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Abstract

We discuss the role of cumulants of net baryon number fluctuations in the anal-
ysis of critical behavior in QCD and the study of freeze-out conditions in heavy ion
experiments. Through the comparison of the current set of measurements of higher
order cumulants of net baryon number fluctuations with lattice QCD calculations
and results from hadron resonance gas model we can learn to what extent freeze-out
as, determined by such cumulants, occurs close to the QCD transition temperature
and thus can probe critical behavior at small values of the baryon chemical poten-
tial. Understanding how the relation between freeze-out conditions and the QCD
crossover transition is reflected in properties of the experimentally determined cumu-
lants is an important prerequisite to search for the QCD critical point. We point out
that even if perfect continuum extrapolated lattice QCD results would be available,
it would be inappropriate to use these observables to extract the value of the QCD
transition temperature at vanishing baryon chemical potential from experimental
data. We furthermore provide indications that a recently performed comparison
of lattice QCD results on cumulants with data from heavy ion experiments suffer
from systematic as well as statistical uncertainties in the lattice QCD calculations.
This makes such comparison of lattice QCD calculations with experimental data at
present not useful.
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1 Introduction

The outstanding goal of the on-going RHIC low energy run is to search for the
elusive critical point in the QCD phase diagram. Promising observables used in this
search are higher order cumulants of net baryon number fluctuations, which have
been advocated to be sensitive to critical behavior in the vicinity of the chiral phase
transition of QCD at vanishing baryon chemical potential (µB) [1] as well as in the
vicinity of the QCD critical point at µB > 0 [2].

A first comparison of experimental results on higher order cumulants of baryon
number fluctuations [3] with theoretical calculations performed in the framework of
lattice regularized QCD [4] as well as hadron resonance gas [5] calculations led to
quite good agreement. Recently the analysis of [4] has been extended in Ref. [6]
by treating the QCD transition temperature as a free parameter that might be
constrained through the experimental data. The striking statement made in this
publication is that through comparison of the lattice QCD calculations with exper-
imental findings for certain cumulants of net baryon number fluctuations the QCD
transition temperature has been determined. In the following we will discuss if such
an observation can indeed be substantiated.

2 Lattice Cut-off effects and the continuum limit

of QCD

Cumulants of net baryon number fluctuations play an important role when analyz-
ing properties of QCD in the vicinity of the chiral phase transition temperature,
Tc(µB). They are defined as derivatives of the free energy density or pressure (P ) of
a thermodynamic system at temperature (T ) with respect to the baryon chemical
potential (µB). The n-th order cumulant is given by

χB
n =

∂nP (T, µB)/T
4

∂(µB/T )n
. (1)

Higher order cumulants are increasingly sensitive to critical behavior. They diverge
in the chiral limit at Tc(µB) as well as at a possible critical point at Tc(µ

c
B) for

non-zero quark masses.

Properties of cumulants at finite temperature and their dependence on µB have
been studied in lattice QCD calculations using different lattice discretization schemes.
The lattice calculations [4, 7], on which the analysis of cumulants presented in [6]
is based, have been performed within a specific lattice regularization scheme for
2-flavor QCD. Thus, any influence of the strange quark on the thermodynamics has
been ignored. The specific lattice regularization scheme, the standard staggered
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fermions used in [7], is known to be subject to large lattice discretization errors.
This is even more true on the rather coarse lattice that have been used for the ther-
modynamics studies in [6, 7] and is well known since a long time. It becomes, for
instance, apparent in the high temperature limit of QCD where discretization errors
in the standard staggered fermion scheme on lattices with temporal extent Nτ = 4
and 6 lead to deviations of bulk thermodynamic observables, like energy density and
pressure, from their known values in the continuum limit by more than 80% [8]. It
is also known, that calculations with this action performed on such coarse lattices
lead to severe and different discretization errors in various hadronic observables.
Such errors can to some extent be reduced by forming appropriate ratios as it has,
for example, been done in the analysis performed in [4] and also previously when
lattice results on ratios of cumulants have been compared to HRG calculations [1].
However, discretization errors can not be neglected when one wants to determine
absolute scales in a lattice calculation.

As a consequence of this it is impossible to arrive at a unique determination of
the scale, i.e., the inverse lattice spacing (cut-off), that could be used to convert
lattice results to physical units on such coarse lattice as they have been used in
Ref. [7]. Thus, a direct comparison of such calculations with experiment seems to
be excluded right from the beginning.

The problem with cut-off effects on coarse lattice has been already addressed in
Ref. [7] which provided the numerical lattice QCD calculations on which the analysis
in [6] is based. There, it was noted, that the quark mass used in the calculations
was still to large to reproduce the correct pion to rho-meson, (mπ/mρ) and nucleon
to rho-meson, mnucleon/mρ mass ratios. In fact, the hadron spectrum calculations
relevant for setting the scale in 2-flavor QCD at finite temperature on lattices with
four and six time-slices have been done long time ago [9]. It is known from theses
calculations, that the nucleon to rho-meson mass ratio suffers from cut-off effects and
attains a value of about 1.7 rather than its physical value of 1.22. As a consequence,
a determination of a lattice scale from either of these observables would lead to
large differences in a determination of the QCD transition temperature. Using the
rho-meson mass to set the scale on such coarse lattices gives Tc = (160− 167) MeV,
while the nucleon mass gives Tc = (100 − 110) MeV. On the other hand, using a
scale from gluonic observables like the string tension lead to a substantially larger
transition temperature of about Tc ∼ 190 MeV [10]. Another way to state this
problem is that the nucleon mass would turn out to be about 1300 MeV if the
physical value of the rho meson mass would have been used to set the scale. This
illustrates the severeness of cutoff effects in the lattice calculations used in [6] for
the comparison with experimental data. This also illustrates why major efforts are
still being undertaken in lattice calculations to arrive at a reliable determination of
the QCD transition temperature. This can be achieved by using improved actions
which reduce the cut-off distortion and by performing calculations on lattices with
smaller lattice cut-off, i.e., closer to the continuum limit [11, 12] where a unique
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scale can be determined and a reliable comparisons with continuum physics, e.g.
experiments, does then become possible.

3 Are there free parameters in finite temperature

Lattice QCD?

Let us set aside the problem of controlling cut-off effects in lattice QCD calcula-
tions and discuss what actually can be determine through a comparison of lattice
QCD results on fluctuations of net baryon number with heavy ion experiments. As
pointed out already in the previous section, the scale for lattice calculations and
as such also the QCD transition temperature is ideally determined through a com-
parison of lattice calculations at zero temperature with known spectral properties
of QCD. Nonetheless, one may take the point of view that one does not want to
rely on experiments that determined the proton and nucleon mass to set the scale
for lattice QCD calculations, but rather wants to use a heavy ion experiment that
determined the freeze-out temperature. This, however, relies on the fundamental
assumption that cumulants of net baryon number fluctuations indeed measure the
same freeze-out temperature that has been extracted experimentally from ratios of
particle abundances through a comparison with the hadron resonance gas model
(HRG) [13]. These assumptions, however, still needed to be justified.

Thus, a much more natural approach is to accept that lattice QCD calculations
(eventually) provide reliable results for the QCD transition temperature through
comparison with spectral properties of QCD. In fact, the current best estimates
lead to a transition temperature Tc = (150 − 160) MeV [11, 12]. It then is much
more sensible to use the comparison of lattice QCD results with the experimental
data on ratios of cumulants to learn about the freeze-out conditions probed by these
observables. In this way, one can verify whether freeze-out, as probed by ratios of
cumulants, indeed happens close to the QCD transition temperature and therefore
can be used to search for the QCD critical point. One can also learn whether ratios of
cumulants are consistent with freeze-out conditions determined from particle yields.

All relevant scales needed to compare a lattice calculation with experimental
data thus can reliably be fixed at zero temperature and no additional scales are
then required to be determined at finite temperature.
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4 What does the comparison of lattice QCD cal-

culations with measured higher order cumu-

lants tell us?

We argued in the previous section that even when perfect lattice calculations, free of
cut-off errors, become available one should not use the comparison between lattice
QCD calculations of ratios of cumulants and their experimental measurements for
the determination of the QCD transition temperature. One should rather accept
that the transition temperature is already provided by the (then perfect) lattice
calculation. The comparison between experiment and theoretical calculation will
then allow us to learn more about the freeze-out conditions probed by ratios of
cumulants and, hopefully, will establish them as unique probes of QCD critical
behavior in heavy ion experiments.

If we follow this approach one may ask whether the analysis performed in [6]
confirms that the freeze-out temperature in heavy ion experiments as determined
from higher order cumulants is close to Tc. Such a statement in its own would be a
great success as it would confirm that cumulants are indeed the right observables that
should be used in an experimental search for the QCD critical point. Unfortunately
this conclusion can not yet be drawn on the basis of the analysis presented in [6].

To substantiate our skepticism one needs to discuss the statistical significance of
the lattice calculations used in [6]. One also needs to realize that the ’determination
of Tc’ presented in [6] is based on the significance of a χ2 analysis. The χ2-values in
this analysis become large when the ratio between freeze-out temperature (Tf) and
QCD transition temperature (Tc) becomes small. This is counter-intuitive as one
would expect that experimental results do agree better with hadron resonance gas
calculations when freeze-out happens further away from Tc. It is not obvious why
lattice QCD calculations should generate discrepancies in such an ’uncritical’ region.
Why does a variation of Tf/Tc, as it is done in [6], then lead to such a dramatic
change in the χ2 of the fits presented in Fig. 3 of that paper?

First of all one needs to realize that the large χ2 values reported in [6] arise in
a region where T/Tc becomes small, i.e. T/Tc <∼ 0.92. When looking into the data
of Ref. [7] it is evident that the statistical significance of higher order cumulants
rapidly decreases when T/Tc is decreased. This is most apparent for the Nτ = 4
calculations reported in [14]. Already for this easier case (Nτ = 4) even the fourth
order cumulant (and also the sixth order cumulant [7]) is negative for T/Tc ≃ 0.92.
Both quantities should stay positive in that temperature regime. On lattices of size
Nτ = 6 it does become even more difficult to get the statistics under control. Data
for the sixth order cumulant given in [7] have a 50% error at T/Tc ≃ 0.94. In view
of this one may doubt whether the eighth order term is of any use for the Pade
analysis performed in [6].
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We thus may safely assume that we should not rely on any results from eighth
order cumulants in the comparison of lattice QCD results with the experimental
observable under question. In [6] a particular combination of variance (σ), skewness
(S) and kurtosis (κ), that is proportional to the ratio of third and fourth order
cumulants of net baryon number fluctuations, has been analyzed

κσ

S
=

χ
(4)
B (T, µB)

χ
(3)
B (T, µB)

. (2)

Written in terms of a next-to-leading order Taylor series expansion around µB = 0
this quantity is given by

κσ

S
=

T

µB

1 + 1
2

χ
(6)
B

(T,0)

χ
(4)
B

(T,0)

(

µB

T

)2
+O(µ4

B)

1 + 1
6

χ
(6)
B

(T,0)

χ
(4)
B

(T,0)

(

µB

T

)2
+O(µ4

B)
. (3)

Assuming that χ
(6)
B (T, 0)/χ

(4)
B (T, 0) > 0, which will be the case below Tc, one

concludes from this next-to-leading order result that within this approximation
1 < µBκσ/ST < 3. Here the lower limit corresponds to the HRG result, κσ/S =
1/ sinh(µB/T ) ≃ T/µB, and the upper limit is reached when the expansion is dom-
inated completely by the next-to-leading order correction. At this point, of course,
one should not trust the expansion anymore. In fact, the data shown in Fig. 3 of
Ref. [6] cover this range of values. For the two data points which generate the large
χ2 in Fig. 3 of Ref. [6], i.e., the data labeled with Tc = 180 MeV and 190 MeV
for

√
s = 62.4 GeV the next to leading order correction is 100% and 200% of the

leading order result. Maybe a Pade resummation is smarter than a direct analysis
of the Taylor series. However, in the absence of any systematic analysis of Pades of
different order one may doubt that this is the case.

Cumulants up to 6th order have also been calculated using an improved staggered
action (p4) on lattices of size 163×4 [15]. A comparison of ratios of cumulants with
the results from STAR [3] have been shown in Ref. [16]. We have used these data
to perform the analysis done in Ref. [6] with numerical results based on calculations
with the p4-action. We use the notation of Ref. [6], i.e., we talk about a shift of Tc,
although we do not like it and would rather think of the analysis as probing a shift
of the freeze-out temperature Tf relative to a fixed value of Tc.

The crucial data set for the observation of a large variation in χ2 in [6] corre-
sponds to the RHIC low energy run at

√
s = 62.4 GeV. The value of the baryon

chemical potential corresponding to
√
s = 62.4 GeV is µB ≃ 72.5 MeV. Varying

Tf/Tc and fixing µB/Tf we calculated µBκσ/ST from Eq. 3 using T ≡ Tf . We never
find values for µBκσ/ST that become larger than 1.5 (see Fig. 1(right)), although
it is apparent from Fig. 1(left) that the statistical error on the relevant input vari-

able χ
(6)
B (T, 0)/χ

(4)
B (T, 0) rapidly increase when T/Tc <∼ 0.92. As µBκσ/ST never

gets larger than 1.5 the variation of µBκσ/ST with Tf/Tc also cannot induce large
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Figure 1: The ratio of sixth and fourth order cumulants, χ
(6)
B (T, 0)/χ

(4)
B (T, 0), calcu-

lated at vanishing baryon chemical potential using an improved staggered fermion
action (p4) [15, 16] (left). This ratio enters in next-to-leading order in the calculation

of χ
(4)
B (T, µB)/χ

(3)
B (T, µB) and µBκσ/ST at the freeze-out temperature. The right

hand figure shows this quantity for the value of the chemical potential corresponding
to the RHIC low energy run at

√
s = 62.4 GeV.
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Figure 2: The ratio of fourth and third order cumulants measured by STAR in the
RHIC low energy runs [3] and compared to lattice results for which the value of Tc

has been shifted (see text). Also shown are results from a HRG calculation [5]. The
lattice QCD data have been displaced slightly for better visibility.

variations in a χ2 analysis as it is shown in the central Fig. 3 of [6]. We performed
the analogous analysis with the p4 data. The result is shown in Fig. 2. From this
figure it is evident that there is no ’best choice’ for Tc. The χ

2/dof for the difference
between experimental data and the lattice QCD results at the three Tf/Tc values
shown in this figure vary between 0.6 and 1.3.
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5 Conclusions

We noted that the analysis performed in [6], which aimed at ’Setting the scale for the
QCD phase diagram’ can not reach this ambitious goal because the lattice results
used in these calculations suffer themselves from severe cut-off effects and do not
allow for a unique determination of a scale. We have shown, that a comparison
of current experimental results with another lattice discretization scheme, which at
present suffers from similar discretization errors, does lead to a different conclusion.
This hints at problems with the statistical significance of the analysis performed in
[6] as well as with the conclusion that the critical temperature has been determined
by comparing lattice QCD calculations with results from heavy ion experiments.

Putting aside the issue of actual quality of lattice results used in [6], we have
argued that the procedure proposed in [6] to determine the critical temperature
by comparing lattice QCD results with heavy ion data on different cumulants of
net baryon number fluctuations should not have been done in the first place. The
comparison of lattice QCD results with known spectral properties of QCD leads
to far more accurate determinations of the scale needed to confront lattice QCD
calculations with results from heavy ion experiments.
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