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Abstract

We analyze a class of supersymmetric SO(10) grand unified theories with type II seesaw for

neutrino masses, where the contribution to PMNS matrix from the neutrino sector has an exact

tri-bi-maximal (TBM) form, dictated by a broken S4 symmetry. The Higgs fields that determine

the fermion masses are two 10 fields and one 126 field, with the latter simultaneously contributing

to neutrino as well as charged fermion masses. Fitting charged fermion masses and the CKM

mixings lead to corrections to the TBM mixing that determine the final PMNS matrix with the

predictions θ13 ≃ 4◦ − 6◦ and the Dirac CP phase to be between −10◦ and +15◦. We also show

correlations between various mixing angles which can be used to test the model.
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I. INTRODUCTION

Understanding neutrino masses and mixings is an integral part of our attempts

to unravel the flavor puzzle in particle physics. During the past decade, the large amount of

information on neutrino masses and mixings gained from the study of accelerator, reactor,

solar, and cosmic ray neutrino observations has given a strong forward momentum to this

journey. Several crucial pieces of the puzzle must still be found before we can begin to

have a complete picture at hand; among them are the nature of the neutrino masses (Dirac

vs Majorana), the mass hierarchy (normal vs inverted), the mixing angle θ13, and the CP

phases.

Of the large number of new experiments that are under way to answer these

questions, the T2K experiment has recently announced a possible indication of a non-zero

value for θ13 [1], which has caused a great deal of excitement in the field. The T2K lower limit,

if correct, is not far below the current experimental bound from the CHOOZ experiment [2]

and has important theoretical implications. The MINOS experiment has also seen an excess

of electron events which could be indicating a non-zero θ13 [3], and their allowed range for

θ13 overlaps with the T2K one. There have also been analyses of existing oscillation data

suggesting a non-zero θ13 [4]. Additionally, other experiments are currently searching for

this important parameter [5], and several recent papers have attempted to explain the T2K

values within different models [6]; there is hope the situation will become much clearer in

near future.

A non-zero value for θ13 has profound implications for our understanding of the

physics of neutrino mass. It is, for example, well known that maximal atmospheric neutrino

mixing (tan θ23 = 1) suggests an underlying discrete µ − τ symmetry (denoted by Z2,µ−τ )

in the neutrino mass matrix, which, when exact, leads to vanishing θ13 [7] . Depending how

this symmetry is broken (e.g. in the µ-sector or e-sector), the resulting value of θ13 can

either be very small or not so small. The neutrino mass matrix has also been suspected to

have a larger symmetry beyond this from the observation that the current values of the solar

mixing angle seems to have a geometric value (tan θ12 = 1/
√
2). The resulting lepton mixing

(PMNS) matrix is known as the tri-bi-maximal mixing matrix [8] (TBM for short). This

symmetry is often denoted by two Z2 symmetries Z2,S×Z2,µ−τ [9]. This full symmetry leads
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to zero θ13 and restricts the form of the neutrino mass matrix (to be called TBM matrix) to

Mν =













b c c

c a+ b c− a

c c− a a+ b













, (1)

which is given by only three parameters. In fact, in the above matrix, one could set b = 0,

without changing the TBM PMNS matrix. It only affects the masses of the neutrinos. This

matrix is very different from the known mass matrices in the quark sector and could be

a possible clue to a unified understanding of the quark-lepton flavor puzzle. A non-zero

θ13 suggests that the TBM PMNS mixing is not precisely the right form, and that “large”

corrections to both the µ − τ symmetry and TBM matrix must be present; these factors

could eventually guide us towards a complete determination of the neutrino mass matrix.

Once this is accomplished, we will have passed a major milestone in uncovering the physics

of neutrino mass and possible underlying symmetries of the lepton sector. Of course, if

observations require that the corrections to TBM mass matrix are “large”, it would not be

too implausible that the symmetries described above may only be illusory and some other

mechanisms may be at work.

To explore what other scenarios could lead us to the desired neutrino mixings

with a “large” θ13, recall that there is a large class of predictive SO(10) grand unified

models [10–13] in which neutrino masses arise out of a type II seesaw [14] mechanism.

These models provide a natural way to understand a large atmospheric mixing angle not

from some symmetry, but rather from the dynamical property that in grand unified theories,

the bottom and tau masses become nearly equal at GUT scale [11]. When these models are

analyzed for the full three generation case, one finds, in addition to a large θ12, that θ13 is

also generally “large” [12]. Though the first of these results were obtained without quark

CP violation, these models have since been studied in much greater detail and including the

phase. These full CP -violating models do confirm the above results including a “large” θ13 as

well [15], but at the cost of severely restricting the parameter space. It turns out, however,

that a slight extension of the Higgs sector by the addition of a 120 Higgs multiplet [16]

considerably broadens the parameter space while still preserving the “large” θ13 prediction.

Recently, an interesting connection to the standard TBM model discussion has

been noted: the type II seesaw formula for neutrino masses allows a TBM form for the

neutrino mass matrix by simply a choice of fermion basis, with no additional symmetries [17];
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corrections to the TBM form then arise from the form of the charged lepton matrix, which, in

our case, is determined by the SO(10) constraints from quark masses and mixings.1 Strictly

speaking, no bottom-tau unification is invoked in this approach. Detailed numerical analyses

of these models have been carried out and lead to excellent fits for models with 10, 126

and 120 Higgs fields [17, 19], and, yet again, a large θ13 is predicted. One could therefore

construe the “large” θ13 prediction of these models as an indication of grand unified origin of

neutrino masses (especially of the kind noted), which was anyway suspected as a possibility

due to the near-GUT seesaw scale.

As mentioned above, the near-tri-bi-maximal PMNS form in this class of GUT

theories is related to the dynamics of the model rather than to any symmetry. Of course,

to understand the particular Yukawa textures, one may need to invoke some symmetries,

but still those symmetries are not directly related to the θ13 value. We are therefore faced

with two contrasting but attractive approaches to current neutrino observations: one based

on leptonic symmetries, and another based on grand unification hypothesis. It is clearly

important that more work be done to uncover which is the path chosen by nature; in this

paper, we further investigate the grand unification approach.

One straightforward way to establish that a “large” θ13 is a generic prediction of

SO(10) models with type II seesaw and their associated dynamical properties, rather than

a symmetry, is to study more of such models and establish their predictions. A particularly

simple class of models are defined by the minimal choice of Higgs fields 10 and 126, together

with either a 120 [16] (as already noted) or an extra 10 [20] contributing to fermion masses.

The latter class of models, to the best of our knowledge, has not been thoroughly scrutinized

numerically. In this paper, we focus on them, since, as has been recently pointed out [20],

they seem to give qualitatively the right picture for not just neutrino masses but quarks

as well. It was shown in Ref. [20] that reasonably well-satisfied versions of the GUT scale

relations mb ≃ mτ and mµ ≃ −3ms emerge out of an S4 flavor symmetry in an SO(10) GUT

model of the above type. It was also noted in this paper that the TBM form of the neutrino

mass matrix is dictated by the S4 symmetry breaking. From our quantitative analysis of

this model, we first find that the Yukawa texture predicted by the minimal version of the

model [20] needs to be supplemented by additional effective GUT scale Yukawa couplings in

1 For charged lepton corrections to tri-bi-maximal mixing outside the framework of GUT theories, see

Ref. [18].
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order to come close to observations. The improved model has only twelve parameters and

is therefore predictive in the neutrino sector. We find that the model leads to a prediction

for θ13 ∼ 4◦ − 6◦ and Dirac CP phase between −10◦ and +15◦; this value of θ13 supports

the generic expectation for this class of theories, as was anticipated above. We also argue

that there is a definite kind of correlation between the θ13 and θ23, which can be different

from non-GUT symmetry-based approaches to θ13. It is also interesting that this value is

consistent with the recent T2K range for this parameter.

II. DETAILS OF THE MODEL

The class of SO(10) models in which we are interested have two 10 Higgs fields

(denoted by H,H ′) and a pair of 126 + 126 (denoted by ∆ + ∆̄). The SO(10) invariant

Yukawa couplings of the model are given by:

LY = h0ψψH + h′0ψψH
′ + f0ψψ∆̄ (2)

where ψ’s denote the 16 dimensional spinors of SO(10) which contain all the matter fields of

each generation, and so there are three such fields, though we have suppressed the generation

indices. The Yukawa couplings are 3×3 matrices in generation space. The effective Yukawa

couplings f0, h0, h
′
0 are assumed to have descended from a higher scale theory which has an

S4 symmetry broken by flavon fields with particularly aligned vacuum expectation values

(vevs) (see e.g. Ref. [20]). We do not need to know the detailed form of these flavon

interactions for our analysis in this paper, and we will simply write down the effective form

of the h, h′, f that follow from it. Before doing that, we wish to point out that it is the

f0 coupling which is responsible for neutrino masses via type II seesaw mechanism, and it

also contributes to charged fermion masses. We can choose it to give the tri-bi-maximal

form for Mν either by a choice of the basis of matter fields [17, 20] or by the breaking of

the S4 symmetry [20] or other symmetry group [21]. This puts the neutrino mass matrix in

a form that, upon diagonalization, leads to tri-bi-maximal mixing prior to charged lepton

corrections. This requires that we have the f0 coupling in the form:

f0 ∝ Mν = κ













0 m1 m1

m1 m0 m1 −m0

m1 m1 −m0 m0













, (3)
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where we have used Eq. (1) with rescaled variables a = κm0 and c = κm1. Note that as

in Ref. [20], we have taken b = 0 in Eq. (1). The proportionality constant between f0 and

Mν is determined by the left triplet vev in 126 responsible for type II seesaw. Note that

UPMNS = V †
ℓ Vν (where Vℓ and Vν are the unitary matrices that diagonalize the charged

lepton and neutrino mass matrices respectively) so that we will necessarily have corrections

to the TBM mixing coming from the charged lepton mass matrix. Note further that since

the f0 matrix also contributes to the quark and charged lepton masses, neutrino masses and

quark masses are connected, making the model predictive. The formulae for the quark and

charged lepton masses in this model are given by:

Mu = h + r2f + r3h
′,

Md =
r1

tanβ
(h+ f + h′), (4)

Mℓ =
r1

tanβ
(h− 3f + h′),

where f, h, h′ are related to f0, h0, h
′
0 through Higgs vevs [20]. In Ref. [20], the S4 symmetry

constrains h to be a rank one matrix of the form:

h =













0 0 0

0 0 0

0 0 M













, (5)

and the form of h′ to be

h′ =













0 δ −δ
δ 0 0

−δ 0 0













. (6)

The parameters m0, m1 in Eq. (3) are chosen to be real. The parameters r1,2,3 in Eqs. (4)

represent the ratio of the different standard model (SM) doublet vevs in the theory. There

are three SM doublets and hence six vevs; three of them are absorbed to redefine the Yukawa

couplings from dimensionless h0, h
′
0, f0 to h, h′, f with dimensions of mass. Since we have

chosen h to be in the form above due to the S4 symmetry breaking, it has only one parameter.

The f matrix has two real parameters, and h′ has only one parameter, which can be chosen

to be complex, for a total of eight parameters in the charged fermion sector. While this

model has a number of attractive features as noted in Ref. [20], it fails to reproduce some

details of the quark mixings, e.g. both Vcb and Vub come out to be much too small compared
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to their extrapolated values at the GUT scale for all tan β; the CKM phase also comes out

too small. We therefore amend this model by adding extra structure to the h′ matrix while

keeping all other couplings as they were. We choose h′ to have the form:

h′ =













δ′′ δ −δ + δ′

δ 0 d

−δ + δ′ d 0













, (7)

which can be generated by choice of flavon fields and the alignment of their vevs. The

neutrino mass matrix is unaffected by this addition, but the quark and charged lepton mass

matrices are now

Mℓ =
r1

tan β













δ′′ −3m1 + δ −3m1 − δ + δ′

−3m1 + δ −3m0 3(m0 −m1) + d

−3m1 − δ + δ′ 3(m0 −m1) + d −3m0 +M













Md =
r1

tan β













δ′′ m1 + δ m1 − δ + δ′

m1 + δ m0 −m0 +m1 + d

m1 − δ + δ′ −m0 +m1 + d m0 +M













(8)

Mu =













r3δ
′′ r2m1 + r3δ r2m1 − r3(δ − δ′)

r2m1 + r3δ r2m0 −r2(m0 −m1) + r3d

r2m1 − r3(δ − δ′) −r2(m0 −m1) + r3d r2m0 +M













III. PREDICTIONS OF THE MODEL

The model has eleven parameters if we choose all except δ′ real (twelve parameters

when we allow δ complex to study the allowed range of Dirac CP phase). Recall that the

model with 10, 126 and 120 has a total of seventeen parameters [17]. In that sense ours is a

more economical one and is quite predictive. Before proceeding with the numerical analysis

discussion, we note a few results that can be derived analytically if we assume the hierarchy

M ≫ m0, d≫ m1, δ, δ
′, δ′′:

r1
tan β

≃ mb

mt

; M ≃ mt;

mc ≃ r2m0, r2 ≃
mbmc

mtms

⇒ m0 ≃
mtms

mb

. (9)

Diagonalizing the matrices in Eqs. (8) gives the charged fermion masses, and the combination

V †
uVd (where Vu and Vd diagonalize the up- and down-sector quark masses respectively) gives
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the CKM matrix. Approximate expressions for the mass eigenvalues and the CKM mixing

matrices are given by

MD
ℓ ≃ r1

tan β













δ′′ + (−3m1+δ)2

δ′′+3m0

−3m0 − (−3m1+δ)2

3m0+δ′′
− [3(m0−m1)+d]2

M

−3m0 +M













MD
d ≃ r1

tan β













δ′′ + (m1+δ)2

δ′′−m0

m0 +
(m1+δ)2

m0−δ′′
− (−m0+m1+d)2

M

m0 +M













(10)

MD
u ≃













r3δ
′′ + (r2m1+r3δ)2

r3δ′′−r2m0

r2m0 +
(r2m1+r3δ)2

r2m0−r3δ′′
− [−r2(m0−m1)+r3d)]2

M

r2m0 +M













and

Vd ≃













1 m1+δ
m0−δ′′

m1−δ+δ′

−δ′′+m0+M

m1+δ
δ′′−m0

1 −m0+m1+d
M

m1−δ+δ′

δ′′−m0−M
m0−m1−d

M
1













Vu ≃













1 r2m1+r3δ
r2m0−r3δ′′

r2m1−r3(δ−δ′)
−r3δ′′+r2m0+M

r2m1+r3δ
r3δ′′−r2m0

1 −r2(m0−m1)+r3d

M

r2m1−r3(δ−δ′)
r3δ′′−r2m0−M

r2(m0−m1)−r3d

M
1













(11)

Additionally, note that the resulting corresponding expression for the Cabibbo angle is

Vus ≃
m1 + δ

m0 − δ′′
− r2m1 + r3δ

r2m0 − r3δ′′
(12)

Using a sufficient set of the individual expressions for Vij and mf above, as well

as the ratio m1/m0 from the neutrino sector (to be discussed later), we solve a system of

equations against experimental values for the charged fermion masses and quark mixings to

find an analytical solution with approximate values for the input parameters; this solution

is then used to generate predictions for the neutrino sector and is made statistically robust

through numerical analysis. A best fit value for the input parameters is given in Table I,

and the resulting mass and mixing parameter values are given in Table II. Note that while

we get a higher value for mb and slightly lower values for ms, all are within reasonable

statistical deviation from extrapolated values in the literature [22]. Similarly, our prediction

for md is somewhat higher than that obtained in Ref. [22], but we believe there could easily
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tan β = 10 tan β = 55

M (GeV) 88.1162 109.5751

m0 (GeV) 1.4325 1.4279

m1 (GeV) 0.2726 0.2712

δ (GeV) 0.3084 0.3098

δ′ (GeV) 0.5351 − 0.2673ı 0.6576 − 0.3306ı

δ′′ (GeV) −0.0612 −0.0658

d (GeV) 3.8399 4.5502

r1/ tan β 0.0153 0.0153

r2 0.1455 0.1461

r3 −0.0543 −0.0522

TABLE I. Best fit values for the model parameters. Note that adding a small imaginary part to δ

will give us a non-negligible Dirac CP phase, as shown later in Figure 4.

be instanton corrections to the light quark masses, which could change these extrapolated

values. It is nevertheless remarkable that we are able to reproduce all other parameters in

the charged fermion sector so well.

For the neutrino sector, the structure of the mass matrix in the model of Ref. [20]

and in this amended model is given by

Mν = κ













0 m1 m1

m1 m0 m1 −m0

m1 m1 −m0 m0 cos
2 α













(13)

where κ is a scaling factor determined from experimental data, and α is the mixing angle

for the third generation matter fermion ψ with the vector-like field ψV specific to the model.

The limit α = 0 gives the strict TBM form for the neutrino mass matrix given in Eq. (3)

when the mass eigenvalues are

mν1 = −κm1, mν2 = 2κm1, mν3 = κ (2m0 −m1) (14)

and the solar-to-atmospheric mass-squared ratio is given by

∆m2
⊙

∆m2
atm

=
3

4

λ2

1− λ
(15)
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tan β = 10 tan β = 55

best fit RG extrapolated best fit RG extrapolated

me (MeV) 0.3585 0.3585+0.0003
−0.0003 0.3565 0.3565+0.0002

−0.0010

mµ (MeV) 75.6713 75.6715+0.0578
−0.0501 75.2934 75.2938+0.0515

−0.1912

mτ (GeV) 1.2920 1.2922+0.0013
−0.0012 1.6226 1.6292+0.0443

−0.0294

md (MeV) 4.0061 1.5036+0.4235
−0.2304 4.0897 1.4967+0.4157

−0.2278

ms (MeV) 23.7125 29.9454+4.3001
−4.5444 23.3144 29.8135+4.1795

−4.4967

mb (GeV) 1.3717 1.0636+0.1414
−0.0865 1.7028 1.4167+0.4803

−0.1944

mu (MeV) 0.7488 0.7238+0.1365
−0.1467 0.7483 0.7244+0.1219

−0.1466

mc (MeV) 209.4119 210.3273+19.0036
−21.2264 209.8707 210.5049+15.1077

−21.1538

mt (GeV) 88.3263 82.4333+30.2676
−14.7686 109.7853 95.1486+69.2836

−20.6590

Vus 0.2242 0.2243 ± 0.0016 0.2242 0.2243 ± 0.0016

Vub 0.0032 0.0032 ± 0.0005 0.0032 0.0032 ± 0.0005

Vcb 0.0351 0.0351 ± 0.0013 0.0351 0.0351 ± 0.0013

δCKM −60.64◦ (−60± 14)◦ −60.62◦ (−60± 14)◦

TABLE II. The best fit values of the quark and charged lepton masses and the most relevant quark

mixing parameters. The 1σ experimental values extrapolated by MSSM renormalization group

(RG) equations to the GUT scale [22] are also shown for comparison.

where λ ≡ m1/m0. To fit the experimental data, ∆m2
⊙/∆m

2
atm ∼ 0.03, which corresponds to

λ ∼ 0.2 from Eq. (15). This constraint can be relaxed for the case of α 6= 0, which is already

required for the top Yukawa coupling (∝ sin2 α) to be non-zero [20], though we do not have

much freedom for the value of λ anyway, as it is tightly constrained by the quark sector.

Numerically, we find that the allowed range of α is 5◦ − 25◦ in order to fit the observed

neutrino data.

Noting the charged lepton rotation matrix from the ansatz given by Eq. (8):

Vℓ ≃













1 3m1−δ
δ′′+3m0

−3m1−δ+δ′

−δ′′−3m0+M

−3m1+δ
δ′′+3m0

1 3(m0−m1)+d

M

−3m1−δ+δ′

δ′′+3m0−M

3(m1−m0)−d

M
1













, (16)
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and given the TBM form of the matrix that diagonalizing the neutrino mass matrix:

VTMB =













√

2
3

√

1
3

0

−
√

1
6

√

1
3
−
√

1
2

−
√

1
6

√

1
3

√

1
2













, (17)

we can write an approximate analytical form of the PMNS neutrino mixing matrix:

UPMNS = V †
ℓ VTBM ≃ VTBM +















1√
6

(

3m1−δ
δ′′+3m0

− 3m1+δ−δ′
∗

M−3m0−δ′′

)

1√
3

(

−3m1+δ
δ′′+3m0

+ 3m1+δ−δ′
∗

M−3m0−δ′′

)

1√
2

(

3m1−δ
δ′′+3m0

+ 3m1+δ−δ′
∗

M−3m0−δ′′

)

1√
6

(

3(m0−m1)+d

M
+ 2(3m1−δ)

δ′′+3m0

)

1√
3

(

3(m1−m0)−d

M
+ 3m1−δ

δ′′+3m0

)

3(m1−m0)−d√
2M

1√
6

(

3(m1−m0)−d

M
− 2(3m1+δ−δ′

∗

)
M−3m0−δ′′

)

1√
3

(

3(m0−m1)+d

M
− 3m1+δ−δ′

∗

M−3m0−δ′′

)

3(m1−m0)−d√
2M















(18)

Note that for simplicity, we have set cosα = 1 in writing the above expressions; however, in

the actual numerical analysis given below, it is varied over from ∼ 1 to ∼ 0.91 (α <∼ 25◦),

as noted earlier.
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FIG. 1. Correlation between θ13 and θ23 predicted in our model satisfying all the charged fermion

sector constraints. The thin (thick) dotted vertical line is the current 2σ (3σ) upper limit for the

atmospheric mixing angle.

The exact numerical results for neutrino mixing corresponding to the quark sector

fit from above are given in Figures 1-4. Figures 1 and 2 show the relationships between

(θ23, θ13) and (θ12, θ13), respectively. Note that the value of θ13 is large, though not so large
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FIG. 2. Correlation between θ13 and θ12 predicted in our model. The solid and dotted vertical

lines are the current 1σ and 3σ limits respectively for the solar mixing angle.
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FIG. 3. Correlation between ∆m2
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atm and θ13 predicted in our model. The solid and dotted

horizontal lines are the current 1σ and 3σ limits respectively for the solar-to-atmospheric mass

squared ratio.

as the 6◦-8◦ central value of T2K result gives. Also note that the atmospheric mixing angle

θ23 is always larger than the maximal value of 45◦; this agrees with the analytical form given

in Eq. (18) in which the corrections from the charged lepton sector are always positive.

Figure 3 shows the correlation between
(

θ13,∆m
2
⊙/∆m

2
atm

)

. The solid and dotted lines

are the current 1σ and 3σ limits for the best fit values of the observed neutrino oscillation
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FIG. 4. Correlation between the Dirac and CKM CP phase. The dotted vertical line is the central

value of the observed CKM CP phase. The spread in phase in the model arises from complexifying

the parameter δ so that it does not pull the CKM phase out of its allowed range.

parameters [23] (using the new reactor neutrino fluxes). Figure 4 shows the correlation

between the Dirac and CKM CP phases. It is apparent from inspecting the (1,3) element of

the PMNS mixing matrix in Eq. (18) that the leptonic Dirac phase δD is proportional to the

phase of the mass matrix parameter δ′ (which also determines the CKM phase) suppressed

by the factor Vub/Vus. Thus if the mass matrix parameter δ is real, we get small δD of order

1◦. However, if we make δ complex and its phase such that the CKM phase is within its

uncertainty, then the δD can be larger (see Figure 4). These correlations between different

mixing parameters could be used to test the model once the current uncertainties in both

θ12 and θ23 are reduced and a more precise value for θ13 has been determined. Our model

also predicts small Majorana phases (∼ 1◦).

IV. SUMMARY

We have analyzed the predictions of an SO(10) model with type II seesaw for

neutrino masses and Yukawa couplings involving two 10 Higgs fields and one 126 Higgs

field, with all the couplings derivable from a broken S4 symmetry. The model has at most

twelve parameters and is thus a relatively economical one when compared to other models

discussed in the literature. It gives a fairly good fit to the charged fermion masses as well as
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an excellent fit to the CKM parameters, and it also predicts the neutrino mixing angles θ12,

θ23 as well as ∆m
2
⊙/∆m

2
atm in agreement with observation. Furthermore, it predicts a value

for θ13 between 4◦ − 6◦, near the lower end of the current T2K allowed range. With more

accurate determination of θ13 – especially its correlation with θ23, which our model predicts

to be strictly larger than 45◦ – the model could be tested. Finally, the model predicts a

normal hierarchy for the neutrinos and hence an effective neutrino mass in neutrino-less

double beta decay, which is a few milli-electron-volts and is thus not observable in the

current round of the searches for this process.
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