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Using analytic techniques developed for Hamiltonian dynamical systems we show that a certain
classical string configurations in AdS5 × X5 with X5 in a large class of Einstein spaces, is non-
integrable. This answers the question of integrability of string on such backgrounds in the negative.
We consider a string localized in the center of AdS5 that winds around two circles in the manifold
X5.
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Introduction. – Chaotic motion has been one of the
most studied aspects of nonlinear dynamical systems as
its application extend to many areas [1]. Although its
mathematical roots date back to Poincarè and the three-
body problem, it was really during the last part of the
XX century when its study flourished largely thanks to
new advances in computing power. Naturally, under the
shadow of quantummechanics it is logical to try to under-
stand the quantum properties in systems whose classical
limit is chaotic, this area has become known as quantum
chaos [2]. In the context of the AdS/CFT correspondence
[3], there is a particularly special chance to understand
some of these questions as we have a setting in which the
classical regime of a theory is dual to the highly quantum
regime of another. Understanding classical chaos and the
corresponding quantization in the context of string the-
ory provides a new framework with enhanced interpreta-
tional opportunities.
The simplest version of the AdS/CFT correspondence

[3] states a complete equivalence between strings on
AdS5 × S5 with Ramond-Ramond fluxes and N = 4
supersymmetric Yang-Mills (SYM) with gauge group
SU(N). Chaotic behavior of some classical configura-
tions of strings in the context of the AdS/CFT has been
recently established for several interesting string theory
backgrounds: ring strings in the Schwarzschild black hole
in asymptotically AdS5 backgrounds [4], strings in the
AdS soliton background [5] and in AdS5 ×T 1,1 [6] which
is a coset but not a maximally symmetric one.
In general the question of integrability is settled

through a numerical analysis of the system [1]. Over
the last decades an analytical approach has been devel-
oped to determine whether a system in integrable. Some
powerful results due to Ziglin [7, 8] and further refined
by Morales-Ruiz and Ramis [9] turn the question of in-
tegrability of some simple systems into an algorithmic
process. In this paper we study a large class of systems
that appear in string theory. We generalize some of our
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previous results for classical strings on AdS5×T 1,1 [6] to
include more general backgrounds of the form AdS5×X5,
whereX5 is in a general class of five-dimensional Einstein
spaces admitting a U(1) fibration.

Analytic Non-integrability. – The general basis for
proving nonintegrability of a system of differential equa-

tions ~̇x = ~f(~x) is the analysis of the variational equa-
tion around a particular solution x̄ = x̄(t) [9, 10]. The
variational equation around x̄(t) is a linear system ob-
tained by linearizing the vector field around x̄(t). If
the nonlinear system admits some first integrals so does
the variational equation. Thus, proving that the varia-
tional equation does not admit any first integral within
a given class of functions implies that the original non-
linear system is nonintegrable. In particular one works
in the analytic setting where inverting the solution x̄(t)
one obtains a (noncompact) Riemann surface Γ given by
integrating dt = dw/ ˙̄x(w) with the appropriate limits.
Linearizing the system of differential equations around
the straight line solution yields the Normal Variational

Equation (NVE), which is the component of the lin-
earized system which describes the variational normal to
the surface Γ.

Given a Hamiltonian system, the main statement of
Ziglin’s theorems is to relate the existence of a first in-
tegral of motion with the monodromy matrices around
the straight line solution [7, 8]. The simplest way to
compute such monodromies is by changing coordinates
to bring the normal variational equation into a known
form (hypergeometric, Lamé, Bessel, Heun, etc).

Morales-Ruiz and Ramis proposed a major improve-
ment on Ziglin’s theory by introducing techniques of dif-
ferential Galois theory [11–13]. The key observation is
to change the formulation of integrability from a ques-
tion of monodromy to a question of the nature of the
Galois group of the NVE. Intuitively, if we go back to
Kovalevskaya we are interested in understanding whether
the KAM tori are resonant or not resonant or, in simpler
terms, if their characteristic frequencies in the action-
angle formalism are rational or irrational (see the ped-
agogical introductions provided in [9, 14]). This state-
ment turns out to be dealt with most efficiently in terms
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of the Galois group of the NVE. The key result is now
stated as: If the differential Galois group of the NVE
is non-virtually Abelian, that is, the identity connected
component is a non-Abelian group, then the Hamiltonian
system is non-integrable. The calculation of the Galois
group is rather intricate but the key simplification comes
through the application of Kovacic’s algorithm [15]. Ko-
vacic’s algorithm implements PicardVessiot theory for
second order homogeneous linear differential equations
with polynomial coefficients giving a constructive answer
to the existence of integrability by quadratures. Fortu-
nately Kovacic’s algorithm is implemented in most com-
puter algebra software including Maple and Mathemat-
ica. It is a little tedious but straightforward to check the
algorithm manually. So, once we write down our NVE in
a suitable linear form with polynomial coefficients, it be-
comes a simple task to check their solvability in quadra-
tures. An important property of the Kovacic’s algorithm
is that it works if and only if the system is integrable, thus
a failure of completing the algorithm equates to a proof
of non-integrability. This route of declaring systems non-
integrable has been successfully applied to various situa-
tions, some interesting examples include: general homo-
geneous potentials [16], cosmological models [17], fluid
dynamics [18] , generalizaitons of the Hénon-Heiles sys-
tem [14] and various others [9].
Wrapped Strings in General AdS5 ×X5. – The meth-

ods of analytic non-integrability can be applied to a large
class of spaces in string theory. Let us start by consider-
ing a five-dimensional Einstein space X5, with Rij ∼ gij .
Any such Einstein space furnishes a solution to the type
IIB supergravity equations known as a Freund-Rubin
compactification [19]. The solution takes the form

ds2 = ds2(AdS5) + ds2(X5), F5 = (1 + ⋆)vol(AdS5),

where vol is the volume five-form and ⋆ is the Hodge
dual operator. Of particular interest in string theory is
the case when X5 is Sasaki-Einstein, that is, on top of
being Einstein it admits a spinor satisfying ∇µǫ ∼ Γµǫ.
The configuration that we are interested in explor-

ing is a string sitting at the center of AdS5 and wind-
ing in the circles provided by the base space. More ex-
plicitly, consider the AdS5 metric in global coordinates:
ds2 = − cosh2 ρ dt2 + dρ2 + sinh2 ρ dΩ2

3. Then, our solu-
tions is localized at ρ = 0. Largely inspired by the Sasaki-
Einstein class we consider spaces X5 that are a U(1) fiber
over a four-dimensional manifold. In the case of topologi-
cally trivial fibration we are precluded from applying our
argument, those manifolds can be considered separately.
The general local structure of Sasaki-Eintein metrics is

ds2X5

S−E

= (dψ+
i

2
(K,idz

i−K,̄idz̄
i))2 +K,ij̄dz

idz̄j , (1)

where K is a Kähler potential on the complex base with
coordinates zi with i = 1, 2. This is the general structure
that will serve as our guiding principle but we will not
be limited to it. Roughly our Ansatz for the classical
string configuration is zi = ri(τ)e

iαiσ, where τ and σ are

the worldsheet coordinates of the string. Crucially we
have introduced winding of the strings characterized by
the constants αi. The goal is to solved for the functions
ri(τ).
To apply the tools of analytic non-integrability to the

class of solutions above we will: 1) Select a particular so-
lution, that is, define the straight line solution. 2) Write
the normal variational equation (NVE). 3) Check if the
identity component of the differential Galois group of the
NVE is Abelian, that is, apply the Kovacic’s algorithm
to determine if the NVE is integrable by quadrature.
Given this Ansatz above we can now summarize the

general results. We prove that the corresponding effec-
tive Hamiltonian systems have two degrees of freedom
and admit an invariant plane Γ = {r2 = ṙ2 = 0} whose
normal variational equation around integral curves in Γ
we study explicitly.
T p,q – These 5-manifolds are not necessarily Sasaki-

Einstein, however, some of them are Einstein which al-
low for consistent string backgrounds. More importantly,
some of these spaces provide exact conformal sigma mod-
els and are thus exact string backgrounds in all orders in
α′ [20]. However, they are never maximally symmetric
and the integrability discussed for AdS5 × S5 is not ap-
plicable. In this section we provide a unified treatment
of this class for generic values of p and q. The metric has
the form

ds2 = a2(dψ + p cos θ1dφ1 + q cos θ2dφ2)
2

+ b2(dθ21 + sin2 θ1dφ
2
1) + c2(dθ22 + sin2 θ2dφ

2
2).

The classical string configuration we are interested is:
θ1 = θ1(τ), θ2 = θ2(τ), ψ = ψ(τ), t = t(τ), φ1 =
α1σ, φ2 = α2σ, where αi are constants quantifying how
the string wounds along the φi directions. Recall that t
is from AdS5. The Polyakov Lagrangian is

L = −
1

2πα′

[

ṫ2 − b2θ̇21 −−c2θ̇22 − a2ψ̇2 + α2
1(b

2 − a2p2) sin2 θ1

+ α2
2(c

2 − a2q2) sin2 θ2 + 2α1α2p q a
2 cos θ1 cos θ2

]

. (2)

There are several conserved quantities, the correspond-
ing nontrivial equations are

θ̈1 +
α1

b2
sin θ1

[

α1(b
2 − a2p2) cos θ1 − a2α2pq cos θ2

]

= 0,

θ̈2 +
α2

c2
sin θ2

[

α2(c
2 − a2q2) cos θ2 − a2α1pq cos θ2

]

= 0.

There is immediately some insight into the role of the
fibration structure. Note that the topological winding
in the space which is described by p and q intertwines
with the wrapping of the strings α1 and α2. The effec-
tive numbers that appears in the interaction part of the
equations are α1 p and α2q. For example, from the point
of view of the interactions terms, taking p = 0 or q = 0
is equivalent to taking one of the αi = 0 which leads to
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an integrable system of two non-interacting gravitational
pendula.

We take the straight line solution to be: θ2 = θ̇2 = 0.
The equation for θ1 becomes

θ̈1 +
α1

b2

[

α1(b
2 − a2p2) cos θ1 − a2α2pq

]

sin θ1 = 0. (3)

Let us denote the solution to this equation θ̄1, it can be
given explicitly but we will not need the precise form.
This solution also defines the Riemann surface Γ intro-
duced before. The NVE is obtained by considering small
fluctuations in θ2 around the above solutions and takes
the form:

η̈ +
α2

c2

[

α2(c
2 − a2q2)− α1p q cos θ̄1

]

η = 0. (4)

Our goal is to study the NVE. To make the equation
amenable to the Kovacic’s algorithm we introduce the
following substitution: cos(θ̄1) = z. In this variable the
NVE takes a form similar to Lamé equation

f(z)η′′(z) +
1

2
f ′(z)η′(z) (5)

+
α2

c2

[

α2(c
2 − a2q2)− α1p qz

]

η(z) = 0

where, prime now denotes differentiation

with respect to z and f(z) = ˙̄θ21 sin
2(θ̄1) =

(

6E2 − 1
3 (4α1α2z + α2

2(1 − z2))
)

(1 − z2) Equation
(5) is a second order homogeneous linear differential
equation with polynomial coefficients and it is, therefore,
ready for the application of Kovacic’s algorithm. For
generic values of the parameters above the Kovacic’s
algorithm does no produce a solution meaning the
system defined in equations (3) is not integrable.

The case of T 1,1 is particularly interesting because for
this case the supergravity solution is supersymmetric and
a lot of attention has been paid to extending configura-
tions of AdS5 × S5 to the case of AdS5 × T 1,1 [21–26].

Y p,q – These spaces have played a central role in de-
velopments of the AdS/CFT correspondence as they pro-
vided and infinite class of dualities. These spaces are
Sasaki-Einstein but they are not coset spaces as was the
case for the T p,q discussed above. Following the general
discussion of Sasaki-Einstein spaces above, we write the
metric on these spaces as

ds2 =
1

9
(dψ − (1− cy) cos θdφ+ ydβ)2

+
1− cy

6
(dθ2 + sin2 θdφ2) +

p(y)

6
(dβ + c cos θdφ)2,

and p(y) = [a − 3y2 + 2c y3]/[3(1 − c y)]. The clas-
sical string configuration is described by the Ansatz:
θ = θ(τ), y = y(τ), φ = α1σ, β = α2σ. The Polyakov

Lagrangian is simply:

L = −
1

2πα′

[

ṫ2 −
1− cy

6
θ̇2 −

1

6p(y)
ẏ2 −

1

9
ψ̇2

+
1− cy

6
α2
1 sin

2 θ +
p(y)

6
(α2 + c α1 cos θ)

2

+
1

9
(α2 y − α1(1 − cy) cos θ)2

]

(6)

As in previous cases the equations of motion for t and
ψ are integrated immediately leaving only two nontrivial
equations for θ and y. The straight line solution can
be taken to be θ = θ̇ = 0. Then the equation for y is
simplified to

ÿ −
p′

p
ẏ2 +

p p′

2
(α2 + c α1)

2

+
2

3
p(α2 + c α1)(y(α2 + c α1)− α1) = 0.

To be able to write the NVE in a form conducive to the
application of Kovacic’s algorithm we subtitute ys(t) = y
and the NVE takes the form

(1− cy)ẏ2(t)
d2η

dy2
+ q(y)η(y) (7)

+
(

ÿ(t)(1 − cy)− cẏ2(t)
) dη

dy
= 0, (8)

where ẏ and ÿ can be written in terms
of y as: ẏ2(t) = 6(E + p(y)V (y, 0)) =

6p(y)
(

p(y)
6 (α2 + cα1)

2 + 1
9 (α2y − α1(1− cy))

)

and

q(y) = α1(1 − cy)[5/3α1 −
c(a−3 y2+2 cy3)(α2+cα1 )

(3−3 cy)(1−cy) −

2/3 (α2 + cα1) y]. With these identifications we have
rewritten the NVE as a homogeneous second order
linear differential equation with polynomial coefficients.
The Kovacic’s algorithm again fails to yield a solution
pointing to the fact that the system is generically
non-integrable.
The exceptional case: S5 – In this section we pro-

vide an integrable example where the Kovacic’s algorithm
should succeed. To expose the Sasaki-Einstein structure
of S5, it is convenient to write the metric as a U(1)
fiber over P

2. The round metrics on S5 may be ele-
gantly expressed in terms of the left-invariant one-forms
of SU(2). The left-invariant one-forms can be written
as: σ1 = 1

2 (cos(dψ)dθ+sin(ψ) sin(θ)dφ), σ2
1
2 (sin(ψ)dθ−

cos(ψ) sin(θ)dφ), σ3 = 1
2 (dψ + cos(θ)dφ). In terms of

these 1-forms, the metrics on P
2 and S5 may be written,

ds2
P2 = dµ2 + sin2(µ)

(

σ2
1 + σ2

2 + cos2(µ)σ2
3

)

,

ds2S5 = ds2
P2 + (dχ+ sin2(µ)σ3)

2 (9)

where χ is the local coordinate on the Hopf fibre and
A = sin2(µ)σ3 = sin2(µ)(dψ + cos(θ)dφ)/2 is the 1-form
potential for the Kähler form on P

2.
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The classical string configuration is: θ = θ(τ), µ =
µ(τ), χ = χ(τ), φ = α1σ, ψ = α2σ. The Lagrangian is

L = −
1

2πα′

[

ṫ2 − µ̇2 −
1

4
sin2 µθ̇2 − χ̇2

+
1

4
sin2 µ

(

α2
1 sin

2 θ + (α2 + α1 cos θ)
2
)

]

. (10)

The nontrivial equations of motion are

µ̈ +
1

8
sin(2µ)

[

θ̇2 − 2α1α2 cos θ − α2
1 − α2

2

]

= 0,

θ̈ + 2µ̇θ̇ cot(µ) + α1α2 sin θ = 0. (11)

Inspection of the above system shows that we have vari-
ous natural choices. We discussed the two natural choices
of straight line solutions in what follows.
θ straight line – Let us assume θ = θ̇ = 0, then the

equation for µ becomes

µ̈−
1

8
(α1 + α2)

2 sin(2µ) = 0. (12)

We call the solution of this equation µs. The NVE is

η̈ + 2 cot(µs)µ̇sη̇ + α1α2η = 0. (13)

With sin(µ) = z the NVE may be written as,

r(z)
d2

dz2
η (z) + q(z)

d

dz
η (z) + α1α2z

2η(z) = 0 (14)

(15)

with r(z) = z2
(

2E + 1/8 (α1 + α2)
2 (

1− 2z2
)

)

(

1− z2
)

and q(z) = −1/8z
(

− 32E + 48Ez2 − 2α2
1 + 9α1

2z2 −
8α1

2z4−4α1α2+18α1α2z
2−16α1α2z

4−2α2
2+9α2

2z2−
8α2

2z4
)

. This equation is now on the form conducive to
Kovacic’s algorithm which succeeds and gives a solution.
Since the above approach obscures the nature of integra-
bility of AdS5 × S5 we consider another example which
leaves no doubt about the integrability.
µ straight line – Let us assume the straight line is now

given by µ = π/2, µ̇ = 0. The equation for θ becomes

θ̈ + α1α2 sin θ = 0. (16)

Let us call the solution to this equation θs. Then the
NVE is

η̈ +
1

4

(

θ̇2s − 2α1α2 cos(θs)− α2
1 − α2

2

)

η = 0. (17)

Note that the equation of motion for θs implies

θ̈ + α1α2 sin θ = 0 →
d

dτ

(

θ̇2s − 2α1α2 cos θs

)

= 0,

→ θ̇2s − 2α1α2 cos θs = C0 (18)

Thus the NVE equation can be written as a simple
harmonic equation

η̈ +
1

4

(

C0 − α2
1 − α2

2

)

η = 0. (19)

We do not require Kovacic’s algorithm to tell us that
there is an analytic solution for this equation. The power
of differential Galois theory also guarantees that the re-
sult is really independent of the straight line solution
(Riemann surface) that one chooses. We conclude this
subsection with the jovial comment that we now know a
very precise sense in which String theory in AdS5×S5 is
like a harmonic oscillator.

Conclusions – In this paper we have shown that cer-
tain classical string configurations corresponding to a
string winding along two of the angles of a general class
of five-dimensional Einstein manifolds X5, realized as a
nontrivial S1 fibration over a 4-d base, is non-integrable.
The result highlights the limit of integrability within the
AdS/CFT correspondence. Integrability has been one of
the main areas of study for almost ten years. The pa-
per forces the AdS/CFT to bear and expand with the
newly discovered fact that most configurations beyond
AdS5 ×S5 are non-integrable, this requires a new dictio-
nary.

In all the previous examples in the literature homo-
geneity of the potential played a crucial role in the proof
[9, 16, 17]. A mathematical curiosity arises from the
fact that traditionally due to the works of Hadamard
and later of Anosov, chaos has been associated with the
motion of particles in negatively curved spaces through
the Jacobi equation. The class of five-dimensional Ein-
stein spaces used here have positive curvature. The main
mechanism for non-integrability is provided by winding
of the strings which is a property unique to strings and
therefore not well understood. More precisely, we found
an interesting interplay between topology c1 =

∫

dA and
dynamics as the Chern class determines the possibility of
an interaction term in the dynamical system. As pointed
out in the main terms in various cases the interaction,
and therefore non-integrability, appears as the product
of the Chern number and the winding number of the
string.

The direct connection between analytic non-
integrability and chaotic behavior is still open. This
question has been discussed in the literature and we
refer the reader to [9] for further details. For the sake
of disclosure we notice that we have not directly proved
that the systems discussed here are chaotic. However,
together with our previous publication [6], we believe
the case for outright chaotic behavior is overwhelmingly
strong.

Our work now opens the door to the interpretation of
many chaotic quantities in the context of the AdS/CFT
correspondence. For example, the meaning of: Lyapunov
spectrum, Kolmogorov-Sinai entropy and fractal dimen-
sion are but a few quantities expecting its quantum ana-
log in this context.
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