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Abstract

We present a model-independent prescription for computing the gluon fusion production rate

of a composite Higgs boson, which arises as a pseudo-Nambu-Goldstone boson, using effective

lagrangians. The calculation incorporates three different effects due to the composite nature of

the Higgs, some of which were neglected previously. We apply the prescription to models with

and without the collective breaking mechanism. In sharp contrast with the case of a fundamental

Higgs scalar, the rate only depends on the decay constant f and is not sensitive to masses of new

particles. After including electroweak constraints, there is a substantial reduction in the rate, in

the range of 10 – 30 % or greater.
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I. INTRODUCTION

The Higgs boson is the last missing piece in the standard model (SM) of particle physics,

whose existence is all but assured by the precision electroweak data [1]. The hunt for the

Higgs is currently under way at the Tevatron and the Large Hadron Collider (LHC). Due to

the unique role of the Higgs in the electroweak symmetry breaking, its discovery will have

implications far beyond the mere observation of yet another new particle. In fact, there is

high hope that the Higgs will be the passage to a complete understanding of physics at the

TeV scale and beyond.

Measurements of the Higgs mass, as well as various production cross-sections and decay

branching ratios, will provide important constraints in formulating a theory of electroweak

symmetry breaking. In hadron colliders such as the Tevatron and the LHC, the most impor-

tant production mechanism is the gluon fusion channel, which relies on the effective coupling

of the Higgs to two gluons. This coupling, as it turns out, only arises at the one-loop level in

minimally coupled theories, and receives a contribution from colored particles with a signif-

icant coupling to the Higgs. In the SM there is only one such particle: the top quark, which

indeed gives the dominant contribution in the SM. However, in many theories beyond the SM

there are additional colored particles which could in principle have substantial impact on the

Higgs production rate. Indeed, in supersymmetric theories and universal extra-dimensional

models the gluon fusion rate is very sensitive to the masses of the top squark [2] and the first

Kaluza-Klein top quark [3], respectively. Historically this is the effect that is studied most

extensively. Recently there are efforts to systematically compute higher order QCD effects

of new colored particles, according to their quantum numbers, in the gluon fusion channel

[4]. For a recent update on the status of theoretical predictions on the Higgs production

within the SM, see Ref. [5].

In addition to new colored particles, the Higgs coupling to two gluons could be modified

by other new physics effects in a less transparent fashion, which nevertheless could turn

out to be equally, and in some cases more, important than effects of new colored particles.

To understand these other effects, it is most instructive to use the method of effective

lagrangians [6] by assuming all new physics effects, including that of new colored particles,

could be encoded in a series of higher dimensional operators made out of the SM fields.

Then the gluon fusion production of the Higgs is controlled by the following three operators
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FIG. 1: Diagrams (a) and (d) are the contributions to Og from the SM top and a heavy fermions

T or scalar t̃ . Diagrams (b) and (c) summarize the effects of OH and Oy.

[7]:

OH = ∂µ(H†H)∂µ(H
†H) , Oy = H†Hf̄LHfR , Og = H†HGµνG

µν . (1)

The operator receiving the most attention in the literature is Og, which results from inte-

grating out the colored particles, including the SM top quark, in the loop. Although formally

the procedure requires mh < 2mt, in practice it is found that the approximation works well

for the Higgs mass up to 1 TeV [8]. Therefore, in this framework the production rate has

no dependence on the Higgs mass at all. The operator OH enters because it contributes

to the Higgs kinetic term, ∂µh∂
µh, after electroweak symmetry breaking, while Oy modifies

the Higgs coupling to two fermions such as the top quarks. Diagrammatically, the effects

of the three operators are summarized in Fig. 1, where diagrams (a) and (d) correspond to

contributions to Og upon integrating out the SM top and a new colored particle, respec-

tively, while (b) and (c) demonstrate how OH and Oy could alter the Higgs coupling to two

gluons. In order to compute the Higgs production rate in the gluon fusion channel, all three

operators must be taken into account.

In this work we present a model-independent prescription for computing the coefficients of

the three operators for a composite Higgs boson, which arises as a pseudo-Nambu-Goldstone
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boson (PNGB). This class of models, along with weak-scale supersymmetry, are the two most

attractive ideas for addressing the quantum stability in the Higgs boson mass. The proposal

that the Higgs might be a PNGB, à la the pion of low-energy QCD, was first considered

in Refs. [9, 10] and later revitalized by the advance of little Higgs theories [11–13] and

holographic Higgs models [14, 15]. The importance of the gluon fusion production rate in

understanding the composite nature, or the lack thereof, of the Higgs was emphasized in

Ref. [16], where it was shown that this production rate is reduced from the SM expectation

in a generic composite Higgs model and enhanced in models where the Higgs mass is fine-

tuned.1

Although there have been several studies on the production rate of a composite Higgs

[18–25], these studies employed different approaches which may depend on the specific real-

izations of the pseudo-Goldstone nature of the Higgs boson. Our goal here is to demonstrate

the conceptual generality and simplicity of the effective lagrangian approach, which does not

depend on the particular mechanism stabilizing the mass of the Higgs boson. In some cases

we improve on previous calculations ignoring part of the effects we consider here and compute

the production rate properly, while in some other cases we re-derive the same results and

justify a posteriori the approximations made in previous works. In addition, we also provide

results on models in which the Higgs production rate have not been computed previously.

This paper is organized as follows: in Section II we review the effective lagrangian ap-

proach to compute the Higgs production rate, followed by a prescription to compute cH ,

cy, and cg in Section III. After that we apply the prescription to several models with and

without collective breaking mechanism in Section IV. Then in Section V we close out with

the summary and discussions.

II. EFFECTIVE LAGRANGIAN IN THE HIGGS PRODUCTION

We briefly overview the effective lagrangian approach [6] used to compute the Higgs

production rate in this study. The approach is quite general and applies regardless of whether

the Higgs is composite or not, as long as the new particles interacting with the Higgs are

slightly heavier than the weak scale and can be integrated out when studying properties of

1 For examples of enhancements in the Higgs production in models where the Higgs mass is fine-tuned, see

Refs. [3, 4, 17].
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the Higgs boson. Although we only consider models with one Higgs doublet, the assumption

will hold in multi-Higgs-doublet models as long as one Higgs doublet is much lighter than

all the other doublets, such as in the decoupling limit [26] of the two-Higgs-doublet model.

Defining the Higgs doublet H as

H =
1√
2





h+

h0



 =
1√
2





h1 + ih2

h3 + ih4



 , (2)

the effective lagrangian relevant for the gluon fusion production of the Higgs is, up to

dimension-six,

Leff = (DµH)†DµH +
(

yf f̄LHfR + h.c.
)

+
cH
2f 2

∂µ(H
†H)∂µ(H†H) +

(

cyyf
f 2

H†Hf̄LHfR + h.c.

)

+
cgαs

4π

y2t
m2

ρ

H†HGµνG
µν , (3)

where f and mρ are two generic mass scales related to the scale of new physics, and yf is

the SM Yukawa coupling. In particular, yt is the SM top Yukawa coupling. The operator

with coefficient cH gives a contribution to the (neutral) Higgs kinetic energy, after the

electroweak symmetry breaking, which requires an overall re-scaling of the Higgs to go back

to the canonically normalized kinetic term.2 The term with cy modifies the Higgs coupling

to the SM fermion, in particular the top quark. The last operator in Eq. (3) represents

contributions from new heavy colored particles to the Higgs-gluon-gluon coupling, which is

only induced at the one-loop level and hence the αs suppression in its coefficient. Given a

specific model, the dimensionless coefficients cH , cy, and cg can be readily computed.

In Eq. (3) we have ignored an operator,

cr
2f 2

Or ≡
cr
2f 2

H†H(DµH)†DµH , (4)

which is eliminated by a field re-definition. This is the operator basis adopted in the SILH

lagrangian [7]. Parameters in a general basis where cr 6= 0 and the SILH basis are related

by

cH
∣

∣

SILH
= cH − cr

2
, cy

∣

∣

SILH
= cy +

cr
4
. (5)

2 We neglect a custodially violating operator, |H†
↔
DµH |2, which does not contribute to the neutral Higgs

kinetic term upon electroweak symmetry breaking but nonetheless shifts the Z mass. This operator is

severely constrained by electroweak ρ parameter.
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It goes without saying that physical amplitudes only depend on the reparameterization-

invariant combination of parameters. One example is the combination cH + 2cy,

(cH + 2cy)
∣

∣

SILH
= cH + 2cy . (6)

which controls the on-shell Higgs coupling to the fermion [7].

Including the effect of the operators in Eq. (3) the partial width of h → gg can be

expressed as [7]

Γ(h→ gg)

Γ(h→ gg)SM
→

[

1− v2

f 2
Re

(

cH + 2cy − 6y2t cg
f 2

m2
ρ

)]

. (7)

In fact, Eq. (7) does not depend on the PNGB nature of the Higgs and can be applied to

any models once f and mρ are properly identified. Throughout this work we define

v =
(√

2GF

)− 1

2

= 246 GeV . (8)

As emphasized, the combination cH+2cy appearing in Eq. (7) in independent of the particu-

lar operator basis one chooses. Therefore one could compute cH+2cy in a general basis where

cr 6= 0 without explicitly going back to the SILH basis, which simplifies the computation,

and then calculate the production rate using Eq. (7).

In the SILH lagrangian [7], the scale f is identified with the “pion decay constant” in

a non-linear sigma model (nlσm) and mρ with the mass scale of the composite resonances

contributing to the loop-induced gluonic operator. Then the natural size of cH , cy, and cg is

order unity, and all three operators must be included when computing the cross-section. To

the contrary, in weakly-coupled theories where the Higgs appears as a fundamental particle

at the TeV scale, f → ∞ and only the gluonic operator is important. Two such examples

are the weak-scale supersymmetry [2] and universal extra dimensions [3].

It may seem that, since the effect of the compositeness is O(v2/f 2), the deviation in the

production rate would be in the order of a few percents for f & 1 TeV. However, it was

shown in Ref. [16] that all three coefficients in Eq. (7) tend to have the same sign that goes

in the direction of reducing the overall production rate. Therefore, there could be “pile-up”

effect so that the resulting change could be substantial. Indeed, we confirm this observation

when computing the rate in explicit models in Section IV.
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III. PRODUCTION OF A COMPOSITE HIGGS

In this section we show that the bulk of the calculation for cH , cy and cg in a composite

Higgs model can be done in full generality without referring to any specific models. We

mostly follow the notations in and summarize the results of Ref. [16].

A. cH

There are three possible sources for cH :

• The nlσm:

Within the nlσm the contribution to cH is most easily computed by observing that,

turning on a background Higgs field h3 → h3 + h, Eq. (3) gives rise to

LH ⊃ 1

4

[

1 +
(

cH +
cr
4

) h2

f 2

]

∂µh
3∂µh3 +

1

4
g2h2

(

1 +
cr
4

h2

f 2

)

W+
µ W

−µ , (9)

where we have included the effect of a non-vanishing Or that is generally present in

the nlσm. However, it is easy to convince oneself that, using the CCWZ formulation

of the nlσm [27, 28], the kinetic term of the neutral Higgs boson is not corrected at

any order in h/f once the Goldstone kinetic term is canonically normalized at the

leading order. We then conclude3

cH = −cr/4 , (10)

which is the “natural” basis for the nlσm. On the other hand, we see that cr can be

computed from the SM W boson mass in the presence of a background Higgs field:4

m2
W (h) =

1

4
g2h2

(

1− c
(σ)
H

h2

f 2

)

. (11)

Although not obvious in this formulation, it was proven in Ref. [16] that c
(σ)
H > 0.

• Integrating out heavy vectors:

3 This can also be derived using the fourth-rank tensor, T abcd, defined in Ref. [16].
4 At the level of dimension-six, cr is the only term contributing to the W± mass. See also footnote 2.

7



h

g

g

t

g

g

t

〈h〉 〈h〉

h

(a) (b)

〈h〉 〈h〉

Vµ
Φ

FIG. 2: Feynman diagrams for contributions to the Higgs production from integrating out a heavy

vector Vµ and a heavy scalar Φ are shown in (a) and (b), respectively. These contributions do not

depend on the PNGB nature of the Higgs.

A contribution to cH could follow from integrating out a heavy vector coupling to the

Higgs current. There are two types of currents which contribute:

Ja
HLµ = iH† σ

2

a↔
DµH , J−

HRµ = iHT ǫ
↔
DµH , (12)

where ǫ = iσ2. Denoting the vector fields coupling to Ja
HLµ and J−

HRµ by V a
µ and V +

µ ,

respectively, we parametrize the relevant interactions as

m2
L

2
V aµV a

µ + gρLγHV
aµJa

HLµ +m2
+V

+µV −
µ +

gρRζH√
2

(

V +µJ−
HRµ + h.c.

)

, (13)

from which we arrive at:

c
(v)
H =

g2ρLγ
2
Hf

2

4m2
L

+
g2ρRζ

2
Hf

2

m2
+

> 0 . (14)

See Fig. 2(a) for the diagrammatic contribution. It turns out that we also have c
(v)
H =

−c(v)r /4 in this case. Notice that in deriving Eq. (14) it is important to use a “universal

basis” [29] where all new physics effects are described by oblique operators involving

only vector bosons and Higgses, so that there are no corrections to vertices between

SM vectors and fermions. This is equivalent to using the SM equations of motion to

express the SM fermionic current in terms of operators involving only the Higgs and

vector fields. Notice there is no contribution to cy here and Eq. (14) is consistent with

(cH + 2cy)|SILH obtained from integrating out the vectors in Ref. [16].

• Integrating out heavy scalars:
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The only possible quantum numbers for a heavy scalar coupling to two Higgses at

the tree-level are a real electroweak singlet Φs, a real electroweak triplet Φa
r , and a

complex electroweak triplet Φa
c . However, a real triplet scalar does not contribute to

cH [16]. If we parametrize the relevant interactions in the effective lagrangian as

−1

2
Φs�Φs −

1

2
m2

sΦ
2
s + βsf ΦsH

†H (15)

−Φ∗
c�Φc −m2

c |Φa
c |2 + βcf

(

Φa
cH

T ǫ
σa

2
H + h.c.

)

, (16)

then we obtain

c
(s)
H = +

β2
c f

4

2m4
c

+
β2
sf

4

m4
s

> 0 . (17)

The diagrammatic contribution is shown in Fig. 2(b). Again Eq. (17) is consistent

with (cH + 2cy)|SILH obtained from integrating out the scalars in Ref. [16].

Note that all three contributions to cH are positive and go in the direction of reducing

the production rate [16]. Moreover, effects of integrating out heavy scalars and vectors are

independent of the PNGB nature of the Higgs and would be there whenever there are heavy

particles coupling to the Higgs at the tree-level, even if the Higgs is a fundamental scalar.

B. cg and cy

The computation of cg from integrating out heavy colored particles is performed via

the Higgs low-energy theorem [30, 31], which instructs us to compute the contribution to

the renormalization group running of the low-energy effective coupling constant due to the

heavy colored particle in the presence of a non-zero background Higgs field h. The leading

interaction between h and the gluons is then obtained by expanding the h-dependent mass

of the heavy particle in the one loop effective lagrangian:

Lhgg =
g2s

48π2

h

v

[

∑

rF

trF
∂

∂ log v
log det

(

m†
rF
(v)mrF (v)

)

+
1

4

∑

rS

trS
∂

∂ log v
log det

(

m†
rS
(v)mrS(v)

)

]

Ga
µνG

aµν , (18)

where the two sums are over Dirac fermions and complex scalars, respectively, while tr is the

Dynkin index of the multiplet, which is 1/2 for the fundamental representation, and m(h) is

the mass of heavy particle in the presence of the background Higgs field. Two assumptions
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are made in Eq. (18): i) the scalar Higgs h has a VEV, 〈h〉 = v, where v is defined in Eq. (8),

and ii) h has a canonical kinetic term. In the SILH basis condition i) is satisfied, while a

rescaling h→ h/
√

1 + cHv2/f 2 is required to bring the Higgs kinetic term back to canonical

normalization.5

For composite Higgs models we focus on the case of Dirac fermions in the fundamental

representation of SU(3)c. In a given model the fermion mass matrix in the top sector M(h)

is often not diagonal, and to compute cg using Eq. (18) one needs to solve for the mass

eigenvalue of the heavy top partner. On the other hand, the light mass eigenstate is taken

to be the SM top quark. Expanding with respect to the background field h, the top quark

mass can be written as

mt(h) =
λt√
2
h

(

1− c(t)y

h2

2f 2

)

+O(h5) , (19)

which contains the correction to the top Yukawa coupling c
(t)
y and must be included in the

computation. However, the effects of cg and c
(t)
y can be included at once if we use the full

fermion mass matrix M(h) in Eq. (18), without having to solve for the mass eigenvalues

explicitly. In other words,

1

2

∂

∂ log h
log

M(h)2

µ2

∣

∣

∣

∣

h=〈h〉
= 1− c(t)y

v2

f 2
+ 3y2t cg

v2

m2
ρ

, (20)

where we have neglected higher order terms in v/f .6 This observation is particularly useful

when there are multiple top partners and the mass matrix is difficult to diagonalize.

Summarizing the discussion so far, the effective on-shell coupling of the Higgs with two

gluons is

Lhgg =
g2s

48π2

h

v

[

1

2

∂

∂ log h
log

M(h)2

µ2

∣

∣

∣

∣

h=v

− cH
2

v2

f 2

]

Ga
µνG

aµν , (21)

5 In a general basis where cr 6= 0, the relation between 〈h〉 and v is derived from Eq. (9):

v2 = 〈h〉2
(

1 +
cr
4

〈h〉2
f2

)

.

In the SILH basis cr = 0 and we have 〈h〉 = v, while in a general basis the Higgs kinetic term needs to be

re-scaled by h → h/
√

1 + (cH + cr/4)〈h〉2/f2 and v = 〈h〉(1 + cr
8
〈h〉2/f2). So in the end we obtain the

same result as in the SILH basis.
6 As explained in footnote 5, there is a subtlety arising from the fact that, in a general basis where cr 6= 0,

the relation between 〈h〉 and v is non-trivial. However, this distinction in Eq. (20) is only higher order in

v/f and we could use 〈h〉 and v interchangeably.
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where cH = c
(σ)
H + c

(s)
H + c

(v)
H . On the other hand, the SM contribution is

L(SM)
hgg =

g2s
48π2

h

v
Ga

µνG
aµν . (22)

A comparison of the production rates could be obtained by squaring the coefficients of the

hGa
µνG

aµν operator.

IV. EXPLICIT MODELS

In this section we consider two classes of explicit examples: the little Higgs theories [11–

13], which employs the collective breaking mechanism, and the holographic Higgs theories

[14, 15]. In the first class we compute the production rate in the SU(5)/SO(5) littlest Higgs

[13] and its T-parity version [32, 33], as well as the SO(9)/SO(5)×SO(4) littlest Higgs with
a custodial symmetry [34], while in the second class we discuss two different implementations

of the top sector [35], which protect the Zbb vertex with a custodial symmetry [36], in the

SO(5)/SO(4) minimal composite Higgs model. We will refer the detail of each model to the

original construction.

A. The SU(5)/SO(5) littlest Higgs

The littlest Higgs [13], based on the SU(5)/SO(5) coset, is one of the most popular little

Higgs models. Because of the lack of the custodial symmetry, the original construction is

severely constrained by the precision electroweak measurements [37]. However, the con-

straint could be relaxed significantly if one only gauges one U(1) group [38], which leaves an

extra singlet scalar in the PNGB matrix. This is the version we consider below. The PNGB

matrix has the form

Π =











1
2
√
5
ηs H Φ

H† − 2√
5
ηs HT

Φ† H∗ 1
2
√
5
ηs











, (23)
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where Φ is a complex triplet with hypercharge Y = +1, H is the Higgs doublet with

Y = +1/2, and ηs is a singlet scalar without hypercharge7:

Φ =





Φ++ Φ+
√
2

Φ+
√
2

Φ0



 , H =





H1

H2



 =
1√
2





h1 + ih2

h3 + ih4



 . (24)

The Higgs VEV is 〈H〉 = (0, v)T/
√
2. The nlσm field Σ(x) has the form

Σ(x) = eiΠ/fΣ0e
iΠ/f = e2iΠ/fΣ0 , Σ0 =











112

1

112











, (25)

where 112 is a 2× 2 unit matrix. The gauge generators are defined as follows:

Qa
1 =





σa/2


 , Qa
2 =





−σa∗/2



 , (26)

Y = diag

(

1

2
,
1

2
, 0,−1

2
,−1

2

)

. (27)

The kinetic term can be written as

L =
f 2

8
Tr[DµΣ

†DµΣ] , (28)

DµΣ = ∂µΣ− i
∑

j

[

gjW
a
j

(

Qa
jΣ + ΣQa T

j

)]

− ig′Bµ(Y Σ+ ΣY ) , (29)

where gj is the coupling of the [SU(2)]j group and g′ that of the U(1)Y group.

1. cH

The SM W boson mass mW (h) can be computed using the kinetic term,

m2
W (h) =

1

2
g2f 2 sin2 h√

2f
, g2 =

g21g
2
2

g21 + g22
, (30)

from which cH follows by Eq. (11):

c
(σ)
H =

1

6
. (31)

Since the SM fermions are taken to transform under only one of the SU(2) gauge group, say

the upper [SU(2)]1, we identify the low-energy interpolating field for the SM gauge fields

7 It has been pointed out in Ref. [39] that a real singlet induces a quadratically divergent Higgs mass at

one-loop level. Thus the Higgs mass in this model is really fine-tuned.
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as W a
µ ≡ Aa

1µ, which will be kept fixed when integrating out the heavy gauge fields. Notice

that W a
µ is not a mass eigenstate. The interpolating field for the heavy combination is taken

to be the mass eigenstate: W ′ a ≡ (g1A
a
1 − g2A

a
2)/

√

g21 + g22. Then it is straightforward to

compute

mW ′ = gρLf , gρL ≡ 1

2

√

g21 + g22 , and γH = 1 , (32)

which leads to

c
(v)
H =

1

4
. (33)

A general and detailed implementation of this procedure can be found in the appendix B of

Ref. [16]. On the other hand, the triplet scalar potential is given by

V (Φ,Φ∗) = c+f
2

∣

∣

∣

∣

Φij +
i

2f
(HiHj +HjHi)

∣

∣

∣

∣

2

+ c−f
2

∣

∣

∣

∣

Φij −
i

2f
(HiHj +HjHi)

∣

∣

∣

∣

2

, (34)

which gives rise to

c
(s)
H =

(c+ − c−)
2

(c+ + c−)2
. (35)

Notice that the singlet scalar ηs, as it stands now, is an exact Goldstone boson. Additional

source of symmetry breaking must be present in order to give ηs a potential, which at the

same time would also contribute a mass to the Higgs boson. Then stability of the Higgs

mass would require ηs to be lighter than the Higgs [40]. Thus we do not consider the effect

of the singlet scalar.

We should also comment that in general the triplet receives a non-vanishing VEV, v′,

which is severely constrained by the precision electroweak data. The effect of v′ can be

reproduced within the effective lagrangian by adding to Eq. (3)

4v′ 2

v4
H†H(DµH

†DµH)− v′ 2

v4

∣

∣

∣
H†↔DµH

∣

∣

∣

2

. (36)

However, there is no contribution to cH + 2cy from the triplet VEV.

2. cg and cy

The top Yukawa sector of the littlest Higgs has the form

Lt = λ1fǫijkǫabχiΣjaΣkbu
c + λ2fUU

c (37)
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FIG. 3: The ratio of the Higgs production rates in the gluon fusion channel in the littlest Higgs

model over the SM expectation. The three curves, from top to bottom, are for c−/c+ = 1, 0.3, and

0, respectively. Precision electroweak constraints require f & 1.2 TeV.

where χ = (b t U), i, j, k = 1, 2, 3, and x, y = 4, 5. From the Yukawa interactions we can

work out the fermion mass matrix in the basis

(uc U c)M





t

U



 , (38)

from which we compute the determinant of the mass matrix squared:

Det
(

M†M
)

= 2λ21λ
2
2 f

4 sin2

√
2v

f
, (39)

1

2
v
∂

∂v
logDet

(

M†M
)

= 1− 2

3

v2

f 2
. (40)

In the above we have set the triplet VEV v′ = 0, whose effect is higher order in (v/f)2, since

the positivity of the triplet mass requires v′/v < v/(4f) [37].

Putting Eqs. (31), (33), (35), and (49) in Eq. (21) we obtain

Lhgg =
g2s

48π2

h

v

[

1−
(

7

8
+

(c+ − c−)
2

2(c+ + c−)2

)

v2

f 2

]

Ga
µνG

aµν . (41)

Therefore for f ∼ 1.2 TeV, which is allowed by the precision electroweak constraint and

corresponds to the limit c+ ≫ c− [38], the reduction from the SM expectation is at O(12%).

This number is slightly larger than the previous number obtained in Ref. [18], where some

of the effects were neglected. In Fig. 3 we show the deviation from the standard model

expectation for three different choices of c−/c+. One surprising feature of Eq. (41) is that

14



the mass of the heavy top partner does not enter into the production rate at all, in sharp

contrast to the MSSM and the UED models, where the rate is very sensitive to the stop

mass [2] as well as the 1st KK top mass [3]. We will see that this feature persists in other

types of composite Higgs models.

B. The (new) littlest Higgs with T-parity

Implementation of T-parity in the littlest Higgs model was initiated in Ref. [32] and

completed recently in Ref. [33], which model we focus here. The model is based on the coset

SU(5)

SO(5)
× [SU(2)× U(1)]L × [SU(2)× U(1)]R

[SU(2)× U(1)]V
, (42)

which contains two link fields Σ and X . The Higgs doublet is contained in Σ, which is

identical to that defined in Eq. (25) in the original littlest Higgs model, while X does not

enter into our calculation here. Results in this subsection are new.

1. cH

Only the Higgs doublet is even under T-parity while all other scalars, as well as the heavy

vector bosons, are T-odd. Thus there is no tree-level interaction between two Higgs scalars

and one single heavy scalars/vectors, which implies the only contribution to cH comes from

that of the nlσm. Since the part of the coset involving the Higgs is identical to the original

littlest Higgs, we only need to quote from Eq. (31):

cH =
1

6
. (43)

2. cg and cy

The top sector of the model embeds two doublets ψ1,2 and two singlets χ1,2 into incomplete

representations of SU(5), a 5 and a 5∗:

T1 =











ψ1

χ1

0











, T2 =











0

χ2

ψ2











. (44)
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Under T-parity we have ψ1 ↔ −ψ2 and χ1 ↔ χ2. The Yukawa coupling arises from the

following lagrangian:

λ1f

4
ǫijǫabc

(

ΣaiΣbjT 1 c +T[ΣaiΣbjT 1 c]
)

tR +
λ2f√
2
(χ1τ1 + χ2τ2) , (45)

where T[O] is the image of O under T-parity, and τ1,2 are two additional singlets transform-

ing under T-parity as τ1 ↔ τ2. The T-parity eigenstates are

ψ1 − ψ2√
2

= σ2





tL

bL



 , χ± =
χ1 ± χ2√

2
, τ± =

τ1 ± τ2√
2

. (46)

In the end only the T-even partners of the SM top participate in the cancellation of quadratic

divergences, and the mass matrix is defined in the basis

(t̄L, χ̄
+)M





tR

τ+



 , (47)

from which we compute

Det
(

M†M
)

=
1

8
λ21λ

2
2 f

4 sin2

√
2v

f
, (48)

1

2
v
∂

∂v
logDet

(

M†M
)

= 1− 2

3

v2

f 2
. (49)

Combining the results we obtain

Lhgg =
g2s

48π2

h

v

[

1− 3

4

v2

f 2

]

Ga
µνG

a µν . (50)

The constraint on f is very weak in models with T-parity. In this model it was found that

f & 500 GeV is still allowed [33], at which value the reduction could approach 35%. In

Fig. 4 we plot the ratio of the predicted production rate in the T-parity scenario over the

standard model versus f .

C. The SO(9)/SO(5) × SO(4) littlest Higgs with custodial symmetry

This model alleviates the constraint from the electroweak ρ parameter with the help of

the custodial symmetry. We use the same basis for the SO(9) generators, as well as the

SU(2)L×SU(2)R ∼= SO(4) generators, as in Ref. [34]. The structure of the model is similar
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FIG. 4: The ratio of the Higgs production rates in the gluon fusion channel in the (new) littlest

Higgs model with T-parity [33] over the SM expectation. Precision electroweak constraints is quite

weak and allow f & 500 GeV.

to that of the SU(5)/SO(5) model, with the nlσ field Σ(x):

Σ(x) = eiΠ/fΣ0e
iΠ/f = e2iΠ/fΣ0 , Σ0 =











114

1

114











, (51)

where 114 is a 4×4 unit matrix. The PNGBmatrix contains the following scalars transforming

under SU(2)L × SU(2)R,

h : (2L, 2R) φ0 : (1L, 1R) φab : (3L, 3R) (52)

and is given by

Π =
−i
4











0
√
2~h −Φ

−
√
2~hT 0

√
2~hT

Φ −
√
2~h 0











, (53)

where ~h = (−h2,−h1,−h4, h3) and Φ = φ0+4φabT laT rb. Here T la and T rb are the generators

for the SU(2)L and SU(2)R, respectively.

Inside the SO(9) the following subgroups are gauged:

SO(4) ∼= SU(2)L × SU(2)R : τ la =





T la

05



 τ ra =





T ra

05



 ,

SU(2)× U(1) : ηla =





05

T la



 ηr3 =





05

T r3



 .
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The kinetic energy of the Goldstone bosons is

L =
f 2

4
Tr[DµΣD

µΣ] , DµΣ = ∂µΣ + i[Aµ,Σ] , (54)

Aµ = gLW
la
SO(4)τ

la + gRW
ra
SO(4)τ

ra + g2W
laηla + g1W

r3ηr3 . (55)

1. cH

The mass of the SM W boson in this model are given by

m2
W (h) = g2f 2 sin2 h

2f
, g2 =

g22g
2
L

g22 + g2L
, (56)

leading to

c
(σ)
H =

1

12
. (57)

Again the SM fermions are assumed to transform only under SU(2) × U(1), implying we

need to hold fixed W la and W r3 when integrating out the heavy mass eigenstates, which are

taken to be

B′ =
g1W

r3 − gRW
r3
SO(4)

√

g21 + g2R
, W ′a =

g2W
la − gLW

la
SO(4)

√

g22 + g2L
, W r± =

W r1
SO(4) ∓ iW r2

SO(4)√
2

. (58)

The masses of the heavy gauge bosons are

mB′ =
√

g21 + g2R f ≡ gρBf , mW ′ =
√

g22 + g2L f ≡ gρLf , mW r± = gR f ≡ gρRf , (59)

from which we compute γH = 1/2, ζH = 1/4, and

c
(v)
H =

1

8
. (60)

The scalar potential in this model is given by

λ−
1
f 2(φ0 −H0)2 + λ+

1
f 2(φ0 +H0)2

+λ−
3
f 2(φab −Hab)2 + λ+

3
f 2(φab +Hab)2 +∆λ3

(

φa3 +Ha3
)2

, (61)

whereH0 = |~h|2/(2f) andHab = [(hchc−h4h4)δab−2hahb−2ǫabchch4]/(8f). The contribution

to cH is

c
(s)
H =

(λ−
1
− λ+

1
)2

4(λ−
1
+ λ+

1
)2

+
(λ−

3
− λ+

3
)2

16(λ−
3
+ λ+

3
)2
. (62)
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FIG. 5: The ratio of the Higgs production rates in the gluon fusion channel in the littlest Higgs

model with the custodial symmetry over the SM expectation. The three curves, from top to bottom,

are for λ−
1
/λ+

1
= λ−

3
/λ+

3
= 1, 0.3, and 0, respectively. Precision electroweak constraints require

f & 700 GeV.

2. cg and cy

In the top sector one introduces one SO(4) vector ~X which includes two SU(2)L doublets,

X1 = (U1, ψ1)
T and X2 = (ψ2, U2)

T , with hypercharges 1/6 and 7/6, respectively. An

additional top-like singlet tc is also introduced to combine with ~X c to form a SO(5) vector.

The top Yukawa coupling is then

Lt = y1f( ~X c T , tc, 04)Σ





05

~qt



+ y2f ~X T ~X c + h.c. , (63)

where ~qt is the third generation quark doublet Q3 = (t, b)T written in the SO(4) notation,

as explained in the appendix of Ref. [34]. There are six top-like quarks in the construction,

whose mass matrix is defined as

(t, U1, U2)M











tc

U c
1

U c
2











. (64)

The determinant of the mass matrix-squared can be computed:

Det
(

M†M
)

=
1

4
y21y

4
2 f

6 sin2 v

f
, (65)

1

2
v
∂

∂v
log Det

(

M†M
)

= 1− 1

3

v2

f 2
. (66)
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Putting everything together we have

Lhgg =
g2s

48π2

h

v

[

1−
(

7

16
+

(λ+
1
− λ−

1
)2

8(λ+
1
+ λ−

1
)2

+
(λ+

3
− λ−

3
)2

32(λ+
3
+ λ−

3
)2

)

v2

f 2

]

Ga
µνG

aµν . (67)

Because of the custodial symmetry, the electroweak constraint on this model is quite weak,

with the f being as low as 700 GeV [34]. In this case, the reduction from the SM expectation

is 15% in the limit λ−
1
≫ λ+

1
and λ−

3
≫ λ+

3
. In Fig. 5 we again show the prediction in the

custodial littlest Higgs model over the standard model rate, by choosing λ−
1
/λ+

1
= λ−

3
/λ+

3
=

1, 0.3, and 0. The gluon fusion production of the Higgs in this model has not be computed

previously.

D. The SO(5)/SO(4) minimal composite Higgs model

The nlσm field is parametrized by

Σ = Σ0e
iΠ/f , Σ0 = (0, 0, 0, 0, 1) , Π = i





04 −~h
~hT 0



 . (68)

The kinetic term is simply
f 2

2
(DµΣ)(D

µΣ) . (69)

Below the mass scale of the CFT resonances, mρ = gρf , the spectrum consists of only

the SM particles and the Higgs boson. However, in order to satisfy the Zbb constraint,

the top sector requires specific choices of SO(5) representations. Following Ref. [35], we

will consider two such choices, where the fermions in the top sector fill out a 5 (MCHM5)

and a 10 (MCHM10) of SO(5), respectively. In these cases, it was found that there exist

anomalously light fermionic states below mρ, whose effect should be considered within the

effective lagrangian.

1. cH

The W mass is given by

m2
W (h) =

1

4
g2f 2 sin2 h

f
, (70)

from which we obtain

c
(σ)
H =

1

3
. (71)
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Since the SO(5)/SO(4) coset describes interactions below the scale mρ, which contains

only the SM particles, the Higgs, and the anomalously light fermionic resonances, it is not

necessary to include effects of integrating out spin-1 resonances in the CFT, whose masses

are at or heavier than mρ.
8

2. cg and cy

The effective lagrangian in the top sector can be constructed following the philosophy of

Ref. [41], by considering a weakly-coupled sector of elementary fermions qL = (tL, bL) and

tR, and a composite sector comprising the Higgs as well as fermions transforming under

full representations of SO(5). The composite fermions are ΨL and ΨR sitting in the 52/3

and 102/3 of SO(5)× U(1)X in MCHM5 and MCHM10, respectively. Note the hypercharge

Y = T 3
R +X . Furthermore, the Higgs only couples to the composite fermions in an SO(5)

invariant fashion. The composite and elementary sectors are linearly coupled only through

the mass mixing term between the elementary and composite fermions, upon which the SM

Yukawa interactions arise. In the end, the mass eigenstates, and hence the SM fermions, are

linear combinations of elementary and composite states. The SM Yukawa coupling obviously

is proportional to the “partial compositeness” of the SM field, resulting in the top quark

being very composite, which is the reason for the lightness of its partners within the same

SO(5) multiplet [35].

Schematically, the effective lagrangian looks like

Ltop = LΨ + Lmix , (72)

where LΨ is the SO(5) invariant Yukawa coupling of ΨL and ΨR with the Higgs. The

MCHM is equivalent to a 5D theory based on the AdS5 space, according to the AdS/CFT

correspondence [42]. From the 5D perspective, ΨL and ΨR are the left-handed and right-

handed chirality of one single 5D fermion and LΨ arises from the gauge-covariant derivative

of the 5D fermion when the Higgs is identified with the A5 component of the 5D gauge field

[15]. On the other hand, the mass mixing term is

Lmix = λ1f q̄LQR + λ2fT̄LtR . (73)

8 We are grateful to R. Rattazzi for pointing this out to us.
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In the above QR and TL are components of ΨR and ΨL with the appropriate quantum

numbers.

Now we are ready to write down the effective Yukawa couplings.

• MCHM5: ΨL includes one SU(2)L doublets q′L = (t′L, b
′
L), one singlet TL and one exotic

doublet Q̃L = (χL, T̃L) with hypercharge 7/6, while ΨR contains one singlets t′R, one

doublet QR = (TR, BR), and one exotic doublet Q̃R = (χR, T̃R). Notice that χR has

the electric charge Q = +5/3. These composite fermions are embedded into 5’s, using

the convention of SO(5) matrices in [16], as follows:

ΨL =
1√
2





















b′L + χL

i(b′L − χL)

(t′L + T̃L)

−i(t′L − T̃L)
√
2TL





















, ΨR =
1√
2





















BR + χR

i(BR − χR)

(TR + T̃R)

−i(TR − T̃R)
√
2t′R





















. (74)

The top Yukawa coupling is written as9

L5 = λmΨ̄LΨR + λy(Ψ̄LΣ
T )(ΣΨR) + Lmix + h.c. , (75)

where Lmix is the mixing between elementary fermions, qL = (tL, bL) and tR, and

the composite fermions, as defined in Eq. (73). Given the U(1)X charge assign-

ment, X = 2/3, there are four top-like Dirac fermions in MCHM5: (t′L, TL, tL, T̃L)

and (TR, T̃R, t
′
R, tR), leading to

Det
(

M†M
)

=
1

8
λ21λ

2
2λ

2
yλ

2
m f

8 sin2 2v

f
, (76)

1

2
v
∂

∂v
logDet

(

M†M
)

= 1− 4

3

v2

f 2
. (77)

This result is the same as that coming from an alternative construction of the top

Yukawa coupling in Ref. [21], which also takes into account the effect of cH correctly.

The same rate has also been computed in Ref. [23], whose results we agree with.

It is perhaps worth commenting that the rate computed in Ref. [23] ignored the con-

tribution of the fermionic top partners, which could have sizable couplings to the

Higgs boson and thus modify the Higgs-gluon-gluon vertex significantly when the top

partners are light. Our results here justify this approximation a posteriori.

9 See alternative constructions of the effective top sector in Refs. [21, 43].
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• MCHM10: The 102/3 of SO(5)×U(1)X can be decomposed into 4⊕6 under the SO(4).

The 6 of SO(4) further decomposes into (3L, 1R) and (1L, 3R) under SU(2)L×SU(2)R.
Since the electric charge Q = T 3

L + Y = T 3
L + T 3

R +X , it is simple to see that there is

one top-like fermion in each of (3L, 1R) and (1L, 3R), which we denote by uL and u′L,

respectively. Along with the other two top-like fermions, t′L and TL, in the 4, these

fermions are embedded in ΨL as

ΨL =
1

2





















∗ i
2
(uL + u′L) ∗ ∗ ∗

− i
2
(uL + u′L) ∗ ∗ ∗ ∗

∗ ∗ ∗ − i
2
(uL − u′L) −i(t′L + TL)

∗ ∗ i
2
(uL − u′L) ∗ (t′L − TL)

∗ ∗ i(t′L + TL) −(t′L − TL) ∗





















, (78)

and similarly for ΨR. The top Yukawa coupling is

LΨ = λmTr(Ψ̄LΨR) + λyΣΨ̄LΨRΣ
T + Lmix + h.c. . (79)

Including the elementary states, there are five top-like Dirac fermions,

(t′L, TL, tL, uL, u
′
L) and (TR, t

′
R, tR, uR, u

′
R), giving rise to

Det
(

M†M
)

=
1

256
λ21λ

2
2λ

2
m(2λm + λy)

2 f 10 sin2 2v

f
, (80)

1

2
v
∂

∂v
log Det

(

M†M
)

= 1− 4

3

v2

f 2
, (81)

which, interestingly, gives the same correction as in MCHM5 in Eq. (77). Eq. (81) has

not been computed previously.

In the end, we arrive at the result

Lhgg =
g2s

48π2

h

v

[

1− 3

2

v2

f 2

]

Ga
µνG

a µν . (82)

The constraint from the electroweak S parameter prefers v2/f 2 to be in the range of 0.1 –

0.3 [35].10 For example, if f ∼ 700 GeV, the resulting suppression can be as large as 65%.

In Fig. 6 we plot the ratio of the MCHM predicted rate over the standard model versus f .

10 Such values of v2/f2 require some mild fine-tuning to achieve. It would be interesting to consider to CFT

dual of the warped KK-parity [44] to see if the tuning could be reduced.
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FIG. 6: The ratio of the Higgs production rates in the gluon fusion channel in the holographic Higgs

model over the SM expectation. With some mild tuning, precision electroweak constraints allow 400

GeV . f . 800 GeV.

V. SUMMARY AND DISCUSSIONS

In this work we have provided a general prescription for computing the gluon fusion

production of a composite Higgs. Using effective lagrangians the calculations boils down to

computing cH , cy, and cg, the coefficients of three dimension-six operators relevant for the

Higgs production. Contributions to cH come from the nlσm as well as integrating out heavy

vectors and scalars, which effect is frequently ignored in previous studies. On the other hand,

effects of cy and cg are easily incorporated by computing the determinant of the fermion mass

matrix, without having to solve for the mass eigenvalues and eigenstates. We find that in the

end the production rate only depends on the decay constant f and is insensitive to masses

of the top partners, which is in sharp contrast with the case of a fundamental Higgs scalar.

The effects we considered here are at O(v2/f 2), which a priori is only at the percent level.

However, because all the effects go in the same direction of reducing the production rate, the

pile-up effect becomes important and the resulting reduction could be in the range of 10 –

30 % or greater. It has been claimed that measurements of this production rate at the LHC

could have an uncertainty in the order of 20% [45]. Our study provides a strong motivation

to further reduce the uncertainty in experimental extraction of the Higgs production rate at

the LHC.

In Fig. 7 we show the reduction in the gluon fusion rate for the models considered in
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FIG. 7: The predicted gluon fusion production rates from various composite Higgs models considered

in this work. The fmin, defined as the smallest value allowed by precision electroweak constriants,

are: 1.2 TeV (littlest Higgs), 500 GeV (T-parity), 700 GeV (custodial littlest Higgs), and 500 GeV

(MCHM).

this work. We plot the predicted rate over the SM expectation versus the decay constant f

in unit of fmin, which is defined as the smallest value allowed by the precision electroweak

constraint. We choose fmin = 1.2 TeV, 500 GeV, 700 GeV, and 500 GeV for the littlest

Higgs, the T-parity model, the custodial littlest Higgs, and the MCHM, respectively. The

reduction is substantial across a wide range of f .

Last but not the least, we would like to comment on the effect of higher order QCD

corrections, as they are known to be quite large in the particular channel of gluon fusion

production [5]. The important observation here is that the strategy of integrating out the

heavy colored particles by assuming their masses are much larger than that of the Higgs is

validated at the level of NNLO QCD corrections [46]. Since in models we considered so far

the top partners have the same SU(3)c quantum number as the SM top quark, we speculate

that the QCD corrections in the case of integrating out the top partners should be similar to

that from integrating out the SM top quark. As such, the higher order QCD effects should

factor out of the effects due to the composite nature of the Higgs. Needless to say, this is

an important question deserving further studies, which is nonetheless beyond the scope of

the current work.
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