansion, allowing a controlled extrap-
olation. We also note that the conformal hypothesis does not work well for two theories that are
known or expected to be confining and chirally broken, and that it does work well for another theory
expected to be infrared conformal.
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I. INTRODUCTION

During the past few years, lattice simulations have
been employed to study the infrared behavior of a va-
riety of gauge theories that could be relevant to physics
beyond the standard model. Since much of the numeri-
cal code was originally developed for QCD, many of the
simulations have focused on an SU(3) gauge theory with
varying numbers of massless fermions.

The lattice simulations of Refs. [1, 2] considered both
8 and 12 massless fermions in the fundamental repre-
sentation, concluding that the former is a confining and
chirally broken theory like QCD, and indicating that the
latter is conformal in the infrared, dominated by a fixed
point. Since then, various authors have examined the 12-
fermion theory, some agreeing that it is indeed infrared
conformal [3–6], but others arguing that it is confining
and chirally broken [7, 8]. The SU(3) theory with 10
massless Dirac fermions in the fundamental representa-
tion has also been studied, with the conclusion that it is
infrared-conformal [9].

The recent study of the 12-fermion SU(3) theory by
Fodor et al [7] is particularly interesting because the
simulation-data set covers a wide range of fermion mass
values, and finite-volume effects are relatively small.
Their analysis leads them to the conclusion that their
simulation data for masses, the pseudoscalar decay con-
stant and the chiral condensate are more compatible with
confinement and chiral symmetry breaking in the mass-
less limit.

In this note, we examine the simulation data of Ref.
[7] noting that it can also be described assuming that
the massless theory is conformal in the infrared. Lattice
data for several other theories are also considered. Since
lattice simulations are carried out by including a fermion
massm which is then extrapolated to zero, a question for
any fit is whether the lattice data can be interpreted in
terms of a small-m expansion, allowing for a controlled
extrapolation to zero. We argue that this is the case
with the conformal hypothesis. Finite-volume effects are

considered and shown to be relatively small.
As a check on this conclusion, we attempt a similar fit

to an SU(3) theory with 2 fermions in the fundamental
representation, which is known to be in the broken phase,
and an SU(3) theory with 6 fermions in the fundamental
representation, which is strongly believed to be in the
broken phase. In each case the quality of the fit is poor.
We also examine the lattice data of Bursa et al [10] for
an SU(2) gauge theory with 2 fermions in the adjoint
representation, which is believed to be conformal in the
infrared [11–14]. Like the SU(3) theory with 12 fermions,
the data can be well fit by the conformal hypothesis, with
a controlled extrapolation to m = 0.

II. THE CONFORMAL FRAMEWORK

We first describe the scaling behavior we use to fit
the lattice data of Ref. [7]. The discussion is similar
to that in Refs. [15, 16], except that we also include
non-leading terms in the scaling behavior. We assume
that the infrared fixed point g⋆ approximately governs
the behavior of the theory below some scale Λ, which, in
a lattice setting, we take to be the inverse lattice spacing.
Finite-volume corrections will be described in section IV.
An explicit fermion mass, m(Λ) ≡ m is introduced,

with m≪ Λ. At scales below Λ, the running mass takes
the form

m(µ) = m (Λ/µ)γ
⋆

, (1)

where γ⋆ > 0 is the mass anomalous dimension evaluated
at the fixed point g⋆. At some scaleM ≪ Λ, the running
mass satisfies

m(M) =M. (2)

At scales below M , the fermions decouple, and the run-
ning coupling flows away from the fixed point, triggering
confinement. If the would-be fixed-point coupling g⋆ is
reasonably strong, the induced confinement scale is of
order M . We assume this to be the case.
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The mass of each physical state X is then set by
the scale M . That is, using Eqs. 1 and 2, MX ≃
CX m[1/(1+γ⋆)] [17], where the masses are expressed in
units of Λ, and CX is a dimensionless coefficient not far
above unity. In addition, there are correction terms, the
largest of which in a small-m expansion is of order m.
Keeping only these two terms, we have

MX = CX m[1/(1+γ⋆)] +DX m. (3)

Since the explicit breaking of chiral symmetry is of order
M at the induced confinement scale M , there is no ap-
proximate chiral symmetry to be broken spontaneously.
Thus this scaling law applies as well to the pseudoscalar
state. The exponent [1/(1 + γ⋆)] is universal.
Fodor et al [7] also compute the pseudoscalar decay

constant F and the chiral condensate 〈ψ̄ψ〉 as a function
of m. Although F plays no special role in the absence of
spontaneous chiral symmetry breaking, we include it in
our fit, using an expression similar to that for the masses:

F = CFm
[1/(1+γ⋆)] +DFm. (4)

The chiral condensate, defined at the cutoff scale Λ,
also vanishes as m → 0. The leading, small-m term is
purely ultraviolet. This is the “contact term”, propor-
tional to mΛ2, independent of the form of the RG run-
ning of the coupling and m(µ). The second, coming from
the RG running of 〈ψ̄ψ〉 from M to Λ, is proportional to
M (3−γ⋆)Λγ⋆

. Using Eqs. 1 and 2 to express M in terms
of m and Λ, we have

〈ψ̄ψ〉 = ACm+BCm
[(3−γ⋆)/(1+γ⋆)] + ....., (5)

where now, as in Eqs. 3 and 4, all dimensionful quantities
are expressed in terms of Λ, the inverse lattice spacing.
The coefficients are dimensionless, and m is the lattice
mass.
In addition to these terms, we expect a contribution of

order M3, analogous to the leading-order terms in MX

and F , arising from the induced confinement scale M .
And as with MX and F , there are further corrections,
one of which is of order m3. We therefore take

〈ψ̄ψ〉 = ACm+BCm
[(3−γ⋆)/(1+γ⋆)]

+CCm
[3/(1+γ⋆)] +DCm

3. (6)

It will turn out that 0 < γ⋆ < 1, so that these four terms
also provide the basis for a small-m expansion.

III. FITTING THE LATTICE DATA

NEGLECTING THE D TERMS

We fit the lattice data of Ref. [7] for the masses of
the scalar, pseudoscalar, vector, axial vector, nucleon,
and parity partner of the nucleon, for the pseudoscalar
decay constant, and for the condensate, first setting the
D-term coefficients DX , DF , and DC to zero. We then
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FIG. 1: Log-log plot showing masses of the pseudoscalar (P),
vector (V), and nucleon (N) states, the pseudoscalar decay
constant (F), and the condensate (C) as a function of m, as
reported in Ref. [7], along with our conformal fit to these
quantities, with the D terms set to zero. The universal slope
of the P, V, N, and F curves provides a good fit to the simu-
lation data.

ask whether the inclusion of the D terms as well as finite-
volume corrections improves the quality of the fit.
The simulations of Ref. [7] were performed using a

tree-level, Symanzik-improved gauge action, with lattice
gauge coupling β ≡ 6/g2 = 2.2. We assume here that this
lattice coupling is consistent with the theory being ap-
proximately described by the infrared-fixed-point value of
the running coupling throughout the range M < µ < Λ.
The simulations were done for fermion masses m =

0.035, 0.0325, 0.030, 0.0275, 0.025, 0.020, 0.015, 0.010
(in lattice units), with lattice volume 243 × 48 for the
heaviest 4 masses, with volume 323 × 64 for m = 0.025,
with volume 403 × 80 for m = 0.020, and with three
volumes ranging up to 483× 96 for m = 0.015 and 0.010.
In the fits reported here, we use the data at the largest
volume available at each m value [7].
In Fig. 1, we show the simulation data for the pseu-

doscalar (P), vector (V), and nucleon (N) masses, for the
pseudoscalar decay condensate (F), and for the conden-
sate (C) as a function of fermion mass m, along with our
conformal fit to these quantities. The common log-log
slope for P, V, N, and F, enforced by the universal scal-
ing exponent 1/(1 + γ⋆), fits the data points well. The
slope of the condensate curve is determined dominantly
by the leading, linear term of Eq. 6.
To further explore the conformal fit, we report on the

left side of Table I the results of a fit to all the masses, the
pseudoscalar decay constant, and the chiral condensate,
with the D terms set to zero and neglecting finite-volume
effects. For this fit, the anomalous dimension is γ⋆ ≈
0.386± 0.010 and χ2/N = 2.508, with N = 53 degrees of
freedom.
Our (statistical) error analyses here and below do not

take into account correlations of the numerical data,
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Obs. DX = 0 DF 6= 0, zX 6= 0

γ⋆ 0.3858(98) 0.403(13)

CP 4.445(83) 4.267(85) zP 0.209(64)

CS 5.99(14) 5.75(14) zS 0.63(45)

CV 5.26(10) 5.05(10) zV 0.319(88)

CA 6.68(15) 6.41(15) zA 0.50(30)

CN 8.04(17) 7.70(17) zN 0.35(18)

CN⋆ 8.06(17) 7.73(17) zN⋆ 0.49(24)

CF 0.692(13) 0.455(39) zF 0.61(27)

DF — 0.61(10)

AC 13.898(28) 13.926(31) zC -0.036(43)

BC -50.8(5.5) -42.2(4.8)

CC 94(11) 79.0(9.5)

χ2/dof 133/53 42/44

TABLE I: For the SU(3) theory with 12 fermions in the fun-
damental representation, best-fit results to the data of Ref.
[7], for our global conformal fit as described in the text. On
the left-hand side, all the D terms are set to zero, and finite-
volume corrections are neglected. On the right-hand side, DF

(Eq. 4) is included, as well as finite-volume corrections, with
zX as explained in Sec. IV. The letters S, P , V , A, N , and N⋆

correspond respectively to the scalar, the pseudoscalar, the
vector, the axial vector, the nucleon, and the parity partner
of the nucleon. F refers to the pseudoscalar decay constant
and C to the condensate. For each quantity, there are 8 data
points, one for each m value. The fits do not take into ac-
count possible correlations between different observables, as
discussed in the text.

which would require access to the full simulation data
set. As a result, our errors may be underestimated and
χ2/N may not directly indicate goodness-of-fit. While
this value of χ2/N is somewhat large, the fit reported so
far is a very simple one. We have not yet included the
D terms of Eqs. 3, 4, and 6, and we have not taken
into account possible finite-volume corrections. From
the fit reported so far, the latter can be anticipated to
be relatively small. The product ML lies between 1.73
and 2.23, and finite-volume corrections should be small
if MXL ∝ML≫ 1. Inspection of the best-fit CX values
in the left side of Table I indicates that this is the case.
In the next section, we will include finite-volume effects

as well as the D terms. The result, reported in the right-
hand side of Table I, is quite encouraging. The finite-
volume corrections, while not insignificant, are indeed
relatively small, and the value of γ⋆ changes very little.
Furthermore, the fit improves, with χ2/N = 0.944 and
N = 44.
Before including the higher-order corrections, we ex-

amine the consistency of the conformal fit described
above by performing separate fits to each mass, as well as
to F and the condensate. We fix a value of γ⋆ in the range
0 < γ⋆ < 1, and plot the χ2 for each fit as a function of
γ⋆ in this range. The result is shown in Fig. 2, along with
the sum of the individual χ2’s. The internal consistency
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FIG. 2: For the SU(3) theory with 12 fermions in the fun-
damental representation, individual contributions to total χ2

from each channel, for a range of fixed values 0 < γ⋆ < 1.
Here, all D terms are set to zero. Fits are to the Nf = 12
data of Ref. [7]. Parity-odd states (P,A,N⋆) are shown as
dashed curves in the same color as their parity partners. The
black curve is the total χ2.

is evident, with the minimum χ2 for each mass occurring
at a similar value of γ⋆, and the minimum for the pseu-
doscalar decay constant at a value only slightly smaller.
The condensate makes only a small contribution to the
overall χ2. The minimum of the black curve corresponds
to the total χ2 of the left fit of Table I.

IV. HIGHER-ORDER TERMS AND FINITE

VOLUME EFFECTS

We next comment on the role of the D terms in Eqs.
3, 4 and 6, inserting one D term at a time and repeating
the above global fit. At the same time, we consider the
effect of finite-volume corrections. We incorporate the
latter by modifying Eqs. 3 and 4 to include first-order
corrections in an expansion in 1/ML, continuing to in-
clude the correction linear in the short-distance mass m.
We thus take MX = CX M [1 + zX/ML] +DX m, with
M = m[1/(1+γ⋆)], and similarly for F . For the conden-
sate, we simply replace M = m[1/(1+γ⋆)] in the second
and third terms of Eq. 6 by M [1 + zC/ML]. While this
modification is not claimed to be unique, it is physically
sensible. Furthermore, the finite-volume corrections are
found to be insignificant for the condensate, so that the
overall fit does not depend sensitively on the detailed
form of this correction term.
For the data set of Ref. [7], the inclusion of the D

term in any one of the masses, with or without the finite-
volume corrections, does not improve the quality of the
fit. The value of each DX is consistent with 0, with
errors such that the DX (NLO) term is small compared
to the CX (LO) term for the full range of m values. The
inclusion of the DC (NNNLO) term in the condensate
also does not improve the quality of the fit, with DC

consistent with 0 and the errors such that this term is
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relatively small throughout the range of m values.

The inclusion of the DF (NLO) term in the pseu-
doscalar decay constant does improve the global fit, as
does the inclusion of the finite-volume correction terms
zX . In the right-hand side of Table I, we report the
results of a fit including DF and all zX . The resulting
anomalous dimension is γ⋆ = 0.403(13). The values of γ⋆

and the A, B, and C coefficients change very little from
the left-hand fit. We find DF = 0.61±0.10, showing that
the NLO term is small compared to the LO term for the
full range of m values. The values of the zX , zF , and zC
coefficients show that finite-volume corrections are rel-
atively small for the entire range of m values, and ex-
tremely small for the condensate. Most notably, we find
χ2/N = 0.944 with N = 44 degrees of freedom, again
neglecting possible correlations between the observables.

In order to make a direct comparison to the broken-
symmetry fit of Ref. [7], we have also applied our con-
formal fit to just the set of four quantities considered in
their global analysis: the pseudoscalar mass and decay
constant, the nucleon mass, and the chiral condensate.
We find a best fit value γ⋆ = 0.414 ± 0.016, and with
other parameters in the same range as reported in Ta-
ble I. Most importantly, we find χ2/N = 1.10 with N
= 20, to be compared to their broken-symmetry value of
χ2/N = 1.22 with N = 26.

If a global fit including all the D terms is attempted
for the data set of Ref. [7], the χ2 dependence on γ⋆

becomes very flat, slightly favoring larger values in the
range 0 < γ⋆ < 1, and leading to poor determinations of
the D coefficients, with errors comparable in magnitude
to the central values. We conclude that the current data
set is not extensive enough to perform a global fit with
all the parameters of Eqs. 3, 4 and 6. The availability of
additional simulation data for larger m values would be
especially helpful in allowing a global fit that constrains
the D terms.

For the condensate, the constants AC , BC and CC are
such that the LO (AC) term strongly dominates through-
out the mass range. The NLO (BC) term, also arising at
scales of order Λ, and the NNLO (CC) term, arising at
scales of order M , are of opposite sign and strongly neg-
atively correlated, with the NLO term dominating the
NNLO term except for the largest, m = 0.035 point.

That the fit leads to an NLO coefficient BC of opposite
sign to the LO term is perhaps surprising, but we know of
no reason why this correction cannot be of opposite sign.
It is also possible that this is a consequence of the lim-
ited amount of simulation data for the condensate, which
is strongly dominated by the LO, linear term. Further-
more, since the condensate is so sensitive to physics at
the scale Λ, our assumption that the coupling can be
approximated by its infrared fixed-point value out to Λ,
which determines the form of the BC term, should break
down first here.

Finally, it is interesting to note that for the masses, the
CX coefficients of Table I are such that for small m, none
of the states can decay into a combination of the others.
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FIG. 3: For the SU(3) theory with 2 and 6 fermions in the
fundamental representation, individual contributions to total
χ2 from each channel, for a range of fixed values 0 < γ⋆ <
1. Total number of degrees of freedom is 27 in both cases.
All D terms are set to zero. The top (bottom) panel shows
results from fitting to Nf = 2 (Nf = 6) data, obtained from
the simulations detailed in [18, 19]. Parity-odd states (P,A)
are shown as dashed curves in the same color as their parity
partners.

Recalling that there is induced confinement in this theory
at scale M ∝ m[1/(1+γ⋆)], decay into the fundamental
fermion and gauge-boson constituents is forbidden. Since
there is no reason for other states such as the 0++ to be
lighter, it appears that each of these states is stable for
arbitrarily small m, but with an induced confinement
radius diverging as m→ 0.

V. TESTING INFRARED CONFORMALITY ON

OTHER GAUGE THEORIES

As a check on our conclusion that the simulation data
of Ref. [7] are consistent with infrared conformality, we
have tested our conformal fit on two theories for which
it should not work well and one for which it should. The
former are an SU(3) gauge theory with 2 fermions in the
fundamental representation, known to be in the broken
phase, and an SU(3) gauge theory with 6 fermions in
the fundamental representation, strongly believed to be
in the broken phase. Here we fit the simulation data
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of Refs. [18, 19]. In each case the quality of the fit is
indeed poor, as shown in Fig. 3, plotting the χ2 for each
individual fit, as well as the overall χ2, as function of γ⋆.
No clear minimum in χ2 appears for any channel except
the Nf = 6 pseudoscalar mass, where it is at γ⋆ close to
1. For Nf = 2, a minimum appears at γ⋆ ≈ 1. With

chiral symmetry breaking, MP ∼ m1/2 in lowest order
chiral perturbation theory, corresponding effectively to
γ⋆ = 1.
It is worth noting that for the SU(3) gauge theory with

2 or 6 fermions in the fundamental representation, the
poorness of the conformal fit should not be due to finite-
volume effects. Within the conformal hypothesis, as we
noted in the case of the 12-fermion theory, a measure of
finite-volume effects is given byML = m1/(1+γ⋆)L. Here,
the value of γ⋆ emerging from the poor fit is of order
unity, and L = 32, so ML > 2.3 for the entire range of
m values. Each of the associated masses is larger than
M , so finite-volume effects should be relatively small.
We also note that for the SU(3) gauge theory with

2 fermions in the fundamental representation, a fit us-
ing chiral perturbation theory for a confining and chiral-
breaking theory does work well [20]. For the SU(3) gauge
theory with 6 fermions in the fundamental representa-
tion, a smaller set of fermion masses will be required to
apply chiral perturbation theory [20]. But there is strong
evidence from lattice simulations of the running coupling
that this theory is in the broken phase [1, 2].
A theory for which a conformal fit should work well

is an SU(2) gauge theory with 2 fermions in the adjoint
representation, widely believed to be conformal in the in-
frared [11–14]. We have fit the simulation data of Bursa
et al [10] for the pseudoscalar and vector masses and
pseudoscalar decay constant, assuming as before that M
is the induced confinement scale up to a coefficient of or-
der unity. The data are used only in the range m < 0.2,
in order to ensure that our formulas based on a small-m
expansion can be applied. Fig. 4 shows χ2 versus γ⋆ for
each channel, as well as the overall χ2, based on confor-
mal fits as in Eqs. 3 and 4. We find a clear minimum in
χ2 at the best-fit value of γ⋆ = 0.17 ± 0.05. This value
is roughly consistent with previous determinations of γ⋆

[11, 14]. Again, our analysis does not include the full
data covariance matrix, so our error may be underesti-
mated and χ2/N may not indicate goodness-of-fit. The
relatively large contribution of the decay constant to the
overall χ2 may be due to underestimation of statistical
errors, as the data as shown in Ref. [10] are difficult
to describe with any smooth function of m. Addition
of finite-volume corrections as described in Sec. IV sup-
ports this conclusion, failing to improve the quality of
the decay constant fit (but improving fits to the masses.)

VI. CONCLUDING COMMENTS

We have argued that the simulation data of Ref. [7]
are consistent with the hypothesis that an SU(3) gauge
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FIG. 4: For the SU(2) theory with two fermions in the adjoint
representation, individual contributions to total χ2 from each
channel, for a range of fixed values 0 < γ⋆ < 1. Total number
of degrees of freedom is 14 (six data points per channel). All
D terms are fixed to zero. Fits are to the SU(2) two-flavor
adjoint data of Bursa et al [10], with the restriction m < 0.2.

theory with 12 massless fermions in the fundamental rep-
resentation is conformal in the infrared. This conclusion
is based on a simple fit to the data, in particular assum-
ing that the gauge coupling can be approximated by its
infrared-fixed-point value g⋆ out to the UV cutoff Λ (the
inverse lattice spacing). The mass anomalous dimension
γ is then set to its fixed-point value γ⋆.
A global fit including finite-volume and higher-order

corrections yields χ2/N = 0.944 with N = 44. We have
argued that the fit describes a small-m expansion cov-
ering the range of fermion masses used in the simula-
tions, allowing a controlled extrapolation to m = 0. It
leads to a mass anomalous dimension of γ⋆ = 0.403(13).
To compare directly with the broken-symmetry fit of
Ref. [7], we also fit to a subset of four channels, finding
χ2/N = 1.10 with N = 20 as compared to the reported
broken-symmetry value of χ2/N = 1.22 with N = 26.
Although not described in detail here, we have also

used the infrared-conformal hypothesis to fit the simula-
tion data of Ref. [7] for the static quark potential. Since
confinement is induced at scale M , an effective string
tension σ ∝ M2 ∝ m[2/(1+γ⋆)] can be determined from
the data assuming that string breaking has not yet set in.
The fit works well, with a value of γ⋆ in good agreement
with the other fits and an acceptable χ2.
We stress that we have not argued conclusively that the

simulation data of Ref. [7] demonstrates that the SU(3)
theory with 12 massless fermions is infrared conformal.
The simulation data can be described with similar fit
quality by the chirally broken functional forms used in
[7], with a slope and intercept. But the large value of the
slope term compared to the intercept, for the existing
range of m values, does not provide the basis for a small-
m expansion in the spirit of chiral perturbation theory
with a controlled extrapolation to m = 0. Further simu-
lations at additional m values will help to distinguish the
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two scenarios.
As a check on the validity of our infrared-conformal

fit to the SU(3) theory with 12 fermions, we have ob-
served that it does not work well for an SU(3) gauge
theory with 2 fermions in the fundamental representa-
tion, which is known to be in the broken phase, or an
SU(3) gauge theory with 6 fermions in the fundamental
representation, which is strongly believed to be in the
broken phase. On the other hand, it does work well for
an SU(2) gauge theory with 2 fermions in the adjoint
representation, believed to be in the infrared-conformal
phase. We have fit the pseudoscalar and vector masses
and decay constants, with a γ⋆ consistent with other ref-
erences. Here, too, we have fit the string tension induced
at finite m with an anomalous dimension in agreement
with the other fits.
It will next be important to address several of the sim-

plifying assumptions made in these fits. Finite-volume
effects should be examined further, as well as corrections
due to the running of the coupling and mass anomalous

dimension at higher mass scales. Also, a possible hierar-
chy betweenM and the induced confinement scale should
be considered.
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