
This is the accepted manuscript made available via CHORUS. The article has been
published as:

The one-loop six-dimensional hexagon integral with three
massive corners

Vittorio Del Duca, Lance J. Dixon, James M. Drummond, Claude Duhr, Johannes M. Henn,
and Vladimir A. Smirnov

Phys. Rev. D 84, 045017 — Published 17 August 2011
DOI: 10.1103/PhysRevD.84.045017

http://dx.doi.org/10.1103/PhysRevD.84.045017


DF10892

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

HU-EP-11/22 CERN–PH–TH/2011-105 SLAC–PUB–14458 LAPTH-016/11
IPPP/11/21 DCPT/11/42 NSF-KITP-11-072

The one-loop six-dimensional hexagon integral

with three massive corners

Vittorio Del Duca(1,2), Lance J. Dixon(3,4), James M. Drummond(4,5)

Claude Duhr(6,2), Johannes M. Henn(7,2), Vladimir A. Smirnov(8)

(1) INFN, Laboratori Nazionali Frascati, 00044 Frascati (Roma), Italy
(2) Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA

(3) SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94309, USA
(4) PH-TH Division, CERN, Geneva, Switzerland
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Abstract

We compute the six-dimensional hexagon integral with three non-adjacent exter-
nal masses analytically. After a simple rescaling, it is given by a function of six
dual conformally invariant cross-ratios. The result can be expressed as a sum of
24 terms involving only one basic function, which is a simple linear combination
of logarithms, dilogarithms, and trilogarithms of uniform degree three transcen-
dentality. Our method uses differential equations to determine the symbol of the
function, and an algorithm to reconstruct the latter from its symbol. It is known
that six-dimensional hexagon integrals are closely related to scattering amplitudes
in N = 4 super Yang-Mills theory, and we therefore expect our result to be helpful
for understanding the structure of scattering amplitudes in this theory, in partic-
ular at two loops.



1 Introduction

Scalar n−point integrals in dimensions D > 4 are interesting objects for a number of reasons.
They appear in the O(ǫ) part of (D = 4 − 2ǫ)-dimensional one-loop amplitudes [1], which are
required for computations at higher loop orders.

Quite generally, higher-dimensional scalar integrals are related to tensor integrals in D = 4
dimensions [2]. In particular, theD = 6 dimensional hexagons are related to finite tensor integrals
[3] that appear in N = 4 super Yang-Mills (SYM). More precisely, they appear as derivatives
of four-dimensional two-loop tensor integrals. Moreover, applying a further differential operator,
the integrals reduce to four-dimensional one-loop tensor integrals [4]. See Ref. [5] for related
work on differential equations relevant for integrals in N = 4 SYM.

Finite dual conformal invariant functions [6, 7] are also prototypes of functions that can appear
in the remainder function of MHV amplitudes and the ratio function of non-MHV amplitudes
in N = 4 SYM [8, 9, 10]. Recently, the massless and one-mass hexagon integrals in D = 6
dimensions were computed in Refs. [4, 11, 12]. It was noted that the massless hexagon integral in
D = 6 resembles very closely the analytical result of the two-loop remainder function for n = 6
points [13, 14, 15]. In this note, we extend the computations of hexagon integrals in D = 6
dimensions to the case of three non-adjacent external masses.

Our strategy is the following. We derive simple differential equations that relate the three-
mass hexagon to known pentagon integrals. These differential equations, together with a bound-
ary condition, completely determine the answer in principle. We find it convenient to first
compute the symbol [16] of the answer, and then reconstruct the function from that symbol.

2 Integral representation and differential equations

We consider the hexagon integral with three massive corners,

H9 ≡
∫

d6xi

iπ3

1

x2
1ix

2
2ix

2
4ix

2
5ix

2
7ix

2
8i

, (1)

where we used dual (or region) coordinates pµj = xµ
j − xµ

j+1 (with indices being defined modulo
9), and xµ

ij = xµ
i − xµ

j . The on-shell conditions read x2
12 = 0, x2

45 = 0 and x2
78 = 0. As a scalar

integral, H9 is a function of the (non-zero) external Lorentz invariants x2
jk. We work in signature

(−+++), so that the Euclidean region has all (non-zero) x2
jk positive.

Dual conformal covariance [6, 7] ofH9, in particular under the inversion of all dual coordinates,
xµ → xµ/x2, allows us to write

H9 ≡
1

x2
15x

2
27x

2
48

Φ9(u1, . . . , u6) , (2)
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where the cross ratios

u1 ≡
x2
25x

2
17

x2
15x

2
27

, u2 ≡
x2
58x

2
41

x2
48x

2
15

, u3 ≡
x2
82x

2
74

x2
27x

2
48

,

u4 ≡
x2
24x

2
15

x2
14x

2
25

, u5 ≡
x2
57x

2
48

x2
47x

2
58

, u6 ≡
x2
81x

2
72

x2
82x

2
17

,

(3)

are invariant under dual conformal transformations. Furthermore, the one-loop hexagon integral
with three non-adjacent masses is invariant under the action of the dihedral symmetry group
D3 ≃ S3, generated by the cyclic rotation c and the reflection r acting on the dual coordinates
via

xµ
j

c−→ xµ
j+3 and xµ

j

r−→ xµ
9−j , (4)

where as usual all indices are understood modulo 9. It is easy to see that under the symmetry
the six conformal cross ratios group into two orbits of three elements,

u1
c−→ u2

c−→ u3
c−→ u1 , u4

c−→ u5
c−→ u6

c−→ u4 ,

u1
r←→ u3 , u4

r←→ u5 ,

u2
r←→ u2 , u6

r←→ u6 .

(5)

One can easily derive a differential equation for H9 by noting that

(x21 · ∂x2
+ 1)

1

x2
1ix

2
2i

=
1

(x2
2i)

2
. (6)

Applying this differential operator to Eq. (1), we find

(x21 · ∂x2
+ 1)H9 =

∫

d6xi

iπ3

1

(x2
2i)

2x2
4ix

2
5ix

2
7ix

2
8i

≡ P8 . (7)

The one-loop pentagon integral P8 appearing as an inhomogeneous term in this equation is
equivalent to a known four-dimensional pentagon integral [4]1,

P8 ≡
1

x2
25x

2
27x

2
48

Ψ8(u3, u4u2, u5) . (8)

The latter is given by

Ψ8(u, v, w) =
1

1− u− v + uvw

[

log u log v + Li2(1− u) + Li2(1− v) + Li2(1− w)

− Li2(1− uw)− Li2(1− vw)
]

.
(9)

We can rewrite Eq. (7) as a differential equation for the rescaled hexagon integral Φ9(u1, . . . , u6)
that depends on cross-ratios only,

D1Φ9(u1, . . . , u6) = Ψ8(u3, u4u2, u5) , (10)

1In Refs. [4, 5], the notation Ψ̃ was used for Ψ8.
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Figure 1: (a) depicts the representation of H9 as a line integral, see Eqs. (12) and (13). The differential
operator in Eq. (7) localizes the y1 integration to x2, yielding P8(x2, x4, x5, x7, x8), see (b).

where
D1 ≡ u1 + u1u6(u6 − 1)∂6 + (u4 − 1)∂4 + u1(u1 − 1)∂1 + u1(1− u6)u3∂3 , (11)

with ∂i ≡ ∂/∂ui. By cyclic and reflection symmetry, we have a total of six differential equations.
It turns out that only five of them are independent. The remaining freedom can be fixed,
e.g., by the boundary condition H9(u1, u2, u3, 0, 0, 0) = H6(u1, u2, u3), with H6 given explicitly
in Refs. [4, 11]. (Alternatively, one could derive further differential equations, as in Ref. [4]).
Therefore, the set of equations and the boundary condition completely determine H9.

In the next section, we will use this set of differential equations to determine the symbol S(Φ̃9),
where Φ̃9 is obtained from Φ9 by a simple rescaling, see Eq. (16). Then, we will reconstruct the
function Φ̃9 (and equivalently H9) from its symbol.

We note that there is a simple line integral representation of H9 [4], see Fig. 1(a),

H9 =

∫ 1

0

dξ1dξ4dξ7
1

(y1 − y4)2(y4 − y7)2(y7 − y1)2
, (12)

where yµ1 = xµ
1 + ξ1x

µ
21, y

µ
4 = xµ

4 + ξ4x
µ
54 and yµ7 = xµ

7 + ξ7x
µ
87. The pentagon integral P8 can be

expressed in a similar way, which allows us to write

H9 =

∫ 1

0

dξ1P8(y1(ξ1), x4, x5, x7, x8) . (13)

In this form, the differential equation (7) has the interpretation of localizing one of the line
integrals, in this case y1(ξ1) → x2, see Fig. 1(b). It is interesting that similar integrals where
certain propagators are localized at cusp points have also appeared in computations of two-loop
Wilson loops [17].

From this discussion it is also clear that the integral reduces further in degree under the action
of other differential operators, until one eventually obtains a rational function. More explicitly,
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the operator (x54 · ∂x5
+1) acting on P8 similarly gives a first-order differential equation relating

Ψ8 to a single-log function, namely a 3-mass box integral with two doubled propagators,

X7 ≡
∫

d6xi

iπ3

1

(x2
2i)

2(x2
4i)

2x2
7ix

2
8i

≡ 1

x2
25x

2
27x

2
58

χ7(u3u5) (14)

where χ7(y) = log(y)/(y− 1). Acting further on X7 with (x87 · ∂x8
+1) gives the 3-mass triangle

with three doubled propagators, which is a constant up to the usual prefactors, 1/(x2
25x

2
58x

2
82).

The representation (12) may also be useful for numerical checks. For future reference, it can
be rewritten as

Φ9(u1, . . . , u6)

=

∫ 1

0

dξ1dξ4dξ7
(u2ξ̄1ξ̄4 + u4u2ξ1ξ̄4 + ξ4)(u3ξ̄4ξ̄7 + u5u3ξ4ξ̄7 + ξ7)(u1ξ̄7ξ̄1 + u6u1ξ7ξ̄1 + ξ1)

,
(15)

where ξ̄i ≡ 1− ξi.

3 Symbols from differential equations

We find that the following definition

Φ9(u1, . . . , u6) ≡
1√
∆9

Φ̃9(u1, . . . , u6) . (16)

leads to a pure function Φ̃9(ui), i.e., a function that can be written as a linear combination of
transcendental functions, with numerical coefficients only. Here

∆9 ≡ (1− u1 − u2 − u3 + u4u1u2 + u5u2u3 + u6u3u1 − u1u2u3u4u5u6)
2

− 4u1u2u3(1− u4)(1− u5)(1− u6) .
(17)

Using this definition, and D1(1/
√
∆9) = 0, we can rewrite Eq. (10) as

D̃1Φ̃9(u1, . . . , u6) = Ψ̃8(u3, u4u2, u5) , (18)

where

D̃1 ≡
1√
∆9

(1− u3 − u2u4 + u2u3u4u5)×

× [u1u6(u6 − 1)∂6 + (u4 − 1)∂4 + u1(u1 − 1)∂1 + u1(1− u6)u3∂3]

=
1√
∆9

(1− u3 − u2u4 + u2u3u4u5)(D1 − u1) ,

(19)

and
Ψ̃8(u, v, w) ≡ (1− u− v + uvw) Ψ8(u, v, w) . (20)
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We find it convenient to convert (18) into a differential equation for the symbol of Φ̃9, which
reads

D̃1S(Φ̃9)(u1, . . . , u6) = S(Ψ̃8)(u3, u4u2, u5) . (21)

Here the differentiation of a symbol is defined by

∂x (a1 ⊗ . . .⊗ an−1 ⊗ an) = ∂x log(an) × a1 ⊗ . . .⊗ an−1 . (22)

The following set of variables is useful to describe the solution,

Wi ≡
gi −
√
∆9

gi +
√
∆9

, i = 1 . . . 6 , (23)

where

g1 ≡ 1− u1 − u2 + u3 + u1u2u4 − u2u3u5 − 2u3u6 + u1u3u6 + 2u2u3u5u6 − u1u2u3u4u5u6 ,

g4 ≡ 1− u1 − u2 − u3 + 2u1u2 − u1u2u4 + u2u3u5 + u1u3u6 − 2u1u2u3u5u6 + u1u2u3u4u5u6 ,

and where g2, g3 (g5, g6) are obtained from g1 (g4) by cyclic mappings 1→ 2→ 3→ 1; 4→ 5→
6→ 4. These variables have a nice behavior under the differential operators, e.g.,

D̃1 log(Wi) =

{

−1, if i = 6
0, otherwise

and D̃4 log(Wi) =







1, if i = 1
−1, if i = 2 or 4
0, otherwise

, (24)

where D̃4 is defined as the image of D̃1 under the reflection u4 ↔ u6 and u2 ↔ u3. Given these
variables, we can write the solution to Eq. (21) as

S(Φ̃9)(u1, . . . , u6) = −S(Ψ̃8)(u3, u4u2, u5)⊗W6 + T , (25)

where T satisfies D̃1T = 0. Taking into account the differential equations related to (21) by
symmetry further restricts the form of T . The particular solution we obtained is in general not
an integrable symbol. We therefore proceed and add a particular Th satisfying D̃iTh = 0 (for
i = 1 . . . 5) to obtain an integrable symbol. Finally, additional terms satisfying the homogeneous
equations D̃iT = 0 are fixed by demanding that the symbol for Φ̃6 for the massless hexagon [4, 11]
is reproduced when u4 = u5 = u6 = 0.

Following this procedure, we find that the symbol S(Φ̃9) can then be written as

S(Φ̃9) =

6
∑

i=1

S(fi)⊗Wi , (26)

where fi are the following degree three functions,

f1 ≡ Ψ̃8(u2, u1u6, u4) + Ψ̃8(u1, u2u5, u4) + Ψ̃8(u2, u3u6, u5)− F (u1, u2, u3, u4, u5, u6) ,

f4 ≡ −Ψ̃8(u1, u3u5, u6) .
(27)
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Here the quantities f2, f3 (f5, f6) are obtained from f1 (f4) by cyclic mappings 1 → 2 → 3 →
1; 4→ 5→ 6→ 4. Moreover,

F ≡ 2Ψ̃8(u1, u2, u4) + log u1 log u5 + log u2 log u6 − log u3 log u4 . (28)

Note that one can rearrange terms in Eq. (27) because of the identity,

0 = Ψ̃8(u3, u2u4, u5) + Ψ̃8(u1, u3u5, u6) + Ψ̃8(u2, u1u6, u4)

− Ψ̃8(u3, u1u4, u6)− Ψ̃8(u1, u2u5, u4)− Ψ̃8(u2, u3u6, u5) .
(29)

4 Twistor geometry associated to a three-mass hexagon

The differential equation technique allowed us to obtain the symbol of the one-loop three-mass
hexagon integral. If we want to find the analytic expression for the integral, we need to integrate
the symbol to a function. We follow here the approach of Ref. [18], which, after making a suitable
choice for the functions that should appear in the answer, allows us to reduce the problem of
integrating the symbol to a problem of linear algebra. The algorithm of Ref. [18], however,
requires the arguments of the symbol to be rational functions (of some parameters). From
Eq. (26) it is clear that in our case this requirement is not immediately fulfilled, because the
variables Wi are algebraic functions of the cross ratios ui. In order to bypass this problem, we
have to parametrize the six cross ratios such that ∆9 becomes a perfect square.

A convenient way to find a parametrization that turns ∆9 into a perfect square is to write the
six cross ratios as ratios of twistor brackets. Indeed, even though we work in D = 6 dimensions
where the link to twistor space is not immediately obvious, we can nevertheless consider the
cross ratios as being parametrized by cross ratios in twistor space CP

3, because the functional
dependence of Φ9 is only through the six conformally invariant quantities ui, which do not make
reference to the six-dimensional space. In other words, we can consider the external momenta to
lie in a four-dimensional subspace, even as we integrate over six components of loop momentum.
Furthermore, in Ref. [15] it was noted that in terms of momentum twistor variables, the equivalent
of ∆9 in the massless case becomes a perfect square. Hence, momentum twistors seem to provide
a natural framework to search for a suitable parametrization. We therefore briefly review the
geometry of a three-mass hexagon configuration in momentum twistor space.

In order to describe this geometry, we assume that the dual coordinates xi are elements of
four-dimensional Minkowski space M4. As the dependence of Φ9 is solely through cross ratios,
we can assume that this condition is satisfied, as long as the ‘projection’ to the four-dimensional
space leaves the cross ratios invariant. The twistor correspondence then associates to each point
xi in M4 a projective line Xi in momentum twistor space, and two points xi and xj in M4 are
lightlike separated if and only if the corresponding lines Xi and Xj intersect. In our case this
implies that the six lines must intersect pairwise (See Fig. 2). Denoting the intersection points
by Z1, Z4 and Z7, we can define six more twistors by

Xi = Zi ∧ Zi−1, i ∈ {1, 2, 4, 5, 7, 8} . (30)
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Figure 2: The one-loop three-mass hexagon integral (left), and its geometric configuration in
momentum twistor space CP

3 (right). Only the intersection points Z1, Z4 and Z7 have an
intrinsic geometrical meaning, whereas all other twistors can be moved freely along the lines.

Note that the only points in twistor space that have an intrinsic geometric meaning are Z1, Z4

and Z7, whereas the other six points are defined through Eq. (30), which is left invariant by the
redefinitions

Z2 → Z2 + α2Z1 , Z5 → Z5 + α5Z4 , Z8 → Z8 + α8Z7 ,

Z9 → Z9 + α9Z1 , Z3 → Z3 + α3Z4 , Z6 → Z6 + α6Z7 ,
(31)

where αi are non-zero complex numbers. These shifts simply express the fact that we can
move the points along the line without altering the geometric configuration. Furthermore, the
intersection of two lines Xi and Xj can be expressed through the condition,

〈XiXj〉 ≡ 〈(i− 1) i (j − 1) j〉 = 〈Zi−1Zi Zj−1Zj〉 = ǫIJKL Z
I
i−1 Z

J
i ZK

j−1Z
L
j = 0 . (32)

Using the twistor brackets, the cross ratios ui can be parametrized as

u1 =
〈X2X5〉〈X1X7〉
〈X1X5〉〈X2X7〉

, u2 =
〈X5X8〉〈X4X1〉
〈X4X8〉〈X1X5〉

, u3 =
〈X8X2〉〈X7X4〉
〈X2X7〉〈X4X8〉

,

u4 =
〈X2X4〉〈X1X5〉
〈X1X4〉〈X2X5〉

, u5 =
〈X5X7〉〈X4X8〉
〈X4X7〉〈X5X8〉

, u6 =
〈X8X1〉〈X7X2〉
〈X8X2〉〈X1X7〉

.

(33)

It is clear that the dihedral symmetry of the integral is reflected at the level of the twistors by

Zi
c−→ Zi+3 and Zi

r−→ Z8−i , (34)

where again all indices are understood modulo 9. This action on the twistors induces an action
on the lines Xi and the planes Z i = Zi−1 ∧ Zi ∧ Zi+1 via

Xi
c−→ Xi+3 and Xi

r−→ −X9−i ,

Zi
c−→ Zi+3 and Z i

r−→ −Z8−i .
(35)

8



We now choose a particular representation for the twistors. Since the points Z1, Z4 and Z7

play a special role, we choose their homogeneous coordinates as

Z1 =









0
1
0
0









, Z4 =









0
0
1
0









, Z7 =









0
0
0
1









. (36)

As the other six points do not carry any intrinsic geometric meaning, we prefer not to fix them,
but choose their homogeneous coordinates to be

Zi =









1
xi

yi
zi









, for i ∈ {2, 3, 5, 6, 8, 9} . (37)

(The xi and yi defined here should not be confused with the previous definitions, where they
were dual coordinates.) In this parametrization the cross ratios then take the form

u1 =
(y9 − y6) (z2 − z5)

(y2 − y6) (z9 − z5)
, u2 =

(x5 − x8) (z3 − z9)

(x3 − x8) (z5 − z9)
, u3 =

(x6 − x3) (y8 − y2)

(x8 − x3) (y6 − y2)
,

u4 =
(z2 − z3) (z9 − z5)

(z2 − z5) (z9 − z3)
, u5 =

(x5 − x6) (x3 − x8)

(x3 − x6) (x5 − x8)
, u6 =

(y6 − y2) (y8 − y9)

(y8 − y2) (y6 − y9)
.

(38)

Note that the cross ratios only depend on 12 out of the 18 homogeneous coordinates defined in
Eq. (37), which is a consequence of the shift invariance (31). The action of the dihedral symmetry
that permutes the cross ratios is implemented in this parametrization via

xi
c−→ yi+3

c−→ zi+6
c−→ xi and xi

r←→ z8−i and yi
r←→ y8−i . (39)

This action seems to be inconsistent with Eq. (34). However, we have broken the symmetry by
freezing Z1, Z4 and Z7 to constant values, and the symmetry is now reflected at the level of the
cross ratios via Eq. (39). Finally, we note that ∆9 becomes a perfect square in these variables,

∆9 =
((x6 − x8) (y9 − y2) (z3 − z5) + (x5 − x3) (y8 − y6) (z2 − z9))

2

(x3 − x8)
2 (y6 − y2)

2 (z9 − z5)
2 , (40)

and Eq. (40) is manifestly invariant under the transformations (39). Having obtained a parametri-
zation that makes ∆9 into a perfect square, we can write the symbol in a form in which all the
entries are rational functions of the variables we just defined, and hence the symbol now takes a
form which allows it to be integrated using the algorithm of Ref. [18]. Furthermore, using this
parametrization it is trivial to check that the symbol of Φ̃9 obtained in the previous section has
the correct dihedral symmetry. In particular, we find that

c[S(Φ̃9)] = S(Φ̃9) and r[S(Φ̃9)] = −S(Φ̃9) . (41)

9



The parametrization (38) also makes it very easy to check the various soft limits of H9. Indeed,
we have

u4 → 0 ⇔ z3 → z2 , u5 → 0 ⇔ x6 → x5 , u6 → 0 ⇔ y9 → y8 . (42)

We checked that in taking these limits S(Φ̃9) reduces to the symbols for the massless and one-mass
hexagon integrals [4, 11, 12].

5 Integrating the symbol: the one-loop three-mass

hexagon integral

As the parametrization of the cross ratios in terms of momentum twistors introduced in the
previous section turns ∆9 into a perfect square, we can now integrate the symbol using the
algorithm of Ref. [18]. However, even though the parametrization (38) makes all the symmetries
manifest, it uses a redundant set of parameters. We therefore choose a minimal set of parameters
by breaking the S3 symmetry down to its alternating subgroup A3 ≃ Z3 by fixing six of the twelve
parameters,

x6 = y9 = z3 = 0 and x3 = y6 = z9 = 1 . (43)

The cross ratios then take the form

u1 =
z2 − z5

(1− y2) (1− z5)
, u2 =

x5 − x8

(1− x8) (1− z5)
, u3 =

y8 − y2
(1− x8) (1− y2)

,

u4 =
z2 (1− z5)

z2 − z5
, u5 =

x5 (1− x8)

x5 − x8
, u6 =

y8 (1− y2)

y8 − y2
,

(44)

and ∆9 can now be written as

∆9 =
(x8y2z5 + (1− x5) (1− y8) (1− z2))

2

(1− x8)
2 (1− y2)

2 (1− z5)
2 . (45)

We note in passing that the Jacobian of the parametrization (44) is non-zero for generic values
of the parameters.

In a nutshell, the algorithm of Ref. [18] proceeds in two steps:

1. Given the symbol of Φ̃9 computed in Section 3, it constructs a set of rational functions
{Ri(x5, x8, y2, y8, z2, z5)} such that, e.g., symbols of the form S(Lin(Ri)) span the vector
space of which S(Φ̃9) is an element.

2. Once a suitable set of rational functions has been obtained, it makes an ansatz

ϕ̃ =
∑

i

ci Li3(Ri) +
∑

i,j

cij Li2(Ri) logRj +
∑

i,j,k

cijk logRi logRj logRk , (46)
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where the ci, cij and cijk are rational numbers to be determined such that

S(ϕ̃) = S(Φ̃9) . (47)

As the objects appearing in this last equation are tensors (i.e., elements of a vector space),
the coefficients ci, cij and cijk can equally well be seen as coordinates in a vector space, and
the problem of finding the coefficients reduces to a problem of linear algebra.

We have implemented the algorithm of Ref. [18] into a Mathematica code, which we have
applied to the function Φ̃9(x5, x8, y2, y8, z2, z5). The result we obtain takes a strikingly simple
form,

Φ9(u1, . . . , u6) =
1√
∆9

4
∑

i=1

∑

g∈S3

σ(g)L3(x
+
i,g, x

−

i,g) , (48)

where σ(g) denotes the signature of the permutation (+1 for {1, c, c2}, −1 for {r, rc, rc2}), and
where we defined

L3(x
+, x−) ≡ 1

18

(

ℓ1(x
+)− ℓ1(x

−)
)3

+ L3(x
+, x−) , (49)

and

L3(x
+, x−) ≡

2
∑

k=0

(−1)k
(2k)!!

logk(x+ x−)
(

ℓ3−k(x
+)− ℓ3−k(x

−)
)

, (50)

with

ℓn(x) ≡
1

2
(Lin(x)− Lin(1/x)) . (51)

The arguments appearing in the polylogarithms can be written in the form x±

i,g ≡ g(x±

i ), for
g ∈ S3, with

x+
1 ≡ χ(1, 4, 7) , x+

2 ≡ χ(2, 5, 7) , x+
3 ≡ χ(2, 4, 8) , x+

4 ≡ χ(1, 5, 8) ,

x−

1 ≡ χ(1, 4, 7) , x−

2 ≡ χ(2, 5, 7) , x−

3 ≡ χ(2, 4, 8) , x−

4 ≡ χ(1, 5, 8) ,
(52)

where we defined

χ(i, j, k) ≡ −〈47〉〈XiXk〉〈Xj17〉
〈17〉〈XjXk〉〈Xi47〉

, (53)

with 〈ī〉 = 〈i(j − 1)j(j + 1)〉. The function χ is related to χ by Poincaré duality,

χ(i, j, k) ≡ −〈47〉〈XiXk〉〈Xj1 ∩ 7〉
〈17〉〈XjXk〉〈Xi4 ∩ 7〉 . (54)

The function Φ9 manifestly has the cyclic symmetry. The reflection symmetry however needs
some explanation, because Φ̃9 is odd under reflection. In twistor variables, ∆9 becomes a perfect
square, and so we can remove the square root and rewrite

√
∆9 as a rational function of twistor

brackets. This procedure however introduces an ambiguity for the sign of the square root. In
particular, the rational function we obtained is now odd under the reflection (34), so that Φ9 is
again even.
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We stress that Eq. (48) is only valid in the region where ∆9 < 0. In this region, since χ
and χ are related by Poincaré duality, the function Eq. (48) is manifestly real, and we checked
numerically that Eq. (48) agrees with the parametric integral representation for Φ9 given in
Eq. (15). Note that, as multiple zeta values are in the kernel of the symbol map, we could a
priori add to Eq. (48) terms proportional to ζ2 without altering its symbol2. The numerical
agreement with the integral representation (15) however shows that such terms are absent in the
present case.

6 Conclusion

Using a differential equation method to determine the symbol of a function, and an algorithm
to reconstruct the function from its symbol, we have computed analytically the one-loop non-
adjacent three-mass hexagon integral in D = 6 dimensions. Just as for the massless and one-mass
hexagon integrals, the result is given in terms of classical polylogarithms of uniform transcenden-
tal weight three, which are functions of six dual conformally invariant cross-ratios. Because of
the high degree of symmetry of the integral, the result is extremely compact: it can be expressed
as a sum of 24 terms involving only one basic function, which is a simple linear combination
of logarithms, dilogarithms, and trilogarithms. Given the relation between one-loop hexagon
integrals in D = 6 dimensions and higher-loop amplitudes in D = 4 dimensions, we expect that
our result will help to understand the structure of N = 4 SYM amplitudes and Wilson loops,
particularly at two loops.
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A Special cases

For u4 = u5 = u6 = 1, the differential equations simplify considerably. We have

[u1 + u1(u1 − 1)∂1] Φ9(u1, u2, u3, 1, 1, 1) = Ψ8(u2, u3, 1) , (55)

where Ψ8(u, v, 1) = log u log v/(u − 1)/(v − 1), and the two cyclically related equations. The
solution is simply

Φ9(u1, u2, u3, 1, 1, 1) =
3
∏

i=1

log ui

ui − 1
. (56)

The case u5 = u6 = 1 is also very simple,

Φ9(u1, u2, u3, u4, 1, 1) =
log u3

u3 − 1
Ψ8(u1, u2, u4) . (57)

B Arguments in terms of space-time cross ratios

In this appendix we present the expressions of the functions x+
i defined in Eq. (52) in terms of

the space-time cross ratios ui,

x+
1 =

2u3 (1− u6) [1− u3u6 − u2 (1− u3u5u6)]− (1− u3u6)
(

g1 −
√
∆9

)

2u3 (1− u6) [1− u2 − u3 (1− u2u5)u6]
,

x+
2 =

2u1u3 (1− u6) [1− u2u4 − u3 (1− u2u4u5)]− (1− u3)
(

g6 −
√
∆9

)

2u1 (1− u6) [1− u2u4 − u3 (1− u2u4u5)]
,

x+
3 =

2u3 (1− u6) [(1− u2u5) (1− u3u5)− u1 (1− u5)]− (1− u3u5)
(

g1 −
√
∆9

)

2u1u3u5 (1− u6) [1− u2u4 − u3 (1− u2u4u5)]
,

x+
4 = −u6

2u3 (1− u6) [1− u5 − u1 (1− u2u4u5) (1− u3u5u6)] + (1− u3u5u6)
(

g6 −
√
∆9

)

2 (1− u6) [1− u2 − u3 (1− u2u5) u6]
.

(58)

The variables x−

i are obtained from x+
i by replacing

√
∆9 by −√∆9. Also, in Eq. 48 we define

the action of the odd permutations g to include the replacement
√
∆9 → −

√
∆9.
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The twistor variables xi, yi and zi rationalize the x±

i , so that they take the form,

x+
1 =

x8

1− y8
,

x+
2 = − x8(y2 − y8)

(1 − x8)(1− y8)
,

x+
3 =

x8(1− y2)

x5(1− y8)
,

x+
4 =

x8y8
(1− y8)(x5 − x8)

,

x−

1 =
(1− x5)[1− x8(1− y2)− y8 − z2(1− x8 − y8)]

y2[(1− x5)(1− y8)− z5(1− x8 − y8)]
,

x−

2 = −(1 − x5)(y2 − y8)[1− x8(1− y2)− y8 − z2(1− x8 − y8)]

y2(1− x8)[(z2(1− x5)− z5)(1− y8) + z5x8(1− y2)]
,

x−

3 =
(1− y2)(1− x5)[(x5(1− y8)− x8)(1− z2) + x8y2(1− z5)]

y2x5[(z2(1− x5)− z5)(1− y8) + z5x8(1− y2)]
,

x−

4 =
y8(1− x5)[(x5(1− y8)− x8)(1− z2) + x8y2(1− z5)]

y2(x5 − x8)[(1− x5)(1− y8)− z5(1− x8 − y8)]
.

(59)

Note that these expressions correspond to a particular choice for the sign of square root.
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