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Abstract

This paper reports the values of contributions to the electron g−2 from 300 Feynman diagrams

of the gauge-invariant Set III(a) and 450 Feynman diagrams of the gauge-invariant Set III(b). The

evaluation is carried out in two versions. Version A is to start from the sixth-order magnetic

anomaly M6 obtained in the previous work. The mass-independent contributions of Set III(a)

and Set III(b) are 2.1275 (2) and 3.3271 (6) in units of (α/π)5, respectively. Version B is based

on the recently-developed automatic code generation scheme. This method yields 2.1271 (3) and

3.3271 (8) in units of (α/π)5, respectively. They are in excellent agreement with the results of

the first method within the uncertainties of numerical integration. Combining these results as

statistically independent we obtain the best values, 2.1273 (2), and 3.3271 (5) times (α/π)5, for

the mass-independent contributions of the Set III(a) and Set III(b), respectively. We have also

evaluated mass-dependent contributions of diagrams containing muon and/or tau-particle loop.

Including them the total contribution of Set III(a) is 2.1349 (2) and that of Set III(b) is 3.3299 (5)

in units of (α/π)5. The total contributions to the muon g−2 of various leptonic vacuum-polarization

loops of Set III(a) and Set III(b) are 112.418 (32) and 15.407 (5) in units of (α/π)5, respectively.

PACS numbers: 13.40.Em,14.60.Cd,12.20.Ds,06.20.Jr
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I. INTRODUCTION

The anomalous magnetic moment g−2 of the electron has played the central role in

testing the validity of quantum electrodynamics (QED) as well as the Standard Model. The

latest measurement of ae ≡ (g − 2)/2 by the Harvard group has reached the precision of

0.24× 10−9 [1, 2]:

ae(HV08) = 1 159 652 180.73 (0.28)× 10−12 [0.24ppb] . (1)

At present the theoretical prediction consists of QED corrections of up to the eighth order

[3–5], and hadronic corrections [6–12] and electro-weak corrections [13–15] scaled down from

their contributions to the muon g−2. To compare the theory with the measurement (1), we

also need the value of the fine structure constant α determined by a method independent

of g− 2 . The best value of such an α has been obtained recently from the measurement of

h/mRb, the ratio of the Planck constant and the mass of Rb atom, combined with the very

precisely known Rydberg constant and mRb/me: [16]

α−1(Rb10) = 137.035 999 037 (91) [0.66ppb]. (2)

With this α the theoretical prediction of ae becomes

ae(theory) = 1 159 652 181.13 (0.11)(0.37)(0.77)× 10−12, (3)

where the first, second, and third uncertainties come from the calculated eighth-order QED

term, the tenth-order estimate, and the fine structure constant (2), respectively. The theory

(3) is thus in good agreement with the experiment (1):

ae(HV08)− ae(theory) = −0.40 (0.88)× 10−12, (4)

proving that QED (Standard Model) is in good shape even at this very high precision.

An alternative test of QED is to compare α(Rb10) with the value of α determined from

the experiment and theory of g− 2 :

α−1(ae08) = 137.035 999 085 (12)(37)(33) [0.37ppb], (5)

where the first, second, and third uncertainties come from the eighth-order QED term,

the tenth-order estimate, and the measurement of ae(HV08), respectively. Although the
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uncertainty of α−1(ae08) in (5) is a factor 2 smaller than α(Rb10), it is not a firm factor

since it depends on the estimate of the tenth-order term, which is only a crude guess [17].

For a more stringent test of QED, it is obviously necessary to calculate the actual value of

the tenth-order term. In anticipation of this challenge we launched a systematic program

several years ago to evaluate the complete tenth-order term [18–20].

The 10th-order QED contribution to the anomalous magnetic moment of an electron can

be written as

a(10)e =
(α

π

)5 [

A
(10)
1 + A

(10)
2 (me/mµ) + A

(10)
2 (me/mτ ) + A

(10)
3 (me/mµ, me/mτ )

]

, (6)

where me/mµ = 4.836 331 71 (12) × 10−3 and me/mτ = 2.875 64 (47) × 10−4 [17]. In the

rest of this article the factor
(

α
π

)5
will be suppressed for simplicity.

The contribution to the mass-independent term A
(10)
1 can be classified into six gauge-

invariant sets, further divided into 32 gauge-invariant subsets depending on the nature of

closed lepton loop subdiagrams. Thus far, numerical results of 27 gauge-invariant subsets,

which consist of 3106 vertex diagrams, have been published [18, 21–26]. Five of these 27

subsets were also calculated analytically [27, 28]. Our calculation is in good agreement with

the analytic results.

In this paper we report the evaluation of the tenth-order lepton g−2 from two gauge-

invariant subsets called Set III(a) and Set III(b). These diagrams are built from the magnetic

moment contribution M6 (shown in Fig. 1) which consists of 50 proper sixth-order vertices

of three-photon-exchange type, namely diagrams without closed lepton loops (and called

q-type. See Ref. [4] for the definition of q-type.), by insertion of various lepton vacuum-

polarization loops.

M6A M6B M6C M6D

M6E M6F M6G M6H

FIG. 1: The sixth-order q-type diagrams. The solid line represents the electron in a constant

magnetic field. The time reversal diagrams of M6D and M6G are omitted for simplicity.
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III(a) III(b) III(c)

FIG. 2: Typical diagrams of Set III.

Set III(a). Diagrams obtained by inserting two second-order vacuum-polarization function

Π2’s in M6. The number of vertex diagrams contributing to A
(10)
1 is 300.

Set III(b). Diagrams obtained by inserting the fourth-order vacuum-polarization function

Π4 in M6, where Π4 is the sum of three fourth-order vacuum polarization loops. The

number of vertex diagrams contributing to A
(10)
1 is 450.

Another set ( Set III(c) of Fig. 2) consists of diagrams obtained by inserting a light-by-

light scattering subdiagram Λ4 in M6. The total number of these diagrams contributing to

A
(10)
1 is 390. Since it has a structure different from those of Sets III(a) and III(b), it will be

treated in a separate paper.

Evaluation of Set III(a) and Set III(b) is carried out in two ways. Version A is to start

from the FORTRAN code of the sixth-order anomalous magnetic moment M6, which was

obtained in previous works [29] and known to give the result identical with the analytic

result [30]. It is thus easy to establish the validity of these FORTRAN codes for Sets III(a)

and III(b).

We also evaluate these sets by an alternative method, Version B, using FORTRAN

codes generated from scratch by the recently developed automatic code generation scheme

[4, 19]. This approach deals with the UV renormalization as well as IR subtraction terms

as integral parts of automation. In carrying out this automation scheme, we found it useful

to construct IR subtraction terms in a different manner from that of Version A [19]. Thus,

Version B provides an independent confirmation of Version A. At the same time it helps

to verify the automated code generation scheme, which is developed primarily to deal with

the vastly more difficult problem of Set V, which consists of 6354 vertex diagrams with pure

radiative correction.

As is well-known, the insertion of vacuum-polarization loop such as Π(2) and Π(4) in an

internal photon line of momentum q can be expressed as a superposition of massive vector
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III(ad) III(as)

FIG. 3: Typical tenth-order diagrams of Set III(a) obtained by insertion of two second-order

vacuum-polarization loops Π2 in lepton diagrams of the three-photon-exchange type. The subset

III(ad) consists of diagrams in which Π2 are inserted in different photon lines, while the subset

III(as) consists of diagrams in which Π2 are inserted in the same photon line. There are 150

diagrams in each subset.

propagators
∫

∞

4m2

dσρ(σ)

q2 − σ
, (7)

where m is the mass of the lepton forming the closed loop and σ is the square of mass

of the vector particle and ρ is the spectral function. This enables us to obtain Feynman-

parametric integrals for Set III(b) by simply replacing the relevant photon mass squared by

σ and integrating over σ. It can also be applied to diagrams of Set III(a) which contain

two vacuum-polarization loops in different photon lines. This subset of Set III(a) will be

denoted as Set III(ad) henceforth.

The Set III(a) also contains diagrams in which two vacuum-polarization loops are inserted

in the same photon line, which will be denoted as Set III(as). For these diagrams a slight

extension of Eq. (7) is required. When two vacuum polarization loops are inserted in a

photon line of momentum q, the result, omitting integrations for simplicity, is given by the

left-hand-side of the following equation, which can be rewritten in the form on the right-

hand-side:
1

q2 − σa

q2
1

q2 − σb

≡
σa

σa − σb

1

q2 − σa

−
σb

σa − σb

1

q2 − σb

. (8)

Note that the right-hand-side is a linear combination of propagators of mass-square σa and

σb with coefficients σa/(σa−σb) and −σb/(σa−σb) . This enables us to write the Feynman-

parametric integrals for the diagrams in Set III(as) by a simple extension of M6 integrals.

Eq. (8) can be readily extended to the case in which three or more vacuum-polarization

loops are inserted in the same photon line.
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These adaptations require a slight modification of the numerator function V , which, for

M6, is given by

V0 =

5
∑

i=1

zi(1−Ai)m
2
e,

V = V0 + (za + zb + zc)λ
2 , (9)

where zi (i = 1, · · · , 5), and zj (j = a, b, c) are Feynman parameters assigned to the fermion

propagators and the photon propagators, respectively. me and λ are masses of the electron

and photon, respectively. Ai (i = 1, · · · , 5) are scalar currents flowing in the fermion line

i (see the exact definition of Ai in Ref. [29] ). Ai is expressed by the Feynman parameters

and its expression depends on the structure of a diagram. But, the expression of V in terms

of Ai is identical for all diagrams of M6.

When one vacuum-polarization function is inserted in a photon line, we must replace the

mass square λ2 of the photon in Eq. (9) by p(t):

λ2 −→ p(t) ≡
4m2

vp

1− t2
, (10)

where mvp is the rest mass of the fermion forming the vacuum-polarization loop and the

interval 4m2
vp ≤ σ < ∞ of Eq. (7) is mapped onto (0 ≤ t < 1) for the sake of convenience.

When two vacuum-polarization functions are inserted in the same photon line a, it follows

from Eq. (8) that the denominators must be modified as follows:

1

V
−→

V0

V1V2
,

1

V 2
−→

V 2
0 − z2ap1(t1)p2(t2)

(V1V2)2
,

1

V 3
−→

V 3
0 − 3V0z

2
ap1(t1)p2(t2)− z3ap1(t1)p2(t2)(p1(t1) + p2(t2))

(V1V2)3
, (11)

where

Vi ≡ V0 + zapi(ti) + (zb + zc)λ
2, i = 1, 2, (12)

for the first or second vacuum-polarization functions.

Throughout this article we use the exact renormalized forms of Π2 and Π4 instead of

intermediately renormalized forms to take advantage of the known analytic forms of their

spectral functions [31].
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II. SET III(A)

Diagrams belonging to the Set III(a) are generated by inserting two second-order vacuum-

polarization loops Π2 in the photon lines of M6. Using an identity derived from the Ward-

Takahashi identity [18] and time-reversal invariance and summing up all possible insertions

of the photon spectral function reduce the number of independent integrals from 300 to 16.

For programming purpose it is convenient to treat Set III(ad) and Set III(as) separately.

A. Set III(ad)

Let M6α,P2P2 be the magnetic moment projection of the Set III(ad) generated from a self-

energy diagram M6α (α =A through H) by insertion of two electron vacuum-polarization

loops Π2 in different photon lines (see Fig. 3). The subscript P2P2 implies that two second-

order vacuum polarization function P2’s are inserted in different photon lines of the proper

diagram M6α. To be precise M6α,P2P2 should be written as M
(l1l2l3)
6α,P2P2, where the first super-

script l1 refers to the open lepton line and l2 and l3 refer to closed lepton loops. When l1, l2,

and l3 are identical so that M6α,P2P2 is mass-independent, we omit the superscripts for sim-

plicity. Distinction by superscript becomes necessary in Sec. IIA 3 where mass-dependent

terms are treated.

1. Electron g−2: Version A

In Version A the renormalized contribution of the diagrams of Set III(ad) can be written

as [32]

a(10)e [Set III(ad)] =
H
∑

α=A

a6α,P2P2, (13)

with

a6α,P2P2 = ∆M6α,P2P2 + residual renormalization terms, (14)

where ∆M6α,P2P2 is the UV- and IR-finite part of M6α,P2P2 after all divergences are removed

by intermediate renormalization by KS and IR operations. See Ref. [32] for definitions of

K-operation and I-operation.

When summed over all diagrams of Set III(ad), the UV- and IR-divergent pieces cancel
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out and the total contribution to a(10) can be written as a sum of finite pieces [18]:

a(10)e [Set III(ad) : Ver. A] =

H
∑

α=A

∆M6α,P2P2

− 3∆B2,P2∆M4,P2 − 3∆B2∆M4,P2P2

+∆δm4,P2(M2∗,P2[I]−M2∗,P2) + ∆δm4,P2P2(M2∗ [I]−M2∗)

− [∆B4,P2 + 2∆L4,P2 − 4∆B2∆B2,P2]M2,P2

− [∆B4,P2P2 + 2∆L4,P2P2 − 2(∆B2,P2)
2]M2, (15)

where the number of vertex diagrams represented by ∆M6α,P2P2 is 15 for α = A,B,C,

E, F,H and 30 for α = D,G (see Fig. 1). We use the compactified notations for the

magnetic moment, mass renormalization constant, wave-function renormalization constant,

and vertex renormalization constants of fourth order [32]:

∆M4 ≡ ∆M4a +∆M4b,

∆δm4 ≡ ∆δm4a +∆δm4b,

∆B4 ≡ ∆B4a +∆B4b,

∆L4 ≡

3
∑

i=1

(∆L4a,i +∆L4b,i), (16)

where 4a and 4b refer to fourth-order diagrams with two photons crossed and uncrossed,

respectively, and i = 1, 2, 3 refers to three consecutive lepton lines of the diagram of type 4a

or 4b. M2∗ is the second-order magnetic moment with a two-point vertex insertion. M2∗ [I]

is the specific limit of M2∗ related to I-operation defined in Refs. [32, 33]. The subscript P2

in Eq. (15) means that a second-order vacuum-polarization function Π2 is inserted in one

of photon lines of the proper diagram in all possible ways. Similarly, P2P2 means that two

Π2’s are inserted in two different photon lines in all possible ways.

The numerical values of ∆M6α,P2P2 are summarized in Table I. Numerical values of

auxiliary integrals needed to complete the renormalization are listed in Table II.

Substituting the values listed in Tables I and II into Eq. (15), we obtain

a(10)e [Set III(ad) : Ver. A] = 0.941 92 (7). (17)
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TABLE I: Contributions of the Set III(ad) diagrams to the electron g−2 evaluated in Version

A. Both closed loops are electron loops. nF is the number of Feynman diagrams represented by

the integral. All integrals are evaluated in double precision. First 50 iterations are carried out

using 1×108 sampling points per iteration. We then estimate how many more sampling points are

needed to reach the desired precision. We chose 1× 109 sampling points per iteration and iterated

50 more times.

Integral nF Value (Error) Sampling per No. of

including nF iteration iterations

∆M6A,P2P2 15 −0.108 564 ( 3) 1× 108, 1× 109 50,50

∆M6B,P2P2 15 0.107 954 (11) 1× 108, 1× 109 50,50

∆M6C,P2P2 15 0.193 333 ( 6) 1× 108, 1× 109 50,50

∆M6D,P2P2 30 0.176 456 (20) 1× 108, 1× 109 50,50

∆M6E,P2P2 15 0.142 839 (11) 1× 108, 1× 109 50,50

∆M6F,P2P2 15 0.194 882 (15) 1× 108, 1× 109 50,50

∆M6G,P2P2 30 0.542 183 (34) 1× 108, 1× 109 50,50

∆M6H,P2P2 15 −0.190 026 (43) 1× 108, 1× 109 50,50

2. Electron g−2: Version B

The FORTRAN programs of Version B were generated by the automation code gen-

codeN with slight modification. Given one-line information specifying a diagram, gen-

codeN produces a set of programs for a q-type diagram of any order of the perturbation

theory[19, 20]. The insertion of the vacuum polarization function in a photon line is a

trivial task requiring modification of just a few lines of the gencodeN source code. The

K-operation method developed in Ref. [33] can be easily automated and incorporated in

gencodeN [19] to deal with UV divergence. IR divergence, on the other hand, is somewhat

differently treated.

The I-operation defined in the previous work [32, 35] successfully generates the IR sub-

traction terms for a q-type diagram of up to the eighth-order of the perturbation theory.

Actually, the I-operation works even for the tenth-order case, except that the automation

becomes tremendously complicated. This is why we sought another way to handle the IR di-

vergence. Namely, we deviated from the strict IR power counting, on which the I-operation
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TABLE II: Auxiliary integrals for the Set III(ad) and Set III(as) with (l1l2l3) = (eee), where (l1l2l3)

is defined in IIA. Six lines in the middle are for Set III (ad) and bottom four lines are for Set III

(as). Some integrals are known exactly. Other integrals are obtained by VEGAS integration [34].

Integral Value(Error) Integral Value(Error)

M2 0.5 M2∗ 1.0

M2∗ [I] −1.0 ∆B2 0.75

∆M4 0.030 833 612... ∆δm4 1.906 340 (21)

∆L4 0.465 024 (17) ∆B4 −0.437 094 (21)

M2,P2 0.015 687 421... M2∗,P2 0.044 077 4 (3)

M2∗,P2[I] 0.010 255 3 (11) ∆M4,P2 −0.106 707 082...

∆B2,P2 0.063 399 266... ∆δm4,P2 0.679 769 (15)

∆L4,P2 0.200 092 (14) ∆B4,P2 −0.314 320 (10)

∆M4,P2P2 −0.026 682 (2) ∆δm4,P2P2 0.105 075 (11)

∆L4,P2P2 0.005 481 (8) ∆B4,P2P2 −0.071 017 (4)

M2,P2:2 0.002 558 524... M2∗,P2:2 0.008 482 (1)

M2∗,P2:2[I] 0.032 904 (9) ∆M4,P2:2 −0.057 587 8 (9)

∆B2,P2:2 0.027 902 3 (4) ∆δm4,P2:2 0.439 326 (81)

∆L4,P2:2 0.094 940 (26) ∆B4,P2:2 −0.199 173 (89)

is defined, and took a more diagrammatic approach.

The new scheme to deal with the IR divergence, called I/R-subtraction, consists of two

parts: One is the R-subtraction that removes the UV-finite part of mass-renormalization

term, which is the cause of linear IR divergence. (The UV-divergent part of the mass renor-

malization is removed by the K-operation.) Once the mass renormalization is completed,

the remaining IR divergence is only logarithmic and is easily subtracted by the second part

called I-subtraction. This I-subtraction is similar to the previous I-operation, except that

it uses the finite part of a vertex renormalization constant in addition to the logarithmic

IR-divergent part as an IR-counter term. The I/R-subtraction can be readily incorporated

in gencodeN [20].

As far as the sixth-order diagrams are concerned, two methods of IR treatment, I-
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operation or I/R-subtraction, work fine making no significant difference. The difference

is only finite amount in the amplitude of the magnetic moments, which can be identified an-

alytically. Taking it into account, we obtain the relation of the magnetic moment amplitudes

in Version A and Version B as follows:

∆M
(B)
6A,P2P2 = ∆M

(A)
6A,P2P2 − 2∆L4b,1,P2M2,P2 − 2∆L4b,1,P2P2M2,

∆M
(B)
6B,P2P2 = ∆M

(A)
6B,P2P2 −∆L4b,2,P2M2,P2 −∆L4b,2,P2P2M2

− ∆δm4b,P2(M2∗P2 −M2∗P2[I])−∆δm4b,P2P2(M2∗ −M2∗ [I]),

∆M
(B)
6C,P2P2 = ∆M

(A)
6C,P2P2 −∆δm4a,P2(M2∗P2 −M2∗P2[I])

− ∆δm4a,P2P2(M2∗ −M2∗ [I]),

∆M
(B)
6D,P2P2 = ∆M

(A)
6D,P2P2 − 2∆L4a,1,P2M2,P2 − 2∆L4a,1,P2P2M2,

∆M
(B)
6E,P2P2 = ∆M

(A)
6E,P2P2 −∆L4a,2,P2M2,P2 −∆L4a,2,P2P2M2,

∆M
(B)
6F,P2P2 = ∆M

(A)
6F,P2P2,

∆M
(B)
6G,P2P2 = ∆M

(A)
6G,P2P2,

∆M
(B)
6H,P2P2 = ∆M

(A)
6H,P2P2. (18)

Note that the Version B of ∆M6α,P2P2 absorbs not only ∆δm terms but also part of ∆L4

terms. From Eqs. (15) and (18) we obtain

a(10)e [Set III(ad) : Ver. B] =

H
∑

α=A

∆M
(B)
6α,P2P2

− 3∆B2,P2∆M4,P2 − 3∆B2∆M4,P2P2

− [∆B4,P2 +∆L4,P2 − 4∆B2∆B2,P2]M2,P2

− (∆B4,P2P2 +∆L4,P2P2 − 2(∆B2,P2)
2)M2. (19)

Of course this shift of terms in Eq. (15) does not affect the final result.

This is a trivial change for the Set III. However, in Set V, which consists entirely of

q-type tenth-order diagrams, residual renormalization terms of ∆δm type give rise to linear

IR-divergences which complicate the analysis of the renormalization scheme. Thus there is

an advantage in removing the self-mass terms completely, not just their UV-divergent parts.

Substituting the values listed in Tables II and III in Eq. (19), we obtain

a(10)e [Set III(ad) : Ver. B] = 0.941 81 (12), (20)

which is in good agreement with (17).
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TABLE III: Version B contributions of the Set III(ad) diagrams to the electron g−2. The cor-

responding programs are created by gencodeN. Both closed loops are electron loops. nF is the

number of Feynman diagrams represented by the integral. All integrals are evaluated in double

precision.

Integral nF Value (Error) Sampling per No. of

including nF iteration iterations

∆M6A,P2P2 15 −0.130 613 (29) 1× 108 700

∆M6B,P2P2 15 −0.031 263 (26) 1× 108 700

∆M6C,P2P2 15 0.080 981 (24) 1× 108 700

∆M6D,P2P2 30 0.170 496 (41) 1× 108 700

∆M6E,P2P2 15 0.183 485 (29) 1× 108 700

∆M6F,P2P2 15 0.194 756 (31) 1× 108 700

∆M6G,P2P2 30 0.541 900 (69) 1× 108 700

∆M6H,P2P2 15 −0.189 816 (54) 1× 108 700

3. Mass-dependent terms A2 and A3 of Set III(ad)

Once FORTRAN programs for mass-independent Set III(ad) diagrams are obtained,

it is straightforward to evaluate contributions of mass-dependent term A
(10)
2 (me/mµ),

A
(10)
2 (me/mτ ), and A

(10)
3 (me/mµ, me/mτ ). We just have to choose an appropriate fermion

mass mvp in Eq. (10). Obviously the residual renormalization terms of Set III(ad) are slightly

more complicated because of insertions of vacuum-polarization loops in several photon lines.

Note also that the integrands of these sets may be strongly peaked because of their depen-

dence on (me/mµ)
2 or (me/mτ )

2 which makes them more susceptible to the digit deficiency

problem.

Of course we can evaluate them by either Version A or Version B. Since we have estab-

lished their equivalence, we may choose either one, say Version A.

In the general case (l1l2l3), where l2 6= l3, the residual renormalization terms of Set III(ad)

12



in Version A have the form

a(10)e [Set III(ad)
(l1l2l3)] =

H
∑

α=A

∆M
(l1l2l3)
6α,P2P2

− 3∆B
(l1l2)
2,P2 ∆M

(l1 l3)
4,P2 − 3∆B

(l1l3)
2,P2 ∆M

(l1l2)
4,P2 − 3∆B2∆M

(l1l2l3)
4,P2P2

+∆δm
(l1l3)
4,P2 (M

(l1l2)
2∗,P2[I]−M

(l1l2)
2∗,P2) + ∆δm

(l1l2)
4,P2 (M

(l1l3)
2∗,P2[I]−M

(l1l3)
2∗,P2)

+ ∆δm
(l1l2l3)
4,P2P2(M2∗ [I]−M2∗)

− [∆B
(l1l2)
4,P2 + 2∆L

(l1l2)
4,P2 − 4∆B2∆B

(l1l2)
2,P2 ]M

(l1l3)
2,P2

− [∆B
(l1l3)
4,P2 + 2∆L

(l1l3)
4,P2 − 4∆B2∆B

(l1l3)
2,P2 ]M

(l1l2)
2,P2

− [∆B
(l1l2l3)
4,P2P2 + 2∆L

(l1l2l3)
4,P2P2 − 4(∆B

(l1l3)
2,P2 ∆B

(l1l2)
2,P2 )]M2. (21)

For instance, for (l1l2l3) = (eem), the first, second, and third symbols refer to the open

electron line, electron loop, and muon loop, respectively. Some superscripts are denoted as

(l1l2) or (l1l3) since they have only one internal loop. Superscripts (l1) on ∆B2,M2, etc., are

omitted for simplicity since these terms are mass-independent. Note also that the second

and third loops appear interchangeably in the case of Set III(a). Thus Eq. (21) represents

the sum of (eem) and (eme).

If l2 and l3 represent identical particles, duplicate terms of Eq. (21) must be dropped to

avoid double counting.

Substituting the values listed in Tables IV and XI into Eq. (21), we obtain

a(10)e [Set III(ad)
(eem)] = 0.003 166 (4). (22)

The contributions of diagrams of (eet), (emm), etc., can be calculate by just changing

the mass parameters in FORTRAN programs. The residual renormalization can be carried

out using Eq. (21) paying attention to whether l2 = l3 or not. We present the final results

without giving details:

a(10)e [Set III(ad)
(eet)] = 0.000 031 55 (8), (23)

a(10)e [Set III(ad)
(emm)] = 0.000 080 45 (11), (24)

a(10)e [Set III(ad)
(emt)] = 0.000 005 56 (2). (25)

These results have been confirmed by comparison with the results of Version B.

The trend of mass dependence of these results indicates clearly that (ett) case will be an

order of magnitude smaller than (25). Thus it may be ignored at present.
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TABLE IV: Mass-dependent contributions of the Set III(ad) diagrams to the electron g−2 evaluated

in Version A. One closed loop is electron loop and the other is muon loop. Each integral is the sum

of (eem) and (eme) types. nF is the number of Feynman diagrams represented by the integral.

All integrals are evaluated in double precision.

Integral nF Value (Error) Sampling per No. of

including nF iteration iterations

∆M
(eem)
6A,P2P2 30 −0.000 324 ( 1) 1× 107 20

∆M
(eem)
6B,P2P2 30 0.000 357 ( 2) 1× 107 20

∆M
(eem)
6C,P2P2 30 0.000 496 ( 1) 1× 107 20

∆M
(eem)
6D,P2P2 60 0.000 533 ( 3) 1× 107 20

∆M
(eem)
6E,P2P2 30 0.000 316 ( 2) 1× 107 20

∆M
(eem)
6F,P2P2 30 0.000 659 ( 3) 1× 107 40

∆M
(eem)
6G,P2P2 60 0.001 657 (12) 1× 107 60

∆M
(eem)
6H,P2P2 30 −0.000 313 (12) 1× 107 20

4. Muon g−2. Set III(ad)

The leading contribution to the muon g−2 comes from the (mee) case where both loops

consist of electrons, and m stands for the open muon line. Results of numerical evaluation

in Version A are listed in Table V. From this Table and Table VI we obtain

a(10)µ [Set III(ad)
(mee)] = 42.460 4 (188). (26)

Next largest contribution comes from (mme). We list only the result:

a(10)µ [Set III(ad)
(mme)] = 11.416 9 (22). (27)

We also obtained

a(10)µ [Set III(ad)
(met)] = 0.421 97 (19), (28)

a(10)µ [Set III(ad)
(mmt)] = 0.110 71 (1), (29)

a(10)µ [Set III(ad)
(mtt)] = 0.008 50 (10). (30)

These results are in good agreement with the results of Version B.
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TABLE V: Contributions of the Set III(ad) diagrams to the muon g−2 evaluated in Version A.

Both closed loops are electron loops. nF is the number of Feynman diagrams represented by the

integral. All integrals are evaluated in real(10) arithmetic build in gfortran to take advantage of

the extended-precision format of a processor. This reduces possible digit-deficiency problem [36]

substantially and runs much faster than software-implemented real(16) arithmetic.

Integral nF Value (Error) Sampling per No. of

including nF iteration iterations

∆M
(mee)
6A,P2P2 15 −35.558 8 (48) 1× 107, 4× 107 20, 180

∆M
(mee)
6B,P2P2 15 44.427 6 (68) 1× 107, 4× 107 20, 180

∆M
(mee)
6C,P2P2 15 19.208 7 (65) 1× 107, 4× 107 20, 180

∆M
(mee)
6D,P2P2 30 28.117 1 (70) 1× 107, 4× 107 20, 280

∆M
(mee)
6E,P2P2 15 30.980 7 (64) 1× 107, 4× 107 20, 80

∆M
(mee)
6F,P2P2 15 18.790 9 (60) 1× 107, 4× 107 20, 180

∆M
(mee)
6g,P2P2 30 58.890 0 (71) 1× 107, 4× 107 20, 180

∆M
(mee)
6h,P2P2 15 −51.550 0 (70) 1× 107, 4× 107 20, 280

TABLE VI: Auxiliary integrals for Set III(ad) and Set III(as), where (l1l2l3) = (mee). M
(me)
2,P2

and M
(mee)
2,P2:2 are known exactly[37–39] and their uncertainties are due to the uncertainty of the

measured electron-muon mass ratio only. Other integrals are obtained by VEGAS integration [34].

Integral Value(Error) Integral Value(Error)

M
(me)
2,P2 1.094 258 3086 (80) M

(me)
2∗,P2 2.349 75 (29)

M
(me)
2∗,P2[I] −2.183 21 (16) ∆B

(me)
2,P2 1.885 733 (16)

∆δm
(me)
4,P2 11.151 07 (49) ∆M

(me)
4,P2 −0.628 831 80 (2)

∆L
(me)
4,P2 3.119 86 (66) ∆B

(me)
4,P2 −3.427 88 (49)

∆M
(mee)
4,P2P2 −1.959 37 (30) ∆δm

(mee)
4,P2P2 16.575 79 (52)

∆L
(mee)
4,P2P2 4.960 40 (63) ∆B

(mee)
4,P2P2 −6.353 75 (62)

M
(mee)
2,P2:2 2.718 655 851 (82) M

(mee)
2∗,P2:2 6.162 33 (39)

M
(mee)
2∗,P2:2[I] −5.107 35 (28) ∆B

(mee)
2,P2:2 5.330 35 (12)

∆M
(mee)
4,P2:2 −3.484 52 (83) ∆δm

(mee)
4,P2:2 35.742 2 (12)

∆L
(mee)
4,P2:2 10.621 5 (13) ∆B

(mee)
4,P2:2 −12.811 9 (12)
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B. Set III(as)

1. Electron g−2. Version A

Let M6α,P2:2 be the magnetic moment projection of the Set III(as) generated from self-

energy-like diagrams 6α (α =A through H) by insertion of two Π2’s in the same photon line

(see Fig. 3). The renormalized contribution due to these diagrams can be written in a way

similar to Eq. (13).

When summed over all the diagrams of Set III(as), the UV- and IR-divergent pieces

cancel out and the total contribution to a(10) can be written in Version A as a sum of finite

pieces (which is similar to Eq. (5.39) of Ref. [32]):

a(10)e [Set III(as) : Ver. A] =

H
∑

α=A

∆M6α,P2:2

− 3∆B2,P2:2∆M4 − 3∆B2∆M4,P2:2

+∆δm4(M2∗,P2:2[I]−M2∗,P2:2) + ∆δm4,P2:2(M2∗ [I]−M2∗)

− [∆B4 + 2∆L4 − 2(∆B2)
2]M2,P2:2

− [∆B4,P2:2 + 2∆L4,P2:2 − 4∆B2∆B2,P2:2]M2. (31)

The numerical values of ∆M6α,P2:2 are summarized in Table VII. Numerical values of aux-

iliary integrals needed to complete the renormalization are listed in Table II.

Substituting the values listed in Tables II and VII into Eq. (31), we obtain

a(10)e [Set III(as) : Ver. A] = 1.185 56 (20). (32)

2. Electron g−2. Version B

For the reason discussed in Sec. IIA 2 we obtain in Version B a formula for

a
(10)
e [Set III(as)] which is different from (31):

a(10)e [Set III(as) : Ver. B] =
H
∑

α=A

∆M
(B)
6α,P2:2

− 3∆B2,P2:2∆M4 − 3∆B2∆M4,P2:2

− [∆B4 +∆L4 − 2(∆B2)
2]M2,P2:2

− (∆B4,P2:2 +∆L4,P2:2 − 4∆B2,P2:2∆B2)M2, (33)
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TABLE VII: Version A contributions of Set III(as) diagrams to the electron g−2. nF is the number

of Feynman diagrams represented by the integral. All integrals are evaluated in double precision.

Integral nF Value (Error) Sampling per No. of

including nF iteration iterations

∆M6A,P2:2 15 −0.204 682 (54) 1× 108, 1× 109 50,50

∆M6B,P2:2 15 0.413 110 (56) 1× 108, 1× 109 50,50

∆M6C,P2:2 15 0.458 938 (53) 1× 108, 1× 109 50,50

∆M6D,P2:2 30 0.281 276 (54) 1× 108, 1× 109 50,50

∆M6E,P2:2 15 0.220 637 (23) 1× 108, 1× 109 50,50

∆M6F,P2:2 15 0.317 657 (48) 1× 108, 1× 109 50,50

∆M6G,P2:2 30 0.765 073 (87) 1× 108, 1× 109 50,50

∆M6H,P2:2 15 −0.409 439 (98) 1× 108, 1× 109 50,50

where

∆M
(B)
6A,P2:2 = ∆M

(A)
6A,P2:2 − 2∆L4b,1M2,P2:2 − 2∆L4b,1,P2:2M2,

∆M
(B)
6B,P2:2 = ∆M

(A)
6B,P2:2 −∆L4b,2M2,P2:2 −∆L4b,2,P2:2M2

− ∆δm4b(M2∗P2:2 −M2∗P2:2[I])−∆δm4b,P2:2(M2∗ −M2∗ [I]),

∆M
(B)
6C,P2:2 = ∆M

(A)
6C,P2:2 −∆δm4a(M2∗P2:2 −M2∗P2:2[I])

− ∆δm4a,P2:2(M2∗ −M2∗ [I]),

∆M
(B)
6D,P2:2 = ∆M

(A)
6D,P2:2 − 2∆L4a,1M2,P2:2 − 2∆L4a,1,P2:2M2,

∆M
(B)
6E,P2:2 = ∆M

(A)
6E,P2:2 −∆L4a,2M2,P2:2 −∆L4a,2,P2:2M2,

∆M
(B)
6F,P2:2 = ∆M

(A)
6F,P2:2,

∆M
(B)
6G,P2:2 = ∆M

(A)
6G,P2:2,

∆M
(B)
6H,P2:2 = ∆M

(A)
6H,P2:2. (34)

From Tables II and VIII we obtain

a(10)e [Set III(as) : Ver. B] = 1.185 26 (24), (35)

in good agreement with (32).
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TABLE VIII: Version B contributions of Set III(as) diagrams to the electron g−2. Programs are

created by gencodeN. nF is the number of Feynman diagrams represented by the integral. All

integrals are evaluated in double precision.

Integral nF Value (Error) Sampling per No. of

including nF iteration iterations

∆M6A,P2:2 15 −0.280 605 (31) 1× 108 600

∆M6B,P2:2 15 −0.068 830 (70) 1× 108 600

∆M6C,P2:2 15 0.070 002 (67) 1× 108 600

∆M6D,P2:2 30 0.269 937 (106) 1× 108 600

∆M6E,P2:2 15 0.297 943 (60) 1× 108 600

∆M6F,P2:2 15 0.317 432 (69) 1× 108 600

∆M6G,P2:2 30 0.764 711 (127) 1× 108 600

∆M6H,P2:2 15 −0.409 110 (103) 1× 108 600

3. Mass-dependent terms A2 and A3 of Set III(as)

For the Set III(as) we have (in Version A)

a(10)e [Set III(as)
(l1l2l3)] =

H
∑

α=A

∆M
(l1l2l3)
6α,P2:2

− 3∆B
(l1l2l3)
2,P2:2 ∆M4 − 3∆B2∆M

(l1l2l3)
4,P2:2

+∆δm4(M2∗,P2:2[I]
(l1l2l3) −M

(l1l2l3)
2∗,P2:2) + ∆δm

(l1l2l3)
4,P2:2 (M2∗ [I]−M2∗)

− [∆B4 + 2∆L4 − 2(∆B2)
2]M

(l1l2l3)
2,P2:2

− [∆B
(l1l2l3)
4,P2:2 + 2∆L

(l1l2l3)
4,P2:2 − 4∆B2∆B

(l1l2l3)
2,P2:2 ]M2. (36)

Substituting the values listed in Tables IX and XI into Eq. (36), we obtain

a(10)e [Set III(as)
(eem)] = 0.004 12 (10). (37)

We also obtained

a(10)e [Set III(as)
(emm)] = 0.000 144 7 (9), (38)

a(10)e [Set III(as)
(eet)] = 0.000 045 95 (23), (39)

a(10)e [Set III(as)
(emt)] = 0.000 009 88 (8). (40)
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TABLE IX: Contributions of diagrams of Set III(as) containing one electron vacuum-polarization

loop and one muon vacuum-polarization loop. nF is the number of Feynman diagrams represented

by the integral. All integrals are evaluated in double precision.

Integral nF Value (Error) Sampling per No. of

including nF iteration iterations

∆M
(eem)
6A,P2:2 30 −0.000 541 ( 4) 1× 107 20

∆M
(eem)
6B,P2:2 30 0.001 434 (17) 1× 107 20

∆M
(eem)
6C,P2:2 30 0.001 334 (26) 1× 107 20

∆M
(eem)
6D,P2:2 60 0.000 747 (26) 1× 107 20

∆M
(eem)
6E,P2:2 30 0.000 494 (10) 1× 107 20

∆M
(eem)
6F,P2:2 30 0.001 233 (16) 1× 107 20

∆M
(eem)
6G,P2:2 60 0.002 397 (78) 1× 107 20

∆M
(eem)
6H,P2:2 30 −0.000 995 (43) 1× 107 20

TABLE X: Contributions of the Set III(as) diagrams to the muon g−2 evaluated in Version A.

Both closed loops are electron loops. nF is the number of Feynman diagrams represented by the

integral. All integrals are evaluated using real(10) arithmetic built in gfortran.

Integral nF Value (Error) Sampling per No. of

including nF iteration iterations

∆M
(mee)
6A,P2P2 15 −38.157 8 (106) 1× 107, 4× 107 20, 80

∆M
(mee)
6B,P2P2 15 51.107 5 (103) 1× 107, 4× 107 20, 180

∆M
(mee)
6C,P2P2 15 20.547 7 (113) 1× 107, 4× 107 20, 180

∆M
(mee)
6D,P2P2 30 31.469 8 (113) 1× 107, 4× 107 20, 280

∆M
(mee)
6E,P2P2 15 32.799 0 (89) 1× 107, 4× 107 20, 80

∆M
(mee)
6F,P2P2 15 19.014 4 (96) 1× 107, 4× 107 20, 180

∆M
(mee)
6G,P2P2 30 61.519 4 (101) 1× 107, 4× 107 20, 180

∆M
(mee)
6H,P2P2 15 −55.142 4 (95) 1× 107, 4× 107 20, 280

These results are in good agreement with those of Version B. The contribution of the (ett)

term is negligibly small.
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TABLE XI: Auxiliary integrals which depend on the mass ratio mµ/me. Those for Set III(ad) are

listed on the left side. Those for Set III(as) are listed on the top half of the right side. Those for

Set III(b) are listed on the bottom half of the right side.

Integral Value(Error) Integral Value(Error)

∆M
(em)
4,P2 −0.000 018 9 ( 1) ∆M

(eem)
4,P2:2 −0.000 074 7 (1)

∆M
(eem)
4,P2P2 −0.000 019 1 ( 1) M

(eem)
2∗,P2:2 0.000 000 9 (0)

M
(em)
2,P2 0.015 690 0 ( 16) M2∗,P2:2[I]

(eem) 0.000 069 7 (1)

M
(em)
2∗,P2 0.044 089 4 (101) ∆B

(eem)
2,P2:2 0.000 036 2 (1)

M2∗,P2[I]
(em) 0.010 274 2 (256) ∆B

(eem)
4,P2:2 −0.000 409 7 ( 48)

∆B
(em)
2,P2 0.000 009 4 (00) ∆L

(eem)
4,P2:2 0.000 016 0 ( 59)

∆B
(em)
4,P2 −0.000 091 5 ( 4) ∆δm

(eem)
4,P2:2 0.001 261 2 (63)

∆L
(em)
4,P2 0.000 012 7 ( 6)

∆B
(eem)
4,P2P2 −0.000 129 0 ( 3) ∆M

(em)
4,P4 −0.000 068 2 ( 7)

∆L
(eem)
4,P2P2 −0.000 113 6 ( 6) M

(em)
2∗,P4 0.000 005 9 (0)

∆δm
(em)
4,P2 0.000 253 9 ( 5) M2∗,P4[I]

(em) 0.000 052 0 ( 1)

∆δm
(eem)
4,P2P2 0.000 195 1 ( 3) ∆B

(em)
4,P4 −0.000 322 0 ( 9)

∆L
(em)
4,P4 0.000 054 2 (13)

∆δm
(em)
4,P4 0.000 878 6 (15)

4. Muon g−2. Set III(as)

The leading contribution to the muon g−2 comes from the case where both loops consist

of electrons, namely the (mee) case, where m stands for the muon. Results of numerical

evaluation in Version A are listed in Table X. From this Table and Table VI we obtain

a(10)µ [Set III(as)
(mee)] = 43.048 8 (194). (41)

Next leading term is

a(10)µ [Set III(as)
(mem)] = 12.190 3 (176). (42)

We also have

a(10)µ [Set III(as)
(met)] = 0.469 43 (39), (43)

a(10)µ [Set III(as)
(mmt)] = 0.150 11 (21), (44)

a(10)µ [Set III(as)
(mtt)] = 0.013 68 (3). (45)
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FIG. 4: Typical tenth-order diagrams of Set III(b) obtained by insertion of a fourth-order vacuum-

polarization loop Π4 in lepton diagrams of the three-photon-exchange type. Altogether there are

450 diagrams of this type.

These results are in good agreement with those of Version B.

III. SET III(B)

Diagrams belonging to this set are generated by inserting a proper fourth-order vacuum-

polarization loop Π4 (consisting of three diagrams) in the photon lines of M6. Time-reversal

invariance and use of the photon spectral function ρ4 reduce the number of independent

integrals from 450 to 8. These integrals are represented by the “self-energy-like” diagrams

of Fig. 1. A typical diagram is shown in Fig. 4.

1. Electron g−2: Version A

Let M6α,P4 be the magnetic moment projection of the set of diagrams generated from a

self-energy diagram α (=A through H) of Fig. 1 by insertion of Π4 and an external vertex.

The renormalized contribution due to the Set III(b) diagrams can then be written as

a(10)e [Set III(b) : Ver. A] =
H
∑

α=A

a6α,P4, (46)

with

a6α,P4 = ∆M6α,P4 + residual renormalization terms, (47)

where all divergences, except those within Π4, are removed by intermediate renormalization

by KS and IR operations. (See Ref. [32].)

The numerical values of Set III(b) integrals are summarized in Table XII. Numerical

values of auxiliary integrals needed to complete the renormalization are listed in Table XIII.
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TABLE XII: Version A contributions of Set III(b) diagrams to the electron g−2. nF is the number

of Feynman diagrams represented by the integral. All integrals are evaluated in double precision.

Integral nF Value (Error) Sampling per No. of

including nF iteration iterations

∆M6A,P4 15 −1.275 23 ( 8) 1× 108, 1× 109 50,50

∆M6B,P4 15 1.865 05 (14) 1× 108, 1× 109 50,50

∆M6C,P4 15 1.593 72 (14) 1× 108, 1× 109 50,50

∆M6D,P4 30 1.166 99 (14) 1× 108, 1× 109 50,50

∆M6E,P4 15 1.212 50 ( 6) 1× 108, 1× 109 50,50

∆M6F,P4 15 1.113 25 (14) 1× 108, 1× 109 50,50

∆M6G,P4 30 2.948 70 (24) 1× 108, 1× 109 50,50

∆M6H,P4 15 −2.231 76 (22) 1× 108, 1× 109 50,50

When summed over all the diagrams of Set III(b), the UV- and IR-divergent pieces cancel

out and the total contribution to a(10) can be written as a sum of finite pieces (which is similar

to Eq. (5.39) of Ref. [32]):

a(10)e [Set III(b) : Ver. A] =
H
∑

α=A

∆M6α,P4

− 3∆B2,P4∆M4 − 3∆B2∆M4,P4

+∆δm4(M2∗,P4[I]−M2∗,P4) + ∆δm4,P4(M2∗ [I]−M2∗)

− [∆B4 + 2∆L4 − 2(∆B2)
2]M2,P4

− [∆B4,P4 + 2∆L4,P4 − 4∆B2∆B2,P4]M2. (48)

Terms with suffix P4 in Eq. (48) are obtained by insertion of Π4 in the photon lines of

diagrams. Note that K-operation is not applied to Π4 so that we have M2,P4, instead of

∆M2,P4, in Eq. (48).

Substituting the values listed in Tables XII and XIII into Eq. (48), we obtain

a(10)e [Set III(b) : Ver. A] = 3.327 14 (56). (49)
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TABLE XIII: Auxiliary integrals for the Set III(b). Some integrals are known exactly. Other

integrals are obtained by VEGAS integration.

Integral Value(Error) Integral Value(Error)

M2 0.5 M2,P4 0.052 870 652...

M2∗ 1.0 M2∗,P4 0.145 597 (21)

M2∗ [I] −1.0 M2∗,P4[I] −0.016 526 (69)

∆M4 0.030 833 612... ∆M4,P4 −0.288 997 (12)

∆δm4 1.906 340 (21) ∆δm4,P4 1.773 79 (26)

∆B2 0.75 ∆B2,P4 0.183 666 8 (18)

∆B4 −0.437 094 (21) ∆B4,P4 −0.816 23 (25)

∆L4 0.465 024 (17) ∆L4,P4 0.559 72 (25)

2. Electron g−2: Version B

Let us now treat Set III(b) by the method based on the automated code generation

scheme. In this approach, the contribution from Set III(b) is expressed as

a(10)e [Set III(b) : Ver. B] =
H
∑

α=A

∆M
(B)
6α,P4

− 3∆B2∆M4,P4 − 3∆B2,P4∆M4

− (∆B4 +∆L4 − 2(∆B2)
2)M2,P4

− (∆B4,P4 +∆L4,P4 − 4∆B2∆B2,P4)M2, (50)
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where

∆M
(B)
6A,P4 = ∆M

(A)
6A,P4 − 2∆L4b,1M2,P4 − 2∆L4b,1,P4M2,

∆M
(B)
6B,P4 = ∆M

(A)
6B,P4 −∆L4b,2M2,P4 −∆L4b,2,P4M2

− ∆δm4b(M2∗P4 −M2∗P4[I])−∆δm4b,P4(M2∗ −M2∗ [I]),

∆M
(B)
6C,P4 = ∆M

(A)
6C,P4 −∆δm4a(M2∗P4 −M2∗P4[I])

− ∆δm4a,P4(M2∗ −M2∗ [I]),

∆M
(B)
6D,P4 = ∆M

(A)
6D,P4 − 2∆L4a,1M2,P4 − 2∆L4a,1,P4M2,

∆M
(B)
6E,P4 = ∆M

(A)
6E,P4 −∆L4b,2M2,P4 −∆L4b,2,P4M2,

∆M
(B)
6F,P4 = ∆M

(A)
6F,P4,

∆M
(B)
6G,P4 = ∆M

(A)
6G,P4,

∆M
(B)
6H,P4 = ∆M

(A)
6H,P4. (51)

Using the code generator we obtained the programs of the magnetic moments M6α,P4,

α = A, . . . , H , and M4α, M4α,P4, α = A,B. The programs for the renormalization constants

L4α,P4, L4α, B4α,P4, B4α, δm4α,P4, δm4α are also automatically generated. Other quantities,

∆B2,P4, M2,P4 are very simple so that they are calculated by using hand-written programs.

The values of ∆B2 and M2 are analytically known.

The results of numerical integration by VEGAS are shown in Table XIV.

Substituting the numbers shown in Tables XIV and XIII into Eq. (50), we obtain

a(10)e [Set III(b) : Ver. B] = 3.327 07 (78) (52)

in good agreement with (49), where the uncertainty is from the numerical integration only.
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TABLE XIV: Version B contributions of Set III(b) diagrams to the electron g−2. Programs are

created by gencodeN. nF is the number of Feynman diagrams represented by the integral. All

integrals are evaluated in double precision.

Integral nF Value (Error) Sampling per No. of

including nF iteration iterations

∆M6A,P4 15 −1.673 94 (34) 1× 108, 1× 109 50, 50

∆M6B,P4 15 −0.959 45 (24) 1× 108, 1× 109 50, 50

∆M6C,P4 15 0.427 34 (21) 1× 108, 1× 109 50, 50

∆M6D,P4 30 1.110 10 (32) 1× 108, 1× 109 50, 50

∆M6E,P4 15 1.498 03 (18) 1× 108, 1× 109 50, 50

∆M6F,P4 15 1.113 12 (20) 1× 108, 1× 109 50, 50

∆M6G,P4 30 2.947 48 (36) 1× 108, 1× 109 50, 50

∆M6H,P4 15 −2.231 66 (28) 1× 108, 1× 109 50, 50

3. Mass-dependent terms A2 of Set III(b)

The residual renormalization scheme (in Version A) for the (em) term is the following:

a(10)e [Set III(b)(em)] =

H
∑

α=A

∆M
(em)
6α,P4

− 3∆B
(em)
2,P4∆M4 − 3∆B2∆M

(em)
4,P4

+∆δm4(M2∗,P4[I]
(em) −M

(em)
2∗,P4) + ∆δm

(em)
4,P4(M2∗ [I]−M2∗)

− [∆B4 + 2∆L4 − 2(∆B2)
2]M

(em)
2,P4

− [∆B
(em)
4,P4 + 2∆L

(em)
4,P4 − 4∆B2∆B

(em)
2,P4 ]M2. (53)

Substituting the values listed in Tables XI and XV into Eq. (53), we obtain

a(10)e [Set III(b)(em)] = 0.002 794 (1). (54)

It is easy to obtain the contribution of tau lepton loop instead of the muon loop. We

have simply to replace the muon mass by the tau mass in the FORTRAN programs. For

instance a crude calculation in Version A yields

a(10)e [Set III(b)(et)] = 0.000 021 42 (1), (55)

which is two orders of magnitude smaller than (54).
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TABLE XV: Contributions of (em) diagrams of Fig. 2 to the Set III(b). nF is the number of

Feynman diagrams represented by the integral. All integrals are evaluated in double precision.

Integral nF Value (Error) Sampling per No. of

including nF iteration iterations

∆M
(em)
6A,P4 15 −0.000 389 ( 2) 1× 107 20

∆M
(em)
6B,P4 15 0.000 943 ( 6) 1× 107 20

∆M
(em)
6C,P4 15 0.000 925 ( 6) 1× 107 20

∆M
(em)
6D,P4 30 0.000 592 ( 4) 1× 107 20

∆M
(em)
6E,P4 15 0.000 371 ( 4) 1× 107 20

∆M
(em)
6F,P4 15 0.000 773 ( 7) 1× 107 40

∆M
(em)
6G,P4 30 0.001 626 (26) 1× 107 60

∆M
(em)
6H,P4 15 −0.000 751 (20) 1× 107 20

4. Muon g−2. Set III(b)

The leading contribution to the muon g−2 comes from the case containing an electron

loop, namely the (me) case, where m stands for the muon. Results of numerical evaluation

(Version A) are listed in Table XVI. From this Table and Table XVII we obtain

a(10)µ [Set III(b)(me)] = 11.936 7 (45). (56)

We also obtained (Version A)

a(10)µ [Set III(b)(mt)] = 0.143 60 (1). (57)

These results are confirmed by Version B calculation.

IV. DISCUSSION

As was noted earlier Version A and Version B differ in the treatment of self-energy

subtraction and IR divergence. Furthermore, the actual algebraic form of integrands in the

first method [29] is quite different from the second one because ”Kirchhoff’s laws” satisfied by

the scalar currents [32] were used extensively to make the integrand as compact as possible

to save the computing time. Thus the two calculations can be regarded as independent
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TABLE XVI: Contributions of (me)-type diagrams of Set III(b) to the muon g−2. nF is the

number of Feynman diagrams represented by the integral. All integrals are evaluated using the

real(10) arithmetic built in gfortran.

Integral nF Value (Error) Sampling per No. of

including nF iteration iterations

∆M
(me)
6A,P4 15 −16.0005 (53) 1× 107 600

∆M
(me)
6B,P4 15 25.3670 (61) 1× 107 900

∆M
(me)
6C,P4 15 2.8871 (61) 1× 107 900

∆M
(me)
6D,P4 30 12.8166 (79) 1× 107 1000

∆M
(me)
6E,P4 15 13.6292 (44) 1× 107 600

∆M
(me)
6F,P4 15 6.9195 (59) 1× 107 600

∆M
(me)
6G,P4 30 24.6728 (59) 1× 107 700

∆M
(me)
6H,P4 15 −23.0066 (57) 1× 107 800

TABLE XVII: Auxiliary integrals for the Set III(b)(me). Some integrals are known exactly. Other

integrals are obtained by VEGAS integration.

Integral Value(Error) Integral Value(Error)

M2 0.5 M
(me)
2,P4 1.493 651 (84)

M2∗ 1.0 M
(me)
2∗,P4 3.122 88 (16)

M2∗ [I] −1.0 M
(me)
2∗,P4[I] −2.996 76 (24)

∆M4 0.030 833 612... ∆M
(me)
4,P4 −0.438 76 (26)

∆δm4 1.906 340 (21) ∆δm
(me)
4,P4 13.651 22 (80)

∆B2 0.75 ∆B
(me)
2,P4 2.439 109 (53)

∆B4 −0.437 094 (21) ∆B
(me)
4,P4 −3.826 32 (71)

∆L4 0.465 024 (17) ∆L
(me)
4,P4 3.653 31 (42)

of each other and the results agree within their error bars. Thus they may be combined

statistically to yield the values listed below:

a(10)e [Set III(ad)] = 0.9419 (1), (58)

a(10)e [Set III(as)] = 1.1854 (2), (59)

a(10)e [Set III(b)] = 3.3271 (5). (60)
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The mass-dependent contribution of Set III(ad) to the electron g−2, the sum of (22),

(23), (24), and (25), is given by

a(10)e [Set III(ad)(mass-dep)] = 0.003 28 (1), (61)

while the mass-dependent contributions of Set III(as) to ae is the sum of (37), (38), (39),

and (40):

a(10)e [Set III(as)(mass-dep)] = 0.004 32 (10). (62)

The total contribution of Set III(a) to ae is the sum of (58), (59), (61), (62):

a(10)e [Set III(a) (all terms)] = 2.1349 (2). (63)

Similarly, from (54), (55), and (60) we obtain

a(10)e [Set III(b) (all terms)] = 3.3299 (5). (64)

The total contribution of Set III(ad) to the muon g−2, the sum of (26), (27), (28), (29),

(30), and (58), is

a(10)µ [Set III(ad)(all terms)] = 55.360 (19), (65)

while the total contribution of Set III(as) to the muon g−2, the sum of (41), (42), (43), (44),

(45), and (59), is

a(10)µ [Set III(as)(all terms)] = 57.058 (26). (66)

The total contribution of Set III(a) to the muon g−2, the sum of (65) and (66), is thus

a(10)µ [Set III(a)(all terms)] = 112.418 (32). (67)

The total contribution of Set III(b) to the muon g−2, from (56), (57), and (60), is

a(10)µ [Set III(b)(all terms)] = 15.4074 (45). (68)

The contribution of Set III(a) to the muon g−2 is very large, which is not unexpected.

In particular, the orders of magnitude of contributions from the dominant (mee) terms of

Set III(ad) and Set III(as), as well as the (me) term of Set III(b), can be estimated crudely

since their leading log(mµ/me) term is determined by the renormalization procedure [3, 40]:

a(10)µ [Set III(ad)
(mee)] ∼ 3K2

2a
(6)
e (no loop) ∼ 34,

a(10)µ [Set III(as)
(mee)] ∼ 3K2,2a

(6)
e (no loop) ∼ 34,

a(10)µ [Set III(b)(me)] ∼ 3K4a
(6)
e (no loop) ∼ 7, (69)
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with

K2 ∼
2

3
ln(mµ/me)− ...,

K2,2 ∼ K2
2 ,

K4 ∼
1

2
ln(mµ/me)− ..., (70)

and [30]

a(6)e (no loop) = 0.904 979 ...., (71)

where no loop means diagrams without closed lepton loops of vacuum-polarization type.

The factor 3 accounts for the increase in the number of diagrams caused by insertion of

vacuum-polarization loops. As is expected from (69) and (70), the values of (26) and (41)

are of the same order of magnitude.
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