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Abstract

We investigate the marginally stable modes of the scalar (vector) perturba-

tions in the AdS soliton background coupled to electric field. In the probe limit,

we find that the marginally stable modes can reveal the onset of the phase transi-

tions of this model. The critical chemical potentials obtained from this approach

are in good agreement with the previous numerical or analytical results.

1 Introduction

The AdS/CFT correspondence [1] provides a powerful theoretical method to understand

the strongly coupled field theories. Recently it has been applied to study the holographic
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models of superconductors (superfluids) phase transitions since the work [2, 3]. For reviews

see [4]. Since the condensed matter physics deals with the systems at finite charge and finite

temperature, from the AdS/CFT correspondence the dual gravity should be described by a

charged black hole.

The phase transition studied in [2, 3] is actually a holographic superconductor/metal

phase transition. The model for holographic superconductors can be simply constructed

by an Einstein-Maxwell theory coupled to a complex scalar field. In particular, when the

temperature of the black hole is below a critical temperature, the black hole solution becomes

unstable to develop a scalar hair near the horizon. And the condensation of the scalar hair

breaks the U(1) symmetry of the system. From the AdS/CFT correspondence, the complex

scalar field is dual to a charged operator in the boundary field theory. And the breaking of

the U(1) symmetry in gravity causes a global U(1) symmetry breaking in the dual boundary

theory. This induces a superconductor (superfluid) phase transition [5].

The holographic insulator/superconductor phase transition was first studied in [6]. In

particular, they used a five-dimensional AdS soliton background [7] coupled to a Maxwell

and scalar field to model the holographic insulator/superconductor phase transition at zero

temperature. The normal phase in the AdS soliton is dual to a confined gauge theory

with a mass gap which resembles an insulator phase [8]. When the chemical potential is

sufficiently large beyond a critical value, the AdS soliton becomes unstable to form scalar

hair which is dual to a superconducting phase in the boundary field theory. The holographic

insulator/superconductor phase transition was also studied in [9, 10, 11, 12, 13].

To reveal the stability of a spacetime background, a powerful method is to study the

quasinormal modes (QNMs) of the perturbations in this background, for reviews see [14, 15,

16]. If the imaginary part of the QNMs is negative, the mode will decrease in time and the

perturbation will finally disappear which indicates that the background is stable against this

perturbation. On the contrary, if the imaginary part of the QNMs is positive, this implies

that the background is unstable against this perturbation. The interesting thing is that if

the perturbation has a marginally stable mode, i.e. ω = 0, one always expects that this is a

signal of instability, or rather a phase transition may occur. For the detailed discussions of

marginally stable modes, one can refer to [2].

In this paper, we employ the idea of marginally stable modes to study the s-wave and

p-wave holographic insulator/superconductor phase transitions in AdS soliton background at

zero temperature. The construction of the system is like the one in [6]. We take advantage of

Horowitz and Hubeny’s method [17] to study the QNMs of the scalar (vector) perturbations

of this system. By increasing the chemical potential from zero to some critical value, the

marginally stable modes will turn out. This means at the critical chemical potential the

AdS soliton background becomes unstable and will prefer to be an AdS soliton background

coupled with nonzero charged scalar (vector) fields. This argument is consistent with the
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previous studies on holographic insulator/superconductor phase transitions [6, 9, 10]. In

particular, the critical chemical potentials we get from the marginally stable modes are in

good agreement with the ones in [6, 9, 10]. Actually, there are multiple marginally stable

modes corresponding to various critical chemical potentials. These modes are related to the

modes of node n = 1, 2, 3 · · · . However, they are unstable due to the oscillations of scalar

(vector) field in the radial direction [2, 18]. By making use of the alternative approach, viz.

“shooting” method, we plot the behavior of the scalar (vector) fields depending on the radial

direction. From these diagrams, one can intuitively see the “nodes” of these fields. The

studies of QNMs in AdS soliton background are also investigated in [19, 20].

The paper is organized as follows. In Sect.(2), we study the marginally stable modes

of s-wave field in the probe limit. We find that the critical chemical potentials we derived

are consistent with the results obtained by previous works. By making use of the same

procedure, we explore the QNMs of p-wave field in the AdS soliton background in Sect.(3).

We draw our conclusions and make some discussions in Sect.(4).

2 S-wave perturbations

Following Ref.[6], we set up this model in the AdS soliton background [7]:

ds2 = L2 dr
2

f(r)
+ r2(−dt2 + dz2 + dy2) + f(r)dχ2. (1)

where, f(r) = r2 − r40/r
2 and L is the radius of AdS spacetime. In fact, this soliton solution

can be obtained from a five-dimensional Schwarzschild-AdS black hole by making use of two

Wick rotations. The asymptotical AdS space-time approaches to a topology of R1,2 × S1

near the boundary. And the Scherk-Schwarz circle χ ∼ χ + πL/r0 is required in order to

have a smooth geometry. The geometry looks like a cigar whose tip is at r = r0. Because

of the compactified direction χ, this background provides a gravity description of a three-

dimensional field theory with a mass gap, which resembles an insulator in the condensed

matter physics. The temperature in this background is zero.

It is well known that in this AdS soliton background a simple solution for Maxwell gauge

field is At = Const. = µ. Instead of At = 0 at the horizon required by the AdS black holes,

At can be any non-singular value at the tip of the AdS soliton.

In the probe limit, we introduce a charged scalar field ψ as a probe into this background

which is a neutral AdS soliton with a constant electric potential. The Lagrangian for the

charged scalar field is

Lmatter = −|∇µψ − iqAµψ|2 −m2|ψ|2. (2)
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The Euler-Lagrange equations of motion (EoMs) for ψ is

(∇µ − iqAµ)(∇µ − iqAµ)ψ −m2ψ = 0. (3)

In the following, we assume that ψ is real and ψ = F (t, r)H(χ)Y (z, y). Substituting ψ into

Eq.(3) and making the separation of the variables we can reach

∂2F (t, r)

∂r2
+ (

3

r
+
∂rf

f
)
∂F (t, r)

∂r
− L2

fr2
∂2F (t, r)

∂t2
+

2iqµL2

fr2
∂F (t, r)

∂t

+
L2

fr2
(q2µ2 −m2r2 − λ2r2

f
− ξ2)F (t, r) = 0. (4)

where λ and ξ are the eigenvalues of the following equations respectively

∂2H(χ)

∂χ2
+ λ2H(χ) = 0, (5)

∂2Y (z, y)

∂z2
+
∂2Y (z, y)

∂y2
+ ξ2Y (z, y) = 0. (6)

where λ = 2r0n/L, n ∈ Z due to the periodicity of H(χ) = H(χ + πL/r0) and ξ ∈ Z. For

simplicity we will set λ = ξ ≡ 0 which means that there are no momenta in the (z, y, χ)−
directions.

2.1 Critical behavior from marginally stable modes

Further, we define F (t, r) = e−iωtR(r) and Eq.(4) becomes (we have set L ≡ 1)

R ′′(r) + (
f ′

f
+

3

r
)R ′(r) +

1

fr2
[(ω + qµ)2 −m2r2]R(r) = 0. (7)

where a prime denotes the derivative with respect to r.

In order to investigate the phase transitions of this model, we recall that the marginally

stable modes can to some extent reveal this critical behavior [2]. In the studies of QNMs,

marginally stable modes correspond to ω = 0 which indicates that the phase transition or

the critical phenomena may occur. We will take advantage of the Horowitz and Hubeny’s

method [17] to study these QNMs.

It is convenient to convert the r-coordinate to x-coordinate, where x = 1/r. Therefore,

the infinite boundary is now at x = 0 while the tip is at x = x0 = 1/r0. In terms of this new

coordinate x, Eq.(7) becomes

x4∂xxR(x) +

[

− x3 +
x4∂xf(x)

f(x)

]

∂xR(x) +
1

f(x)

[

x2(ω + qµ)2 −m2

]

R(x) = 0. (8)
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Following the steps of Horowitz and Hubeny [17], we can multiply f(x)/(x − x0) to both

sides of the above equation, and we reach

S(x)∂2xR(x) +
T (x)

x− x0
∂xR(x) +

U(x)

(x− x0)2
R(x) = 0, (9)

where the coefficient functions are given by

S(x) =
f(x)x4

x− x0
, (10)

T (x) = −fx3 + x4∂xf(x), (11)

U(x) =

[

x2(ω + qµ)2 −m2

]

(x− x0). (12)

Note that x = x0 is a regular singular point of S(x), T (x) and U(x), and we can polynomially

expand them to a finite order like

S(x) =
M
∑

n=0

sn(x− x0)
n. (13)

where M is a finite integer. The series expansion of T (x) and U(x) can be similarly reduced.

Unlike the ingoing boundary conditions of scalar field near a black hole horizon, the

boundary conditions here can be a finite quantity at the tip of the AdS soliton. We can

expand R(x) = (x− x0)
α and substitute it into Eq.(9). Then to the leading order we get

α(α− 1)s0 + αt0 + u0 = −4x0α
2 = 0 =⇒ α = 0. (14)

This corresponds to looking for a solution of the form

R(x) = lim
N→∞

N
∑

n=0

an(x− x0)
n. (15)

Substituting (15) and (13) into (9) and comparing the coefficients of (x− x0)
n for the same

n we find that

an = − 1

Pn

n−1
∑

k=0

[k(k − 1)sn−k + ktn−k + un−k]ak, (16)

Pn = n(n− 1)s0 + nt0 + u0 = −4x0n
2. (17)

We set a0 = 1 due to the linearity of Eq.(9). The boundary conditions for the scalar field at

x = 0 is

R(0) = lim
N→∞

N
∑

n=0

an(−x0)n = 0. (18)
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And the algebraic equation (18) can solve the modes ω.

In the following numerical calculations, we restrict x0 = 1 and q = 1 just like the ones

in [6]. In practice, we will expand R(x) to a large order which is N = 300. In order to find

the marginally stable modes ω = 0 of the system, we should restrict our attention to the

potential U(x) in (12). One finds that ω and µ are symmetric (q = 1). This means that

when µ = 0 the lowest-lying modes of ω will exactly be identical to the lowest-lying critical

chemical potentials µc when ω = 0.1 Using this trick, we can easily find the critical chemical

potentials where the marginally stable modes arise.

-4 -3 -2 -1 0
1.0

1.5

2.0

2.5

3.0

m2

Μc

Figure 1: The critical chemical potentials for the marginally stable modes versus m2 of the

scalar field. The blue curve is taken from the analytical results in [13] while the red points

are numerically obtained from the QNMs. They are perfectly matched.

Fig.(1) shows the critical chemical potentials µc’s for various squared mass of the scalar

field. The red points are obtained from the numerical calculations of the marginally stable

modes while the blue curve is taken from the analytical results we have previously derived

in [13]. They agree with each other perfectly. In particular, when m2 = −15/4, µc ≈ 1.885

obtained from the marginally stable modes is in good agreement with the result µ2 = 1.88

which is the critical value for the onset of the holographic insulator/superconductor phase

transitions obtained in [6]. This implies that the marginally stable modes can indeed reveal

the phase transitions of this model.

Table (1) shows the first three lowest-lying critical chemical potentials for various m2’s.

The µc’s of the overtone number n = 0 are the critical chemical potentials shown in Fig.(1).

1Here, we only take care of the QNMs with positive real part. Therefore, the lowest-lying modes of ω

represent the modes which have the minimal or less minimal positive real parts.
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Table 1: The first three lowest-lying critical chemical potentials µc for various mass squares

obtained from the calculation of the marginally stable modes. The overtone numbers of

them are n = 0, 1, 2 from the top to the bottom.

m2 = −4 m2 = −15/4 m2 = −3 m2 = −2

1.373 1.885 2.396 2.815

3.658 4.226 4.792 5.246

6.029 6.603 7.189 7.655

Other critical chemical potentials of overtone numbers n = 1, 2 can also make the QNMs to

be marginally stable. However, they are expected to be unstable which can be understood

after the next subsection. The nodes n = 0, 1, 2 can also be intuitively seen in the next

subsection.

2.2 Critical behavior from the “shooting” method

Actually there is another way to study the critical behavior of this phase transition. It

was called the “shooting” method which was commonly used in the previous studies on

holographic superconductors [4]. Here, we will concisely describe how to make use of this

“shooting” method to study the critical behavior in AdS soliton background and compare it

with the results of “marginally stable modes” method.

We will work in the approximation that At = Const. = µ and the scalar field only depends

on r-direction as well as that it is too small to back-react the background. The EoMs of

ψ(r) is

ψ′′(r) + (
f ′

f
+

3

r
)ψ′(r) + (

µ2

r2f
− m2

f
)ψ(r) = 0. (19)

The boundary condition of ψ(r) at the tip is

ψ = a + b(r − r0) + · · · , (20)

and near the infinite boundary ψ(r) behaves as

ψ =
ψ(1)

r2−
√
4+m2

+
ψ(2)

r2+
√
4+m2

+ · · · (21)

In the following calculations, we will set ψ(1) = 0 in order to turn off the effect of the source

on the boundary field theory. 2

2It is well known that when 0 <
√
4 +m2 < 1 the scalar admits two different quantizations [21]. In
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The “shooting” method states that we can start with a initial value of ψ at the tip r0 and

then perform the numerical calculations of the EoMs of ψ Eq.(19) provided that the infinite

boundary conditions ψ(1) = 0 are satisfied. At the critical point of the phase transition, the

quantity of ψ is very close to zero. Therefore, we have set the initial value of ψ to be 0.01 in

our numerical calculations.
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Figure 2: The marginally stable curves of scalar fields corresponding to various critical

chemical potentials in the cases of different squared mass. The critical chemical potentials

for different curves are in the sequence µblue
c < µred

c < µgreen
c .

Fig.(2) shows the multiple marginally stable curves of the scalar fields R(x)3 in x = 1/r

coordinates for various m2. Take the plot of m2 = −15/4 for example, the first three lowest-

lying chemical potentials are in the sequence µblue
c < µred

c < µgreen
c . We find that the values

of µc’s obtained from the “shooting” method are perfectly consistent with the µc’s in Table

(1) derived from the “marginally stable modes” method. The blue line is for the minimal

value of µc. It starts from a very small initial value at the tip x = 1 and then monotonically

decrease to zero at the infinite boundary x = 0. There are no other intersecting points

this case, ψ(1) can either be a source or an expectation value according to the standard quantization or the

alternative quantization, respectively. In our paper, we will only focus on the standard quantization.
3Note that we have transformed the scalar field ψ(r) to R(x) in x = 1/r coordinates.
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between the blue line and the R(x) = 0 axis. This is the reason we call the mode with

µc ≈ 1.888 of node n = 0. For the red and green lines, they are related to µc = 4.234 and

µc = 6.615 respectively. The red line has one intersecting point with R(x) = 0 axis while the

green line has two. Therefore, as we have mentioned above, we can call the two modes with

nodes n = 1 and n = 2 respectively. However, the red and green lines are expected to be

unstable, because radial oscillations in x-direction of R(x) will cost energy [18]. In addition,

the arguments above are also appropriate for other diagrams in Fig.(2).

3 P-wave perturbations

In this section we extend our work to study an AdS soliton with p-wave vector fields. We

consider a five-dimensional SU(2) Einstein-Yang-Mills theory with a negative cosmological

constant following [22] . The action is

S =

∫

d5x
√
−g[1

2
(R− Λ)− 1

4
F a
µνF

a µν ], (22)

where F a
µν is the field strength of the SU(2) gauge theory and F a

µν = ∂µA
a
ν−∂νAa

µ+ǫ
abcAb

µA
c
ν .

a, b, c = (1, 2, 3) are the indices of the SU(2) Lie algebra generator. Aa
µ are the components

of the mixed-valued gauge fields A = Aa
µτ

adxµ, where τa are the generators of the SU(2)

Lie algebra with commutation relation [τa, τ b] = ǫabcτ c. And ǫabc is a totally antisymmetric

tensor with ǫ123 = +1.

As a consistent solution of the system, in the probe limit, the background of the metric

can also be an AdS soliton solution like (1) (We have scaled L ≡ 1, r0 ≡ 1),

ds2 =
dr2

r2g(r)
+ r2(−dt2 + dz2 + dy2) + r2g(r)dχ2, (23)

where we have set f(r) = r2g(r) = r2(1− 1/r4).

We adopt the ansatz for the gauge field as [18]

A(t, r) = φ(r)τ 3dt+ ψ(t, r)τ 1dz. (24)

Note that in order to consider the QNMs of the vector field, we have assumed ψ(t, r) depends

on t and r. In this ansatz, the gauge boson with nonzero component ψ(t, r) along z-direction

is charged under A3
t = φ(r). According to AdS/CFT dictionary, φ(r) is dual to the chemical

potential in the boundary field theory while ψ(t, r) is dual to the z-component of some

charged vector operator Ô. The condensation of ψ(t, r) will spontaneously break the U(1)3
gauge symmetry and induce the phenomena of superconducting on the boundary field theory.
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Define x = 1/r, the EoMs for φ(x) and ψ(t, x) = e−iωtR(x) in the x coordinate are

φ′′ + (
g′

g
− 1

x
)φ′ − R2

g
φ = 0, (25)

R ′′ + (
g′

g
− 1

x
)R ′ +

ω2 + φ2

g
R = 0. (26)

where a prime denotes the derivative with respect to x. A simple solution is that φ(x) =

Const. = µ and R(x) = 0 which corresponds to an neutral AdS soliton with a constant

electric potential.

In order to find the marginally stable modes of R(x), we can follow the steps in the

previous section. Eq.(26) can be transformed to

S(x)∂2xR(x) +
T (x)

x− 1
∂xR(x) +

U(x)

(x− 1)2
R(x) = 0, (27)

where, the coefficient functions are

S(x) =
gx4

x− 1
, (28)

T (x) = x3(−g + x∂xg), (29)

U(x) = x4(ω2 + µ2)(x− 1). (30)

Polynomially expand these three coefficient functions to a finite order and R(x) to an infinite

order, such as

S(x) =
M
∑

n=0

sn(x− 1)n, (31)

R(x) = lim
N→∞

N
∑

n=0

an(x− 1)n. (32)

where M is a finite integer. Substitute (32) and (31) into Eq.(27) we reach a recursion

relation as Eqs.(16) and (17) in the previous section. The solutions of ω can be derived by

requiring R(0) = 0.

In the practical numerical calculations, we take the order of the expansion of R(x) to

be N = 300. Notice again that in the potential U(x) (30) ω and µ are symmetric. Using

the trick we have adopted in the preceding section, we can easily find the marginally stable

modes ω = 0 when µ = µc. The first three lowest-lying critical chemical potentials are

µc ≈ 2.265, 4.742, 7.156. (33)

10



The minimal critical chemical potential µc ≈ 2.265 is in perfect agreement with the results

in [10, 13].

In order to study the behavior of the field R(x), we should first know the boundary

conditions for R(x) and then make use of the “shooting” method to numerically calculate it.

Notice again that we still assume the electric field At = Const. = µ here. At the tip, R(x)

behaves as

R(x) = a+ b(x− 1) + · · · , (34)

while

R(x) = R(0) +R(1)x2 + · · · . (35)

at the infinite boundary. In the following calculation we will set R(0) = 0 in order not to

source the field theory on the boundary.

Μ=2.265
Μ=4.741
Μ=7.156

0.0 0.2 0.4 0.6 0.8 1.0
-0.004

-0.002

0.000

0.002

0.004

0.006

0.008

0.010

x

RHxL

P-wave

Figure 3: The marginally stable curves of vector fields R(x) corresponding to various chemical

potentials. The critical chemical potentials for different curves are in the sequence µblue
c <

µred
c < µgreen

c .

We can see from Fig.(3) that there are multiple marginally stable curves corresponding to

different critical chemical potentials. The blue line is related to the minimal value µc = 2.265

which is obtained from the “shooting” method. Once again, we find that this critical value

of chemical potential is identical to the one derived from the “marginally stable modes”

method. In addition, other values of µc are also consistent. From what we have learned in

the last section, the blue line corresponds to the modes of node n = 0 while red and green

lines are related to the modes of node n = 1 and n = 2 respectively. However, the last two

modes, i.e., n = 1 and n = 2 are unstable due to the cost of energy.
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4 Discussions and Conclusions

In this paper, we have studied the marginally stable modes for the s-wave and p-wave

perturbations in AdS soliton background with a constant electric potential. At some critical

chemical potentials, the marginally stable modes, i.e. ω = 0 will arise. The importance

of the marginally stable modes is that they can reveal the instabilities of the background

which in our paper means that the neutral AdS soliton will become unstable to develop

charged scalar (vector) “hairs” in this AdS soliton background. Although the detailed phase

transitions cannot be seen in the study of QNMs, it actually has been announced in the

previous works [6, 9, 10] by the study of thermodynamics such as the free energy. This phase

transition in the gravity side will map to an insulator/superconductor phase transition on

the boundary field theory.

Despite that we do not exactly know the phase structures through the marginally stable

modes, they can actually indicate the onset of the phase transition. This has been argued by

Gubser in studying the holographic superconductor phase transitions [2, 18]. In particular,

marginally stable modes can be obtained by studying the QNMs of the perturbations. The

widely used method to study QNMs in asymptotically AdS spacetime was Horowitz and

Hubeny’s method [17]. In this paper, we have adopted this method to find that at some

critical chemical potentials, there indeed appeared the marginally stable modes. These

critical chemical potentials were in good agreement with those obtained from the previous

studies [6, 10, 13]. We also took advantage of the “shooting” method to numerically plot the

behaviors of the scalar (vector) fields in the radial direction. Therefore, one can intuitively

see the “nodes” of the marginally stable modes. In addition to the modes of the minimal

critical chemical potentials, we also studied other less lowest-lying marginally stable modes

by both methods. We asserted that these less lowest-lying marginally stable modes are

unstable because the oscillations of the scalar (vector) fields in radial direction will cost

energy.
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