
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Comparing numerical and analytical calculations of post-
innermost stable circular orbit ringdown amplitudes

Shahar Hadar, Barak Kol, Emanuele Berti, and Vitor Cardoso
Phys. Rev. D 84, 047501 — Published  4 August 2011

DOI: 10.1103/PhysRevD.84.047501

http://dx.doi.org/10.1103/PhysRevD.84.047501


REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Comparing numerical and analytical calculations of post-ISCO ringdown amplitudes

Shahar Hadar,1, ∗ Barak Kol,1, † Emanuele Berti,2, 3, ‡ and Vitor Cardoso4, 2, §

1Racah Institute of Physics, Hebrew University,Jerusalem 91904, Israel.
2Department of Physics and Astronomy, The University of Mississippi, University, MS 38677, USA

3California Institute of Technology, Pasadena, CA 91109, USA
4CENTRA, Departamento de F́ısica, Instituto Superior Técnico,
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We numerically compute the ringdown amplitudes following the plunge of a particle from the
innermost stable circular orbit (ISCO) of a Schwarzschild black hole in the extreme-mass ratio
limit. We show that the ringdown amplitudes computed in this way are in good agreement with a
recent analytical calculation [1].

PACS numbers: 04.40.Dg, 04.62.+v, 95.30.Sf

I. INTRODUCTION

In this paper we will study a compact object plunging
into a much more massive, nonrotating (Schwarzschild)
black hole from the innermost stable circular or-
bit (ISCO), located (in Schwarzschild coordinates) at
rISCO = 3rs, where rs = 2M is the Schwarzschild radius
and M is the black hole mass. This post-ISCO plunge
trajectory is of special interest because it is “universal”.
It has long been known [2] that the eccentricity of bod-
ies orbiting a black hole must decrease in the Newtonian
regime of low velocities and large separations (r ≫ rs)
during a gravitational-wave driven inspiral . In this sense,
a plunge from a quasicircular ISCO represents a “Kep-
lerian attractor”: for long, gravitational-wave driven in-
spirals the eccentricity should be essentially zero by the
time the particle reaches the ISCO. However, some as-
trophysical scenarios do predict the possibility of orbits
retaining nonzero eccentricity all the way down to plunge
(see e.g. [3–6]).
This “universal” plunge trajectory for particles falling

from a quasicircular ISCO leaves a very specific signature
in the quasinormal ringing of the final black hole. The
amplitudes of the quasinormal modes excited in the pro-
cess were computed in Ref. [1]. In this paper we confirm
the predictions of that paper by computing gravitational
radiation with a frequency-domain perturbative code de-
veloped and tested in Ref. [8], and we verify that the two
calculations are in very good agreement. Therefore any
model for extreme mass ratio inspirals leading to plunge
from a quasicircular ISCO should match the ringdown
signal predicted in Ref. [1] at late times. It will be in-
teresting to generalize the present results to comparable
mass ratio binaries.
The paper is organized as follows. In section II we

describe the post-ISCO plunge trajectory and the nu-

∗ shaharhadar@phys.huji.ac.il
† barak kol@phys.huji.ac.il
‡ berti@phy.olemiss.edu
§ vitor.cardoso@ist.utl.pt

merical algorithm to compute the gravitational radiation
produced by the plunging particle, along with the result-
ing waveforms. In section III we extract the ringdown
amplitudes from these waveforms and present a compar-
ison with the results of Ref. [1].

II. RADIATION SOURCED BY INFALLING

OBJECT

The post-ISCO plunge trajectory is described by the
coordinates t, r, φ as a function of the proper time τ
(without loss of generality we take the orbit to lie in
the equatorial plane, i.e. θ = π/2). The trajectory is a
solution of the geodesic equations

Ẽ = f(r)
dt

dτ
(1)

L̃ = r2
dφ

dτ
(2)

Ẽ2 =

(

dr

dτ

)2

+ f(r)(L̃2/r2 + 1) , (3)

where f(r) = 1 − rs/r and the energy and angular mo-
mentum per unit mass have the values corresponding to
a particle at the ISCO:

Ẽ = ẼISCO ≡ 2
√
2

3
(4)

L̃ = L̃ISCO ≡
√
3 rs .

The plunge trajectory can be written down analytically:
cf. Eq. (2.7)–(2.11) and Fig. 1 of Ref. [1]. In perturbation
theory, the gravitational radiation at infinity can be de-
termined from a knowledge of the Sasaki-Nakamura wave
function Xlm [7] (for the extensive literature on gravita-
tional waves from particles falling into black holes, see
[8, 9] and Appendix C of [10]). In the frequency domain,
the Sasaki-Nakamura equation can be written in the form

d2Xlm

dr2∗
+

[

ω2 − ∆

r5
(l(l + 1)r − 6M)

]

Xlm = Slm . (5)
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Here (l, m) are (tensor) spherical harmonic indices result-
ing from a separation of the angular variables, ω is the
Fourier frequency of the perturbation and ∆ ≡ r(r−2M).
The boundary conditions dictate that we should have
outgoing waves at infinity and ingoing waves at the BH
horizon:

Xlm =

{

X in
lm
e−iωr∗ , r∗ → −∞ ,

Xout
lm
eiωr∗ , r∗ → +∞ .

(6)

The source term Slm in the Sasaki-Nakamura equation
(5) is determined by the point-particle trajectory, and it
can be found in Ref. [8]. In terms of the Sasaki-Nakamura
wavefunctions, the plus- and cross- polarization ampli-
tudes are given by

h+ + ih× =
∑

lm

−2Ylm (h+ lm + ih× lm) (7)

=
8

r

∫ +∞

−∞

dω
∑

lm

eiω(r∗−t)
−2YlmX

out
lm

. (8)

In our comparisons we will always consider, for simplicity,
the outgoing amplitudes of the Sasaki-Nakamura wave-
function in the time domain, i.e.

Xout
lm

(t) ≡
∫ +∞

−∞

dωeiω(r∗−t)Xout
lm

(ω) . (9)

Numerically, the problem is to determine the (com-
plex) amplitudes Xout

lm
(t) for plunge trajectories with en-

ergy and angular momentum given by Eq. (4). In order
to start the plunge, we must displace the particle from
the ISCO location by a small quantity ǫ:

r0 = rISCO (1− ǫ) . (10)

We will present comparisons for ǫ = 5 × 10−3 and ǫ =
10−2, but we verified that our results are robust by com-
puting the radiation for several other values of ǫ, includ-
ing ǫ = 5× 10−4, 10−3, 5× 10−3, 10−3, 5× 10−3, 10−2.
Our numerical integrations use a modification of the

C++ program described in Ref. [8], and we refer the
reader to that paper for more details. All differential
equations are integrated in C++ using the adaptive step-
size integrator StepperDopr5 [11]. First we integrate
the solution of the homogeneous SN equation (5) with
ingoing boundary conditions at the horizon from rh =
2M(1 + δr) outwards (typically we choose δr = 10−4).
Then we integrate the solution with outgoing boundary

conditions at infinity from r∞ = r
(0)
∞ /ω inwards, where

typically we choose r
(0)
∞ = 2 × 103. From these two in-

dependent solutions we compute the Wronskian at the

(large but finite) radius r
(0)
∞ . We integrate the geodesics

with given orbital parameters, and at the same time we
compute the source term corresponding to this trajec-
tory. We output the solution with ingoing boundary con-

ditions at the horizon X
(0)
in and the source term Slm on

three numerical grids (each consisting of n = 1.6 × 105

collocation points). The three grids cover the intervals
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FIG. 1. Visual comparison of two waveforms for l = m = 2
with differing cutoffs (ǫ = 10−2, 5 × 10−3). The time axis
has been shifted so that the maxima of the wave amplitudes
|Xlm(t)| (shown in the inset) occur at the same value of (t−
r∗)/M .

[r∞, r+], [rISCO, rISCO − 0.1] and [rISCO − 0.1, rh], re-
spectively. This is necessary to keep good accuracy in
the near-ISCO region, where the particle spends a lot of
time when ǫ is small. We use a Gauss-Legendre spec-

tral integrator [11] to compute the convolution of X
(0)
in

with the source term to find the outgoing wave ampli-
tude Xout

lm
(ω). Finally we sum over multipoles to get

the total radiated energy, angular momentum and linear
momentum, and we perform a Fourier transform to get
Xout

lm
(t).

The real part of the l = m = 2 waveforms for cutoff
values ǫ = 5 × 10−3 and ǫ = 10−2 are shown in Figure
1. This visual comparison shows quite clearly that the
ringdown portion of the signal is very weakly dependent
on ǫ.

III. EXTRACTING RINGDOWN AMPLITUDES

FROM WAVEFORMS

In this section we describe the procedure we used to ex-
tract the ringdown amplitudes from the numerical wave-
forms and to compare with Ref. [1].
In the ringdown phase, the gravitational waveform is

described by a superposition of quasinormal modes of the
form

Xlm = N
∑

n lm

Rnlm exp iωnlm(t− t0) (11)

where we dropped the “out” superscript for simplicity.
Here ωnlm are the (complex) characteristic ringdown fre-
quencies, Rnlm are the amplitudes, N is an overall nor-
malization and t0 is a time shift which determines the
origin of time. We stress that while some readers may
be more familiar with the odd and even radiation func-
tions ψ

(odd)
lm

(Regge-Wheeler) and ψ
(even)
lm

(Zerilli), here
we work with the Sasaki-Nakamura radiation functions
Xlm, which do not have a specific parity.
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Given a numerical time-domain waveform Xlm(t), our
objective is to extract the amplitudes Rnlm. The leading
amplitude (n = 1) is extracted by plotting log |Xlm| as
a function of t (see the inset of Figure 1). At late times
only the dominant mode contributes to the signal, and
log |Xlm| becomes a linear function of time with slope
given by the decay constant γ1 ≡ ℑ(ω1lm). The intercept
is exactly the desired amplitude, log |Rlm|. The discrep-
ancy between the expected and measured γ1 contributes
to the error estimate for |R1lm|. In practice, this contri-
bution is minimized if the origin of time is close to the
center of the linear portion in the curve.
In the same fashion one can extract the amplitude of

the second overtone, namely |R2lm|. In preparation for
this, one should first extract the phase of R1lm. This is
done by plotting X ′

lm
= Xlm · exp(γ1lmt) as a function

of t, so that X ′ ≃ R exp (iℜ(ω1lm)t) should be a periodic
function with frequency ℜ(ω1lm) and complex amplitude
R1lm. Once we know the (complex) amplitude R1lm, we
can subtract the dominant ringdown mode to obtain a

residual X
(2)
lm

(t) = Xlm(t) − R1lm exp iω1lmt. Now we
can repeat the steps above to find the amplitude of the
second overtone. Indeed, the procedure can be repeated
for generic overtone numbers n as long as the signal is
not dominated by numerical noise, i.e., as long as the

residuals X
(n)
lm

exhibit a decaying exponential behavior.
The value of the amplitudes depends, in principle, on

the constants N , t0. To sidestep this difficulty we com-
pute the discrepancy of each mode

∆ ≡ log
(

Ranlyt
nlm

/Rnum
nlm

)

, (12)

where Ranlyt
nlm

is the “analytical” amplitude computed in
Ref. [1] and Rnum

nlm
is the numerically extracted ampli-

tude. Next we plot ∆ as a function of the mode decay
constant γnlm. Clearly a rescaling by N will shift ∆ by
a constant, while a shift of t0 corresponds to a change
in slope. In particular, for modes with identical decay
constants (such as modes with different m and fixed l)
the discrepancy ∆ is the same and it is independent of t0.
Now we can carry out a linear fit of ∆nlm = ∆nlm(γnl).
This fit will yield the constants N , t0 required for the

amplitudes to agree, i.e., Ranlyt
nlm

= Rnum
nlm

. The origin of
time resulting from the linear fit was compared to the
conventions of Ref. [1], where it what chosen such that
r(t = 0) = 1.1rs. We found that the same happens here
to a good approximation.
We performed comparisons for 16 different modes with

the following (nlm) values (for ǫ = 0.005): the modes
2 ≤ l ≤ 4 for 0 ≤ m ≤ l and l = 5 for 2 ≤ m ≤ 5, all
with n = 1.
Our main results are shown in Figure 2. After the

linear fit, the residual errors are seen to be of ∼ 1%. We
also performed the comparison for the mode (nlm) =
(222) (second overtone of l = m = 2). In this case we
found good agreement up to a residual error of ∼ 10%,
consistent with our error estimate for the numerically
extracted amplitude in this case. A similar comparison

was made also for ǫ = 0.01 for some modes, and good
agreement was found - up to an overall estimated error
of ∼ 1%.
In summary, for all the tested modes (see the list

above) the numerical amplitudes here were found to co-
incide with the analytic ones computed in [1].
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FIG. 2. Amplitude comparison for 16 different modes with
n = 1 and ǫ = 5 × 10−3. The horizontal axis represents
the decay constant γnlm in units where rs = 1. Each point
represents the residual ∆ value (after subtracting a linear fit
or tuning N , t0) for the given (l, m). Different γnlm values
correspond to different l’s: the leftmost points correspond to
l = 2, and γnlm grows monotonically with l.
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