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We show that the Hartle-Hawking vacuum for any theory of interacting massive scalars on a fixed
de Sitter background is both perturbatively well-defined and stable in the IR. Correlation functions
in this state may be computed on the Euclidean section and Wick-rotated to Lorentz-signature.
The results are manifestly de Sitter-invariant and contain only the familiar UV singularities. More
importantly, the connected parts of all Lorentz-signature correlators decay at large separations
of their arguments. Our results apply to all cases in which the free Euclidean vacuum is well
defined, including scalars with masses belonging to both the complementary and principal series
of SO(D, 1). This suggests that interacting QFTs in de Sitter – including higher spin fields – are
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I. INTRODUCTION

While free quantum fields in de Sitter space (dSD) have been well understood for some time (see [1] for scalar
fields), interacting de Sitter quantum field theory continues to be a topic of much discussion. In particular, there has
been significant interest in the possibility of large infrared (IR) effects in interacting de Sitter quantum field theories
[2–26], both with and without dynamical gravity.

In [27] we began to address the specific class of such concerns associated with infra-red (IR) divergences of the naive
Lorentz-signature de Sitter Feynman diagrams, or more generally those concerns that can be addressed in the context
of minimally-coupled scalar fields with mass M2 > 0 on a fixed de Sitter background; i.e., in a context where gravity
is non-dynamical. There we computed one-loop corrections to propagators on Euclidean de Sitter (which is just
the D-sphere SD) and analytically continued the results to Lorentz-signature. This procedure defines the so-called
Hartle-Hawking vacuum of the Lorentzian theory [28], which on general grounds should be a good quantum state (see
section V). In particular, the analytically continued correlators are expectation values of products of operators in a
single state as opposed to matrix elements between an “in-vacuum” and a potentially different “out-vacuum.” We do
not attempt to define any notion of S-matrix.

Because SD is compact, it is a priori clear that Euclidean correlators do not suffer infra-red divergences. We showed
in [27] that, to one-loop order, the analytically continued Lorentz-signature correlators were also finite and decayed
at a rate determined by the lightest relevant mass1. The purpose of the current paper is to extend these results to
arbitrary N -point functions and to all orders in perturbation theory, again showing that connected correlators decay
rapidly as the separation between points becomes large. As in [27], our results will apply to all masses for which the
free Euclidean de Sitter vacuum is well-defined, i.e. for all M2 > 0, including values in both the complimentary series
and the principal series of SO(D, 1). We again emphasize that we consider massive scalar quantum field theories on
a fixed de Sitter background, taking gravity to be non-dynamical. Due to the growth of the graviton propagator at
large distances, introducing a dynamical graviton could lead to radically different results than those reported below.

Nevertheless, we also emphasize that the decay of connected correlators found below demonstrates that the Hartle-
Hawking vacuum of any massive scalar field theory is perturbatively stable, and that the Hartle-Hawking vacuum is
an attractor state for local operators in the sense defined in [27]. To explain this point in detail, let us consider a
state constructed from the Hartle-Hawking vacuum |0〉HH with appropriately smeared operators:

|Ψ〉 :=
∫
Y1

. . .

∫
Yn

f(Y1, . . . , Yn)φσ(Y1) · · ·φσ(Yn)|0〉HH . (1)

Here the Yi are points in dSD,
∫
Y
. . . denotes an integral over de Sitter, and f(Y1, . . . , Yn) is a smearing function which

we assume to be supported in a compact domain D. Now examine the correlation function 〈Ψ|φσ(X1) · · ·φσ(XN )|Ψ〉
with all Xi at large separations from D. In this configuration the correlator is simply a smeared correlation func-
tion between 2n operators located within D and N operators with large (say, roughly equal) separations |Z| from
D evaluated in the Hartle-Hawking vacuum. Since the associated connected correlators decay rapidly at large sep-
arations, this function approximately factorizes into a product of two correlators: one for the points in D and
one for the other points. The former factor is just the norm of |Ψ〉, so we have 〈Ψ|φσ(X1) · · ·φσ(XN )|Ψ〉 →
〈Ψ|Ψ〉 · HH〈0|φσ(X1) · · ·φσ(XN )|0〉HH . This means that, as probed by local operators, the excited state |Ψ〉 be-
comes indistinguishable from the Hartle-Hawking vacuum. Thus, despite concerns raised in [30–33] associated with
the lack of a conserved positive definite energy and other issues in de Sitter space, our results below provide a very
physical sense in which the Hartle-Hawking vacuum of any massive scalar field theory is stable. Note that, although
the above argument was phrased in terms of the elementary field φσ, the fact that composite operators can be defined
by the operator product expansion with respect to geodesic distance [34] implies that the same conclusion immediately
follows for all composite local operators built from such fundamental fields.

We begin by briefly reviewing free de Sitter quantum field theory in section II. We then address simple tree diagrams
in section III, which also serves to introduce some useful Mellin-Barnes techniques and our choice of (Pauli-Villars)
regularization scheme. We address general diagrams in section IV, where we establish the desired results for finite
Pauli-Villars regulator masses (so that all diagrams are finite). Since the infra-red asymptotics are independent of the
regulator masses, it is straightforward to take the limit where such regulators are removed2. Some technical material
is relegated to the appendices. We close with some discussion in section V.

Remark: While paper was being prepared, we received a draft of [36] which reports similar results.

1 In addition, the one-loop calculations reported in [29] establish that correlators of free-field stress tensors decay at large separations.
2 After subtracting regulator-dependent local counter-terms in order to obtain a finite result. We consider theories can be renormalized

in this way. One would expect this procedure to be equivalent (up to finite local counter-terms) to the renormalization prescription
given in [35], and thus to define a fully covariant renormalized quantum field theory in the sense of [34] whenever the flat-space limit is
power-counting renormalizable. However, we have not analyzed this question in detail and save any investigation for future work.
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Figure 1: The conformal diagram of global de Sitter. The dashed ends are identified. Shown
are the points X and the corresponding antipodal point −X . Values of the embedding distance
Z := XY/!2 in different regions of de Sitter are labeled; in addition, the dashed red lines denote
the lightcone with Z = 1 and the dotted green lines denote the lightcone with Z = −1 [1].

3. discrete series: σ = 0, 1, 2, . . . .

We plot σ and −(σ+2α) as a function of M2 > 0 in figure 2. Relatively light massive fields
belong to the complimentary series while heavier fields belong to the principal series. It is
useful to note that σcc = 1

2 − α corresponds to an otherwise massless conformally coupled
free field. This value lies in the complimentary series so long as D > 2. Discrete series
fields correspond to massless and tachyonic scalars and we will not consider them here.

Free massive scalar fields admit a unique de Sitter-invariant Hadamard vacuum |0〉free,
commonly referred to as the Euclidean vacuum (it is also the Bunch-Davies vacuum) [1, 32].
Since the theory is free, the vacuum is completely characterized by its 2-point functions.
Let us define the function

∆σ(Z) :=
!2−D

(4π)α+1/2

Γ (−σ)Γ (σ + 2α)
Γ

(
1
2 + α

) 2F1

[
−σ , σ + 2α ;

1
2

+ α ;
1 + Z

2

]
. (2.4)

Here 2F1(a, b; c; z) is the Gauss hypergeometric function. In general this function has a
branch point at Z = 1 and is cut along the positive real axis Z ∈ [1,+∞). The time-
ordered and Wightman correlation functions of a massive scalar field φσ(X) are given by

〈0|Tφσ(X1)φσ(X2)|0〉free = ∆σ(X1 · X2 − iε), (2.5)

〈0|φσ(X1)φσ(X2)|0〉free = ∆σ(X1 · X2 − iεs(X1,X2)), (2.6)
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FIG. 1. The conformal diagram of global de Sitter. The dashed ends are identified. Shown are the points X and the
corresponding antipodal point −X. Values of the embedding distance Z := XY/`2 in different regions of de Sitter are labeled;
in addition, the dashed red lines denote the lightcone with Z = 1 and the dotted green lines denote the lightcone with Z = −1
[1].

II. FREE DE SITTER QFT

This brief section serves as a review of scalar quantum field theory in de Sitter and allows us to establish our
notation. We consider D-dimensional de Sitter space dSD with radius `, which may be defined as the single-sheet
hyperboloid in a D + 1-dimensional Minkowski space MD+1. Points on de Sitter satisfy [37]

ηABX
AXB = `2, (2)

where XA is a vector in the embedding space and ηAB = diag(−1, 1, . . . , 1) is the usual Minkowski metric. Henceforth
we will drop the index notation and denote the inner product of two embedding space vectors X1 and X2 simply
by X1 · X2. For two points on de Sitter located at X1 and X2 the inner product X1 · X2/`

2 provides a convenient
measure of distance which we loosely call the embedding distance between X1 and X2 [1]. The embedding distance
is related to the length of the chord between X1 and X2 in the embedding space (with the length being proportional
to 1 − X1 · X2) and is clearly invariant under the full de Sitter isometry group SO(D, 1). The embedding distance
satisfies:

• X1 ·X2/`
2 ∈ [−1, 1) for spacelike separation,

• X1 ·X2/`
2 = 1 for null separation, and

• |X1 ·X2/`
2| > 1 for timelike separation.

The antipodal point of X1 is simply −X1; clearly the embedding distance between antipodal points is −1. See
Figure 1.

In this work we restrict attention to massive scalar fields φσ(X). It is convenient to keep track of the spacetime
dimension with the parameter α = (D − 1)/2; the mass parameter σ is then defined by the equation

− σ(σ + 2α) = M2`2, (3)

where M2 is the bare mass-squared of the field if we assume minimal coupling to the metric. There is a redundancy
in this definition as (3) is invariant under σ → −(σ + 2α); for clarity we choose to define σ as the positive root

σ := −α+
(
α2 −M2`2

)1/2
, (4)

but all expressions involving σ must necessarily be invariant under σ → −(σ+ 2α). Free scalar fields form irreducible
representations of the de Sitter group SO0(D, 1) and fall into three series [38]:
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Figure 2: On-shell values of σ and −(σ + 2α) in the complex plane for massive scalar fields. The
red dashed line denotes the path of σ for increasing M2 starting from at σ = 0 for M2 = 0. The
green doteed line shows the path of −(σ + 2α) for increasing M2 starting from −(σ + 2α) = −2α

for M2 = 0. Relatively light fields with 0 < M2#2 < α2 correspond to values of σ and −(σ + 2α)
on the negative real axis and belong to the complementary series. Heavier fields with M2#2 ≥ α2

correspond to complex values of σ and −(σ+2α) on the line defined by Re σ = Re (−σ−2α) = −α.

where in (2.6) the operator ordering is enforced by s(X1,X2) = +(−) if X1 is in the future
(past) of X2 (see, e.g., [33]).

At the level of free fields, one may in fact use any member of the one-parameter family
of 2-point functions found in [1, 32] to define a de Sitter-invariant vacuum state. These
other vacua are usually called Mottola-Allen (MA) or α vacua. However, the non-trivial
MA vacua do not satisfy the Hadamard or Bunch-Davies criteria; in particular, their 2-point
functions i) have an additional singularity at antipodal points and ii) have an additional
negative frequency contribution to the singularity at coincident points [34]. As a result,
only the Euclidean vacuum extrapolates to the usual Minkowski vacuum in the flat space
limit [35]. It has been difficult to find consistent extensions of MA vacua to interacting
theories – see e.g. [33, 36, 37, 38, 39, 40]. For these reasons we will discuss only the
Euclidean vacuum in this work.

3. Simple tree diagrams

We now proceed to analyze simple connected tree diagrams. As noted in the introduction,
we compute diagrams on Euclidean SD and analytically continue the results to de Sitter. In
particular, the Mellin-Barnes techniques used below provide representations of connected
diagrams VN (X1, . . . ,Xn,XN ) on SD in terms of the N(N − 1)/2 embedding distances
Zij = Xi · Xj relating the external points. While the Zij are not all independent for
general N,D, it will often be convenient to use our Mellin-Barnes representation to extend
the definition of VN to a function of N(N − 1)/2 independent variables Zij. The analytic
continuation can then be performed by analytically continuing in each Zij and evaluating
Zij = Xi · Xj for N points Xi in Lorentz-signature de Sitter space.

The only subtlety in the analytic continuations will be the presence of branch cuts.
As noted in section 2, for the two-point function this amounts to choosing the appropriate
iε prescription to construct time-ordered or Wightman correlators, as desired. Much the
same is true of higher N -point correlators, though the specifics are more complicated to
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FIG. 2. On-shell values of σ and −(σ + 2α) in the complex plane for massive scalar fields. The red dashed line denotes the
path of σ for increasing M2 starting from at σ = 0 for M2 = 0. The green doted line shows the path of −(σ+2α) for increasing
M2 starting from −(σ + 2α) = −2α for M2 = 0. Relatively light fields with 0 < M2`2 < α2 correspond to values of σ and
−(σ + 2α) on the negative real axis and belong to the complementary series. Heavier fields with M2`2 ≥ α2 correspond to
complex values of σ and −(σ + 2α) on the line defined by Reσ = Re (−σ − 2α) = −α.

1. complementary series: −α < σ < 0 ,

2. principal series: σ = −α+ iρ, ρ ∈ R, ρ ≥ 0 ,

3. discrete series: σ = 0, 1, 2, . . . .

We plot σ and −(σ+2α) as a function of M2 > 0 in figure 2. Relatively light massive fields belong to the complimentary
series while heavier fields belong to the principal series. It is useful to note that σcc = 1

2−α corresponds to an otherwise
massless conformally coupled free field. This value lies in the complimentary series so long as D > 2. Discrete series
fields correspond to massless and tachyonic scalars and we will not consider them here.

Free massive scalar fields admit a unique de Sitter-invariant Hadamard vacuum |0〉free, commonly referred to as
the Euclidean vacuum (it is also the Bunch-Davies vacuum) [1, 3]. Since the theory is free, the vacuum is completely
characterized by its 2-point functions. Let us define the function

∆σ(Z) :=
`2−D

(4π)α+1/2

Γ (−σ) Γ (σ + 2α)
Γ
(

1
2 + α

) 2F1

[
−σ , σ + 2α ;

1
2

+ α ;
1 + Z

2

]
. (5)

Here 2F1(a, b; c; z) is the Gauss hypergeometric function. In general this function has a branch point at Z = 1 and
is cut along the positive real axis Z ∈ [1,+∞). The time-ordered and Wightman correlation functions of a massive
scalar field φσ(X) are given by

〈0|Tφσ(X1)φσ(X2)|0〉free = ∆σ(X1 ·X2 − iε), (6)

〈0|φσ(X1)φσ(X2)|0〉free = ∆σ(X1 ·X2 − iεs(X1, X2)), (7)

where in (7) the operator ordering is enforced by s(X1, X2) = +(−) if X1 is in the future (past) of X2 (see, e.g., [39]).
At the level of free fields, one may in fact use any member of the one-parameter family of 2-point functions found

in [1, 3] to define a de Sitter-invariant vacuum state. These other vacua are usually called Mottola-Allen (MA) or α
vacua. However, the non-trivial MA vacua do not satisfy the Hadamard or Bunch-Davies criteria; in particular, their
2-point functions i) have an additional singularity at antipodal points and ii) have an additional negative frequency
contribution to the singularity at coincident points [40]. As a result, only the Euclidean vacuum extrapolates to the
usual Minkowski vacuum in the flat space limit [41]. It has been difficult to find consistent extensions of MA vacua to
interacting theories – see e.g. [39, 42–46]. For these reasons we will discuss only the Euclidean vacuum in this work.

III. SIMPLE TREE DIAGRAMS

We now proceed to analyze simple connected tree diagrams. As noted in the introduction, we compute diagrams on
Euclidean SD and analytically continue the results to de Sitter. In particular, the Mellin-Barnes techniques used below
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provide representations of connected diagrams VN (X1, . . . , Xn, XN ) on SD in terms of the N(N − 1)/2 embedding
distances Zij = Xi ·Xj relating the external points. While the Zij are not all independent for general N,D, it will
often be convenient to use our Mellin-Barnes representation to extend the definition of VN to a function of N(N−1)/2
independent variables Zij . The analytic continuation can then be performed by analytically continuing in each Zij
and evaluating Zij = Xi ·Xj for N points Xi in Lorentz-signature de Sitter space.

The only subtlety in the analytic continuations will be the presence of branch cuts. As noted in section II, for the
two-point function this amounts to choosing the appropriate iε prescription to construct time-ordered or Wightman
correlators, as desired. Much the same is true of higher N -point correlators, though the specifics are more complicated
to state. However, since our only goal is to extract the asymptotics at large Zij , we need not be concerned with such
details here. The large Z asymptotics are identical on both sides of each cut so that all analytic continuations
satisfy the fall-off properties derived below. This means in particular that our results hold for both Wightman and
time-ordered correlators.

A. The Green’s function

It is convenient for our analysis to use a Mellin-Barnes integral representation of the scalar Green’s function on SD.
Mellin-Barnes representations have proved to be quite useful in evaluating Feynman diagrams in flat-space QFT (see,
e.g., [47] for an introduction). They are especially convenient for deriving asymptotic expansions (see §4.8 of [47]),
and it is for this reason that we choose to use them here. We review some essential information about Mellin-Barnes
integrals in Appendix A; further details can be found an any standard text on mathematical methods.

Starting with the case σ < σcc = 1
2 − α and α ≥ 1

2 , we may write the scalar Green’s function

∆σ(Z) =
1

(4π)α+1/2Γ
[

1
2 + α+ σ, 1

2 − α− σ
] ∫

ν

Γ
[
−σ + ν, σ + 2α+ ν,−ν, 1

2
− α− ν

](
1− Z

2

)ν
, (8)

where we use a condensed notation for products and ratios of Γ-functions:

Γ
[
a1, a2, . . . , aj
b1, b2, . . . , bk

]
:=

Γ (a1) Γ (a2) · · ·Γ (aj)
Γ (b1) Γ (b2) · · ·Γ (bk)

, (9)

or merely Γ [a1, a2, . . . , aj ] for just a product. In (8) the symbol
∫
ν
. . . denotes a contour integral in the complex ν

plane. We take as implicit the measure dν/2πi. The contour of integration is a straight line parallel to the imaginary
axis traversed from −i∞ to +i∞ anywhere within a region called the “fundamental strip” (FS). In general we denote
a fundamental strip by its left and right boundaries < l, r >. For the Green’s function (8) the fundamental strip is
< σ, 1

2 − α > which is non-empty due to the restriction σ < 1
2 − α. The integrand is analytic in ν within the FS;

beyond the FS it has an infinite number of poles due the Gamma functions. By convention we call poles generated by
Gamma functions Γ(· · ·+ ν) left poles; likewise, we call poles generated by Gamma functions Γ(· · · − ν) right poles.
The fundamental strip is the region between the left and right poles. For this reason we do not generally need to
write the FS explicitly as it may be inferred from the Gamma functions of the integrand.

The asymptotic behavior of ∆σ(Z) at large |Z| � 1 may be determined by moving the contour to the left. The
first of the two series of left poles give the leading asymptotic terms:

∆σ(|Z| > 1) =
1

4πα+1

{
Γ [−σ, σ + α] (−2Z)σ + Γ [σ + 2α,−σ − α] (−2Z)−σ−2α

}
× [1 +O

(
Z−2

)]
. (10)

The asymptotic behavior for |Z| near 1 is determined by moving the contour to the right. When D is odd, α is an
integer greater than or equal to 1 and the leading behavior is given by

∆σ(|Z| < 1) =
1

(4π)α+1/2

{
Γ
(
α− 1

2

)(
1− Z

2

)1/2−α

+ Γ
[

1
2 − α,−σ, σ + 2α
1
2 − α− σ, 1

2 + α+ σ

]}
× [1 +O (1− Z)] . (11)

When D is even α = 1
2 + n, n ∈ N0 (where N0 are the non-negative integers) and the two sets of poles overlap at

ν ∈ N0 yielding double-poles. As a result the pole at ν = 0 gives a term with logarithmic behavior:

∆σ(|Z| < 1) =
Γ (n)

(4π)n+1

(
1− Z

2

)−n
[1 +O (1− Z)]

− 1
(4π)n+1

Γ
[

1 + σ + 2n
1 + σ, 1 + n

]
log(1− Z) +O(1) (12)
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(the first term is omitted when n = 0).
When σ > σcc the left-most right pole in (8) lies to the left of the right-most left pole so that there are can be no

straight contour in between. To arrive at an expression valid for all masses, consider again the case σ < σcc and move
the contour in (8) to the right past the first right pole at ν = 1

2 − α to obtain the expression

∆σ(Z) =
−1

(4π)α+1/2

∫
ν

Γ
[ −σ + ν, σ + 2α,−ν, 3

2 − α− ν
1
2 + α+ σ, 1

2 − α− σ
]

1
(ν − 1

2 + α)

(
1− Z

2

)ν
+

Γ
(
α− 1

2

)
(4π)α+1/2

(
1− Z

2

)1/2−α

. (13)

In the integral in the first line the contour lies in the interval (max{σ, 1
2−α},min{0, 3

2−α}). This interval is non-trivial
for σ < 3

2 − α (since σ < 0), and (13) is a valid representation of the propagator for any such σ. This process can be
repeated as needed so that one can then increase σ as far into the complementary series as desired. The asymptotic
properties when σ > 1

2 − α are again given by (10)-(12). At conformal coupling σ = 1
2 − α, only the residue term in

(13) survives:

∆cc(Z) =
Γ
(
α− 1

2

)
(4π)α+1/2

(
1− Z

2

)1/2−α

. (14)

The behavior of the Green’s function at large M2 � 1 will be important to our analysis. Starting with (8) we
define

ψσ(ν) :=
1

(4π)α+1/2
Γ
[ −σ + ν, σ + 2α+ ν, 1

2 − α− ν
1
2 + α+ σ, 1

2 − α− σ
]
, (15)

so that the Green’s function may be written

∆σ(Z) =
∫
ν

ψσ(ν)Γ (−ν)
(

1− Z
2

)ν
. (16)

At large M2 � 1 the function ψσ(ν) has the asymptotic behavior

ψσ(ν) =
M2α−1+2ν

(4π)α+1/2
Γ
(

1
2
− α− ν

)(
1 +O

(
M−2

))
, (17)

and as a result the Green’s function has the asymptotic behavior

∆σ(Z) =
M2α−1

(4π)α+1/2

∫
ν

Γ
[
−ν, 1

2
− α− ν

]
M2ν

(
1− Z

2

)ν (
1 +O

(
M−2

))
. (18)

Note that (18) contains no left poles; the left poles of the original expression (15) do not appear at any finite order in
the expansion in inverse powers of M2. In the limit M2 → ∞ the inequality |M2(1 − Z)/2| > 1 holds for any fixed
Z 6= 1, and in this limit the contour in (18) may be closed in the left half-plane giving ∆σ(Z 6= 1) = O(M−4). By
examining the action of (18) integrated against a test function (represented as an MB integral) one may determine
that (18) is equivalent to

∆σ(Z) =
1
M2

1
vol(S2α)

δ(Z − 1)
(1− Z2)α−1/2

+O
(
M−4

)
; (19)

the first few sub-leading terms are

∆σ(Z) =
1
M2

1
vol(S2α)

δ(Z − 1)
(1− Z2)α−1/2

+
1
M4

1
vol(S2α)

∂

∂Z

[
δ(Z − 1)

(1− Z2)α−1/2

]
+

1
M6

1
vol(S2α)

∂2

∂Z2

[
δ(Z − 1)

(1− Z2)α−1/2

]
+O

(
M−8

)
. (20)

Of course, the expansion (20) follows from the fact that the Green’s function is the inverse of the Klein-Gordon
operator using 1

∇2−M2 = −M−2 1

1−∇2/M2 = −M−2(1 +∇2/M2 + . . .)1.
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B. Pauli-Villars regularization

Feynman diagrams containing loops in general contain UV divergences which must be dealt with through the
process of perturbative renormalization. For our purposes it is convenient to use Pauli-Villars (PV) renormalization
[48]. In PV regularization we replace the original scalar Green’s function ∆σ(Z) with the regularized function

∆reg
σ (Z) := ∆σ(Z) +

[D/2]∑
i=1

Ci∆ρi(Z). (21)

Here [. . . ] denotes the integer part. This function is nothing more than the original Green’s functions plus Green’s
functions of heavy particles with masses M2

i = −ρi(ρi+ 2α). We take the masses M2
i to belong to the principal series

so that ∆reg
σ (Z) will decay for large |Z| > 1 at the same rate as ∆σ(Z). The coefficients Ci are bounded functions

of the M2
i chosen to make ∆reg

σ (Z) finite at Z = 1; i.e., to cancel the UV-divergent terms in ∆σ(Z) (including
the logarithmic divergences that occur for even dimensions). For example, for D = 2, 3 the PV-regularized Green’s
function is

∆reg
σ (Z) = ∆σ(Z)−∆ρ(Z), for D = 2, 3 (22)

while for D = 4, 5 it is

∆reg
σ (Z) := ∆σ(Z) + C1∆ρ1(Z) + C2∆ρ2(Z), for D = 4, 5 (23)

where the coefficients satisfy

C1 + C2 = −1, C1M
2
1 + C2M

2
2 = −M2. (24)

One may write similar expressions for any dimension (see e.g. [48]) and, if desired, one may make further PV
subtractions to ensure that ∆reg

σ (Z) is differentiable to any desired order at Z = 1. Such additional subtractions are
useful in dealing with either field-renormalization counter-terms or derivatively coupled theories. Below, we assume
for simplicity of notation that neither of these is present in our theory. However, the analysis is identical in the
presence of derivative couplings so long as one assumes sufficient PV subtractions to have been made to render all
diagrams finite at the desired order of perturbation theory3. In particular, detailed specification of these subtractions
is not needed.

The cancellation of UV singularities has immediate implications for the Mellin-Barnes representation of the regulated
propagators. Since the short-distance expansion is determined by the location of the right-poles, and since right poles
with Reν < 0 give terms divergent at Z = 1 (where the character of the divergence depends on the location of the
pole), all such right-poles must cancel; i.e., the fundamental strip for the regularized propagators may be extended to
< σ, 0 > without picking up any explicit pole terms of the sort that appeared in (13). It follows that for any σ < 0
we may write the regularized Green’s function as

∆reg
σ (Z) =

∫
ν

ψreg
σ (ν)Γ (−ν)

(
1− Z

2

)ν
(25)

with

ψreg
σ (ν) := ψσ(ν) +

[D/2]∑
i=1

Ciψρi(ν). (26)

The function ψreg
σ (ν) is analytic on the interval (Reσ, 1

2 ) in odd dimensions and (Reσ, 1) in even dimensions. Using
the results in appendix A one may readily show that the function ψσ(ν) – and therefore ψreg

σ (ν) as well – has the
asymptotic behavior

|ψσ(x+ iy)| = e−3|y|/2|y|−1+x
[
1 +O

(|y|−1
)]

for |y| � 1. (27)

3 For theories that are power-counting renormalizable, one may fix the set of PV subtractions independent of the order in perturbation
theory. On the other hand, non-renormalizable theories should be treated as effective theories. In this case, there is no harm in taking
the regularization scheme (i.e., the set of PV subtractions) to depend on the order in perturbation theory to which one works.



8

of the embedding distances. The UV divergences of the original perturbation series are
recovered in the limit M2

i → +∞. We consider theories which can be renormalized by
subtracting local counter-terms with coefficients depending on the regulator masses Mi.
As remarked in footnote 1 above, one would expect this procedure to be equivalent (up
to finite local counter-terms) to the renormalization prescription given in [27], and thus to
define a fully covariant renormalized quantum field theory in the sense of [28] whenever
the flat-space limit is power-counting renormalizable.

3.3 Single-vertex diagrams

In this section we compute the connected, single-vertex tree-level Feynman diagram that
arises lowest order in perturbation theory; see Fig. 3. As stated in section 3.2, for simplicity
of notation we assume below that there are derivative couplings. However, the analysis in
the presence of derivative couplings is essentially identical.

We find it convenient to first use the PV-regulated Green’s functions ∆reg
σ (Z) for our

computation and then to take the limit where the regulators are removed. While such
regularization is not in fact necessary for tree diagrams, it has the convenient property
that it allows us to use the MB representation (3.18) which treats all masses uniformly.
Our discussion below involves a set of fields with mass parameters σi. Note that each
σi requires its own set of regulator masses Mij , so removing the regulators is the limit
Mij →∞ (or ρij →∞).

The diagram in Fig. 3 is given by the expression

VN (X1, . . . ,Xn,XN ) =
∫

Y
∆reg

σ1
(X1 · Y ) · · ·∆reg

σn
(Xn · Y )∆reg

σN
(XN · Y ). (3.21)

Here Y is a unit vector and
∫
Y . . . denotes an integral over SD. To compute the right-hand

side we first expand the Green’s functions ∆reg
σi (Xi · Y ) according to (3.18):

∆reg
σi

(Xi · Y ) =
∫

νi

ψreg
σi

(νi)Γ (−νi)
(

1−Xi · Y
2

)νi

. (3.22)

After inserting N copies of this into (3.21) the integral over Y becomes

MN :=
∫

Y

(
1−X1 · Y

2

)ν1

· · ·
(

1−Xn · Y
2

)νn
(

1−XN · Y
2

)νN

. (3.23)

X1 Xn XN
· · ·

σ1 σn σN

Figure 3: The single-vertex tree Feynman diagram.
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FIG. 3. The single-vertex tree Feynman diagram.

Furthermore, the integrand in (25) has only a simple pole at ν = 0 which insures that there is no logarithmic UV
divergence.

The PV-regularized Green’s function ∆reg
σ (Z) is a bounded function of Z. Because the sphere is compact it follows

that using the regularized Green’s function to compute correlation functions yields regularized correlation functions
that are bounded functions of the embedding distances. The UV divergences of the original perturbation series are
recovered in the limit M2

i → +∞. We consider theories which can be renormalized by subtracting local counter-terms
with coefficients depending on the regulator masses Mi. As remarked in footnote 2 above, one would expect this
procedure to be equivalent (up to finite local counter-terms) to the renormalization prescription given in [35], and
thus to define a fully covariant renormalized quantum field theory in the sense of [34] whenever the flat-space limit is
power-counting renormalizable.

C. Single-vertex diagrams

In this section we compute the connected, single-vertex tree-level Feynman diagram that arises lowest order in
perturbation theory; see Fig. 3. As stated in section III B, for simplicity of notation we assume below that there are
derivative couplings. However, the analysis in the presence of derivative couplings is essentially identical.

We find it convenient to first use the PV-regulated Green’s functions ∆reg
σ (Z) for our computation and then to take

the limit where the regulators are removed. While such regularization is not in fact necessary for tree diagrams, it has
the convenient property that it allows us to use the MB representation (25) which treats all masses uniformly. Our
discussion below involves a set of fields with mass parameters σi. Note that each σi requires its own set of regulator
masses Mij , so removing the regulators is the limit Mij →∞ (or ρij →∞).

The diagram in Fig. 3 is given by the expression

VN (X1, . . . , Xn, XN ) =
∫
Y

∆reg
σ1

(X1 · Y ) · · ·∆reg
σn (Xn · Y )∆reg

σN (XN · Y ). (28)

Here Y is a unit vector and
∫
Y
. . . denotes an integral over SD. To compute the right-hand side we first expand the

Green’s functions ∆reg
σi (Xi · Y ) according to (25):

∆reg
σi (Xi · Y ) =

∫
νi

ψreg
σi (νi)Γ (−νi)

(
1−Xi · Y

2

)νi
. (29)

After inserting N copies of this into (28) the integral over Y becomes

MN :=
∫
Y

(
1−X1 · Y

2

)ν1
· · ·
(

1−Xn · Y
2

)νn (1−XN · Y
2

)νN
. (30)

This master integral is performed in Appendix B; the result is

MN =
(4π)α+1/2

Γ [−ν1, . . . ,−νn,−νN , 1 + 2α+
∑
νi]

∫
(a)

{(
1−X1 ·X2

2

)a12

· · ·
(

1−Xn ·XN

2

)anN
Γ
[
−a12, . . . ,−anN , A1 − ν1, . . . , AN − νN , 1

2
+ α+

∑
νi −

∑
aij

]}
. (31)
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Here
∫

(a)
. . . denotes an integral over N(N − 1)/2 integration variables aij . The aij are labelled according to the

corresponding embedding distance Xi ·Xj . We use the shorthand Ai =
∑N
j=1 aij . The integration contours lie between

their respective left and right poles. After performing the shift of variables νi → νi +Ai we obtain

〈φσ1(X1) · · ·φσn(Xn)φσN (XN )〉
=
∫

(a)

{(
1−X1 ·X2

2

)a12

· · ·
(

1−Xn ·XN

2

)anN
Γ [−a12, . . . ,−anN ]VN (a)

}
(32)

with

VN (a) = (4π)α+1/2

∫
[ν]

{
Γ [−ν1, . . . ,−νN ]ψreg

σ1
(A1 + ν1) · · ·ψreg

σN (AN + νN )

Γ
[

1
2 + α+

∑
νi +

∑
aij

1 + 2α+
∑
νi + 2

∑
aij

]}
. (33)

Our main task is to determine the fundamental strip of each aij variable. The Gamma functions in (32) restrict the
fundamental strip of each aij variable to satisfy Re aij < 0. To further determine the FS we must determine where
the function VN (a) ceases to be analytic in the aij . When all aij satisfy Re aij ≤ 0 the function VN (a) imposes no
further restriction on the right side of the fundamental strips. Because of the symmetry of the diagram we need only
study one variable in detail, say a12. As a function of a12 the function VN (a) has left poles at

a12 = σ1 −A′1 − n, a12 = σ2 −A′2 − n, a12 = −1
2
− α−

∑
′aij − n. (34)

In this expression n ∈ N0, A′1 = A1 − a12, etc., and
∑ ′aij =

∑
aij − a12. We conclude that the FS of a12 is

a12 : < max
{
σ1 −A′1, σ2 −A′2,−

1
2
− α−

∑
′aij

}
, 0 > . (35)

Analogous statements hold for the remaining aij . In (35) and below we take the operation max to select the greatest
real part of any of its arguments. Note in particular that since the regulator masses Mij lie in the principle series (so
that Re ρij = −α is fixed) the allowed strip (35) is independent of the values chosen for the regulator masses Mij ,
though it does depend on the precise locations chosen for the other contours.

We can use our knowledge of the fundamental strips of the aij variables to bound the behavior of the diagram
VN at large embedding distances Zij . For example, consider the case |Z12| � 1 and all other Zij 6= 1. We are free
to arrange the aij integration contours such that all aij except a12 are fixed satisfying Re aij = −ε where ε is an
infinitesimal positive constant. In this configuration the FS of a12 becomes

a12 : < max {σ1, σ2}+O(ε), 0 > . (36)

We can therefore move the a12 integration contour to a12 = max {σ1, σ2}+O(ε). In this configuration it becomes clear
that the diagram decays at least as fast as |Z12|max{σ1,σ2}+O(ε). More generally we may say that when any embedding
distance satisfies |Zij | � 1 the diagram decays at least as fast as |Zij |σmax+O(ε) where σmax = max{σ1, . . . , σN} and
infinitesimal ε > 0.

The diagram VN provides the connected part of the PV-regulated N-point correlation function 〈φσ1(X1) · · ·φσn(Xn)φσN (XN )〉
to lowest order in perturbation theory. Our primary goal is to determine the behavior of such connected correlators
when the operators are taken to large separations, so that several embedding distances Zij become large. From the
discussion above it follows that the connected PV-regulated correlator decays at least as fast as |Z|σmax+O(ε), where
|Z| is the largest embedding distance between operators. In practice the diagram may decay much more rapidly.

In order to show that the unregulated diagrams have the same IR behavior, we must take the limit M2
i →∞ where

the regulator masses become large. The key step is to recall, as noted below (35), that the allowed locations of the
aij contours are independent of the regulator masses Mij . We may therefore investigate the large Mij behavior by
inserting the asymptotic expansion (17) for the ψρij (Ai + νi), associated with the propagators for the PV regulator
masses, into (33) with the a12 contour fixed at any location allowed by (35) (and analogously for the other aij). To
leading order, all dependence on the regulator masses is in factors of the form (ρ1)2α−1+2A1+2ν1 . The particular power
law depends on the location of the νi contours, and the most favorable behavior is obtained by taking the νi contours
to be as far to the left as possible. With this in mind, taking into account certain relevant poles, it is straightforward
to analyze the large Mij behavior. The leading term is independent of Mij and is obtained by simply replacing every
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ψreg
σ with the unregulated ψσ; i.e., just by the unregulated expression. Sub-leading terms are suppressed by powers of

M−2
ij and can be neglected. Since the unregulated ψσ also satisfy (27) at large imaginary νi, the O(1) Mellin-Barnes

integral can be analyzed in the usual way to find asymptotic behaviors at large |Zij | dictated by the locations of the
aij contours; i.e., by (35) and its analogues. Thus the large |Zij | behavior of the Mij → ∞ limit satisfies the same
bounds we derived at finite Mij . In particular, the limiting diagram decays at least as fast as |Z|σmax+O(ε), where |Z|
is the largest embedding distance between operators.

IV. GENERAL DIAGRAMS

In this section we analyze connected Feynman diagrams containing loops. We again use the PV-regulated prop-
agators of section III B. For simplicity of notation we again assume that there are no derivative couplings or field-
renormalization counter-terms. However, the analysis with derivative couplings or field-renormalization counter-terms
is essentially identical so long as sufficient PV subtractions have been made as described in section III B.

At the technical level, the key step will be to show in section IV B that all diagrams have a Mellin-Barnes repre-
sentation of the following form:

VN (X1, . . . , Xn, XN )

=
∫

(a)

{(
1−X1 ·X2

2

)a12

· · ·
(

1−Xn ·XN

2

)anN
Γ [−a12, . . . ,−anN ]VN (a)

}
, (37)

where the function VN (a) satisfies the following requirements:

1. VN (a) is analytic when all aij are contained within the region given by the set of restrictions

Re aij ∈ (σmax − Pij(a′), 0]. (38)

Here σmax is the real part of the mass parameter of the lightest field participating in the diagram and Pij(a′) is a
polynomial function of all the Re akl variables except Re aij (hence the prime) and has non-negative coefficients.

2. When the aij are contained in the region (38) the function VN (a) decays at large |Im a12| � 1 at least as rapidly
as

|VN (x+ iy, a13, . . . , anN )| ∝ e−π|y|/2|y|−1+x, for |y| � 1, (39)

and likewise for the other aij .

However, let us first discuss the implications of this form and show that it leads to exponentially decaying correlators
as desired.

A. Implications of our Mellin-Barnes representation

To begin, note that the requirement (39) ensures that each integral in (37) converges so long as no embedding
distance is equal to unity, i.e. when the diagram is evaluated away from coincident points. For any aij = x+ iy the
integrand in (37) is comparable at large |y| � 1 to

e−π|y|+iπy|y|3/2
∣∣∣∣1−Xi ·Xj

2

∣∣∣∣x , (40)

and thus converges absolutely. To evaluate V(X1, . . . , Xn, XN ) at coincident points we must move some of the contours
into the right half-plane. For example, suppose we wish to evaluate VN (X1, . . . , Xn, XN ) at X1 = X2. To do so we
first move the a12 contour into the right half-plane. In doing so pick up a residue from the pole at a12 = 0. From (38)
it follows that VN (a12 = 0, . . . ) is regular and so this pole is a simple pole. Upon setting X1 ·X2 = 1 the remaining



11

contour integral, with a12 (slightly) in the right half-plane vanishes, leaving just the residue:

VN (X2, X2, . . . , Xn, XN ) =
∫

(a′)

{(
1−X2 ·X3

2

)a13+a23

· · ·
(

1−X2 ·XN

2

)a1N+a2N

(
1−X3 ·X4

2

)a34

· · ·
(

1−Xn ·XN

2

)anN
Γ [−a13, . . . ,−anN ]

VN (0, a13, . . . , anN )
}
. (41)

Here
∫

(a′)
. . . denotes that there is no a12 integral.

In fact, it turns out that the term on the right-hand side of (41) may be written in form (37), i.e. VN−1(X2, . . . , XN ).
Said differently, a function VN+K(X1, . . . , XN , XN+1, . . . , XN+K) when evaluated at XN+1 = · · · = XN+K = Y is
itself a function of the form VN+1(X1, . . . , XN , Y ). For example, let us consider when K = 2. Following the procedure
outlined above equation (41) we have

VN+2(X1, . . . , XN , Y, Y ) =
∫

(a′)

{(
1−X1 ·X2

2

)a12

· · ·
(

1−Xn ·XN

2

)anN
(

1−X1 · Y
2

)a1,N+1+a1,N+2

· · ·
(

1−XN · Y
2

)aN,N+1+aN,N+2

Γ [−a12, . . . ,−aN,N+2]

VN+2(a12, . . . , aN,N+2, 0)
}
. (42)

In this expression the prime in the (a′) below the integral means that there is no aN+1,N+2 integration. The integrand
in (42) is still analytic with respect to the remaining aij in the region given by (38). It follows that after a few cosmetic
changes we may write (42) in the form of (37). Let us re-label the variables ai,N+2 → ci (here i = 1, . . . , N), then
shift variables ai,N+1 → ai,N+1 − ci; (42) becomes

VN+2(X1, . . . , XN , Y, Y )

=
∫

(a)

{(
1−X1 ·X2

2

)a12

· · ·
(

1−Xn ·XN

2

)anN (1−X1 · Y
2

)a1,N+1
(

1−XN · Y
2

)aN,N+1

Γ [−a12, . . . ,−aN,N+1]V new
N+1(a)

}
. (43)

In this expression the integral is over the variables a12, . . . , aN,N+1 and V new
N+1(a) is given by

V new
N+1(a) :=

1
Γ [−a1,N+1, . . . ,−aN,N+1]

∫
[c]

{
Γ [c1 − a1,N+1, . . . , cN − aN,N+1,−c1, . . . ,−cN ]

VN+2(a12, . . . , anN , c1 − a1,N+1, . . . , cN − aN,N+1, c1, . . . , cN , 0)
}
. (44)

In this expression
∫

[c]
. . . denotes contour integration over c1, . . . , cN . These integrals are guaranteed to converge

so long as the aij are within the region for which the integrand of (42) is analytic. Although this expression is
rather complicated, it is easy to verify that this function satisfies requirements (1) and (2) using the asymptotics
described in appendix A. The same analysis may be performed for any K > 1 with the same conclusion: the function
VN+K(X1, . . . , XN , Y, . . . , Y ) is of the form of a function VN+1(X1, . . . , XN , Y ) given by (37).

The last and most important consequence of the form (37) is that the function VN (X1, . . . , Xn, XN ) decays expo-
nentially when evaluated at large embedding distances. For example, suppose |X1 ·X2| � 1. A bound on the decay of
VN (X1, . . . , Xn, XN ) can be found in the same manner as in the previous section. Let all integration contours except
that of a12 be located at Re aij = −ε. From (38) it follows that in this configuration a12 has a fundamental strip at
least as large as

a12 : < σmax +O(ε), 0 >, (45)

so VN (X1, . . . , Xn, XN ) decays at least as fast as (X1 ·X2)σmax+ε for any ε > 0.
Furthermore, suppose that removing some vertex results in a disconnected diagram, and suppose also that one of

the resulting connected components contains none of the original external legs. Then this piece contributes only an
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X1

X2

···
XN

XM

Xm

···
XN+1

···

Figure 4: The process of adding a new vertex to an existing diagram.

This procedure generates all diagrams in which no propagator has both of its ends on
the same vertex. But adding such one-link loops simply multiplies any diagram by factors
of ∆reg

σ (Y · Y ), which are just finite constants due to our PV regularization, and which are
readily absorbed into the definition of VM . It thus remains only to show that the diagrams
generated by the above process satisfy requirements (1) and (2) associated with (4.1).

Note that K ≥ 1 in order for the diagram to be connected. Following the discussion
in section 4.1, since K ≥ 1 we know that VN+K(X1, . . . ,XN , Y, . . . , Y ) can be written in
the form of some VN+1(X1, . . . ,XN , Y ). Inserting this (4.10) becomes

VM (X1, . . . ,XM ) =
∫

Y
VN+1(X1, . . . ,XN , Y )∆reg

σN+1
(XN+1 · Y ) · · ·∆reg

σM
(XM · Y ).

(4.11)

It is convenient to define n = N − 1 and m = M − 1. The integral (4.10) can be
computed in essentially the same manner as the single-vertex diagram section 3. We begin
by expressing both VN+1(X1, . . . ,XN , Y ) and the regulated Green’s functions in terms of
their MB integral representations:

VN+1(X1, . . . ,XN , Y )

=
∫

(a)

∫
ν1

· · ·
∫

νN

{ (
1−X1 ·X2

2

)a12

· · ·
(

1−Xn ·XN

2

)anN
(

1−X1 · Y
2

)ν1

· · ·
(

1−XN · Y
2

)νN

Γ [−a12, . . . ,−anN ,−ν1, . . . ,−νN ] VN+1(a12, . . . , anN , ν1, . . . , νN )
}

, (4.12)

∆reg
σi

(Xi · Y ) =
∫

νi

ψreg
σi

(νi)Γ (−νi)
(

1−Xi · Y
2

)νi

. (4.13)

Here it is important to keep track of notation. In the first equation we have relabelled
ai,N+1 → νi, i = 1, . . . , N , so that the remaining N(N−1)/2 aij variables run a12, . . . , anN .
In the second expression i runs i = N + 1, . . . ,M . Inserting these into (4.11) we then
integrate over Y using the master integral MM (see (3.24)). After performing a shift of
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FIG. 4. The process of adding a new vertex to an existing diagram.

overall multiplicative constant (which is finite at finite regulators masses Mij) to the diagram and does not affect the
large Z behavior. One may therefore remove such pieces from the diagram when computing σmax above. We refer to
this process as “trimming,” so that the trimmed version of a given diagram has all such pieces removed.

Obviously, the same result also holds for the other embedding distances. From this result it follows that the
connected part of a PV-regulated N -point function – which may be described to any order in perturbation theory
by diagrams of the form VN – decays when any two operators are taken to be separated by a large distance Z at
least as fast as |Z|σmax+O(ε), where σmax is the (real part of the) largest σ that appears in any trimmed diagram that
contributes to the correlator.

B. Proof of the desired Mellin-Barnes representation

The proof that all diagrams can be written in the form (37) is through induction. One constructs a diagram vertex
by vertex, beginning with a single-vertex tree diagram. We have already seen that single-vertex diagrams have MB
integral representations of the required form. Thus one simply needs to show that, upon adding a vertex to an existing
diagram with the form (37), the new diagram is again of the form (37). We show this below.

The process of adding a new vertex to an existing diagram is shown schematically in Fig 4.Starting with an
(N +K)-legged diagram VN+K(X1, . . . , XN , XN+1, . . . , XN+K), one attaches a new vertex to the K ≥ 1 external legs
XN+1, . . . , XN+K . One then attaches to the new vertex (M − N) new external legs so that the new diagram is an
M -legged diagram:

VM (X1, . . . , XM ) =
∫
Y

VN+K(X1, . . . , XN , Y, . . . , Y )∆reg
σN+1

(XN+1 · Y ) · · ·∆reg
σM (XM · Y ).

(46)

This procedure generates all diagrams in which no propagator has both of its ends on the same vertex. But adding
such one-link loops simply multiplies any diagram by factors of ∆reg

σ (Y ·Y ), which are just finite constants due to our
PV regularization, and which are readily absorbed into the definition of VM . It thus remains only to show that the
diagrams generated by the above process satisfy requirements (1) and (2) associated with (37).

Note that K ≥ 1 in order for the diagram to be connected. Following the discussion in section IV A, since K ≥ 1
we know that VN+K(X1, . . . , XN , Y, . . . , Y ) can be written in the form of some VN+1(X1, . . . , XN , Y ). Inserting this
(46) becomes

VM (X1, . . . , XM ) =
∫
Y

VN+1(X1, . . . , XN , Y )∆reg
σN+1

(XN+1 · Y ) · · ·∆reg
σM (XM · Y ).

(47)

It is convenient to define n = N − 1 and m = M − 1. The integral (46) can be computed in essentially the same
manner as the single-vertex diagram section III. We begin by expressing both VN+1(X1, . . . , XN , Y ) and the regulated
Green’s functions in terms of their MB integral representations:

VN+1(X1, . . . , XN , Y )

=
∫

(a)

∫
ν1

· · ·
∫
νN

{(
1−X1 ·X2

2

)a12

· · ·
(

1−Xn ·XN

2

)anN (1−X1 · Y
2

)ν1
· · ·
(

1−XN · Y
2

)νN
Γ [−a12, . . . ,−anN ,−ν1, . . . ,−νN ]VN+1(a12, . . . , anN , ν1, . . . , νN )

}
, (48)
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∆reg
σi (Xi · Y ) =

∫
νi

ψreg
σi (νi)Γ (−νi)

(
1−Xi · Y

2

)νi
. (49)

Here it is important to keep track of notation. In the first equation we have relabelled ai,N+1 → νi, i = 1, . . . , N ,
so that the remaining N(N − 1)/2 aij variables run a12, . . . , anN . In the second expression i runs i = N + 1, . . . ,M .
Inserting these into (47) we then integrate over Y using the master integral MM (see (31)). After performing a shift
of integration variables νi → νi +Bi (where Bi =

∑N
j=1 bij) we arrive at

VM (X1, . . . , XM ) =
∫

(a)

∫
(b)

{(
1−X1 ·X2

2

)a12+b12

· · ·
(

1−Xn ·XN

2

)anN+bnN

(
1−X1 ·XN+1

2

)b1,N+1

· · ·
(

1−Xm ·XM

2

)bmM
Γ [−a12, . . . ,−anN ,−b12, . . . ,−bmM ]VM (a, b)

}
.

(50)

In this expression the bij run over all distinct pairs ij (i.e., b12, . . . , bmM ) and

VM (a, b) =
∫

[ν]

{
Γ
[ −ν1, . . . ,−νM , 1

2 + α+
∑
νi +

∑
bij

1 + 2α+
∑
νi + 2

∑
bij

]

VN+1(a12, . . . , anN , B1 + ν1, . . . , BN + νN )ψreg
σN+1

(BN+1 + νN+1) · · ·ψreg
σM (BM + νM )

}
.

(51)

It is now straightforward to determine the region for which the integrand in (50) is analytic in the integration
variables. The simplest variables to analyse are the bij variables with N < i, j ≤M . For these variables the analysis
is identical to that performed for the single-vertex graph; the result is that the integrand is analytic in the region

Re bmM ∈
(

max
{
σm −B′m, σM −B′M ,−

1
2
− α−

∑
′bij

}
, 0
]
. (52)

As usual here the prime denotes that bmM is omitted from the sums. For variables bij with 1 ≥ i ≤ N and N < j ≤M
one finds

Re b1M ∈
(

max
{
σmax − P1,N+1(a, b), σM −B′M ,−

1
2
− α−

∑
′bij

}
, 0
]
. (53)

Finally, let us determine the region for which the integrand is analytic with respect to aij while holding the bij
contours with 1 ≤ i, j ≤ N fixed to satisfy Re bij = −ε. In this configuration it is easy to determine that the integrand
is analytic when

Re a12 ∈ (σmax − P12(a, b) +O(ε), 0] . (54)

Therefore, we can perform the shift of variables aij → aij − bij in order to get (50) in the form (37). We know that
the bij integrals with 1 ≤ i, j ≤ N will converge in the region given by (52)-(54). We see that (52)-(54) satisfy (38),
and that all integrals converge sufficiently rapidly to satisfy (39). Thus we have shown that VM (X1, . . . , XM ) is of
the form 37.

C. Removing the regulator: the limit M2
ij →∞

Our analysis above is complete at the level of effective theories. In that context, one keeps the regulators masses Mij

finite and is careful to ask questions only about physics at energy scales much less than Mij . But for renormalizable
theories one would like to do more and to remove the regulators by sending Mij →∞ before taking the limit of large
|Zij |.

Such questions are straightforward to address using our Mellin-Barnes representations. Note that, as with the tree
diagrams discussed in section III C, we may study the large Mij limit holding fixed the locations of all contours, subject
only to the conditions (38) found above. Suppose for the moment that we choose the couplings to be independent
of the regulators masses Mij . Then all of the regulator-dependence lies in the functions ψρ(ν) associated with the
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regulator Green’s functions and the coefficients Ci. Note that each term in the asymptotic expansion (17) of such
functions at large Mij again decays exponentially away from the real axis (now roughly as e−π|y|) fast enough for
the arguments of sections IV A,IV B to hold4. As a result, inserting the expansion (17) into one of our Mellin-Barnes
integrals (and also expanding the Ci) produces an asymptotic series in the masses Mij , each of whose coefficients is
again a Mellin-Barnes integral with the same contours and convergence properties as the original expression.

Of course, the above expansion will in general include positive powers of Mij as well as negative powers; these are
just the expected ultra-violet divergences of the theory. But let us suppose that by taking the coupling constants
to depend on Mij in an appropriate way the Mij → ∞ limits of correlators become well-defined and finite, at least
to some fixed order in perturbation theory. This is precisely the assumption that the divergences can be cancelled
by some set of Mij-dependent counter-terms. Since coupling constants are just overall multiplicative factors in each
diagram, it is straightforward to take this extra dependence on the Mij into account. Expanding each coupling in an
asymptotic series generates a new series, where each term is again a Mellin-Barnes integral of our standard form (and
with the same placement of the contours). This is true in particular of the term that is independent of the Mij . But
this term gives the full Mij →∞ limit, since all terms involving positive powers of Mij must have cancelled in order
to obtain a finite result. The usual argument then implies that this term decays as |Z|σmax+O(ε) at large |Z|, where
σmax is the (real part of the) largest σ that appears in any trimmed diagram that contributes to the correlator at this
order. We will provide an explicit example of this renormalization procedure in a future publication [49].

V. DISCUSSION

In the above work, we used Mellin-Barnes techniques to determine the asymptotics of Pauli-Villars regulated
diagrams for massive scalar quantum field theories in de Sitter space. We found that connected correlators fall off at
large |Z| at least as fast as does the Green’s function for the lightest field in the (trimmed) diagram (up to corrections
that grow less strongly than powers laws; e.g., factors of log |Z|). Due to the simple way in which changing the
PV regulator masses interacted with the Mellin-Barnes expressions, it was straightforward to show that the same
results hold in the Mij → ∞ limit in which the regulators are removed, independent of the details of any counter-
terms required. An explicit example of this renormalization procedure will appear in [49]. A similar analysis using
Mellin-Barnes techniques should also be possible in the context of dimensional regularization.

As described in the introduction, for the (massive scalar) QFTs considered it follows that, for any state obtained
by acting with appropriate smeared field operators on the Hartle-Hawking vacuum, any correlation function will
approach that of the Hartle-Hawking vacuum at large times; i.e., that the interacting Hartle-Hawking vacuum is an
attractor state in the sense of [27] for local correlators at any order of perturbation theory. Since the above class of
states includes any perturbation of the Hartle-Hawking vacuum created by a source of compact support, this provides
a sense in which this vacuum is stable despite the possible concerns raised in e.g. [30, 31, 33].

Our results hold for all masses M2 > 0 for which a free Euclidean vacuum exists and for arbitrary interactions,
with non-renormalizable theories being treated as effective theories. While for simplicity of notation the calculations
were presented only for non-derivative couplings, no significant changes are required to analyze derivatively-coupled
theories and (as usual) derivatives can only strengthen the fall-off at large Z. It would be very interesting if our
results could be extended to the massless case M2 = 0 following e.g. the approach of [50], which introduced a new
form of perturbation theory on SD.

Some readers may be concerned by our use of Euclidean techniques. But on general grounds the Hartle-Hawking
state should be a valid quantum state. In particular, the analytically continued correlators satisfy the Lorentz-
signature Schwinger-Dyson equations. Furthermore, the de Sitter analogue [51] of the Osterwalder-Schräder construc-
tion implies that the Hartle-Hawking state lives in a positive-definite Hilbert space whenever the Euclidean correlators
satisfy reflection-positivity. This in turns holds at least formally whenever the Euclidean action is bounded below, and
has been rigorously shown in D = 2 dimensions for standard kinetic terms and polynomial potentials; see e.g. [52].
In such cases, it remains only to ask how the Hartle-Hawking state relates to other states of interest; e.g, perhaps the
state defined by the standard in-in perturbation theory in the expanding cosmological patch of dSD. This question
will be investigated in detail in [53], where it will be shown that these two states agree for massive scalar fields.

It would be interesting to apply some version of these tools to massless scalar fields, perhaps using the perturbation
scheme described in [50]. Although the natural propagator of this scheme grows logarithmically at large Z due to
a double pole at the origin, it is possible that this behavior will softened by higher order corrections. Finally, we
emphasize that we consider field theories on a fixed spacetime background in which the metric is non-dynamical. As

4 In fact, such arguments require decay only as e−π|y|/2 times an appropriate power law or faster.
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the known propagators for gravitons do not fall off at large separations, the situation for dynamical gravity may be
quite different.
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Appendix A: Mellin-Barnes integrals

We write a generic Mellin-Barnes integral as 5

f(Z) =
∫
ν

Γ
[
a1 +A1ν, . . . , am +Amν, b1 −B1, . . . , bn −Bnν
c1 + C1ν, . . . cp + Cpν, d1 −D1ν, . . . , dq −Dqν

]
(Z)ν , (A1)

where the measure dν/2πi is implicit and the contour is a straight line parallel to the imaginary axis, traversed from
−i∞ to +i∞, lying between the left and right poles. The convergence of the integral (A1) is governed by the behavior
of the integrand at large |Im ν|. This behavior can be determined from the well-known asymptotic behavior of the
Gamma function:

lim
|y|→∞

Γ (x+ iy) = (2π)1/2e−
π
2 |y||y|x−1/2

[
1 +O(y−1)

]
. (A2)

Let us assume that the all Ai, Bi, Ci, Di are positive and define

E =
m∑
i=1

Ai +
n∑
i=1

Bi −
p∑
i=1

Ci −
q∑
i=1

Di, (A3)

F =
m∑
i=1

Ai −
n∑
i=1

Bi −
p∑
i=1

Ci +
q∑
i=1

Di, (A4)

G = Re

[
m∑
i=1

ai +
n∑
i=1

bi −
p∑
i=1

ci −
q∑
i=1

di

]
+

1
2

(−m− n+ p+ q), (A5)

H =
m∏
i=1

(Ai)Ai
n∏
i=1

(Bi)−Bi
p∏
i=1

(Ci)−Ci
q∏
i=1

(Di)Di , (A6)

and furthermore let Z = ReiΦ and ν = x+ iy. With this notation the absolute value of the integrand behaves like

exp
[
−Φy − Eπ

2
|y|
]
|y|Fx+G(RH)x (A7)

as |y| → ∞. From this we conclude that the integral (A1) is absolutely convergent when

1. |Φ| < Eπ/2. The integral A1 defines an analytic function of Z for |argZ| < min
(
π, Eπ2

)
.

2. |Φ| = Eπ/2 and Fx+G < −1. The integral defines an analytic function for all Z.

See [54] for further details.

5 This discussion follows closely the discussion in [54].
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Appendix B: Calculation of MN

In this appendix we compute the integral

MN :=M(ν1, . . . , νN ) =
∫
Y

(
1−X1 · Y

2

)ν1
· · ·
(

1−Xn · Y
2

)νn (1−XN · Y
2

)νN
(B1)

with n = N − 1. Rather than directly evaluating (B1) we instead consider the integral

A(α1, . . . , αn) :=
∫
Y

[
α1

(
1−X1 · Y

2

)
+ · · ·+ αn

(
1−Xn · Y

2

)
+
(

1−XN · Y
2

)]λ
, (B2)

where αi are arbitrary real parameters and λ is a complex number with Reλ < 0. The quantities A and M may be
related in a simple way. To do so we use a standard Mellin-Barnes formula:

(A1 + · · ·+An +AN )λ

=
1

Γ (−λ)

∫
u1

· · ·
∫
un

Γ

[
−λ+

n∑
i=1

un, −u1, . . . , −un
]

(A1)u1 · · · (An)un(AN )λ−
P
ui .

(B3)

Inserting (B3) in (B2) yields

A(α1, . . . , αn) =
1

Γ (−λ)

∫
u1

(α1)u1 · · ·
∫
un

(αn)un
{

Γ

[
−λ+

n∑
i=1

ui, −u1, . . . , −un
]

M
(
u1, . . . , un, λ−

n∑
i=1

ui

)}
. (B4)

Written this way M is one factor of the Mellin transform of A.
Let us now return to (B2) and integrate over Y . We use the formula

ηλ =
i−λ

Γ (−λ)

∫ ∞
0

dβ β−1−λe−iβη (B5)

to write A as

A(α1, . . . , αn) =
(2i)−λ

Γ (−λ)

∫ ∞
0

dβ β−1−λ exp

[
−iβ

(
1 +

n∑
i=1

αi

)]∫
Y

e+iβV Y (B6)

where V = α1X1 + · · ·+ anXn +XN . The integral over Y can be written in terms of the Bessel function:∫
Y

e−iβV Y = (2π)α+1 Jα(β|V |)
(β|V |)α . (B7)

The Bessel function may be written as a Mellin-Barnes integral

Jν(z) =
∫
µ

Γ
[ −µ

1 + ν + µ

](z
2

)ν+2µ

; (B8)

inserting (B8) into (B7) yields ∫
Y

e−iβV Y = 2πα+1

∫
µ

Γ
[ −µ

1 + α+ µ

](
β2V 2

4

)µ
. (B9)

After inserting (B9) into (B6) we may integrate over β using the inverse of (B5)∫ ∞
0

dβ β−1−λe−iβη =
Γ (−λ)
i−λ

(η − i0)λ. (B10)
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Convergence of the integral over β requires Re (λ− 2µ) < 0. The result is

A(α1, . . . , αn) =
21−λπα+1

Γ (−λ)

∫
µ

Γ
[ −µ, 2µ− λ

1 + α+ µ

]
(2i)−2µ(V 2)µ

(
1 +

n∑
i=1

αi

)λ−2µ

. (B11)

Next we perform a number of manipulations in order to tidy up (B11). First note that

V 2 = α2
1 + · · ·+ α2

n + 1 + α1α2X1X2 + · · ·+ αnXnXN

=

(
1 +

n∑
i=1

αi

)2

+ 2α1α2(X1X2 − 1) + · · ·+ 2αn(XnXN − 1). (B12)

It is convenient to use B3 to write

(V 2)µ =
1

Γ (−µ)

∫
w

{
Γ [−µ+ w, −w]

(
1 +

n∑
i=1

αi

)2(µ−w)

[2α1α2(X1 ·X2 − 1) + · · ·+ 2αn(XnXN − 1)]w
}
. (B13)

Inserting this into (B11) yields

A(α1, . . . , αn) =
21−λπα+1

Γ (−λ)

∫
µ

∫
w

{
Γ
[

2µ− λ, −µ+ w, −w
1 + α+ µ

]
(2i)−2µ

(
1 +

n∑
i=1

αi

)λ−2w

[2α1α2(X1X2 − 1) + · · ·+ 2αn(XnXN − 1)]w
}

(B14)

We can now integrate over µ. First we use the Gamma function duplication formula

Γ
[
x, x+

1
2

]
= 21−2x

√
πΓ (2x) (B15)

on the Gamma function Γ (2µ− λ); second we use the Gauss summation formula [54] written here as a Mellin-Barnes
integral: ∫

µ

Γ
[
a+ µ, b+ µ, d− µ
c+ µ

]
e±iπµ = e±iπd Γ

[
a+ d, b+ d, c− a− b− d
c− a, c− b

]
, (B16)

valid for Re (c− a− b− d) > 0. Cleaning up we have

A(α1, . . . , αn) =
21+2απα+1/2

Γ [−λ, 1 + 2α+ λ]

∫
w

{
Γ
[
2w − λ, 1

2
+ α+ λ− w, −w

]
(

1 +
n∑
i=1

αi

)λ−2w [
α1α2

(
1−X1 ·X2

2

)
+ · · ·+ αn

(
1−XnXN

2

)]w }
.

(B17)

The next series of steps is simple but rather cumbersome to transcribe. We expand both the term in parentheses
and the term in square brackets in (B17) using the Mellin-Barnes expansion (B3). Within the parentheses there are
n+ 1 terms, so the Mellin-Barnes expansion of this quantity has n integrations. Likewise, the term in square brackets
has N(N −1)/2 terms so the Mellin-Barnes expansion of this quantity has N(N −3)/2 integrations. After performing
some shifts in the integration variables (taking care not to shift a contour through a pole) and relabelling we obtain



18

the following expression:

A(α1, . . . , αn) =

=
21+2απα+1/2

Γ [−λ, 1 + 2α+ λ]

∫
µ1

(α1)µ1 · · ·
∫
µn

(αn)µn
{

∫
h12

· · ·
∫
hnN

{(
1−X1 ·X2

2

)h12

· · ·
(

1−Xn ·XN

2

)hnN
Γ [−h12, . . . ,−hnN ]

Γ

[∑
h1i − µ1, . . . ,

∑
hni − µn,

∑
hNi − λ+

n∑
i=1

µi,
1
2

+ α+ λ−
∑

hij

]}}
.

(B18)

In this expression there is a total of n integration variables µ1, . . . , µn and N(N − 1)/2 variables hij . The latter are
labelled such that each factor of (1−Xi ·Xj)/2 is raised to the power hij .

The convergence of each Mellin-Barnes integral may be evaluated using the technique described in Appendix A.
Each integral converges absolutely for all (1−Xi ·Xj)/2 6= 1. The expression (B18) defines a single-valued function
of the inner products Xi ·Xj for all complex values of Xi ·Xj away from the cuts Xi ·Xj ∈ [1,∞).

Both (B4) and (B18) equate A with an n-fold Mellin transform with parameters αi. It is easy to see that the
integration contours of the two expressions – those of the ui in the former expression and µi in the latter expression
– may be taken to be traversed in the same places in their respective complex planes. Now recall that the Mellin
inversion theorem states that for a given choice of integration contour the Mellin transform of a function is unique
[54]. It follows that we may identify the integrands and equate u1 = µ1, . . . , un = µn. The final step is to relabel

µi = ui → νi, for i = 1, . . . , n, λ→ νN +
n∑
i=1

νi, hij → aij , (B19)

which yields

M(ν1, . . . , νN )

=
(4π)α+1/2

Γ [−ν1, . . . ,−νN , 1 + 2α+
∑
νi]

∫
(a)

{(
1−X1 ·X2

2

)a12

· · ·
(

1−Xn ·XN

2

)anN
Γ
[
−a12, . . . ,−anN , A1 − ν1, . . . , AN − νN , 1

2
+ α+

∑
νi −

∑
aij

]}
. (B20)

In this expression Ai :=
∑N
j=1 aij .

[1] B. Allen, Phys. Rev., D32, 3136 (1985).
[2] A. A. Starobinsky, JETP Lett., 30, 682 (1979).
[3] E. Mottola, Phys. Rev., D31, 754 (1985).
[4] E. Mottola, in Physical Origins of Time Asymmetry, edited by J. J. Halliwel, J. Pérez-Mercader, and W. H. Zurek (1994)
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