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We derive a coordinate-independent formulation of the post-1-Newtonian approximation to gen-
eral relativity. This formulation is a generalization of the Newton-Cartan geometric formulation of
Newtonian gravity. It involves several fields and a connection, but no spacetime metric at the fun-
damental level. We show that the usual coordinate-dependent equations of post-Newtonian gravity
are recovered when one specializes to asymptotically flat spacetimes and to appropriate classes of
coordinates.
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I. INTRODUCTION AND SUMMARY

A. Background and Motivation

The weak field, slow motion approximation to general
relativity, also called the post-Newtonian approximation,
consists of expanding in the small parameters v2/c2 and
Φ/c2, where v is a typical velocity of the system un-
der consideration, Φ is the Newtonian potential, and c is
the speed of light. At the leading order Newton’s the-
ory is recovered, and higher order corrections are called
post-1-Newtonian corrections, post-2-Newtonian correc-
tions and so on. This aproximation scheme is very useful
in astrophysical applications and is very well developed.
Reviews can be found in Ref. [1] and in the book by Will
[2], and a historical review can be found in Ref. [3].

There are two types of of equations that arise in post-
Newtonian theory. The first are continuum equations of
motion, for example for gravity coupled to a perfect fluid,
for which one obtains generalizations of the equations of
Newtonian hydrodynamics. Such continuum equations
have been used extensively in numerical simulations (al-
though fully relativistic simulations are now the state of
the art [4]). The second type of equations are “point
particle equations”, which describe the motions of bod-
ies whose sizes are small compared to their separations.
Such point particle equations (and extensions to include
spins) can be derived from the underlying continuum the-
ory by a variety of methods. Currently the equations of
motion for two point particles are known up to post-3.5-
Newtonian order, see, for example Ref. [5] and references
therein. In this paper we shall be concerned only with
continuum equations.

Over the years, the foundations of the Newtonian and
post-Newtonian approximations have been studied in de-
tail and with considerable mathematical rigor by a num-
ber of researchers. Futamase and Schutz [6] have shown
that the various orders of post-Newtonian approxima-
tion are asymptotic approximations to fully relativisitic
solutions. Frittelli and Reula [7] showed that, given a
solution of the equations of Newtonian gravity, there ex-

ists a one parameter family of exact relativistic solutions
which for a finite amount of time are close to the Newto-
nian solution. Rendall [8] gave a mathematically rigorous
derivation of both the Newtonian and post-Newtonian
approximations from a precise set of axioms.

However, there remains one aspect of post-Newtonian
theory which has not been fully explored: there is as
yet no covariant version of the theory. Usually, in or-
der to find the equations of post-Newtonian theory, one
first introduces specializations of the coordinate system
(or gauge), and then Einstein’s equations are expanded
order by order. The gauge specializations are chosen to
simplify the resulting equations. For example, at post-
1-Newtonian order, the harmonic gauge condition and
the so-called standard post-Newtonian gauge condition
[9] are often used. In each of these gauges the post-
Newtonian equations take a different form. The situa-
tion is similar to knowing the laws of electromagnetism
only in a handful of gauges (e.g. the Lorentz and the
Coulomb gauge), without knowing the underlying gauge
independent equations.

This lack of covariance of post-Newtonian theory as
currently formulated has several disadvantages:

• If one is attempting to compare two different calcu-
lations, it is often helpful to identify and compute
gauge-invariant quantities. Generally, such quanti-
ties are easier to identify starting from a covariant
formulation of the theory.

• In attempting to developing intuition from the
post-Newtonian equations, it can be difficult to sort
out which aspects of the equations contain the ac-
tual gauge-independent physics and which aspects
are gauge dependent. For example, there is a well-
known analogy between the equations of post-1-
Newtonian theory in certain gauges and those of
electromagnetism. In this case the analogy with
electrostatics and magnetostatics is physical, but
the additional aspects of the analogy concerning
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magnetodynamics are gauge.1

• At post-1-Newtonian order, there is a well-
developed framework for celestial mechanics that
describes N interacting, deformable bodies [9–12].
This framework is quite complicated, involving sep-
arate coordinate systems for each body as well as
a global coordinate system, together with a set of
fields associated with each of the coordinate sys-
tems. A covariant formulation might simplify some
aspects of this framework.

B. Covariant post-Newtonian theory

The purpose of this paper is to derive a coordinate in-
dependent formulation of post-1-Newtonian theory. We
will derive a fully covariant set of equations, involving a
number of tensor fields and a connection, which reduce to
the standard post-Newtonian equations in specific coor-
dinate systems for asymptotically flat spacetimes. In the
case of Newton’s theory, such a geometric formulation
has already been found by Cartan and others [13–17],
and is called Newton-Cartan theory. Building on earlier
work of Dautcourt [18, 19], our derivation will reproduce
Newton-Cartan theory at leading order, and at the next
order will give a covariant version of post-1-Newtonian
theory which we call “post-Newton-Cartan theory”.
We will actually derive two different versions of post-

Newton-Cartan theory. The first version, which we call
perturbative post-Newton-Cartan theory, allows one to
compute the leading order corrections to a solution of
Newton-Cartan theory. It is a unique theory, in which
post-Newtonian corrections to Newtonian quantities are
treated as independent variables to be solved for. The
second version, which we call combined post-Newton-
Cartan theory, combines some of the Newtonian and
post-Newtonian variables together. It is more econom-
ical and convenient to use than the first version, because
it has fewer variables and fewer equations. Solutions of
this theory will be accurate to post-1-Newtonian order,
but will in addition contain post-2-Newtonian, post-3-
Newtonian etc. pieces. The combined theory is not
unique; different choices could be made to define different
theories whose solutions differ at post-2-Newtonian and
higher orders. We note that standard, coordinate-specific
post-Newtonian theory also comes in “perturbative” and
“combined” versions [6].

C. Results

We now turn to a description of our results. We start
by reviewing Newton-Cartan theory, then we describe the

1 If the analogy with electromagnetism were complete there would
be radiation in the post-1-Newtonian theory.

TABLE I: Fields and equations of Newton-Cartan theory.

Field Description

hab spatial metric, (0,+,+,+)

ta time one-form

Da symmetric connection

T
ab matter stress-energy tensor

Equation Description

habtb = 0 Orthogonality

Dah
bc = 0 Compatibility with connection

Datb = 0 Compatibility with connection

h
e[a

R
d]

e(bc) = 0 Trautman condition

Rab = 4πtatbtctdT
cd Field equation

DaT
ab = 0 Stress-energy conservation

R d
abc = R d

abc (De) definition of Riemann

two versions of post-Newton-Cartan theory.

1. Newton-Cartan theory

The variables of Newton-Cartan theory are a one-form
ta, a symmetric contravariant tensor field hab with sig-
nature (0,+,+,+), and a torsion-free connection Da.
Matter is described by a symmetric contravariant stress-
energy tensor T ab. The fields ta and hab are non-
dynamical, background fields, while Da and T ab are dy-
namical.
The equations of the theory are the orthogonality con-

dition

habtb = 0, (1.1)

the compatibility of the fields hab and ta with the con-
nection,

Dah
bc = 0, (1.2a)

Datb = 0, (1.2b)

and the Trautman condition

h
f [a

R
d]

f(bc) = 0, (1.3)

where R d
abc is the Riemann tensor associated with the

connection Da. In addition we have the field equation

Rab = 4πtatbtctdT cd, (1.4)

where Rab = R c
acb , and the stress-energy conservation

equation

DaT ab = 0. (1.5)

These fields and equations are summarized in Table I. In
Sec. III A below we review the derivation of this Newton-
Cartan theory from general relativity, and in Sec. IVB we
review how Newton-Cartan theory reduces to standard
Newtonian gravity in appropriate circumstances and in
appropriate coordinate systems.
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TABLE II: Additional fields and equations of perturbative post-Newton-Cartan theory.

Field Description

kab contravariant metric perturbation

pab covariant metric perturbation

∆c
ab connection perturbation

S
ab matter stress-energy perturbation

Equation Description

habpbc − kabtbtc = δac Orthogonality

Dak
bc +∆b

adh
dc +∆c

adh
bd = 0 Compatibility with connection

Dapbc +∆d
abtdtc +∆d

actbtd = 0 Compatibility with connection

k
e[a

R
d]

e(bc) − h
e[a

De∆
d]
bc + h

e[a
D(b∆

d]

c)e = 0 Trautman condition

−Da∆
b
bc +Db∆

b
ac = 4π

[

tatbtctdS
cd

− 4tct(apb)dT
cd + pcdT

cdtatb + tctdT
cdpab

]

Field equation

DaS
ab +∆a

acT
cb +∆b

acT
ac = 0 Stress-energy conservation

TABLE III: Fields and equations of combined post-Newton-Cartan theory.

Field Description

ĥab spatial metric, (0,+,+,+)

t̂a time one-form

k̂ab contravariant metric perturbation

p̂ab covariant metric perturbation

D̂a symmetric connection

T̂
ab matter stress-energy tensor

Equation Description

ĥab t̂b = 0 Newtonian orthogonality

ĥabp̂bc − k̂ab t̂bt̂c = δac post-Newtonian orthogonality

D̂a(ĥ
bc + k̂bc) = 0 Compatibility with connection

D̂a(−t̂bt̂c + p̂bc) = 0 Compatibility with connection

(ĥ
e[a

+ k̂
e[a

)R
d]

e(bc) (D̂e) = 0 Trautman condition

Rab(D̂c) = 4π
[

t̂a t̂bt̂ct̂dT̂
cd

− 4t̂c t̂(ap̂b)dT̂
cd + p̂cdT̂

cdt̂at̂b + t̂ct̂dT̂
cdp̂ab

]

Field equation

D̂aT̂
ab = 0 Stress-energy conservation

2. Perturbative post-Newton-Cartan theory

Turn, now to the perturbative post-Newton-Cartan
theory. This theory contains the Newtonian fields hab,
ta, Da and T ab, and in addition four new fields: a sym-
metric, contravariant tensor kab, a symmetric, covariant
tensor pab, a perturbation ∆c

ab to the connection, and a
perturbation Sab to the matter stress-energy tensor.
The equations of the theory are the six Newtonian

equations (1.1) – (1.5), together with six post-Newtonian
equations: (i) the orthogonality condition

habpbc − kabtbtc = δac ; (1.6)

(ii) the compatibility of kab with the connection,

Dak
bc +∆b

adh
dc +∆c

adh
bd = 0; (1.7)

(iii) the compatibility of pab with the connection,

Dapbc +∆d
abtdtc +∆d

actbtd = 0; (1.8)

(iv) the post-Newtonian Trautman condition

k
e[a

R
d]

e(bc) − h
e[a

De∆
d]
bc + h

e[a
D(b∆

d]
c)e = 0; (1.9)

(v) the field equation

−Da∆
b
bc +Db∆

b
ac = 4π

[

tatbtctdScd − 4tct(apb)dT cd

+pcdT cdtatb + tctdT cdpab
]

;

(1.10)

and (vi) the stress-energy conservation equation

DaSab +∆a
acT cb +∆b

acT ac = 0. (1.11)

These fields and equations are summarized in Table II. In
Sec. III A below we review the derivation of this perturba-
tive post-Newton-Cartan theory from general relativity,
and in Sec. IVC we review how it reduces to standard
post-1-Newtonian gravity in appropriate circumstances
and in appropriate coordinate systems.



4

3. Combined post-Newton-Cartan theory

The combined post-Newton-Cartan theory has aspects
of both the Newton-Cartan and the perturbative post-
Newton-Cartan theories. The independent variables are

a one-form t̂a, a symmetric contravariant tensor field ĥab

with signature (0,+,+,+), a symmetric, contravariant

tensor k̂ab, and a symmetric, covariant tensor p̂ab. There
is also a torsion-free connection D̂a, which is defined ac-
curate to post-1-Newtonian order. Matter is described
by a symmetric contravariant stress-energy tensor T̂ ab,
which is also defined accurate to post-1-Newtonian or-

der. The fields t̂a and ĥab are non-dynamical, background
fields, while the remaining fields are dynamical.
The equations of the theory are: (i) the orthogonality

conditions

ĥabt̂b = 0, (1.12a)

ĥabp̂bc − k̂abt̂b t̂c = δac ; (1.12b)

(ii) the connection compatibility conditions

D̂a(ĥ
bc + k̂bc) = 0, (1.13a)

D̂a(−t̂bt̂c + p̂bc) = 0; (1.13b)

(iii) the Trautman condition

(ĥ
e[a

+ k̂
e[a

)R
d]

e(bc) (D̂e) = 0; (1.14)

(iv) the field equation

Rab(D̂c) = 4π
[

t̂at̂b t̂ct̂dT̂ cd − 4t̂ct̂(ap̂b)dT̂ cd

+p̂cdT̂ cdt̂at̂b + t̂ct̂dT̂ cdp̂ab
]

; (1.15)

and (v) the stress-energy conservation equation

D̂aT̂ ab = 0. (1.16)

These fields and equations are summarized in Table
III. The derivation of this combined post-Newton-
Cartan theory from the Newton-Cartan and post-
Newton-Cartan theories is given in Sec. III B below.

D. Organization of this paper

In Sec. II we list the assumptions underlying our
derivation, and discuss the motivation for these assump-
tions. Section III gives the derivation of the Newton-
Cartan theory and both versions of the post-Newton-
Cartan theory, from these assumptions. In Sec. IV we
show that the equations of perturbative post-Newton-
Cartan theory reduce to the standard coordinate-specific
equations of post-Newtonian theory, under certain con-
ditions and in certain coordinate systems. We conclude
by summarizing our results and their implications in Sec.
V.

Some technical and side issues are discussed in the
Appendices. Appendix A derives an alternative form of
one of our assumptions. Appendix B derives the gauge
transformation properties of the fields of the perturbative
post-Newton-Cartan theory. Finally appendix C special-
izes the formalism, as an example, to perfect fluids.

E. Notation

Throughout we will use the metric and sign conven-
tions of Misner, Thorne and Wheeler [17]. Furthermore
we will use Penrose’s abstract index notation [20], with
indices (a, b, . . .) from the beginning of the Latin alphabet
denoting general tensors. When we specialize to particu-
lar coordinate systems, we will use indices (α, β, . . .) from
the Greek alphabet to denote general components of ten-
sors. We will also use indices (i, j, k, . . .) from the middle
of the Latin alphabet to denote spatial components of
tensors, and an index 0 to denote time components, in
particular coordinate systems. For example, ua will de-
note a four-velocity vector, uµ will be the components
of the four-velocity in some coordinate system, and ui

and u0 will be the spatial and time components in this
coordinate system. We will work with units in which
G = c = 1, except for some special cases in Sec. II B
where factors of c and G are explicitly included. Finally,
we will use the conventional definitions of the two order
symbols O() and o().

II. FOUNDATIONS AND ASSUMPTIONS

In this section we define and discuss the assumptions
that we make in order to derive the Newton-Cartan
and post-Newton-Cartan theories from general relativ-
ity. At Newtonian order we follow closely the treatments
of Dautcourt [18, 19] and of Rendall [8].

A. Assumptions

The starting point is to assume a one-parameter family
gab(ε), T

ab(ε) of exact solutions of Einstein’s equations

Gab[gcd(ε)] = 8πT ab(ε), (2.1)

where ε is a real parameter with 0 < ε < ε0 for some
ε0. We assume that the solutions are smooth functions
of spacetime and of ε for ε > 0. We do not assume the
existence of a solution at ε = 0.
The key assumptions we make are:

1. The contravariant metric gab(ε) can be expanded
near ε = 0 as

gab(ε) = hab + εkab + ε2jab + ε3lab + o(ε3), (2.2)
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where hab, kab, jab and lab are ε-independent sym-
metric tensor fields on spacetime. Furthermore hab

has signature

hab ∼ (0,+,+,+), (2.3)

and kabtatb is everywhere nonzero, where ta is the
direction defined by habtb = 0.

2. The matter stress-energy tensor can be expanded
near ε = 0 as

T ab(ε) = ε2T ab + ε3Sab +O(ε4), (2.4)

where again T ab and Sab are ε-independent tensor
fields on spacetime.

3. The connection ∇a associated with the metric
gab(ε) has a continuous limit Da as ε → 0,

∇a = Da +O(ε). (2.5)

B. Motivation and Discussion

We now discuss the motivation for and properties of
these assumptions.
First, we note that since the limiting contravariant

metric hab is degenerate, the limit as ε → 0 of the covari-
ant metric does not exist. Therefore there is no limiting,
background solution of Einstein’s equations at ε = 0 in
this framework, unlike the situation for standard pertur-
bation theory [8, 18, 19].
Next, the assumptions are explicitly local and covari-

ant. In Sec. III below we will show that the Newton-
Cartan and post-Newton-Cartan theories can be derived
from them in a local and covariant manner. Suppose
now that one demands that the assumptions apply only
in a given, finite region of spacetime. Then, the Newton-
Cartan and post-Newton-Cartan equations of Tables I
and II will be satisfied in that region. However, as is
well known, it does not follow that the usual equations of
Newtonian gravity will be satisfied, since Newton-Cartan
theory contains more local degrees of freedom than New-
tonian gravity. The physical reason for this will be dis-
cussed in Sec. IVB below. In order to obtain Newtonian
gravity, it is necessary to assume an asymptotically flat
spacetime and to impose the assumptions (2.1) – (2.5)
throughout all of spacetime [8, 18, 19]. We will find a
similar situation for the post-Newton-Cartan theory in
Sec. IV below: it contains more local degrees of freedom
than standard post-1-Newtonian general relativity, and
reduces to it only when the assumptions (2.1) – (2.5)
hold globally in an asymptotically flat spacetime.
Consider now an isolated physical system that is char-

acterized by some mass scale M, lengthscale L, and
timescale T . Then, from Newton’s constant of gravi-
tation G and the speed of light c one can form two di-
mensionless parameters:

ĉ ≡ cT
L , Ĝ ≡ GMT 2

L3
. (2.6)

The Newtonian limit of general relativity is the limit ĉ →
∞ at fixed Ĝ.
The first assumption, the expansion (2.2) of the con-

travariant components of the metric, can now be moti-
vated as follows. The spacetime metric should be close
to the flat, Minkowski metric in the Newtonian limit. In
system-adapted units where T = M = L = 1, this is
ds2 = −ĉ2dt2+ dx2+ dy2+ dz2. Now identifying ε = ĉ−2

gives

gµν = diag(−ε, 1, 1, 1) = O(1) +O(ε),

which satisfies assumption 1 and has signature
(0,+,+,+) at order O(ε0). Corrections from the New-
tonian potential do not change this conclusion.
The second assumption, the expansion (2.4) of the

stress-energy tensor, can be motivated similarly using
dimensional analysis. In a general system of units Ein-
stein’s equation is

Gαβ =
8πG

c4
Tαβ, (2.7)

where from dimensional analysis T tt ∼ ML−3, T ti ∼
ML−2T −1, and T ij ∼ ML−1T −2. In particular all the
components of Tαβ are independent of c to leading order.
If we now specialize to system-adapted units, all of the
components of Tαβ are of order unity, and the right hand
side of Einstein’s equation is of order Ĝ/ĉ4 ∝ ε2, since

we are considering a limit in which Ĝ is held fixed2.
Before discussing the third assumption, it is useful to

consider the gauge freedom present in the formalism. It
may appear that the formalism so far is explicitly gauge-
invariant, since it is covariant under general diffeomor-
phisms. However, given a one-parameter family of solu-
tions gab(ε), T

ab(ε) of Einstein’s equations on a manifold
M , the gauge freedom consists of a one parameter fam-
ily of diffeomorphisms ϕε : M → M , which act on the
solutions via

gab(ε) → ϕε ∗ gab(ε), T ab(ε) → ϕε ∗ T
ab(ε). (2.8)

Here ϕε ∗ is the pullback mapping on tensor fields that
is defined in, for example, Appendix C of Ref. [20]. An
important point is that, since we do not require the exis-
tence of a solution at ε = 0, there is no reason to require
the diffeomorphisms ϕε to have a well defined limit as
ε → 0. Thus, there are two subclasses of gauge transfor-
mations:

• Transformations which we will call regular, consist-
ing of smooth one parameter families of diffeomor-
phisms which have a smooth limit as ε → 0. Such

2 If we replace the assumption (2.4) with a power series expansion
of Tab that starts with a term proportional to εν with ν 6= 2, we
would obtain a non-Newtonian limit of general relativity where
ĉ → ∞ with Ĝĉ2ν−4 held fixed.
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families can be parameterized in terms of a fixed, ε-
independent diffeomorphism ϕ0 and a set of vector
fields ξa(1), ξ

a
(2), . . . via the expansion [21]

ϕε = ϕ0 ◦ D~ξ(1)
(ε) ◦ D~ξ(2)

(ε2) ◦ . . . , (2.9)

where for any vector field ~ξ, D~ξ(ε) is the diffeomor-

phism given by moving any point ε units along an

integral curve of ~ξ.

• Transformations which we will call irregular, con-
sisting of smooth one parameter families ϕε of dif-
feomorphisms which have do not have a smooth
limit as ε → 0.

Our assumptions are explicitly covariant under regular
gauge transformations, as will be discussed in more de-
tail in Appendix B below. However, they are not covari-
ant under irregular gauge transformations. For example,
consider the prototypical Newtonian-order metric that
satisfies our assumptions (2.1) – (2.5), namely

ds2 = −1

ε

[

1 + 2εΦ(t, xi) +O(ε2)
]

dt2

+ [δij +O(ε)] dxidxj , (2.10)

where Φ is the Newtonian potential. Under the irregular
gauge transformation t →

√
εt, xi → xi, this metric is

transformed into

ds2 = −
[

1 + 2εΦ(
√
εt, xi) +O(ε2)

]

dt2

+ [δij +O(ε)] dxidxj , (2.11)

which does not satisfy our assumptions (2.1) – (2.5).
Thus, our assumptions do entail a certain limited amount
of gauge specialization3, even though they are covariant
under transformations of the form (2.9).
We now turn to a discussion of the third assumption,

the expansion (2.5) of the connection ∇a. First, we re-
mark that assumptions 1 and 2 are insufficient to char-
acterize the Newtonian limit. For example, consider a
one parameter family of static vacuum spacetimes, of the
form

ds2 = −e2α(x
k,ε)dt2 + hij(x

k, ε)dxidxj , (2.12)

3 Because of the limited gauge dependence of our assumptions, it
is not a priori obvious that the fields Da, ta, hab, kab, etc. that
characterize the Newton-Cartan and post-Newton-Cartan theo-
ries are physically unique. More precisely, suppose that we start
with a one parameter family of solutions gab(ε), T

ab(ε) which
satisfies our assumptions, and is thus characterized by a set of
limiting fields Da, ta, hab, kab etc. Now make a general (possibly
irregular) gauge transformation, to obtain a new one parameter
family ḡab(ε), T̄

ab(ε) of solutions. If this new family also satis-
fies our assumptions, then it will be characterized by a new set
of fields D̄a, t̄a, h̄ab, k̄ab. We conjecture that in this case there
must exist a regular gauge transformation of the form (2.9) relat-
ing the two sets of fields (in the manner described in Appendix
B), so that the the fields are unique in a physical sense.

which is smooth in ε near ε = 0. This one-parameter fam-
ily of metrics, when written in terms of the coordinates
t̄ =

√
εt and xj , satisfies our assumptions 1 and 2, but is

not of the type associated with the Newtonian limit. In
particular components of the Riemann curvature tensor
will diverge in this example as ε → 0. Therefore some
additional assumption like assumption 3 is necessary.4

Our assumption 3 is actually slightly stronger than is
necessary: we show in Appendix A that, whenever as-
sumptions 1 and 2 hold in a local region, and the Rie-
mann tensor R d

abc (ε) is finite as ε → 0, then there exists
a (possibly irregular) gauge transformation of the form
(2.8) such that the transformed one parameter family of
solutions satisfies assumptions 1, 2 and 3.
Finally we note that, if one wanted to go to higher post-

Newtonian orders, the assumptions used here to obtain a
covariant approximation scheme would need to be mod-
ified. First, to account for dissipative, radiative effects,
one would need to introduce half-integer powers of ε in
the expansions. These would first arise at order O(ε5/2)
in gab and order O(ε7/2) in gab. Alternatively one could
retain integer powers but make the replacement ε → ε2

throughout. Second, it is well known that solutions of the
post-1-Newtonian field equations are not good approxi-
mations to exact solutions at distances & 1/

√
ε. That

is, although they work well in the near zone they break
down in the local wave zone [22]. In order to find solu-
tions which are good approximations everywhere one has
to match post-Newtonian solutions onto radiation zone
post-Minkowskian solutions; see for example Blanchet
[1]. However, the corresponding corrections to the near
zone gravitational fields and to the dynamics of the bod-
ies arises at post-2.5-Newtonian order, and will therefore
not be important for this paper.

III. DERIVATION OF NEWTON-CARTAN AND

POST-NEWTON-CARTAN THEORIES FROM

GENERAL RELATIVITY

In this section we derive the equations (1.1) – (1.5)
of Newton-Cartan theory, (1.6) – (1.11) of perturbative
post-Newton-Cartan theory, and (1.12a) – (1.16) of com-
bined post-Newton-Cartan theory, from the assumptions
discussed in Sec. II above. The derivation will be local
and covariant5.
We first note that it follows from assumption 1, to-

gether with an adjustment of the normalization of the

4 Dautcourt [19] shows that assumption 3 follows from assump-
tions 1 and 2 when one makes additional assumptions about the
global properties of the spacetime including asymptotic flatness.
However, we will not follow this route here, since we want to
obtain a purely local derivation of the Newton-Cartan and post-
Newton-Cartan theories.

5 A similar approach to deriving a covariant post-Newtonian the-
ory was undertaken by L. Gunnarsen (unpublished) at the Uni-
versity of Chicago in the 1980s.
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one-form ta if necessary, that the covariant components
of the metric can be expanded as

gab(ε) = −1

ε
tatb + pab + εqab + o(ε), (3.1)

where ta, pab and qab are ε-independent tensor fields on
spacetime. To see this, choose a basis of vector fields

eaα̂ for α̂ = 0, 1, 2, 3 for which hab = δîĵea
î
eb
ĵ
. Then by

assumption we have k0̂0̂ 6= 0, and in fact k0̂0̂ must be
negative in order for gab(ε) to have signature (−,+,+,+)
for small ε. Now expanding and inverting on this basis
the expression (2.2) for the contravariant metric yields
an expression of the form (3.1).
Next, in any coordinate system we can compute the

coefficients Γα
βγ(ε) of the connection by using the expan-

sions (3.1) and (2.2) of the covariant and contravariant
metrics. This yields an expression of the form

Γα
βγ(ε) = O(ε−1) +O(ε0) +O(ε) + o(ε), (3.2)

where the first three terms can be computed explicitly
from the fields appearing in the metric expansions. Now,
from assumption 3 it follows that the first term in (3.2)
vanishes, and the second term gives the coefficients of the
Newtonian connection Da defined in Eq. (2.5). Therefore
we can write, for any one-form wa,

∇a(ε)wb = Dawb − ε∆c
abwc + o(ε), (3.3)

where ∆c
ab is an ε-independent tensor field which is sym-

metric in a and b. This quantity is the post-Newtonian
perturbation to the connection. The ε in brackets on the
left hand side of Eq. (3.3) indicates the dependence of
the derivative operator on ε, not an application of the
derivative operator to ε.

A. Newton-Cartan theory and perturbative

post-Newton-Cartan theory

1. Orthogonality conditions

We start with the definition of the contravariant met-
ric,

gab(ε)gbc(ε) = δac , (3.4)

and insert the expansions (3.1) and (2.2) of the covariant
and contravariant metrics. At order O(ε−1) this yields
the Newton-Cartan orthogonality condition (1.1), and
at order O(ε0) it yields the corresponding post-Newton-
Cartan condition (1.6).

2. Compatibility conditions

Next, we insert the expansions (3.1) and (2.2) of the
covariant and contravariant metrics and the expansion
(3.3) of the connection into the equations

∇a(ε)gbc(ε) = 0, ∇a(ε)g
bc(ε) = 0. (3.5)

At leading order, this yields the Newton-Cartan compat-
ibility conditions (1.2a) and (1.2b), and at subleading
order one obtains the post-Newton-Cartan compatibility
conditions (1.7) and (1.8).

3. Trautman conditions

We next compute the Riemann tensor using the ex-
pansion (3.3) of the connection. This yields

R d
abc [∇e(ε)] = R d

abc [De] + ε
[

Db∆
d
ac −Da∆

d
bc

]

+o(ε). (3.6)

Here the first term on the right hand side is the Rie-
mann tensor of the connection Da, which we will denote
henceforth simply as R d

abc . From the symmetries of the
Riemann tensor it follows that

gf [a(ε)R
d]

f(bc) [∇e(ε)] = 0, (3.7)

which is called the Trautman condition [16] 6. Inserting
the expansion (2.2) of the contravariant metric and (3.6)
of the Riemann tensor, and expanding order by order
in ε, gives the Newton-Cartan Trautman condition (1.3)
at leading order, and the corresponding post-Newton-
Cartan condition (1.9) at subleading order.

4. Stress energy conservation

Next, we insert the expansions (3.3) and (2.4) of the
connection and stress energy tensor into the conservation
equation

∇a(ε)T
ab(ε) = 0. (3.8)

At leading order this yields the Newtonian stress energy
conservation equation (1.5), and at subleading order the
post-Newtonian equation (1.11).

5. Field equation

Finally, we write the Einstein field equation (2.1) in
the form

R c
acb [∇e(ε)] = 4π [2gac(ε)gbd(ε)− gab(ε)gcd(ε)] T

cd(ε).

(3.9)

Inserting the expansions (3.6), (3.1) and (2.4) of the Rie-
mann tensor, covariant metric and stress-energy tensor
yields at leading order the Newton-Cartan field equation
(1.4), and at subleading order the post-Newton-Cartan
field equation (1.10).

6 For many calculations it is advantageous to rewrite the Trautman
condition as geaR d

ebc
− gedR a

ecb
= 0.
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B. Combined post-Newton-Cartan theory

In this section we derive the equations (1.12a) –
(1.16) of combined post-Newton-Cartan theory from the
Newton-Cartan and perturbative post-Newton-Cartan
theories.

Suppose we have a solution of the Newton-Cartan and
perturbative post-Newton-Cartan theories, consisting of
the fields ta, pab, h

ab, kab, Da, ∆
a
bc, T ab and Sab. Such

solutions posess a scaling symmetry corresponding to a
change in units of time. Specifically, it is easy to check
that for any real number λ there is a mapping of solutions
to solutions given by rescaling the fields by ta → eλta,
kab → e−2λkab, T ab → e−4λT ab, Sab → e−6λSab, ∆a

bc →
e−2λ∆a

bc, with the other fields being left unchanged. If we
now consider the expansions (2.2), (3.1), (3.3) and (2.4)
of the contravariant metric, covariant metric, connection
and stress-energy tensor, truncated to post-1-Newtonian
order, we can apply this rescaling to effectively set ε = 1
in these expansions. Specifically, for any ε > 0, we define
the hatted fields by

t̂a =
1√
ε
ta, (3.10a)

ĥab = hab, (3.10b)

p̂ab = pab, (3.10c)

k̂ab = εkab, (3.10d)

D̂awb = Dawb − ε∆c
abwc, (3.10e)

T̂ ab = ε2T ab + ε3Sab, (3.10f)

for any one-form wa. These will be the fundamental vari-
ables of the combined theory.

Next, we note that the orthogonality conditions (1.1)
and (1.6) are preserved under rescaling, which yields the
orthogonality conditions (1.12a) and (1.12b) for the hat-
ted variables.

Next, using the definitions (3.10) of the hatted fields
and the connection-compatibility conditions (1.2), (1.7)
and (1.8) we obtain

D̂a(ĥ
bc + k̂bc) = −ε2(∆b

adk
dc −∆c

adk
bd),(3.11a)

D̂a(−t̂b t̂c + p̂bc) = ε(∆d
abpdc +∆d

acpbd). (3.11b)

The right hand sides of both of these equations are of
post-2-Newtonian order. Therefore we can drop the
right hand sides to obtain the compatibility conditions
(1.13); this modification affects the theory only at post-
2-Newtonian and higher orders, and not at Newtonian or
post-1-Newtonian order.

Finally, we can use exactly analogous arguments to de-
rive the Trautman condition (1.14), field equation (1.15)
and stress-energy conservation equation (1.16) of the
combined post-Newton-Cartan theory from the corre-
sponding equations of the Newton-Cartan and pertur-
bative post-Newton-Cartan theories.

IV. DERIVATION OF STANDARD,

COORDINATE-SPECIFIC POST-NEWTONIAN

THEORY FROM PERTURBATIVE

POST-NEWTON-CARTAN THEORY

A. Change of viewpoint

So far, we have shown that the Newton-Cartan and
post-Newton-Cartan theories can be derived from general
relativity together with the three assumptions discussed
in Sec. II.
We now make a change of viewpoint, and consider

these theories as independent theories in their own right,
independent of general relativity. In other words, we for-
get about the spacetime metric, and instead regard the
fields ta, h

ab, Da of the Newton-Cartan theory, and pab,
kab and ∆c

ab of the post-Newton-Cartan theory, as fun-
damental. It is well known that the usual coordinate-
dependent formulation of Newtonian gravity can be de-
rived from the resulting Newton-Cartan theory, under
the assumption of asymptotic flatness. In this section we
will show that, similarly, the usual coordinate-dependent
formulations of post-1-Newtonian theory can be derived
from the post-Newton-Cartan theory, in suitably cho-
sen coordinate systems, again under the assumption of
asymptotic flatness.

B. Derivation of Newtonian theory from

Newton-Cartan theory

We start by reviewing the well-known derivation at
Newtonian order [19]. We assume that the Newton-
Cartan equations (1.1) – (1.5) are valid throughout all
of spacetime, and that the Riemann tensor of the con-
nection Da goes to zero at spatial infinity (asymptotic
flatness).
From the metric compatibility condition (1.2b), it fol-

lows that there exists a function t on spacetime for which
ta = Dat. We will call this function the time function.
We now introduce a coordinate system xα = (x0, xj) with
x0 = t. The orthogonality condition (1.1) and Eq. (1.2b)
then immediately lead to

tµ = t,µ = δ0µ (4.1)

and

hµ0 = 0. (4.2)

Next, the compatibility condition (1.2b) gives ∂µtν −
Γλ
µνtλ = 0, where Γλ

µν are the coefficients of the connec-
tion Da, which yields

Γ0
µν = 0 (4.3)

from Eq. (4.1). Similarly the compatibility condition
(1.2a) yields

∂µh
αβ + Γα

µνh
νβ + Γβ

µνh
αν = 0. (4.4)
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If we now define a spatial covariant metric hkj by

hikhkj = δij , (4.5)

then Eq. (4.4) results in

Γi
lm =

1

2
hik (hkl,m + hkm,l − hlm,k) , (4.6)

Γi
0l =

1

2
hik (hkl,0 − ǫklmBm) , (4.7)

and

Γi
00 = hikΦk. (4.8)

Here the quantities Φk and Bm are still undetermined.
Next, the field Eqs. (1.4) imply

Ri0 = 0, (4.9a)

Rij = 0, (4.9b)

where Rαβ = Rαβ [Da] is the Ricci tensor computed from
the Newtonian connection Da. Computing the spatial
components of this Ricci tensor explicitly, and simplify-
ing using the condition (4.3), gives

Rij = ∂kΓ
k
ij − ∂iΓ

k
kj + Γk

klΓ
l
ij − Γl

ikΓ
k
jl. (4.10)

Combining this with Eq. (4.6) now gives Rij =
(3)Rij [hkl], where the right hand side is the three-
dimensional Ricci tensor computed from the metric hkl

at fixed t. Therefore, from Eq. (4.9b), the Ricci tensor of
the metric hij vanishes. Since this metric is three dimen-
sional, it follows that the metric is flat. Hence at each
fixed t we can choose the spatial coordinates so that

hij = δij . (4.11)

Next, combining the field equation (4.9a) with the con-
nection coefficients (4.6) – (4.8) and simplifying using the
coordinate condition (4.11) gives

ǫijk∂jBk = 0. (4.12)

Also the Trautman condition (1.3) implies that B is
transverse, ∂iBi = 0. Together with Eq. (4.12) this
implies that the field B satisfies Laplace’s equation,
Bi,jj = 0. Next, using the assumption that R δ

αβγ → 0
as r → ∞, we find that the only allowed nontriv-
ial solutions to Laplace’s equation are those with B =
constant. These solutions can be eliminated by trans-
forming to a uniformly rotating coordinate system. It
follows that, in a suitably adjusted coordinate system,
Bi = 0. Finally, the Trautman condition (1.3) implies

that Φi,j −Φj,i = ǫijkḂk = 0, so that Φi = ∂iΦ for some
function Φ, which will be the Newtonian potential. It
follows that

Γi
00 = Φ,i, (4.13)

while all the other connection coefficients vanish. The
field equation (1.4) then reduces to the Poisson equation
Φ,kk = 4πT 00, and the stress-energy conservation equa-
tion (1.5) reduces to ∂αT α0 = 0, ∂αT αi + Φ,iT 00 = 0.
These are the standard equations of Newtonian gravity.
We note that the Newton-Cartan theory contains more

local degrees of freedom that Newtonian theory. In par-
ticular, if one assumes that Newton-Cartan theory holds
only in a local region of spacetime, or if one assumes it
holds everywhere but drops the assumption of asymptotic
flatness, then one obtains a theory with an additional
transverse vector fieldB that satisfies Laplace’s equation.
This is just the gravitomagnetic field which normally
arises at post-1-Newtonian order. Thus, the Newton-
Cartan theory admits source-free gravitomagnetic fields
at Newtonian order.
Another method that has been used in the literature

to exclude these extra degrees of freedom is to assume
that [17, 23, 24]

hecR d
abc = 0, (4.14)

where R d
abc is the Riemann tensor of the connection

Da. Augmenting the equations of Newton-Cartan the-
ory with this assumption yields a covariant theory which
is equivalent, locally, to Newtonian gravity. However, the
assumption (4.14) cannot be derived from General Rel-
ativity in a local manner; its validity requires the use of
global information. For this reason we do not use the
assumption (4.14) in this paper.

C. Derivation of post-Newtonian theory from

perturbative post-Newton-Cartan theory

We now extend the above derivation to post-1-
Newtonian order. We continue to use the adapted co-
ordinate system derived above, and we assume that the
post-Newton-Cartan equations are valid throughout all
of spacetime.
The spatial components of the orthogonality condition

(1.6) imply that hikpkj = δij . Hence the covariant spa-
tial metric hkj defined in Eq. (4.5) and the spatial com-
ponents of pab coincide, and in our adapted coordinate
system we have

pij = hij = δij . (4.15)

The remaining components of the orthogonality condi-
tion (1.6) yield

k00 = −1, (4.16)

and

ki0 = hikpk0 = pi0. (4.17)

In order to find expressions for pi0 and p00 we have to
consider the metric compatibility condition (1.8), which
yields

2∆0
µ0 = −p00,µ + 2∆λ

µ0pλ0. (4.18)
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It follows that

∆0
00 = −1

2
p00,0 +Φ,lpl0 (4.19)

and

∆0
j0 = −1

2
p00,j . (4.20)

The condition (1.8) also yields

∆0
µj = −p0j,µ +∆λ

µjpλ0 +∆λ
µ0pjλ, (4.21)

which implies

∆0
ij = −p0j,i (4.22)

and

∆0
0j = Φ,j − pj0,0. (4.23)

Since the connection is symmetric, Eq. (4.22) yields
p0i,j − p0j,i = 0, and thus p0i = g,i, for some function
g. Now under infinitesimal gauge transformations p0i
transforms as, from Eq. (B4b),

p0i → p0i − ξ0,i, (4.24)

where ξ0 is an arbitrary function. Therefore by taking
ξ0 = g we can specialize the gauge to enforce

p0i = 0. (4.25)

Next, the symmetry of the connection applied to Eqs.
(4.20) and (4.23) yields together with Eq. (4.25) that
p00,j = −2Φ,j, which implies p00 = −2Φ + χ(x0), where
χ(x0) is a function which depends only on x0. Now note
that the gauge condition (4.25) does not completely fix
the gauge; from Eq. (4.24) gauge transformations with
ξ0,i = 0 leave the condition (4.25) invariant. Since p00
transforms like p00 → p00 − 2ξ0,0 under the infinitesimal
gauge transformations of Eq. (B4b), we can further spe-
cialize the gauge to enforce

p00 = −2Φ. (4.26)

Simplifying Eqs. (4.19), (4.20) and (4.22) using the gauge
conditions Eqs. (4.25) and (4.26) now yields

∆0
00 = Φ,0, ∆0

i0 = Φ,i, ∆0
ij = 0. (4.27)

Next we determine the remaining components of ∆c
ab.

From the compatibility condition (1.7) we get

∆i
αlh

lj +∆j
αlh

li = −kij,α − Γi
αλk

λj − Γj
αλk

iλ. (4.28)

This leads to

∆i
kj = −1

2
kij,k +Wijk (4.29)

and

∆i
0j = −1

2
kij,0 + Vij , (4.30)

where Wijk = −Wjik and Vij = −Vji are undetermined.
Since the connection is symmetric it follows from Eq.
(4.29) that

Wijk = Wikj +
1

2

(

kij,k − kik,j

)

. (4.31)

Together with Wijk = −Wjik this implies that

∆i
jk =

1

2

(

kjk,i − kij,k − kik,j

)

. (4.32)

Thus, from the metric compatibility conditions (1.8)
and (1.7) we have been able to determine all the compo-
nents of ∆λ

µν , except for ∆i
0j and ∆i

00. To determine
those components we use the Trautman condition (1.9),
which can be rewritten as

kdeR a
ecb − kaeR d

ebc =
(

Db∆
d
ec −De∆

d
bc

)

hae

+ (De∆
a
bc −Dc∆

a
be)h

de.

(4.33)

Specializing to a = n, b = 0, c = k and d = m gives

D0∆
m
nk −Dn∆

m
0k +Dm∆n

0k −Dc∆
n
0m = 0, (4.34)

which using Eqs. (4.32) and (4.30) simplifies to

Vnk,m − Vmk,n − Vnm,k = 0. (4.35)

Since Vnm is antisymmetric the solution of (4.35) is

Vmn =
1

2
(γm,n − γn,m) , (4.36)

where γm is some undetermined vector field.
Next, considering the a → n, b = c → 0, d → m

components of Eq. (4.33), we find

D0∆
m
n0 −Dn∆

m
00 +Dm∆n

00 −D0∆
n
0m

=
1

2

(

kmlp00,nl − knlp00,ml

)

. (4.37)

If we define

Am ≡ ∆m
00 +

1

2
p00,lk

ml − γm,0, (4.38)

then Eq. (4.37) becomes

Am,n −An,m = 0, (4.39)

so we can write

Am = −1

2
γ,m, (4.40)

for some function γ. Combining Eqs. (4.38) and (4.40)
now yields

∆i
00 = −1

2
γ,i + γi,0 −

1

2
p00,lk

li, (4.41)
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while Eqs. (4.36) and (4.30) lead to

∆i
0j =

1

2
(γi,j − γj,i)−

1

2
kij,0. (4.42)

We now define a metric ĝab(ε), for each ε > 0, by the
formula

ĝab(ε) = −1

ε
tatb + pab + εqab, (4.43)

cf. the metric expansion (3.1) above. Here the tensor qab
is defined by

q00 = γ, (4.44a)

q0i = γi, (4.44b)

qij = −kij . (4.44c)

We compute the inverse of this metric, using the values
of the components of the fields ta, pab and qab given in
Eqs. (4.1), (4.15), (4.25), (4.26) and (4.44). The result is
of the form [cf. Eq. (2.2) above]

ĝab(ε) = hab + εkab + ε2jab +O(ε3). (4.45)

Here the components of the fields hab and kab (except for
kij) are those given by Eqs. (4.2), (4.11), (4.16), (4.17)
and (4.25). This result is guaranteed because we have
imposed the the orthogonality conditions (1.1) and (1.6).
The fact that the spatial components of the coefficient
of ε in Eq. (4.45) are kij follows from the choice (4.44c)
of spatial components of qab. The explicit form of the
tensor jab which appears in Eq. (4.45) will not be needed
in what follows.
Next, we compute the coefficients Γ̂α

βγ(ε) of the Levi-

Civita connection associated with the metric (4.43), using
the expansion (4.45). Suppressing indices, the result is
schematically of the form

Γ̂ ∼ 1

ε
(ht∂t) + (h∂p+ kt∂t)

+ε(h∂q + k∂p+ jt∂t) +O(ε2). (4.46)

The leading order, O(ε−1) term vanishes identically by
virtue of Eq. (4.1). We can evaluate the next order, O(ε0)
term using the the specific values of the components of ta,
pab, h

ab and kab in our adapted coordinate system, given
by Eqs. (4.1), (4.2), (4.11), (4.15), (4.16), (4.17), (4.25)
and (4.26). The resulting expressions are just the coef-
ficients Γα

βγ of the Newton-Cartan connection Da, with

the only nonzero component being given by Eq. (4.13).
Again, this result is not surprising because we have en-
forced the compatibility conditions (1.2a), (1.2b), (1.7)
and (1.8). Similarly, at the next order, we find that the
O(ε) components in Eq. (4.46) coincide with the compo-
nents of the post-Newton-Cartan field ∆α

βγ , given by Eqs.

(4.27), (4.32), (4.41) and (4.42). [Note that the result is
independent of jαβ , by virtue of Eq. (4.1)].
To summarize, we have been able to show that all of

our Newton-Cartan and post-Newton-Cartan fields can

be derived from the three fields ta, pab and qab that enter
into the expansion (4.43) of the metric, using the stan-
dard equations of general relativity. Moreover, that met-
ric expansion is of the standard post-Newtonian form;
using the specific values of the components of ta, pab and
qab given above and writing ε = c−2, Eq. (4.43) takes the
form

ds2 = −c2
[

1 +
2Φ

c2
− γ

c4
+O

(

1

c6

)]

dt2

+2

[

γi
c2

+O

(

1

c4

)]

dxidt

+

[

δij +
1

c2
qij +O

(

1

c4

)]

dxidxj . (4.47)

This is the standard starting point for coordinate-specific
post-Newtonian theory, involving a post-Newtonian cor-
rection to the Newtonian potential Φ, and a gravito-
magnetic potential γi

7. It follows that all of the re-
lations of the Newton-Cartan and post-Newton-Cartan
theories, when expressed in terms Φ, γ, γi and qij , are
either identically satisfied, or reduce to the Einstein equa-
tions that one would compute directly from the metric
(4.43), i.e. the coordinate-specific post-Newtonian equa-
tions. Furthermore we have shown how to obtain the
quantities Φ, γ, γi and qij , starting from solutions of
the Newton-Cartan and post-Newton-Cartan equations.
It follows that the equations of the perturbative post-
Newton-Cartan theory are equivalent to those of the
standard coordinate-specific post-Newtonian theory.

V. DISCUSSION AND CONCLUSIONS

We have derived a covariant version of the equations of
the post-1-Newtonian approximation to general relativ-
ity. These equations reduce to the standard coordinate
formulation of post-Newtonian theory in asymptotically
flat spacetimes in suitable coordinate systems.
Although the covariant formulation is elegant, it does

not provide a very compact or efficient representation
of the theory. In a general coordinate system the com-
bined post-Newton-Cartan theory involves 74 free func-
tions to describe the geometry, as compared to 4 for stan-
dard post-Newtonian theory. The covariant formulation
is therefore mostly of formal interest. However it may be
useful to connect the different gauge-dependent formu-
lations that are found in the literature. It may also be
useful for deriving general properties of post-Newtonian
theory. It might also provide insight into the meaning
of the parameters of the parameterized post-Newtonian

7 The spatial tensor qij does not contain any independent degrees
of freedom; using the post-Newtonian field equations and making
a gauge specialization gives qij = −2Φδij [9]. This gauge spe-
cialization is nearly always adopted in post-Newtonian theory.
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(PPN) framework [2], if the analysis of this paper were
generalized to the class of theories of gravity encompassed
by that framework.
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Appendix A: Limiting behavior of connection

derived from other postulates

In this appendix we show that our assumption 3 on
the limiting behavior of the connection will hold (up to
gauge transformations) whenever the Riemann tensor is
bounded as ε → 0. More precisely, whenever assumptions
1 and 2 hold in a local region, and the Riemann tensor
R d

abc (ε) is finite as ε → 0, then we show that there exists
a (possibly irregular) gauge transformation of the form
(2.8) such that the transformed one parameter family of
solutions satisfies assumptions 1, 2 and 3 of Sec. II A.
We start by fixing a coordinate system and computing

the connection coefficients using the expansions (2.2) and
(3.1) of the contravariant and covariant metrics and the
orthogonality condition (1.1). The result is of the form
[cf. Eq. (3.2) above]

Γα
βγ(ε) = ε−1Γ

(−1)α
βγ + Γ

(0)α
βγ + εΓ

(1)α
βγ +O(ε2), (A1)

with

Γ
(−1)α

βγ = −hαλ(tγt[λ,β] + tβt[λ,γ]) (A2)

and

Γ
(0)α

βγ = −kαλ(tγt[λ,β] + tβt[λ,γ] + tλt(β,γ))

+
1

2
hαλ(−pβγ,λ + pβλ,γ + pγλ,β). (A3)
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Here Γ
(0)α

βγ are the coefficients of the Newtonian connec-
tion Da, which were denoted simply Γα

βγ in the body of

the paper. Also Γ
(1)α

βγ are the coefficients of the post-
Newtonian connection perturbation, which were denoted
∆α

βγ in the body of the paper. We want to show that

Γ
(−1)α

βγ vanishes.
We next compute the expansion of the Einstein tensor,

which is of the form

Gαβ(ε) = ε−2G(−2)αβ + ε−1G(−1)αβ +G(0)αβ

+εG(1)αβ +O(ε2). (A4)

It follows from assumption 2 of Sec. II A that the first
four terms in this expansion all vanish. We find that
G(−2)αβ vanishes identically, while G(−1)αβ is given by

G(−1)αβ = 2Hα
µH

β
νh

µν +
1

2
hαβHµ

νH
ν
µ, (A5)

where Hα
β = hαγt[γ,β]. Setting this expression to zero

yields Hµ
νH

ν
µ = 0, from which it follows [19] that

tα = ft,α (A6)

for some functions f and t. We now specialize the coordi-
nates by choosing x0 = t, so that h0α = 0 and tα = fδ0α.
We now extend this computation to the next order.

The orthogonality relation (1.6) implies that

k00 = −1/f2, k0i = hijp0j/f
2, hijpjk = δik. (A7)

Using these relations and the expansions (A2) and (A3)
gives G(0)00 = G(0)0i = 0 and

G(0)ij = Gij [hkl]−
1

f
DiDjf +

1

2f
hijDkDkf. (A8)

Here the first term denotes the three dimensional Ein-
stein tensor computed from the metric hij = pij (the
inverse of hij), and Di is the covariant derivative asso-
ciated with that metric. Also the O(ε−1) piece of the
Riemann tensor is given by

R
(−1) j

0i0 = fDiD
jf, (A9)

with the other components being zero. Our assumption
on the Riemann tensor forces this quantity to vanish,
from which it follows from the vanishing of the expression
(A8) for G(0)ij that the Einstein tensor of the metric hij

must be zero. We can therefore specialize the coordinates
so that hij = hij = δij .
It now follows from Eq. (A9) that f,ij = 0, so that

f = α(t) + βi(t)x
i. The leading order expression for the

metric is therefore the Rindler metric, and we can ap-
ply the standard gauge transformation8 that takes the

8 In defining this gauge transformation we treat α and βi as con-
stants; their time dependence affects the final metric only at
subleading order. The gauge transformation depends explicitly
on ε and is not smooth as ε → 0.

Rindler metric to the Minkowski metric. The result of
this transformation is to effectively set f to unity, and so

from Eq. (A2) it follows that Γ
(−1)α

βγ = 0 for the trans-
formed one parameter family of metrics.

Appendix B: Gauge freedom in the post-Newtonian

fields

In this appendix we derive how the Newtonian and
post-Newtonian fields transform under a regular gauge
transformation ϕε of the form (2.9). Such a gauge trans-
formation is parameterized by an ε-independent diffeo-

morphism ϕ0, and by a set of vector fields ~ξ(1), ~ξ(2), . . .,
one for each order in ε. For simplicity, we will take ϕ0 to
be the identity mapping, since all quantities will trans-
form trivially under this portion of the overall diffeomor-
phism. Consider now any tensor field S(ε) which depends
on ε, and has an expansion of the form

S(ε) = S(0) + εS(1) + ε2S(2) +O(ε3). (B1)

Here for brevity we have suppressed any tensor indices
on S. We define the transformed expansion coefficients
S̄(j) via the expansion

ϕε ∗S(ε) = S̄(ε) = S̄(0) + εS̄(1) + ε2S̄(2) +O(ε3). (B2)

From Eq. (2.9) it now follows that [21]

S̄(0) = S(0), (B3a)

S̄(1) = S(1) + L~ξ1
S(0), (B3b)

S̄(2) = S(2) + L~ξ2
S(0) + L~ξ1

S(1)

+
1

2
L~ξ1

L~ξ1
S(0), (B3c)

where L is the Lie derivative.
We now apply this formalism to the expansions (2.2),

(3.1), (2.4) and (2.5) of the contravariant metric, co-
variant metric, stress-energy tensor and connection. We
use of the compatibility conditions (1.2), denote gauge-
transformed quantities with bars, and rewrite Lie deriva-
tives in terms of Da derivatives. This yields that the
Newtonian fields hab, ta, Da and T ab are invariant, while
the post-Newtonian fields transform as

k̄ab = kab − hacDcξ
b − hbcDcξ

a, (B4a)

p̄ab = pab − tatcDbξ
c − tbtcDaξ

c, (B4b)

∆̄c
ab = ∆c

ab − 2ξdR c
d(ab) +D(aDb)ξ

c, (B4c)

S̄ab = Sab + ξcDcT ab − 2T c(aDcξ
b). (B4d)

Here we have written ~ξ(1) simply as ~ξ. One can check
that the post-Newton-Cartan equations (1.6)–(1.11) are
invariant under these transformations, as they must be.
To obtain the formula (B4c), let ωb(ε) be an arbitrary

one form which depends smoothly on ε, with the expan-

sion ωb = ω
(0)
b + εω

(1)
b + O(ε2). We define the tensor
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Sab = ∇aωb, which has the expansion

Sab(ε) = S
(0)
ab + εS

(1)
ab +O(ε2) (B5)

= Daω
(0)
b + ε

[

Daω
(1)
b −∆c

abω
(0)
c

]

+O(ε2).

Applying the general transformation rule (B3) now yields

S
(1)
ab → S

(1)
ab + LξS

(0)
ab , (B6)

and

ω(1)
a → ω(1)

a + Lξw
(0)
a . (B7)

Combining Eqs. (B5) – (B7) now yields

∆c
abω

(0)
c → ∆c

abω
(0)
c + ξdDaDdω

(0)
b − ξdDdDaω

(0)
b

+ω
(0)
d DaDbξ

d (B8)

which results in Eq. (B4c).

Appendix C: perfect fluids

In this appendix we describe as an example how perfect
fluids can be described in the covariant formalism. The
stress energy tensor is

T ab = (ρ+ p)uaub + pgab, (C1)

where ρ is the density, p the pressure and ua the four-
velocity. The appropriate form of the expansions of these
fields is

ua =
√
ε
[

ua
n + εua

pn +O(ε2)
]

, (C2a)

ρ = ερn + ε2ρpn +O(ε3), (C2b)

p = ε2pn + ε3ppn +O(ε3). (C2c)

Here the subscripts “n” and “pn” indicate the
Newtonian-order and post-Newtonian order pieces.
Comparing with the expansion (2.4) of the stress energy
tensor yields the formulae

T ab = ρnu
a
nu

b
n + pnh

ab, (C3a)

Sab = (ρpn + pn)u
a
nu

b
n + 2ρnu

(a
n ub)

pn + pnk
ab

+ppnh
ab. (C3b)

Also the normalization of the four-velocity yields the con-
ditions

tau
a
n = 1, pabu

a
nu

b
n = 2tau

a
pn. (C4)

One can check that inserting these expressions in the
stress-energy conservation laws (1.5) and (1.11), using
the specific forms of hab, kab and ∆a

bc derived in Sec.
IV and using the normalization constraints (C4) yields
the usual equations of Newtonian and post-Newtonian
hydrodynamics.
Alternatively, one can combine the Newtonian and

post-Newtonian pieces together, as in the combined post-
Newton-Cartan theory derived in Sec. III B. Defining
ρ̂ = ρn + ερpn, p̂ = pn + εppn and ûa = ua

n + εua
pn, then

the combined stress energy of Sec. III B is

T̂ ab = (ρ̂+ p̂)ûaûb + p̂(ĥab + k̂ab), (C5)

and the normalization constraint is ûaûb(t̂at̂b−p̂ab) = −1.
Again one can check that these expressions lead to the
usual post-Newtonian hydrodynamic equations.


