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We construct a class of two Higgs doublets models with a 4th sequential generation of fermions
that may effectively accommodate the low energy characteristics and phenomenology of a dynamical
electroweak symmetry breaking scenario which is triggered by the condensates of the 4th family
fermions. In particular, we single out the heavy quarks by coupling the “heavier” Higgs doublet
(Φh) which possesses a much larger VEV only to them while the “lighter” doublet (Φℓ) couples only
to the light fermions. We study the constraints on these models from precision electroweak data as
well as from flavor data. We also discuss some distinct new features that have direct consequences
on the production and decays of the 4th family quarks and leptons in high energy colliders; in
particular the conventional search strategies for t′ and b′ may need to be significantly revised.

PACS numbers:

I. INTRODUCTION

One of the most studied, yet unresolved theoretical puzzles in modern particle physics is the origin of ElectroWeak
symmetry breaking (EWSB). Indeed, it is widely anticipated that the LHC will provide us with crucial answers
regarding the underlying nature of EWSB: is the Higgs a fundamental scalar needing protection from SUSY or is it a
composite object. In the Standard Model (SM), EWSB is triggered by the Higgs mechanism, which assumes a single
fundamental scalar, the Higgs, with a mass at the EW-scale. This leads to the long standing difficulty known as the
hierarchy problem: the presence of a fundamental EW-scale seems unnatural since there is a problem of stabilizing
the Higgs mass against radiative corrections without introducing a cutoff to the theory at the nearby TeV scale. The
hierarchy problem, which is usually being interpreted as evidence for new TeV-scale physics, has fueled much scientific
effort in the past several decades, both in theory and in experiment.
Furthermore, recent flavor physics studies have revealed some degree of tension in the CKM fits for the SM with

3 generations [1–5]. For example, there are indications that the “predicted” value of sin 2β is larger than the value
measured directly via the “gold-plated” ψKs mode by as much as ∼ 3.3σ [6]. On the other hand, the announced
CDF and DO results on the CP asymmetry Sψφ in Bs → ψφ (at a higher luminosity around 6/fb) are larger than the
SM prediction by about 1σ [7], and at the same time, they find a surprisingly large CP-asymmetry in the same-sign
dimuons signal, which they attribute primarily to assl - the semileptonic asymmetry in Bs → Xsµν [8, 9].
Interestingly, perhaps the simplest variant of the SM, known as the SM4, in which only a 4th sequential generation

of fermion doublets is added to the theory (for reviews see [10–12]) can address some of the theoretical challenges
associated with the hierarchy problem [13–16] and can readily account for the CKM anomalies mentioned above
[17–25]. In particular, as was suggested over two decades ago, a heavy 4th generation fermion may trigger dynamical
EWSB [13, 14]. The picture that arises in this scenario is of new heavy fermions which have large Yukawa couplings
that are driven to a Landau pole or a fixed point (which acts as a cutoff), possibly at the nearby TeV scale [15, 16].
Consequently, some form of strong dynamics and/or compositeness may occur and the Higgs particles are viewed as
composites primarily of the 4th generation fermions (see e.g., [26–28]), with condensates < Q′

Lt
′
R > 6= 0, < Q′

Lb
′
R > 6= 0

(and possibly also < L′
Lν

′
R > 6= 0, < L′

Lτ
′
R > 6= 0), which induce EWSB and generate a dynamical mass for the
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condensing fermions. As for the CKM anomalies, the two extra phases that the SM4 possesses can give rise to a host
of non-standard CP asymmetries [30, 31] and, in addition, can significantly ameliorate the difficulties with regard to
baryogenesis that the SM has [30, 32, 33].
Indeed, recent searches for 4th generation heavy quarks by the CDF Collaboration have found that mt′ ,mb′

>∼ 350
GeV [34] - in support of the compositeness scenario. Thus, any theory that contains these heavy fermionic states
is inevitably cutoff at the near by TeV-scale where compositeness is expected to occur. As was realized already 20
years ago by Luty [35], the compositeness picture which emerges in this case may be more naturally embedded at
low energies in multi-Higgs theories, since one should expect several composite scalars to emerge as manifestations
of the different possible bound states of the fundamental heavy fermions. This idea was further studied recently in
[28, 29, 36–39]. Moreover, as will be shown in this paper, the addition of more scalar doublets relaxes the constraints
from precision EW data (PEWD) (see also [38]), and allows for interesting new dynamics associated with the 4th
generation fermions that can be tested at high energy colliders.
Adopting this viewpoint, in section II we construct a class of models with two scalar doublets and four generations

of fermions that can serve as effective low energy frameworks and capture the key ingredients of the TeV-scale
compositeness picture, by giving a special status to the heavy fermionic states. We then analyze in section III the
constraints on these models from PEWD and from flavor physics in b-quark systems, and in section IV we discuss
some of the new distinct phenomenological consequences of our multi-Higgs setup for collider searches of the 4th
generation fermions. Finally, in section V we summarize our findings.

II. TWO HIGGS DOUBLET MODELS FOR THE 4TH GENERATION FERMIONS - 4G2HDMS

Recall that in a type II 2HDM (see [40]) one Higgs doublet couples only to the the up-quarks while the 2nd Higgs
doublet couples to the down-quarks. It is straight forward to extend such a setup to the case of a 4th generation
fermion doublet - this was considered in [38, 41, 42] and within a SUSY framework in [32, 43–45].
Our aim here is to construct a new class of two Higgs doublet models (2HDMs) that can serve as a viable low energy

effective framework for models of 4th generation condensation. Thus, in analogy with the 2HDM setup proposed in
[46], we construct our 4G2HDMs using different Yukawa textures than the “standard” 2HDM of type II. In particular,
in our 4G2HDMs one of the Higgs fields (call it the “heavier” field) couples only to heavy fermionic states, while the
second Higgs field (the “lighter” field) is responsible for the mass generation of all other (lighter) fermions. In this
way, the heavier field may be viewed as a q̄′q′ composite with a condensate < q′q′ > 6= 0.
The Higgs potential is a general 2HDM one [40] and the Yukawa interaction Lagrangian of the quark sector is

defined as:

LY = −Q̄L
(

ΦℓF ·
(

I − Iαdβd

d

)

+ΦhF · Iαdβd

d

)

dR − Q̄L

(

Φ̃ℓG ·
(

I − Iαuβu
u

)

+ΦhG · Iαuβu
u

)

uR + h.c. , (1)

where fL(R) are left(right)-handed fermion fields, QL is the left-handed SU(2) quark doublet and F,G are general
4× 4 Yukawa matrices in flavor space. Also, Φℓ,h are the Higgs doublets:

Φi =

(

φ+i
vi+φ

0
i√

2

)

, Φ̃i =

(

v∗i +φ
0∗
i√

2

−φ−i

)

,

I is the identity matrix and Iαqβq
q (q = d, u) are diagonal 4× 4 matrices defined by Iαqβq

q ≡ diag (0, 0, αq, βq).
The Yukawa texture of (1) can be realized in terms of a Z2-symmetry under which the fields transform as follows:

Φℓ → −Φℓ, Φh → +Φh, QL → +QL,

dR → −dR (d = d, s), uR → −uR (u = u, c),

bR → (−1)1+αdbR, b
′
R → (−1)1+βdb′R,

tR → (−1)1+αutR, t
′
R → (−1)1+βut′R. (2)

One can thus construct several models in which the Yukawa interactions of the heavy fermionic states have a non-
trivial structure, possibly associated with the compositeness scenario. Three particularly interesting models which we
will study in this paper are:

• 4G2HDM-I: (αd, βd, αu, βu) = (0, 1, 0, 1). In this case Φh gives masses only to t′ and b′, while Φℓ generates
masses for all other quarks (including the top-quark).
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• 4G2HDM-II: (αd, βd, αu, βu) = (1, 1, 1, 1). In this case the heavy condensate Φh is responsible for the mass
generation of the heavy quarks states of both the 3rd and 4th generation quarks, whereas Φℓ generates masses
for the light quarks of the 1st and 2nd generations.

• 4G2HDM-III: (αd, βd, αu, βu) = (0, 1, 1, 1). In this case mt,mb′ ,mt′ ∝ vh, so that only quarks with masses at
the EW-scale are coupled to the heavy doublet Φh.

The above 3 models represent, in our view, the minimal set of multi-Higgs frameworks that capture the compos-
iteness scenarios associated with the heavy 4th generation fermions. Defining tanβ ≡ vh/vℓ, in the 4G2HDM-I we
expect tanβ ∼ mq′/mt ∼ O(1) (q′ = t′ or b′), while for the 4G2HDM-II and 4G2HDM-III models, tanβ ≫ 1 seems
to be a more natural choice.
As mentioned earlier, the construction of our 4G2HDM models was inspired in part by the 2HDM “for the top-

quark”, which was introduced by Das and Kao in [46] and which was designed to give an effective explanation for
the large top-quark mass via vh ≫ vℓ. However, there is a fundamental difference between our 4G2HDMs and
the Das and Kao 2HDM: the Das and Kao model which was constructed with three fermion generations has no
new heavy fermions (the heavier Higgs doublet, Φh, couples only to the top-quark). Thus, without the new heavy
fermionic degrees of freedom, the top-quark Yukawa coupling remains perturbative up to the Planck scale, so that
their 2HDM does not have a natural low-energy cutoff as one would expect for the condensation picture. On the other
hand, in our 4G2HDMs the strong Yukawa couplings of the heavier Higgs field to the new heavy 4th family fermions
reaches a Landau pole at the near by TeV-scale, thus signaling new physics - possibly in the form of compositeness.
Alternatively, our framework might be more naturally embedded into weakly coupled theories in 5 dimensions, see
e.g., [26, 47].
From the point of view of the leptonic sector, the type-I 4G2HDM is the more natural underlying setup that can

effectively accommodate the heavy masses of the 4th generation neutrino ν′. In particular, recall that the current
bounds on mν′ [51] indicate that ν′ should have a mass at least at the EW-scale. The main glaring problem for the
SM4 is the fact that it does not address the origin of such a heavy mass for ν′ [50]. On the other hand, within our
4G2HDM-I the heaviness of the 4th generation leptons (with respect to the lighter three generations) is effectively
accommodated by coupling them to the heavy Higgs doublet. This setup for the leptonic sector might also be an
effective underlying description of more elaborate construction in models of warped extra dimensions, see e.g., [47].
The physical Higgs fields H± and h,H,A (h and H are the lighter and heavier CP-even neutral states, respectively,

and A is the neutral CP-odd state) are obtained by diagonalizing the neutral and charged Higgs mass matrices:

Φ+
ℓ = cβG

+ − sβH
+ ,

Φ−
h = sβG

+ + cβH
+ ,

Φ0
ℓ = cαH − sαh+ i

(

cβG
0 − sβA

)

,

Φ0
h = sαH + cαh+ i

(

sβG
0 + cβA

)

,

(3)

where G+, G0 are the goldstone bosons, cβ, sβ ≡ cosβ, sinβ, cα, sα ≡ cosα, sinα and α is the mixing angle in the
CP-even neutral Higgs sector.
The Yukawa interactions between the physical Higgs bosons and quark states are then given by:

L(hqiqj) =
g

2mW
q̄i

{

mqi

sα
cβ
δij −

(

cα
sβ

+
sα
cβ

)

·
[

mqiΣ
q
ijR+mqjΣ

q⋆
jiL
]

}

qjh , (4)

L(Hqiqj) =
g

2mW
q̄i

{

−mqi

cα
cβ
δij +

(

cα
cβ

− sα
sβ

)

·
[

mqiΣ
q
ijR+mqjΣ

q⋆
jiL
]

}

qjH , (5)

L(Aqiqj) = −iIq
g

mW
q̄i
{

mqi tanβγ5δij − (tanβ + cotβ) ·
[

mqiΣ
q
ijR−mqjΣ

q⋆
ji L
]}

qjA , (6)

L(H+uidj) =
g√
2mW

ūi
{[

mdj tanβ · Vuidj −mdk (tanβ + cotβ) · VikΣdkj
]

R

+
[

−mui tanβ · Vuidj +muk
(tanβ + cotβ) · Σu⋆ki Vkj

]

L
}

djH
+ , (7)

where q = d or u for down or up-quarks with weak Isospin Id = − 1
2 and Iu = + 1

2 , respectively, and R(L) =
1
2 (1 + (−)γ5). Also, V is the 4× 4 CKM matrix and Σd(Σu) are new mixing matrices in the down(up)-quark sectors,
obtained after diagonalizing the quarks mass matrices:
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Σdij = Σdij(αd, βd, DR) = αdD
⋆
R,3iDR,3j + βdD

⋆
R,4iDR,4j ,

Σuij = Σuij(αu, βu, UR) = αuU
⋆
R,3iUR,3j + βuU

⋆
R,4iUR,4j , (8)

where DR, UR are the rotation (unitary) matrices of the right-handed down and up-quarks, respectively. Notice that
Σu and Σd depend only on the elements of the 3rd and 4th rows of UR and DR, respectively, and on whether αq
and/or βq are “turned on”. For example, in model 4G2HDM-I, for which (αd, βd, αu, βu) = (0, 1, 0, 1), only the 4th
row elements of UR and DR are relevant.
Recall that in standard frameworks such as the single-Higgs SM4 or 2HDMs of types I and II [40], the right-

handed mixing matrices UR and DR are non-physical in the sense that they are “rotated away” in the diagonalization
procedure of the quark masses. On the other hand, in our 4G2HDMs some elements of these matrices can, in principle,
be measured in Higgs-fermion systems, as we will later show. One can, thus, treat these matrices as unknowns, by
expressing physical observables in terms of the elements of the 3rd and 4th rows of UR and DR, or study there
properties under some theoretically motivated parameterization. In particular, inspired by the working assumption
of our 4G2HDMs and by the observed flavor pattern in the up and down-quark sectors, we may assume the following
structure (see also [46] for the 3× 3 case):

DR =









cos θds − sin θds sin θds cos θbb′ǫ
⋆
s − cos θds cos θbb′ǫ

⋆
s

sin θds cos θds − sin θds sin θbb′ǫ
⋆
se

−iδb cos θds sin θbb′ǫ
⋆
se

−iδb

0 ǫs cos θbb′ − sin θbb′e
−iδb

0 0 sin θbb′e
iδb cos θbb′









, (9)

UR =









cos θuc − sin θuc sin θuc cos θtt′ǫ
⋆
c − cos θuc cos θtt′ǫ

⋆
c

sin θuc cos θuc − sin θuc sin θtt′ǫ
⋆
ce

−iδt cos θuc sin θtt′ǫ
⋆
ce

−iδt

0 ǫc cos θtt′ − sin θtt′e
−iδt

0 0 sin θtt′e
iδt cos θtt′









, (10)

where ǫs =
ms

mb
eiδs and ǫc =

mc

mt
eiδc , so that unitarity of DR and UR is restored at 1st order in ǫs and ǫc, respectively.

In the limit sin θuc ∼ mu/mc << 1 and sin θds ∼ md/ms << 1,[1] UR and DR simplify to (similar textures can be
found in Randall-Sundrum warped models of flavor [48, 49]):

DR =















1 0 0 −ǫ⋆s
(

1− |ǫb|2
2

)

0 1 0 ǫ⋆sǫ
⋆
b

0 ǫs

(

1− |ǫb|2
2

)

−ǫ⋆b
0 0 ǫb

(

1− |ǫb|2
2

)















, UR =















1 0 0 −ǫ⋆c
(

1− |ǫt|2
2

)

0 1 0 ǫ⋆cǫ
⋆
t

0 ǫc

(

1− |ǫt|2
2

)

−ǫ⋆t
0 0 ǫt

(

1− |ǫt|2
2

)















, (11)

where we have further defined

ǫb = sin θbb′e
iδb , ǫt = sin θtt′e

iδt . (12)

We thus obtain for the Σ mixing matrices in Eq. 8 (in each element keeping only the leading terms in ǫq, q = s, c, b, t):

Σd =















0 0 0 0

0 αd|ǫs|2 αdǫ
⋆
s

(

1− |ǫb|2
2

)

−αdǫ⋆sǫ⋆b
0 αdǫs

(

1− |ǫb|2
2

)

αd

(

1− |ǫb|2
2

)

+ βd|ǫb|2 (βd − αd)ǫ
⋆
b

(

1− |ǫb|2
2

)

0 −αdǫsǫb (βd − αd)ǫb

(

1− |ǫb|2
2

)

αd|ǫb|2 + βd

(

1− |ǫb|2
2

)















, (13)

and similarly for Σu by replacing αd, βd → αu, βu and ǫs, ǫb → ǫc, ǫt.
A natural choice which we will adopt in some instances below is: |ǫt| = sin θtt′ ∼ mt/mt′ and |ǫb| = sin θbb′ ∼

mb/mb′ .

[1] The mixing angles θuc and θds have no effect in our models as they enter only in the 1st and 2nd rows of UR and DR which have no
physical outcome.
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III. CONSTRAINTS ON THE 4G2HDMS

We now consider constraints from PEWD and from flavor physics in b-quark systems; namely B̄ → Xsγ and Bq−B̄q
(q = d, s) mixing. The PEWD constraints can be divided into the effects of the heavy new physics which does and
does not couple directly to the SM ordinary fermions. For the former we consider constraints from Z → bb̄, which is
mainly sensitive to the H+t′b and W+t′b couplings in our models. The effects which do not involve direct couplings
to the ordinary fermions, are analyzed by the quantum oblique corrections to the gauge-bosons 2-point functions,
which can be parameterized in terms of the oblique parameters S,T and U [52]. It should be noted that, as far as the
oblique parameters are concerned, the contribution from our 4G2HDMs is identical at the 1-loop level to that of any
2HDM, since the new Hff Yukawa interactions in our models do not contribute at 1-loop to the gauge-bosons self
energies.

A. B̄ → Xsγ and Bq-B̄q mixing

1. B̄ → Xsγ

The inclusive radiative decays of the B meson are known to be a very sensitive probe of new physics. Strong
constraints on new physics from B̄ → Xsγ [53–56] crucially depend on theoretical uncertainties in the SM prediction
for this decay. At the parton level, the decay process B → Xsγ is induced by the flavor changing (FC) decay of the
b-quark into a strange quark.
The current experimental world average is given by [7],

BR[B̄ → Xsγ] = (3.55± 0.24± 0.09)× 10−4 . (14)

In the SM, the calculation of the decay rate is most conveniently performed after decoupling the electroweak bosons
and the top quark. In the resulting effective theory, the relevant FC weak interactions are given by a linear combination
of dimension-five and -six operators [57]

O1,2 = (s̄Γic)(c̄Γ
′
ib),

(current-current
operators)

O3,4,5,6 = (s̄Γib)
∑

q(q̄Γ
′
iq),

(four-quark
penguin operators)

O7 =
emb

16π2
s̄Lσ

µνbRFµν ,
(photonic dipole
operator)

O8 =
gmb

16π2
s̄Lσ

µνT abRG
a
µν .

(gluonic dipole
operator)

. (15)

The Wilson coefficients, Ci, of these operators are perturbatively calculable at the renormalization scale µ0 ∼
(mW ,mt) and the Renormalization Group Equations (RGE) can be used to evaluate Ci at the scale µb ∼ mb/2.
Finally, the operator on-shell matrix elements are calculated at µb. At present, all the relevant Wilson coefficients
Ci(µb) are known at the Next-to-Next-to-Leading-Order (NNLO) [58–65]. However, the matrix elements of the opera-
tors Oi consists of perturbative and non-perturbative corrections. As far as the perturbative corrections are concerned,
they are reduced dramatically after the completion of Next-to-Leading-Order (NLO) and NNLO QCD calculations.
A further improvement comes from electroweak corrections [66–69]. On the other hand, no satisfactory quantitative
estimates of all the non-perturbative effects are available, but they are believed to be ≈ 5% [70].
In the SM within the leading log approximation, the B̄ → Xsγ amplitude is proportional to the (effective) Wilson

coefficient of the operator O7. The well-known [71] expression for this coefficient reads

C
(0)eff
7 (µb) = η

16
23C

(0)
7 (µ0) +

8

3

(

η
14
23 − η

16
23

)

C
(0)
8 (µ0) +

8
∑

i=1

hiη
ai , (16)

where η = αs(µ0)/αs(µb) and

hi =
(

626126
272277 − 56281

51730 − 3
7 − 1

14 −0.6494 −0.0380 −0.0185 −0.0057
)

. (17)
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Separating the charm and top contributions, and neglecting the CKM-suppressed u-quark contribution, eq. (16)
can be written as [72]

C
(0)eff
7 (µb) = Xc +Xt, (18)

where the charm contribution, given by Xc, is obtained from eq. (16) by the replacement: C
(0)
7 (µ0) → − 23

36 and

C
(0)
8 (µ0) → − 1

3 ,

Xc = −23

36
η

16
23 − 8

9

(

η
14
23 − η

16
23

)

+

8
∑

i=1

hiη
ai , (19)

which is equivalent to including only charm contributions to the matching conditions for the corresponding operators.
Analogously, only the top-loop contributes to Xt and the expression is given by

Xt = −1

2
At0 (xt) η

16
23 − 4

3
F t0 (xt)

(

η
14
23 − η

16
23

)

,

(20)

with xt ≡ (mt(µ0)/mW )2 and

At0(x) = −3x3+2x2

2(x−1)4 lnx+ −22x3+153x2−159x+46
36(x−1)3 ,

F t0(x) = 3x2

2(x−1)4 lnx+ −5x3+9x2−30x+8
12(x−1)3 .

Including the perturbative, electroweak and the available non-perturbative corrections, the branching ratio of
B̄ → Xsγ, with an energy cut–off E0 in the B̄-meson rest frame, can be written as follows [72]:

BR[B̄ → Xsγ]
subtracted ψ, ψ′

Eγ>E0
= BR[B̄ → Xceν̄]exp

∣

∣

∣

∣

V ∗
tsVtb
Vcb

∣

∣

∣

∣

2
6αem

π C
[P (E0) +N(E0)] , (21)

where αem = αon shell
em [67], N(E0) denotes the non-perturbative correction and P (E0) is given by the perturbative

ratio

Γ[b→ Xsγ]Eγ>E0

|Vcb/Vub|2 Γ[b→ Xueν̄]
=

∣

∣

∣

∣

V ∗
tsVtb
Vcb

∣

∣

∣

∣

2
6αem

π
P (E0) . (22)

In their approach (see [72]) the charmless semileptonic rate has been chosen as the normalization factor in eq. (22),
whereas C in eq. (21) is given by

C =

∣

∣

∣

∣

Vub
Vcb

∣

∣

∣

∣

2
Γ[B̄ → Xceν̄]

Γ[B̄ → Xueν̄]
. (23)

Furthermore, the perturbative quantity P (E0) can be written as [72]:

P (E0) =

∣

∣

∣

∣

Kc +

(

1 +
αs(µ0)

π
ln
µ2
0

m2
t

)

r(µ0)Kt + εew

∣

∣

∣

∣

2

+B(E0), (24)

where Kt contains the top-quark contribution to the b→ sγ amplitude and Kc contains the remaining contributions,
among which the charm loops are by far the dominant one. Also, the electroweak correction to the b→ sγ amplitude is
denoted in Eq. 24 by εew and B(E0) is the bremsstrahlung function which contains the effects of b→ sγg and b→ sγqq̄
(q = u, d, s) transitions and which is the only E0-dependent part in P (E0).
The NLO expression for Kt is given by [72]
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γ γ γ γ

ui ui W± W± ui ui H± H±

b W± s b ui s b H± s b ui s

FIG. 1: Examples of one-loop 1PI diagrams that contribute to b → sγ in the 4G2HDM, with W -bosons, charged Higgs and 4th
generation quarks exchanges (ui = u, c, t, t′).

Kt =

[

1− 2

9
αs(mb)

2 +
αs(µ0)

π
ln
µ0

mt
4x

∂

∂x

] [

−1

2
η

4
23A0(xt) +

4

3

(

η
4
23 − η

2
23

)

F0(xt)

]

+
αs(µb)

4π

{

E0(xt)
8
∑

k=1

ekη(
ak+

11
23 )

+η
4
23

[

−1

2
ηA1(xt) +

(

12523

3174
− 7411

4761
η − 2

9
π2 − 4

3

(

ln
mb

µb
+ η ln

µ0

mt

))

A0(xt)

+
4

3
ηF1(xt) +

(

−50092

4761
+

1110842

357075
η +

16

27
π2 +

32

9

(

ln
mb

µb
+ η ln

µ0

mt

))

F0(xt)

]

+η
2
23

[

−4

3
ηF1(xt) +

(

2745458

357075
− 38890

14283
η − 4

9
π(π + i)− 16

9

(

ln
mb

µb
+ η ln

µ0

mt

))

F0(xt)

]}

, (25)

where the functions At1(x) and F
t
1(x) and the expression for Kc are given in Ref. [72].

For the electroweak (εew) and non-perturbative (N(E0)) corrections in eq. (21) we consider the following values
[72],

εew ≈ 0.0035 + 0.0012 + 0.0028 = 0.0075

N(E0) = 0.0036± 0.0006 . (26)

Other required inputs which we take from [72] are,

r(µ0 = mt) = 0.578± 0.002µb
± (parametric errors) (27)

C = 0.575 (1± 0.01± 0.02± 0.02) (28)

a(z) = (0.97± 0.25) + i(1.01± 0.15) (29)

b(z) = (−0.04± 0.01) + i(0.09± 0.02) , (30)

where a(z) and b(z) are the z-dependent terms in Kc (z = (mc/mb)
2, see Eq. 3.7 in [72]).

With these inputs the NLO prediction for the branching fraction of B → Xsγ is [72]

BR[B̄ → Xsγ]Eγ>1.6 GeV = (3.60± 0.30)× 10−4. (31)

In the SM4 there are no new operators other than the ones present in the SM. However, there are extra contributions
to the Wilson coefficients corresponding to the operators O7 and O8 from t′-loop [17–20]. In our 4G2HDMs the new
ingredient with respect to the SM4 is the presence of the charged Higgs which gives new contributions to the Wilson
coefficients of the effective theory. Examples of the 1-loop diagrams that contribute to b → sγ in our 4G2HDMs are
given in Fig. 1.[2]

In order to include the charged-Higgs effect we need to compute the new Wilson coefficients at the matching scale µ0

(The new H+uidj Yukawa interactions in our models are given in Eq. 7). At the LO, the charged-Higgs contributions,
with the t-quark in the loops are given by (see also [73]),

δC
(0)eff
i (µ0) = 0 i = 1, ..., 6 (32)

[2] We are considering only the charged Higgs contributions to b → sγ and neglecting the flavor changing neutral Higgs 1-loop exchanges,
which are much smaller in our models due to the very small b− s and b′ − s transitions as embedded in Σd (see Eq. 13).
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δC
(0t)eff
7,8 (µ0) =

AUt

3
F

(1)
7,8 (yt) +ADtF

(2)
7,8 (yt), (33)

and that of t′ in the loops are given by

δC
(0)′eff
7,8 (µ0) =

AUt′

3
F

(1)
7,8 (yt′) +ADt′

F
(2)
7,8 (yt′) , (34)

where yi =
m̄2

i (µ0)

m2

H+

, and the functions F
(1,2)
7,8 (yi) are given by [53, 54, 56, 73]

F
(1)
7 (yi) =

yi(7− 5yi − 8y2i )

24(yi − 1)3
+
y2i (3yi − 2)

4(yi − 1)4
ln yi,

F
(1)
8 (yi) =

yi(2 + 5yi − y2i )

8(yi − 1)3
− 3y2i

4(yi − 1)4
ln yi,

F
(2)
7 (yi) =

yi(3 − 5yi)

12(yi − 1)2
+
yi(3yi − 2)

6(yi − 1)3
ln yi,

F
(2)
8 (yi) =

yi(3 − yi)

4(yi − 1)2
− yi

2(yi − 1)3
ln yi . (35)

Dropping terms proportional to ms (the strange-quark mass) and also neglecting the terms proportional to Σbb ∝
|ǫb|2 (which is expected to be small compared to the leading terms), the factors AUt/t′

and ADt/t′
in Eqs. 33 and 34

are given by

AUt = (Au1
−Au2

Σtt)
2 +

√

yt′

yt
(
V ∗
t′s

V ∗
ts

+
Vt′b
Vtb

)Σt′t(A
2
u2
Σtt −Au1

Au2
) +

yt′

yt

λt
′

sb

λtsb
A2
u2
Σ2
t′t,

ADt = −Ad1Au1
+Ad1Au2

Σtt +
mb′

mb

Vtb′

Vtb
(Ad2Au1

−Ad2Au2
Σtt)Σb′b

−
√

yt′

yt

mb′λ
t′

bs

mbλtbs
Au2

Ad2Σt′tΣb′b +

√

yt′

yt

V ∗
t′s

V ∗
ts

Ad1Au2
Σt′t,

AUt′
= (Au1

−Au2
Σt′t′)

2 +

√

yt
yt′

(
V ∗
ts

V ∗
t′s

+
Vtb
Vt′b

)Σtt′(A
2
u2
Σt′t′ −Au1

Au2
) +

yt
yt′

λtsb
λt

′

sb

A2
u2
Σ2
tt′ ,

ADt′
= −Ad1Au1

+Ad1Au2
Σt′t′ +

mb′

mb

Vt′b′

Vt′b
(Ad2Au1

−Ad2Au2
Σt′t′)Σb′b

−
√

yt
yt′

mb′λ
t
bs

mbλt
′

bs

Vt′b′

Vtb
Au2

Ad2Σt′tΣb′b +

√

yt
yt′

V ∗
ts

V ∗
t′s

Ad1Au2
Σtt′ . (36)

where for later convenience we have defined

Au1
= Ad1 = tanβ , Au2

= Ad2 = tanβ + cotβ . (37)

In all the cases where the new physics contributions do not involve new operators (and in which
Cnew
k (µ0) = 0 for k = 1, 2, 3, 5, 6 as in our case - see Eq. 32), it is straightforward to incorporate the extra

terms to the NLO formulae. In particular, these contributions effectively modify Kt given in Eq. 24, which in our
4G2HDMs should be replaced by

Kt → KW
t +

Vt′bV
∗
t′s

VtbV ∗
ts

KW
t′ +KH

t +
Vt′bV

∗
t′s

VtbV ∗
ts

KH
t′ , (38)

where KW
t , KW

t′ , K
H
t and KH

t′ represent the W and charged-Higgs contributions to the b → sγ amplitudes from t
and t′ loops (see Fig. 1). In particular, KW

t′ can be obtained simply by replacing (neglecting ln( µ0

mt
))

E0(xt) → E0(xt′ ),

A0(xt) → A0(xt′ ),

A1(xt) → A1(xt′ ),

F0(xt) → F0(xt′ ),

F1(xt) → F1(xt′ ), (39)
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in eq. 25. On the other hand, KH
t and KH

t′ , which represent the net contributions to the b → sγ amplitude from
charged-Higgs exchanges (with t and t′ as the internal quark, respectively), can be obtained from Eq. 25 by calculating
the functions E0(yi), A0(yi), A1(yi), F0(yi) and F1(yi) (i = t or i = t′). The LO functions A0(yt) and A0(yt′) are
given by

A0(yt) = −2 δC
(0)eff
7 (µ0), F0(yt) = −2 δC

(0)eff
8 (µ0),

A0(yt′) = −2 δC
(0)′eff
7 (µ0), F0(yt′) = −2 δC

(0)′eff
8 (µ0). (40)

and the NLO functions A1(yt) and A1(yt′) by

A1(yi) = −2 δC
(1)
7 (µ0), F1(yi) = −2 δC

(1)
8 (µ0). (41)

The NLO contributions to the Wilson coefficients (in our 4G2HDMs) are given by[3]

δC
(1)eff
i (µ0) = 0 i = 1, 2, 3, 5, 6 (42)

E0(yi) = δC
(1)
4 (µ0) = AUi

[

3y2i − 2yi
6(1− yi)4

ln yi +
−7y3i + 29y2i − 16yi

36(1− yi)3

]

, (43)

and

δC
(1)
7 (µ0) = AUi

{

16y4i − 74y3i + 36y2i
9(1− yi)4

Li2

(

1− 1

yi

)

+
−63y4i + 807y3i − 463y2i + 7yi

81(1− yi)5
ln yi

+
−1202y4i + 7569y3i − 5436y2i + 797yi

486(1− yi)4
+

[

6y4i + 46y3i − 28y2i
9(1− yi)5

ln yi

+
−14y4i + 135y3i − 18y2i − 31yi

27(1− yi)4

]

ln
µ2
0

m2
i

}

+ ADi

{−32y3i + 112y2i − 48yi
9(1− yi)3

Li2

(

1− 1

yi

)

+
14y3i − 128y2i + 66yi

9(1− yi)4
ln yi +

8y3i − 52y2i + 28yi
3(1− yi)3

+

[−12y3i − 56y2i + 32yi
9(1− yi)4

ln yi

+
16y3i − 94y2i + 42yi

9(1− yi)3

]

ln
µ2
0

m2
i

}

, (44)

δC
(1)
8 (µ0) = AUi

{

13y4i − 17y3i + 30y2i
6(1− yi)4

Li2

(

1− 1

yi

)

+
−468y4i + 321y3i − 2155y2i − 2yi

216(1− yi)5
ln yi

+
−4451y4i + 7650y3i − 18153y2i + 1130yi

1296(1− yi)4
+

[−17y3i − 31y2i
6(1− yi)5

ln yi

+
−7y4i + 18y3i − 261y2i − 38yi

36(1− yi)4

]

ln
µ2
0

m2
i

}

+ ADi

{−17y3i + 25y2i − 36yi
6(1− yi)3

Li2

(

1− 1

yi

)

+
34y3i − 7y2i + 165yi

12(1− yi)4
ln yi +

29y3i − 44y2i + 143yi
8(1− yi)3

+

[

17y2i + 19yi
3(1− yi)4

ln yi

+
7y3i − 16y2i + 81yi

6(1− yi)3

]

ln
µ2
0

m2
i

}

. (45)

The electroweak and non-perturbative corrections are retained to their SM predictions as given in [72] (see also
eq. 26), i.e., we do not take into account the effect of our 4G2HDM on these corrections.

[3] The NLO results for the Wilson coefficients in a 2HDM can be found in [53, 54, 74].
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2. Bq − B̄q mixing

In the SM, Bq − B̄q mixing (q = d, s) proceeds to an excellent approximation only through the box diagrams with
internal top quark exchanges. On the other hand, in our 4G2HDMs there are additional contributions to Bq − B̄q
mixing coming from the loop exchanges of the t′ and charged-Higgs.
In the 4G2HDM, the mass difference ∆Mq = 2|M12q | is given at LO by[4]

M12q =
G2
F

12π2
M2
W f

2
Bq
BqMBq [MWW +MHH +MHW ] , (46)

where we have used

〈Bq|(s̄b)(V−A)(s̄b)(V−A)|Bq〉 =
8

3
f2
Bq
BqM

2
Bq
, (47)

〈Bq|(s̄b)(S+P )(s̄b)(S+P )|Bq〉 = −5

3
f2
Bq
BqM

2
Bq
. (48)

and

MWW = λtbq
2
ηttSWW (xt) + λt

′

bq

2
ηt′t′SWW (xt′ ) + 2 λtbqλ

t′

bqηtt′SWW (xt, xt′),

MHH = λtbq
2
SHH(yt) + λt

′

bq

2
SHH(yt′) + 2 λtbqλ

t′

bqSHH(yt, yt′),

MHW = λtbq
2
SHW (xt, z) + λt

′

bq

2
SHW (xt′ , z) + 2 λtbqλ

t′

bqSHW (xt, xt′ , z), (49)

with z =
m2

H+

m2
W

, xi =
m2

i

m2
W
, yi =

m2
i

m2

H+

(i = t or t′) and λudidj ≡ V ⋆udiVudj .

The contributions from W -exchange diagrams with qi and qj (i, j are generation indices) as the internal quarks are
given by,

SWW (xi, xj) = xixj

{[

1

4
+

3

2

1

(1 − xj)
− 3

4

1

(1− xj)2

]

lnxj
(xj − xi)

+ (xj → xi)−
3

4

1

(1− xi)(1 − xj)

}

, (50)

and SWW (xi) ≡ SWW (xi, xi) can be obtained from Eq. 50 by taking the limit xj → xi.
The contributions from the H+-exchange diagrams are given by

SHH(yt, yt′) = zSL1
SL2

[

Sk2HH(yt, yt′)

4
BL1

BL2
− 5

8
xbS

m
HH(yt, yt′)BR1

BR2

]

,

SHH(yt) = zS2
L2

[

Sk2HH(yt)

4
B2
L2

− 5

8
xbS

m
HH(yt)B

2
R2

]

,

SHH(yt′) = zS2
L1

[

Sk2HH(yt′)

4
B2
L1

− 5

8
xbS

m
HH(yt′)B

2
R1

]

, (51)

where xb =
m2

b

m2

H+

M2
Bq

mb(mb)
2 ,

Sk2HH(yi, yj) = yiyj

{

1

(yi − yj)

(

y2i ln yi
(1− yi)2

−
y2j ln yj

(1− yj)2

)

+
1

(1− yi)(1− yj)

}

, (52)

Sk2HH(yi) = Sk2HH(yi, yj)yj→yi , (53)

SmHH(yi, yj) = yiyj

{

1

(yi − yj)

(

yi ln yi
(1− yi)2

− yj ln yj
(1 − yj)2

)

+
1

(1 − yi)(1− yj)

}

, (54)

SmHH(yi) = SmHH(yi, yj)yj→yi . (55)

[4] The LO results for Bq − B̄q mixing in a “standard” 2HDM of type II with three generations of fermion doublets are given in [75].



11

and the terms

BL1
= −Au1

+Au2
Σt′t′ +Au2

mt

mt′

Vtb
Vt′b

Σtt′ ,

BL2
= −Au1

+Au2
Σtt +Au2

mt′

mt

Vt′b
Vtb

Σt′t,

SL1
= −Au1

+Au2
Σt′t′ +Au2

mt

mt′

V ∗
ts

V ∗
t′s

Σtt′ ,

SL2
= −Au1

+Au2
Σtt +Au2

mt′

mt

V ∗
t′s

V ∗
ts

Σt′t,

BR1
= Ad1 −Ad2Σbb −Ad2

mb′

mb

Vt′b′

Vt′b
Σb′b,

BR2
= Ad1 −Ad2Σbb −Ad2

mb′

mb

Vtb′

Vtb
Σb′b, (56)

are obtained from the b→ t, t′ and t, t′ → s vertices in the box diagrams.
The functions SHW (xi, xj , z) obtained from diagrams with both W and H+-exchanges are given by

SHW (xt, xt′ , z) = 2 xt xt′(SL1
BL2

+ SL2
BL1

)

[

S1(xt, xt′ , z)

4
+ S2(xt, xt′ , z)

]

, (57)

SHW (xt, z) = 2 x2t SL2
BL2

[

S1(xt, z)

4
+ S2(xt, z)

]

, (58)

SHW (xt′ , z) = 2 x2t′ SL1
BL1

[

S1(xt′ , z)

4
+ S2(xt′ , z)

]

, (59)

where

S1(xi, xj , z) =
z ln z

(1 − z)(z − xi)(z − xj)
+

xi lnxi
(1− xi)(xi − z)(xi − xj)

+
xj lnxj

(1− xj)(xj − z)(xj − xi)
,

S2(xi, xj , z) = − z2 ln z

(1− z)(z − xi)(z − xj)
− x2i lnxi

(1 − xi)(xi − z)(xi − xj)
−

x2j lnxj

(1 − xj)(xj − z)(xj − xi)
, (60)

and the functions S1(xi, z) and S2(xi, z) can be derived from the expressions for S1(xi, xj , z) and S2(xi, xj , z), respec-
tively, by taking the limit xj → xi.

3. Combined constraints

Using the analysis above, we derive below the constraints on our 4G2HDMs that come from Br(B → Xsγ) and
∆Mq (q = d, s). For the B-physics parameters we use the inputs given in Table I. As an illustration, the 4th
generation quark masses are fixed to mt′ = 500 GeV and mb′ = 450 GeV, consistent with the direct limits from the
Tevatron [34] and the perturbative unitarity upper bounds [36, 76].[5] We vary the charged Higgs mass in the range
200 GeV < mH+ < 1 TeV and study the dependence on ǫt in the range 0 < ǫt < 1, while fixing ǫb = mb/mb′(∼ 0.01).

We also vary the 4 × 4 CKM element Vt′b in the range 0 < |Vt′b| < 0.2 (see also next section), keeping |λt′sb| ≤ 0.02
and varying tanβ in the range, 1 < tanβ < 30. We made a scan over the entire parameter space by a flat random
number generator and obtained bounds and correlations among the various parameters mentioned above.

Let us first consider the case Vt′b → 0, corresponding to the “3+1” scenario, in which the 4th generation quarks
do not mix with the quarks of the 1st three generations (we assume that |Vt′b| >> |Vt′s|, |Vt′d|). In this case, the
top-quark loops become dominant, since contributions to the amplitudes of B → Xsγ and Bq-B̄q mixing from t′-loops
are mostly suppressed apart from the terms which are proportional to (mb′/mb) · λtbs (see Eqs. 36 and 56).
In Figs. 2, 3 and 4 we plot the allowed ranges in the mH+ − tanβ (left plots) and the tanβ− ǫt (right plots) planes,

in the 4G2HDM of types I, II and III, respectively, using |Vt′b| = 0.001 (with |λt′sb| = 10−5 correspondingly).

[5] There is a very weak dependence of B → Xsγ and B− B̄-mixing on the b′-mass, since it enters only in the the H+ud Yukawa couplings
with no dynamical and/or kinematical dependence.
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fbd
√
Bbd = 0.224 ± 0.015 GeV [77, 78] |Vub| = (32.8± 2.6) × 10−4 a

ξ = 1.232 ± 0.042 [77, 78] |Vcb| = (40.86 ± 1.0) × 10−3

ηt = 0.5765 ± 0.0065 [79] γ = (73.0 ± 13.0)◦

∆Ms = (17.77 ± 0.12)ps−1 BR(B → Xsγ) = (3.55± 0.25) × 10−4

∆Md = (0.507 ± 0.005)ps−1 mb(mb) = 4.23GeV
fB = (0.208 ± 0.008) GeV αs(MZ) = 0.11

mpole
t = (170± 4) GeV τB+ = 1.63 ps

mτ = 1.77 GeV
aIt is the weighted average of V inl

ub
= (40.1 ± 2.7 ± 4.0) × 10−4 and V exl

ub
= (29.7 ± 3.1) × 10−4. In our numerical analysis, we increase

the error on Vub by 50% and take the total error to be around 12% due to the appreciable disagreement between the two determinations.

TABLE I: Inputs used in order to constrain the 4G2HDM parameter space. When not explicitly stated, we take the inputs
from Particle Data Group [51].
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FIG. 2: The allowed parameter space in the mH+ − tanβ and tan β− ǫt planes, following constraints from B → Xsγ and Bq-B̄q

mixing, in the 4G2HDM-I, for Vt′b = 0.001, mt′ = 500 GeV, mb′ = 450 GeV and ǫb = mb/mb′ .

We see that in the type-I 4G2HDM, the “3+1” scenario typically imposes tanβ ∼ 1 with ǫt typically larger than
about 0.4 when mH+

<∼ 500 GeV. In particular, for a fixed ǫt the upper bound on tanβ is reduced with the charged
Higgs mass, allowing mH+

>∼ 200 GeV for tanβ ∼ 1 and restricting mH+
>∼ 500 GeV for tanβ >∼ 1.5. In the type II

and type III 4G2HDMs we observe a similar correlation between tanβ and mH+ , however, larger tanβ are allowed
for ǫt <∼mt/mt′ and a charged Higgs mass typically heavier than 400 GeV.
Let us now turn to the case of a Cabbibo size mixing between the 4th and 3rd generation quarks, setting |Vt′b| =

|Vtb′ | = 0.2. In Fig. 5 we show the allowed parameter space in the tanβ − ǫt plane in the 4G2HDM-I, II and III

with |Vt′b| = 0.2, mt′ = 500 GeV, mb′ = 450 GeV and ǫb = mb/mb′ . In addition, we take |λt′sb| = 0.004 for Type-I
and 0.001 for Type-II and III models and depict these correlations for two different values of the charged Higgs mass:
MH+ = 400 and 750 GeV. In the type II and type III 4G2HDMs we see a similar behavior as in the no mixing case
(Vt′b → 0), while in the 4G2HDM-I we see that “turning on” Vt′b allows for a slightly larger tanβ, i.e., up to tanβ ∼ 5

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 5  10  15  20  25  30

M
H

+
 (

G
e

V
)

tanβ

|λt’
bs| = 1x10-5

|Vt’b| = 0.001
 5

 10

 15

 20

 25

 30

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

ta
n

β

εt

MH+=750
MH+=400

FIG. 3: Same as Fig. 2 for the 4G2HDM-II.
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FIG. 4: Same as Fig. 2 for the 4G2HDM-III.

for ǫt >∼ 0.9.
With a similar set of inputs, setting now ǫt ∼ mt/mt′ , in Figs. 6 and 7 we plot tanβ as a function of MH+ (where

|λt′sb| is kept free) and of λt
′

bs (where MH+ is kept free), respectively, in the three different types of our 4G2HDMs.
We note that, similar to the no mixing case, larger values of tanβ are allowed in the 4G2HDM of types II and III.
Furthermore, mH+ ∼ 300 GeV and tanβ ∼ 1 are allowed in the 4G2HDM-I, and from Fig. 6 we see that |λt′bs| up to

0.01 is allowed in the case of the 4G2HDM-I and II, while in 4G2HDM-III |λt′sb| <∼ 0.005 is typically required.
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for |Vt′b| = 0.2, mt′ = 500 GeV, mb′ = 450 GeV, ǫb = mb/mb′ , |λt′
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To summarize this section, we find that the parameter space of our 4G2HDMs, when subject to constraints from
Br(B → Xsγ) and Bq − B̄q mixing, can be characterized by the following features:

• In the type II and III 4G2HDMs large tanβ >∼ 20 are allowed for ǫt <∼ 0.1.

• In the 4G2HDM-I tanβ is typically restricted to be tanβ ∼ O(1) with ǫt ∼ mt/mt′ , reaching at most tanβ ∼ 5
if ǫt ∼ 1 and Vt′b ∼ O(0.1), i.e., of the size of the Cabbibo angle.

• The charged Higgs mass is typically heavier than about 400 GeV in the type II and III 4G2HDM and is allowed
to be as light as 200-300 GeV (depending on Vt′b) in the 4G2HDM-I. In all three models the lower bound on
mH+ increases (typically linearly) with tanβ; reaching mH+ ∼ 1 TeV already for tanβ ∼ 2 in the 4G2HDM-I
and tanβ ∼ 7 in the type II and III 4G2HDMs if ǫt ∼ mt/mt′ .

• In the 4G2HDM-III, |λt′sb| <∼ 0.005 is required if ǫt ∼ mt/mt′ , but values up to |λt′sb| ∼ 0.01 are still allowed in
the 4G2HDMs of types I and II.

B. Constraints from Z → bb̄

It has been long known that the decay Z → bb̄ is very sensitive to effects of new heavy particles, in particular, to
the dynamics of multi-Higgs models through loop exchanges of both neutral and charged Higgs particles (see e.g.,
[80, 81]). The Zbb̄ vertex can be parameterized as follows:

VqqZ ≡ −i g
cW

q̄γµ (ḡqLL+ ḡqRR) qZ
µ , (61)

where sW (cW ) = sin θW (cos θW ), L(R) = (1− (+)γ5) /2 and

ḡqL,R = gSMqL,R + gnewqL,R , (62)

so that gSMqL,R are the SM (1-loop) quantities and gnewqL,R are the new physics 1-loop corrections.
The effects of the new physics, gnewqL,R, is best studied via the well measured quantity Rb:

Rb ≡
Γ(Z → bb̄)

Γ(Z → hadrons)
, (63)

which is a rather clean test of the SM. In particular, being a ratio between two hadronic rates, most of the electroweak,
oblique and QCD corrections cancel between numerator and denumerator.
Following the analysis in [80], we parameterize the effects of new physics in Rb in terms of the corrections δb and

δc to the decays Z → bb̄ and Z → cc̄, respectively:

Rb = RSMb
1 + δb

1 +RSMb δb +RSMc δc
, (64)
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where RSMb = 0.21578±0.00005 and RSMc = 0.17224±0.00003 [82] are the corresponding 1-loop quantities calculated
in the SM, and δq are the new physics corrections defined in terms of the Zqq̄ couplings as:

δq = 2
gSMqL gnewqL + gSMqR gnewqR
(

gSMqL

)2

+
(

gSMqR

)2 , (65)
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FIG. 8: One-loop diagrams for corrections to Z → dI d̄J from charged Higgs loops.

With the new scalar-fermion interactions in Eqs. 4-7, the corrections to Rb from a 4th generation quarks in our
4G2HDMs are of three types: (i) the SM4-like corrections due to the 1-loop W − t′ exchanges (see also [18, 83, 84]),
(ii) the 1-loop diagrams in Fig. 8 involving the H+ − t′ exchanges and (iii) the 1-loop corrections involving the FC
H0bb′ interactions (coming from the non-diagonal 34 and 43 elements in Σd), where H0 = h,H or A.
Let us first consider the SM4-like (non-decoupling) correction to Rb, i.e., g

SM4
qL from the 1-loop diagrams involving

the W − t′ exchanges (which are also present in our 4G2HDMs). It is given by [18, 83]:

gSM4
qL =

g2

64π2c2W

(

m2
t′

m2
Z

− m2
t

m2
Z

)

sin2 θ34 , (66)

where θ34 is the mixing angle between the 3rd and 4th generation quarks, i.e., defining |Vt′b| = |Vtb′ | ≡ sin θ34. This
SM4-like effect on Rb is plotted in Fig. 9. We see that Rb puts rather stringent constraints on the mt′−θ34 plane which
is the SM4 subspace of the parameter space of our 4G2HDMs. In particular, increasing the t′ mass would tighten
the constraints on θ34; e.g., for mt′ ∼ 500 GeV the t′ − b mixing angle is restricted to θ34 <∼ 0.2. The upper bound
on θ34 stays roughly the same in our 4G2HDMs where the effects from the charged Higgs loops are included. For
concreteness, for the rest of this section we will fix θ34 to either θ34 = 0 or θ34 = 0.1, 0.2, representing the no-mixing
or mixing cases.
Using the generic formula given in [85], we calculated the 1-loop corrections to Rb from the charged-Higgs and from

the FC neutral-Higgs exchanges and found that:

• In all three models, i.e., 4G2HDM-I,II,III, δc ≪ δb, so that we can safely neglect the new effects in Z → cc̄.

• The 1-loop FC neutral-Higgs contributions are much smaller than the 1-loop charged-Higgs contributions shown
in Fig. 8, in particular for ǫb ≪ 1. We, therefore, focus below only on the leading effects coming from the
charged-Higgs sector.
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FIG. 9: Upper plots: Rb in the SM4, as a function of θ34 for several values of the t′ mass (left) and as a function of mt′ for
θ34 = 0.1 and 0.2 (right). Lower plots: Rb in the 4G2HDM-I, as a function of the charged Higgs mass for mt′ = 500 GeV,
ǫt = mt/mt′ and for (tanβ, θ34) = (1, 0), (1, 0.2), (5, 0), (5, 0.2) (left), and as a function of mt′ for θ34 = 0.2, ǫt = mt/mt′ and
for (mH+ [GeV], tan β) = (400, 1), (400, 5), (750, 1), (750, 5) (right).

• The charged-Higgs interactions in models 4G2HDM-II and 4G2HDM-III have negligible effects on Rb and are,
therefore, not constrained by this quantity. On the other hand, Rb is rather sensitive to the charged Higgs loop
exchanges within our type I 4G2HDM.

In light of the above findings, we plot in Fig. 9 the quantity Rb in the 4G2HDM-I (calculated from Eq. 64), as a
function of the charged Higgs and t′ masses, fixing ǫt = mt/mt′ and focusing on the values tanβ = 1, 5, θ34 = 0, 0.2
and mH+ = 400, 750 GeV. We see that, while there are no constraints from Rb on the charged Higgs and t′ masses
if tanβ = 1, for higher values of tanβ a more restricted region of the charged Higgs mass is allowed which again
depends on θ34, e.g., for tanβ = 5, 550 GeV <∼mH+

<∼ 800 GeV, and mt′
<∼ 500 GeV is required in order for Rb to be

within its 2σ measured value (Rexpb = 0.21629± 0.00066 [82]).
In Fig. 10 we show the allowed ranges in the mH+ − tanβ plane in the 4G2HDM-I, subject to the Rb constraint



17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
tanβ

0

300

600

900

1200

1500

m
H

+
  [

G
e

V
]

mt’=500 GeV , mb’=450 GeV , θ34=0.2 , εb=mb/mb’ 

εt=εb=mb/mb’

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
tanβ

0

300

600

900

1200

1500

m
H

+
  [

G
e

V
]

mt’=500 GeV , mb’=450 GeV , θ34=0.2 , εb=mb/mb’ 

εt=mt/mt’

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
tanβ

0

300

600

900

1200

1500

m
H

+
  [

G
e

V
]

mt’=500 GeV , mb’=450 GeV , θ34=0.2 , εb=mb/mb’ 

εt=1

FIG. 10: Allowed area in the mH+ − tan β in the 4G2HDM-I, subject to the Rb measurement (within 2σ), for mt′ = 500
GeV, mb′ = 450 GeV, θ34 = 0.2, ǫb = mb/mb′ and for three values of the t − t′ mixing parameter: ǫt = ǫb ∼ 0.01 (left plot),
ǫt = mt/mt′ ∼ 0.35 (middle plot) and ǫt = 1 (right plot).

(2σ), for tanβ in the range 1-15, fixing mt′ = 500 GeV, mb′ = 450 GeV, θ34 = 0.2, ǫb = mb/mb′ (which also enters the
t′bH+ vertex) and for three representative values of the t− t′ mixing parameter: ǫt = ǫb ∼ 0.01, ǫt = mt/mt′ ∼ 0.35
and ǫt = 1. As expected, when tanβ is lowered, the constraints on the charged Higgs mass are weakened. We see
e.g., that for ǫt = mt/mt′ ∼ 0.35, tanβ ∼ 1 is compatible with mH+ values ranging from 200 GeV up to the TeV
scale, while for tanβ ∼ 5 the charged Higgs mass is restricted to be within the range 450 GeV <∼mH+

<∼ 750 GeV.
Note however, that in the 4G2HDM-I, tanβ = 5 with ǫt = mt/mt′ is not allowed by constraints from B-physics flavor
data (see previous section).

C. Constraints from the Oblique parameters

The sensitivity of 4th generation fermions to PEWD within the minimal SM4 framework was extensively analyzed
in the past decade [51, 83, 86–90]. One of the immediate interesting consequences of the presence of the 4th gen-
eration fermion doublet (with respect to the PEWD constraints) is that it allows for a considerably heavier Higgs,
thus removing the slight tension between the LEPII bound on the mass of the SM Higgs mH

>∼ 115 GeV and the
corresponding theoretical best fitted value (to PEWD) mH = 87+35

−26 GeV [51]. In fact, a Higgs with mH
>∼ 300 GeV

becomes favored in the SM4 when mt′ −mb′ ∼ 50 GeV and θ34 is of the size of the Cabbibo angle, see e.g., [83, 88].
On the other hand, if, as in our case, the 4th generation fermions are embedded in a 2HDM framework, then there is
a wider range of parameter space for which a lighter Higgs with a mass of O(100) GeV is allowed (see [38] and our
analysis below). In addition, in the 2HDM case, the LEPII lower bound mH

>∼ 115 GeV can be relaxed, depending
on the value of sin(α − β) [sin(α − β) = 1 corresponds to the current SM bound] which controls the ZZH coupling
responsible for the Higgs production mechanism at LEP.
In general, the contributions to the oblique parameters (S,T ,U) of 4th generation fermions (∆Sf ,∆Tf ,∆Uf ) and

of extra scalars (∆Ss,∆Ts,∆Us) are calculated with respect to the SM values and are bounded by a fit to PEWD
[91]:

∆S = S − SSM = 0.02± 0.11

∆T = T − TSM = 0.05± 0.12

∆U = U − USM = 0.07± 0.12 , (67)

where, following the fit made in [91], the SM values are defined for a Higgs mass reference value of M ref
h = 120 GeV

and for mt = 173.2 GeV. The effects of our models (and in general of any heavy new physics) on the parameter U can
be neglected. We, therefore, consider below the constraints from the 2-dimensional ellipse in the S − T plane which,
for a given confidence level (CL), is defined by (see e.g., [24]):

(

S − Sexp
T − Texp

)T (
σ2
S σSσT ρ

σSσT ρ σ2
T

)(

S − Sexp
T − Texp

)

= −2ln (1− CL) , (68)

where Sexp = 0.02 and Texp = 0.05 are the best fitted (central) values in Eq. 67, σS = 0.11, σT = 0.12 are the
corresponding standard deviations and ρ = 0.879 [91] is the (strong) correlation factor between S and T.
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Note that the contribution of the Higgs spectrum of our 4G2HDMs to S and T are identical to that of any general
2HDM. We thus use the analytical expressions given in [86], where we also include in ∆Tf the new contributions from
the Wt′b and Wtb′ off-diagonal CKM mixing angles (see e.g., [83]):

∆Tf =
3

8πs2W c
2
W

(

|Vt′b′ |2Ft′b′ + |Vt′b|2Ft′b + |Vtb′ |2Ftb′ − |Vtb|2Ftb +
1

3
Fℓ4ν4

)

, (69)

with

Fij =
xi + xj

2
− xixj
xi − xj

log
xi
xj

, (70)

and xk ≡ (mk/mZ)
2.

We first “blindly” (randomly) scan our parameter space, varying them in the ranges: tanβ ≤ 30, θ34 ≤ 0.3,
100 GeV ≤ mh ≤ 1 TeV, mh ≤ mH ≤ 1.5 TeV, 100 GeV ≤ mA ≤ 1 TeV, 400 GeV ≤ mt′ ,mb′ ≤ 600 GeV,
100 GeV ≤ mν′ ,mτ ′ ≤ 1.2 TeV,[6] and the CP-even neutral Higgs mixing angle in the range 0 ≤ α ≤ 2π.
We use a sample of 100000 models (i.e., points in parameter space varied in the above specified ranges) and plot

the result in Fig. 11. We find that out of the 100000 models about 3000 are within the 99%CL contour, 1500 within
the 95%CL contour and 100 within the 68%CL contour. We compare these results to the SM4 case also shown in
Fig. 11 (again using a sample of 100000 models), where the 4th generation quark and lepton masses as well as the
(single) neutral Higgs mass are varied in the same ranges as specified above. We find that in the SM4 case only
a few points (out of the 100000) are within the 68%CL S-T contour, while the number of SM4 points within the
95%CL and 99%CL allowed contours are comparable to the 2HDM case. This quantifies the slight preferability of
the 2HDM (with respect to the amount of fine tuning required for compatibility with the available precision data) as
an underlying framework for a 4th generation model.
We also examined the correlation in the mH+ − tanβ plane, when subject to the PEWD S-T constraint. This is

shown in Fig. 12, where the data points are taken from the same 100000 sample used in Fig. 11 (i.e., the rest of the
parameter space was varied in the ranges specified above). We see that compatibility with PEWD mostly requires
tanβ ∼ O(1) with a small number of points in parameter space having tanβ >∼ 5.
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FIG. 11: The allowed points in parameter space projected onto the 68%, 95% and 99% allowed contours in the S-T plane, in
the 4G2HDMs (left) and in the SM4 (right). The data points are varied in the ranges: tan β ≤ 30, θ34 ≤ 0.3, 100 GeV ≤ mh ≤
1 TeV, mh ≤ mH ≤ 1.5 TeV, 100 GeV ≤ mA ≤ 1 TeV, 400 GeV ≤ mt′ ,mb′ ≤ 600 GeV, 100 GeV ≤ mν′ ,mτ ′ ≤ 1.2 TeV and
the CP-even neutral Higgs mixing angle in the range 0 <∼ α <∼ 2π.

[6] Note that the perturbative unitarity upper bounds on the lepton masses are about twice larger than those on the quark masses [76];
thus allowing 4th generation lepton masses around 1 TeV.
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Next we consider the correlations between the mass splitting among the 4th generation quark masses, ∆mq′ ≡
mt′ −mb′ , and the lepton masses ∆mℓ′ ≡ mν4 −mℓ4 . In Fig. 13 we plot the 95%CL allowed regions (i.e., subject
to the measured 95%CL contour in the S-T plane) for both the 4G2HDMs and the SM4 in the ∆mq′ −∆mℓ′ plane,
again using the same data set of 100000 models used in Fig. 11. We see that, while in the SM4 case the allowed mass
splittings are restricted to −100 GeV < ∆mq′ < 100 GeV and −200 GeV < ∆mℓ′ < 200 GeV, in the 4G2HDMs these
mass splitting ranges are significantly extended to: −200 GeV < ∆mq′ < 200 GeV and −500 GeV < ∆mℓ′ < 400 GeV.
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FIG. 13: Allowed regions in the ∆mq′ −∆mℓ′ plane within the 95%CL contour in the S-T plane, for the 4G2HDMs (left) and
for the SM4 (right). The data points are varied as in Fig. 11.

In Figs. 14 we again plot the 95%CL allowed regions in the ∆mq′ −∆mℓ′ plane, for both the 4G2HDMs and the
SM4, considering now the “3+1” scenario, i.e., with a vanishing mixing between the 4th generation quarks and the
lighter three generations; θ34 = 0. The rest of the parameter space is varied as in Fig. 13. We see that in the SM4
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FIG. 14: Same as Fig. 13 but for θ34 = 0; the rest of the parameter space is varied as in Fig. 13.

with θ34 → 0 there are no solutions where both the quark and lepton 4th generation doublets are degenerate, in
particular, no solutions where both |∆mq′ | <∼ 50 GeV and |∆mℓ′ | <∼ 100 GeV. On the other hand, the implications of
the no-mixing case on the 4G2HDMs are mild as there are still points/models for which the 4th generation quarks
and leptons are both almost degenerate. For such small (or no) 4th generation fermion mass splitting the amount of
isospin breaking required to compensate for the effect of the extra fermions and Higgs particles on S and T is provided
by a mass splitting among the Higgs particles, as is shown below.
In order to demonstrate the interplay between the mass splittings in the Higgs and fermion sectors, we choose a more

specific framework - partly motivated by our theoretical prejudice towards the possibility of dynamical EWSB, driven
by the condensation(s) of the 4th generation fermions. In particular, we set α ∼ π/2, for which case H ∼ Re(Φ0

h)
and h ∼ Re(Φℓ); the heavier Higgs may be thus identified as a possible Q̄′Q′ (Q′ = t′, b′) condensate, with a typical
mass of mH

<∼ 2mQ′ [92]. We thus set mH = 1 TeV and take a nearly degenerate 4th generation quark doublet with
mt′ = 500 GeV and mb′ = 490 GeV. We further study two representative values for tanβ: tanβ = 1 and tanβ = 5,
recalling that for tanβ ∼ O(1), H+ and A are roughly equal admixtures of Φℓ and Φh, while if tan2 β >> 1, one has
H+ ∼ Φ+

ℓ and A ∼ Im(Φ0
h). The charged Higgs mass is set to mH+ = 600 GeV, so that it is within the Rb constraints

for both tanβ = 1 and tanβ = 5 when mb

m′

b

<∼ ǫt <∼ mt

m′

t
(see previous section). For simplicity we furthermore set θ34 = 0

and vary the 4th generation lepton masses in the range 100 GeV <∼mν′ ,mτ ′
<∼ 1.2 TeV and the masses of the neutral

Higgs particles, h and A, in the range 100 GeV <∼mh,mA
<∼ 1000 GeV.

Using the above set of assumptions on our parameter space, we plot in Figs. 15 and 16 the 95%CL allowed region
in the ∆mℓ′ −mh, the mh −mA and the ∆mℓ′ − (mh −mA) planes, using again a sample of 100000 models with
tanβ = 1 and tanβ = 5, respectively. Under the above set of inputs, we find the following noticeable features:

• There are allowed sets of points in parameter space (i.e., models) where both the 4th generation quarks and
leptons are nearly degenerate with a mass splitting smaller than 50 GeV. These solutions require mh and mA

to have a mass splitting smaller than about 400 GeV and to be within the narrow black bands in the mh −mA

plane, as seen in Figs. 15 and 16.

• There are allowed sets of points with a large splitting between the 4th generation leptons, |mν′ −mτ ′| > 300
GeV. These cases require a large splitting also amongmh and mA; 400 GeV <∼ |mh−mA| <∼ 800 GeV if tanβ = 1
and 600 GeV <∼ |mh −mA| <∼ 800 GeV if tanβ = 5.

• For tanβ = 1, a splitting in the 4th generation lepton sector of |mν′ −mτ ′ | > 200 GeV requires mh to be larger
than about 400 GeV.

Finally, in Table II we give a list of interesting points (models) in parameter space (of our 4G2HDM of types I, II
and III) that pass all the constraints considered in this chapter, i.e., from the S and T parameters, from Rb and from
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FIG. 15: 95% CL allowed regions in the ∆mℓ′ −mh plane (left), in the ∆mℓ′ − (mh−mA) plane (middle) and in the mh −mA

plane (right), for tanβ = 1, mH+ = 600 GeV, θ34 = 0, α ∼ π/2, mt′ = 500 GeV and mb′ = 490 GeV. The lepton masses
and Higgs masses are varied in the ranges: 100 GeV <∼mν′ ,mτ ′

<∼ 1.2 TeV and 100 GeV <∼mh,mA
<∼ 1000 GeV. The black

dots correspond to solutions with |∆mℓ′ | < 50 GeV, the red dot to solutions with mτ ′ − mν′ > 200 GeV and the blue dots to
solutions with mν′ −mτ ′ > 200 GeV.
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FIG. 16: Same as Fig. 15 for tan β = 5.

B-physics flavor data. In particular, the list includes models with mass splittings between the up and down partners
of both the 4th family quarks and leptons larger than 150 GeV, models with a light 100 − 200 GeV neutral Higgs,
models with degenerate 4th generation doublets, models with a large inverted mass hierarchy in the quark doublet,
i.e., mb′ − mt′ > 150 GeV, models with a light charged Higgs with a mass smaller than 500 GeV, models with a
Cabbibo size as well as an O(0.01) size t′ − b/t− b′ mixing angle (i.e., θ34).

IV. PHENOMENOLOGY OF THE YUKAWA SECTOR IN THE 4G2HDM-I

Although this paper is not aimed to explore in detail the phenomenological consequences of the modifications to
the Higgs Yukawa interactions involving the 4th generation quarks in our 4G2HDMs, in order to give a feel for their
importance for collider searches of the 4th generation fermions, we consider below some phenomenological aspects
of the 4G2HDM-I which is defined by (αd, βd, αu, βu) = (0, 1, 0, 1). Recall that in this case, the Σ mixing matrices
simplify to (keeping terms up to O(ǫ2q), q = b, t):

Σd ≃









0 0 0 0
0 0 0 0
0 0 |ǫb|2 ǫ⋆b
0 0 ǫb

(

1− |ǫb|2
2

)









, Σu ≃









0 0 0 0
0 0 0 0
0 0 |ǫt|2 ǫ⋆t

0 0 ǫt

(

1− |ǫt|2
2

)









, (71)

so that Σu,d = 0 if i or j 6= 3, 4. This leads to new interesting patterns (in flavor space) of the H0qiqj Yukawa
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tan β = 1, ǫt = mt/mt′

Point # Model mt′ mb′ mν′ mτ ′ mh mA mH mH+ sin θ34 α
1 4G2HDM-I,II,III 542 358 144 462 260 296 1357 654 0.153 0.74π
2 4G2HDM-I 511 353 426 455 261 296 1075 428 0.09 0.705π
3 4G2HDM-I,II,III 548 372 413 434 199 272 1088 707 0.063 1.88π
4 4G2HDM-I 367 525 829 993 347 491 1227 681 0.011 1.82π
5 4G2HDM-I 356 537 121 310 675 238 1306 542 0.056 0.97π
6 4G2HDM-I 440 456 619 634 169 332 405 479 0.082 0.82π
7a 4G2HDM-I,II,III 526 534 403 420 152 875 550 461 0.007 0.87π
8 4G2HDM-I 416 510 370 536 216 153 1032 333 0.14 0.96π
9 4G2HDM-II,III 520 369 738 744 102 882 238 781 0.129 1.28π
10 4G2HDM-I 500 450 302 414 220 793 1001 750 0.05 π/2
11 4G2HDM-I 500 450 424 410 120 597 1479 750 0.2 π/2
12 4G2HDM-I 500 450 147 127 350 716 506 400 0.05 π/2
13b) 4G2HDM-I 450 500 225 235 220 782 303 300 0.2 π/2

tan β = 5, ǫt = mt/mt′

14 4G2HDM-II,III 542 386 938 740 126 458 1141 738 0.094 0.9π
15 4G2HDM-II,III 544 367 305 310 179 417 1255 706 0.117 1.09π
16 4G2HDM-II,III 517 366 393 211 295 130 1347 801 0.188 0.12π
17 4G2HDM-II,III 430 412 193 175 246 568 904 617 0.18 0.12π
18 4G2HDM-II,III 463 451 398 418 170 593 1218 715 0.026 0.25π
19 4G2HDM-II,III 381 465 545 622 135 145 1084 803 0.051 0.77π
20 4G2HDM-II,III 514 371 106 610 122 295 1495 819 0.031 1.89π
21 4G2HDM-II,III 496 399 541 617 148 343 1054 780 0.03 1.77π
22 4G2HDM-II,III 463 481 959 784 105 319 918 760 0.188 0.03π
23 4G2HDM-II,III 504 508 497 545 140 118 1175 748 0.166 0.14π

tan β = 20, ǫt < 0.1

24 4G2HDM-II,III 521 362 178 191 177 231 775 525 0.03 1.96π
25 4G2HDM-II,III 535 381 568 399 435 573 1500 954 0.073 0.81π
26 4G2HDM-II,III 542 372 106 314 510 268 1382 450 0.158 0.94π
27 4G2HDM-II,III 369 527 212 565 571 233 1335 669 0.175 1.88π
28 4G2HDM-II,III 459 440 684 702 142 455 631 400 0.101 0.12π
29 4G2HDM-II,III 546 517 260 661 111 216 1347 940 0.186 0.08π
30 4G2HDM-II,III 411 456 126 423 140 163 1261 940 0.1843 0.11π

apoint requires |λt′

sb
| <∼ 10−5.

bpoint requires ǫb ∼ mb/mb′ in order to have BR(b′ → tH+) ∼ O(1) (see Fig. 19.

TABLE II: List of points (models) in parameter space for our 4G2HDMs of types I, II and III, allowed at 95%CL by PEWD
and B-physics flavor data. The 2nd column denotes the model(s) for which the point is applicable. Points 1-3,14-16 and 24 have
mt′ − mb′ > 150 GeV with a light CP-even Higgs of mass mh

<∼ 300 GeV, while points 4,5,27 have a large inverted splitting
mb′ − mt′ > 150 GeV with a heavier h. Points 6,7 and 17,18,28 have nearly degenerate 4th generation quark and lepton
doublets, while points 22,23 have a nearly degenerate 4th generation quark doublet with a lepton doublet heavier than the
quark doublet. Points 8,19 have mb′ −mt′ > mW and a light charged Higgs, while points 9,16 have mt′ −mb′ ∼ 150 GeV with
a light Higgs mass of mh ∼ 100 GeV. Points 1,8,16,17,22,23,26,27,29,30 all have a large t′ − b/t− b′ mixing angle: θ34 >∼ 0.15.
Finally, points 10,11 give BR(t′ → th) ∼ O(1) (see Fig. 17 in the next section), point 12 gives BR(t′ → bH+) ∼ O(1) (see
Fig. 18 in the next section) and point 13 gives BR(b′ → tH+) ∼ O(1) (see Fig. 19 in the next section).

interactions in Eqs. 4-7 (H0 = h,H,A). In particular, the most notable new features of the 4G2HDM-I are:

1. There are no tree-level FC neutral currents (FCNC) among the quarks of the 1st, 2nd and 3rd generations.
That is, no tree-level c→ u, s→ d transitions, as well as no t→ u, t→ c, b→ d and b→ s ones.

2. There are no tree-level FCNC effects involving transitions between the quarks of the 4th generation and the
1st and 2nd generations, i.e, no t′ → u, t′ → c, b′ → d and b′ → s transitions. This, makes the 4G2HDM-I
compatible with all FCNC constraints coming from light meson mixings and decays, i.e., in the K and D systems.

3. There are new potentially large tree-level FCNC effects in the H0qiqj couplings involving the 3rd and 4th
generation quarks (i.e., i, j = 3, 4), which can have drastic phenomenological consequences for high-energy
collider searches of the 4th generation fermions, as we will further discuss below. In particular, the FC H′t′t
and H′b′b interactions are (taking α→ π/2):
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FIG. 17: The branching ratio for the t′ decay channels t′ → th, t′ → bW and t′ → b′W (⋆) (W (⋆) is either on-shell or off-
shell depending on the b′ mass), as a function of mb′ for mt′ = 500 GeV, ǫt = mt/mt′ , tan β = 1 and (mh [GeV], θ34) =
(120, 0.05), (120, 0.2), (220, 0.05), (220, 0.2), as indicated. Also, α = π/2 and mH+ > mt′ , mA > mt′ is assumed.

L(ht′t) = −g
2

mt′

mW
ǫt

√

1 + t2β t̄
′
(

R+
mt

mt′
L

)

th , (72)

L(Ht′t) = −g
2

mt′

mW
ǫt

√

1 + t2β

tβ
t̄′
(

R+
mt

mt′
L

)

tH , (73)

L(At′t) = i
g

2

mt′

mW
ǫt
1 + t2β
tβ

t̄′
(

R− mt

mt′
L

)

tA , (74)

and similarly for the H0b′b interactions by changing ǫt → ǫb (and an extra minus sign in the Ab′b coupling).

We thus see that, if ǫt ∼ mt/mt′ , then the above couplings can become sizable, e.g., to the level that it might
dominate the decay pattern of the t′ (see below). In fact, we also expect large FC effects in b′ → b transitions
since, even for a very small ǫb ∼ mb/mb′ , the FC hb′b and Ab′b Yukawa couplings can become sizable if e.g.,
tanβ ∼ 5, i.e., in which case they are ∝ 5mb

mW
.

4. The flavor diagonal interactions of the Higgs species with the up-quarks, H0uu, are proportional to tanβ,
thus being a factor of tan2 β larger than the corresponding “conventional” 2HDMs couplings, for which these
couplings are ∝ cotβ (e.g., as in the 2HDM of type II which also underlies the supersymmetric Higgs sector).
In particular, the H0tt couplings in our 4G2HDM-I are given by:
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L(htt) ≈ g

2

mt

mW

√

1 + t2β
(

1− |ǫt|2
)

t̄th
|ǫt|2≪1−→ g

2

mt

mW

√

1 + t2β t̄th , (75)

L(Htt) ≈ −g
2

mt

mW

√

1 + t2β

tβ
|ǫt|2 t̄tH , (76)

L(Att) ≈ −i g
2

mt

mW
tβ

[

1−
(

1 + t−2
β

)

|ǫt|2
]

t̄γ5tA
|ǫt|2≪1−→ −i g

2

mt

mW
tβ t̄γ5tA . (77)

We see that the htt and Att Yukawa interactions are indeed enhanced by a factor of t2β relative to the conventional

htt and Att couplings in multi-Higgs models (with no suppression from t − t′ mixing parameter ǫt). On the
other hand, the ht′t′ and At′t′ couplings are suppressed by the t− t′ mixing parameter and by tβ , respectively:

L(ht′t′) ≈ g

4

mt′

mW

√

1 + t2β |ǫt|2 t̄′t′h , (78)

L(Ht′t′) ≈ −g
2

mt′

mW

√

1 + t2β

tβ

(

1− |ǫt|2
2

)

t̄′t′H , (79)

L(At′t′) ≈ −i g
2

mt′

mW
tβ

[

1−
(

1 + t−2
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)

(

1− |ǫt|2
2

)]

t̄′γ5t
′A

|ǫt|2≪1−→ i
g

2

mt

mW

1

tβ
t̄γ5tA . (80)

5. The charged Higgs couplings involving the 3rd and 4th generation quarks are completely altered by the presence
of the Σ matrix in Eq. 7. For instance, the H+t′b and H+tb′ couplings have new terms proportional to Vtb and
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Vt′b′ . In particular, in the “3+1” scenario where Vt′di , Vuib′ → 0 for i = 1, 2, 3, we have:

L(H+t′b) ≈ g√
2mW

tβ

(

1 + t−2
β

)

t̄′ (mtǫtVtbL−mb′ǫbVt′b′R) bH
+ , (81)

L(H+tb′) ≈ g√
2mW

tβ

(

1 + t−2
β

)

t̄ (m′
tǫ
⋆
tVt′b′L−mbǫ

⋆
bVtbR) b

′H+ . (82)

Recall that in the standard 2HDM of type II that also underlies supersymmetry (assuming four generations of
fermions) the t̄′RbLH

+ would be ∝ mt′Vt′b/tβ. We thus see that in our 4G2HDM-I the t̄′RbLH
+ coupling is

potentially enhanced by a factor of t2β · ǫt · (mt/mt′) · (Vtb/Vt′b). For example, if tβ = 3, mt′ ∼ 500 GeV and

ǫt ∼ mt/mt′ we get a factor of Vtb/Vt′b enhancement to the t̄′RbLH
+ interaction.

The implications of the above new Yukawa interactions can be far reaching with regard to the decay patterns of the
t′ and the b′ and the search strategies for these heavy quarks. In particular, in Fig. 17 we plot the branching ratios
of the leading t′ decay channels (assuming mH+ ,mA > mt′): t

′ → th, bW, b′W (⋆) [W (⋆) stands for either on-shell or
off-shell W depending on the mb′ ], as a function of the b′ mass. We use mt′ = 500 GeV, tanβ = 1, ǫt = mt/mt′ and
the following values for mh and θ34: (mh [GeV], θ34) = (120, 0.05), (120, 0.2), (220, 0.05), (220, 0.2). We see that the
BR(t′ → th) can easily reach O(1), in particular when mt′ −mb′ < mW and even for a rather large θ34 ∼ 0.2; see
e.g., points 10 and 11 in Table II for which BR(t′ → th) ∼ O(1).
In Fig. 18 we takemH+ = 400 GeV (again assumingmA > mt′ so that t′ → tA is still kinematically closed) and plot

BR(t′ → bH+) as a function of ǫt, for mt′ = 500 GeV, tanβ = 1, ǫb = mb/mb′ ∼ 0.01 mh = 200 and 350 GeV and the
following values for mb′ and θ34 (mb′ [GeV], θ34) = (400, 0.05), (400, 0.2), (450, 0.05), (450, 0.2). We see that the decay
channel t′ → bH+ can become important and even dominate if ǫt >∼mt/mt′ , in particular, when mt′ −mb′ < mW and
a small mixing angle of θ34 ∼ O(0.05); see e.g., point 12 in Table II for which BR(t′ → bH+) ∼ O(1).
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In Fig. 19 we plot the branching ratios of the leading b′ decay channels, as a function of ǫb for mb′ = 500 GeV,
tanβ = 1, mH+ = 300 GeV, mh = 220 GeV, ǫt = mt/mt′ and the following values for mt′ and θ34 (mt′ [GeV], θ34) =
(400, 0.05), (400, 0.2), (450, 0.05), (450, 0.2). We see that in the b′ case the dominance of b′ → tH− (if kinematically
allowed) is much more pronounced due to the expected smallness of the b − b′ mixing parameter, ǫb, which controls
the FC decay b′ → bh; see e.g., point 13 in Table II for which BR(b′ → bH−) ∼ O(1).
This change in the decay pattern of the 4th generation quarks can have important consequences for collider searches

of these heavy fermions. For example, as was already noticed in [36], if t′ → th dominates then t′ production at the
LHC via gg → t′t̄′ will lead to the dramatic signature of tt̄hh. If mh < 2mW (so that h decays to bb̄) this will
give a 6b + 2W signature (i.e., after the top decays via t → bW ), while if mh > 2mW , 2mZ the tt̄hh final state can
lead to either tt̄hh → tt̄W+W− and/or tt̄hh → tt̄ZZ. In particular, notice that the former tt̄W+W− is the one
conventionally used for b′ searches [34], while the latter will lead to e.g., a 2b+ 2W + 4ℓ signature which is expected
to have a rather small irreducible SM-like background (e.g., coming from gg → tt̄h) that can be further controlled
using the kinematic features of the process gg → t′ t̄′ → tt̄hh → tt̄ZZ. If, on the other hand, t′ → bH+ dominates,
then the signature bb̄H+H− should be focused on. In this case the t′ searches will depend on the H+ decays, e.g.,
H+ → tb or H+ → τν, which will lead to gg → t′t̄′ → 6b+ 2W or gg → t′t̄′ → 2b+ 2τ + 6ET , respectively.
For the b′ the situation is similar, i.e, the new decays b′ → bh and/or b′ → tH− can also alter the search strategies

for b′. For example, if b′ → tH− dominates the b′ decays, then gg → b′b̄′ will lead to, e.g., a tt̄H−H+ → 4t + 2b
signature as opposed to the “standard” 2t+ 2W one when the b′ decays via b′ → tW [93].
Clearly, these new 4th generation quark signatures deserve a detailed investigation which is beyond the scope of

this paper and will be considered elsewhere [94].

V. SUMMARY

We have introduced a class of 2HDMs, which we named the 4G2HDM of types I, II and III. Our models are
“designed” to give an effective low-energy description for the apparent heaviness of the 4th generation fermions and
to address the possibility of dynamical EWSB which is driven by the condensates of these new heavy fermionic states.
This is done by giving a special status to the 4th family fermions which are coupled to the scalar doublet that has
the heavier VEV. Such setups give rise to very distinct Yukawa textures which can have drastic implications on the
phenomenology of 4th generation fermions systems. We studied the constraints from PEWD and from flavor physics
in B-systems and outlined the allowed parameter space of our 4G2HDMs, which we find to have various different
features than the simpler SM4 version with a single Higgs boson and a 4th family of fermions. For example, we find
that the mass splitting mt′ −mb′ and the inverted mass splitting mb′ −mt′ can be as large as 200 GeV, and that the
mass splitting in the 4th generation lepton doublet can be as large as 400 GeV.
We focused on the 4G2HDM-I, where the Higgs doublet with the heavier VEV is coupled only to the 4th generation

doublet while the “lighter” Higgs doublet is coupled to all other quarks. This model is, in our view, somewhat better
motivated as it provides a more natural setup in the leptonic sector, i.e., addressing the existence of a 4th generation
EW-scale neutrino. In addition, it has very distinctive features in flavor space: there are no tree-level FCNC among
the 1st three generation of fermions as well as no FCNC among the 4th generation fermions and the light fermions of
the 1st and 2nd generations. On the other hand, the 4G2HDM-I does give rise to potentially large tree-level FCNC
t′ → t and b′ → b transitions, which, as we briefly explored in the paper, can have significant implications on the
search for the 4th generation quarks at high-energy colliders. For example, the FC decay t′ → th can become the
dominant t′ decay channel and should therefore effect the search strategy for the t′.
We note that the 4G2HDM setups can also alter the production and decay patterns of the Higgs particles at hadron

colliders. For example, the di-photon Higgs channel gg → h → γγ can be dramatically enhanced or suppressed (to
the level of being unobservable at the LHC) compared to the SM4 case. The phenomenology of the production and
decay channels of the Higgs particles in the 4G2HDMs will be considered elsewhere.

Finally, we wish to comment on the implications of a TeV-scale compositeness threshold (i.e., the expected cutoff
for these theories) on the low-energy sub-TeV physics, in particular, as boundary conditions for the Renormalization
Group Equations (RGE) of the new heavy fermionic and Higgs couplings.
Instructive studies on the effects of the cutoff on the RGE were performed for both the SM4 and the 2HDM 4th

generation frameworks in [35] and [38] (see also [13]). In particular, as was shown in [38], a fairly good estimate for
the cutoff (i.e., the strong dynamics threshold) of theories with a heavy 4th family of fermions can be obtained by
considering the RGE for the Yukawa coupling of the 4th generation quarks within the SM4 framework when the gauge
couplings and the top Yukawa coupling are neglected and assuming that all 4th generation couplings are the same

[38]: Λ ≈ m4e
π2v2/2m2

4 , where m4 is the 4th generation quark mass and v = 246 GeV is the VEV of the SM4 Higgs
field. This gives Λ ∼ 2, 3, 8 TeV for m4 ∼ 500, 400, 300 GeV, respectively, i.e., one expects the strong dynamics
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threshold to lie around 2 TeV if the t′ and b′ masses are around 500 GeV. As was found in [38], the inclusion of such a
low cutoff as a boundary condition on the RGE puts further constraints on the low energy mass spectrum of the 4th
family fermions and the Higgs particles. For example, within the SM4 this condition will yield mH > m4, whereas
in a 4th generation ”standard” 2HDM setup there is more freedom in the sense that there will be solutions with
mh < m4 as well (h being the lightest neutral Higgs). Although the 2HDM setups considered in [35, 38] differ from
our 4G2HDMs, their study on the effects of the cutoff on the RGE can serve as a useful guide also for our models.
Note that the compositeness cutoff may also effect low energy quantities, e.g., the Wilson Coefficients for B → Xsγ

which, as we have shown, impose stringent constraints on our 4G2HDMs. To the best of our understanding, such
cutoff-dependent effects on the low-energy physical observables will be sub-dominant.
We emphasize that our goal in this work was to lay out the essential low energy ingredients and phenomenology

which is expected in theories with new heavy fermionic states (that will, therefore, unavoidably be cutoff at the near
by TeV-scale) but not to construct a completely rigorous model. Nonetheless, we acknowledge that issues related to
the effects of a TeV-scale cutoff, e.g., on low energy observables and on the RGE running of the theory, deserve a
deeper study which is beyond the scope of this paper.
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