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UNAM-Campus Morelia, Morelia, Michoacán 58090, Mexico

2Center for Fundamental Theory, Institute for Gravitation and the Cosmos,

Pennsylvania State University, University Park PA 16802, USA

3Instituto de F́ısica y Matemáticas, Universidad Michoacana
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We consider the k=1 Friedman-Robertson-Walker (FRW) model within loop quan-

tum cosmology, paying special attention to the existence of an ambiguity in the

quantization process. In spatially non-flat anisotropic models such as Bianchi II and

IX, the standard method of defining the curvature through closed holonomies is not

admissible. Instead, one has to implement the quantum constraints by approximat-

ing the connection via open holonomies. In the case of flat k=0 FRW and Bianchi I

models, these two quantization methods coincide, but in the case of the closed k=1

FRW model they might yield different quantum theories. In this manuscript we ex-

plore these two quantizations and the different effective descriptions they provide of

the bouncing cyclic universe. In particular, as we show in detail, the most dramatic

difference is that in the theory defined by the new quantization method, there is not

one, but two different bounces through which the cyclic universe alternates. We show

that for a ‘large’ universe, these two bounces are very similar and, therefore, practi-

cally indistinguishable, approaching the dynamics of the ‘curvature-based’ quantum

theory.
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I. INTRODUCTION

Loop quantum cosmology (LQC) has become in the past years an interesting candidate

for a quantum description of the early universe via homogeneous cosmological models [1–3].

Based on the same quantization methods of loop quantum gravity [4], it has also become a

testing ground for different conceptual and technical issues that arise in the full theory. It

is perhaps not surprising that the model was first fully understood in the spatially flat k=0

FRW cosmological model coupled to the simplest kind of matter, namely a mass-less scalar

field that serves as an internal time parameter [5–10]. It was shown numerically that the

big bang singularity is replaced by a quantum bounce [7], that connects an early contraction

phase of the universe with the current state of expansion. By means of an exact solvable

model, this bounce was then understood to be generic and present for all states of the theory,

and the energy density was shown to be absolutely bounded by a critical density ρcrit of the

order of the Planck density [8]. It was then shown that semiclassical states after the bounce

have to come from states that were also semiclassical well before the bounce [9, 11, 12]. These

results have also benefited from uniqueness results that warranties the physical consistency

of the theory [13]. The same quantization methods were applied to other isotropic models

with and without a cosmological constant. Thus, a closed k=1 was extensively studied in

[14] and [15], while the open k=-1 was considered in [16]. A detailed study of singularity

resolution for these models was recently completed in [18], extending previous results for the

flat case [17]. For the flat model, a cosmological constant was included in [19] and a massive

scalar field in [20], where singularity resolution was also shown to emerge as a feature of the

theory.

An extension of this consistent quantization method was successfully implemented for the

simples anisotropic cosmology, namely a Bianchi I spacetime in [21]. It was soon realized

that, for anisotropic models with a nontrivial spatial curvature, this quantization method

based on considering holonomies along closed loops was no longer applicable. The operator

associated to the field strength was no longer well defined on the kinematical Hilbert space

of the theory used so far. The proposal put forward in [22] was to consider open holonomies

to represent the connection, and then define the curvature out of the resulting operator. As

it turns out, this quantization method has some resemblance to the quantization procedure

known as ‘polymerization’ [23]. For the quantization of Bianchi IX cosmological models, it
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was also noted that this ‘connection quantization’ could be successfully implemented [24],

and the singularity could also be resolved.

A natural issue that one would like to investigate are the physical consequences of this

‘new’ loop quantization. Do we have the same qualitative behavior as in the holonomy based

quantization? This question has been satisfactorily (but trivially) answered in some cases

where both quantizations are available. When the spatial curvature vanishes, as is the case

of the k=0 FRW and Bianchi I models, both quantization methods coincide [22, 25] (once

one appropriately fixes a free parameter). It is then quite natural to ask whether the same

feature is present in other models where the intrinsic spatial curvature is non-trivial. Is

there an important effect that the spatial curvature carries? In this respect, the k=1 FRW

model is unique to answer this question since, (to our knowledge) it is the only such model

for which both loop quantizations exist.

The purpose of this paper is to explore this issue in detail. More precisely, we shall

develop the connection based quantum theory for a k=1 FRW model and explore its more

important features by using an effective description of the dynamics. We shall then compare

this description with that from the standard –curvature based– loop quantization explored

in [14, 15], where the effective description has been show to correctly capture the dynamics

of semiclassical states [14]. Perhaps somewhat surprisingly, what we find is that in the new

–connection based– quantum theory, the corresponding cyclic universe undergoes a series

of bounces and recollapses, but now there are two different kind of bounces. In the cosmic

evolution, the universe alternates between these two bounces where both the density and

minimum volume differ. Interestingly, for universes that grow to become ‘large’ before the

expansion stops, the two bounces become more similar to each other, so that for a large

universe like ours, they become almost indistinguishable.

The structure of this manuscript is the following: In Sec. II we recall the classical k=1

model, introducing some new notation. In Sec. III we recall the effective description of

the holonomy based quantization and explore some of its consequences. Section IV is the

main section of the paper. In the first part, we develop the loop quantization of the model,

and in the second part we consider its effective description. We analyze then some of its

consequences. We end in Sec. V with a discussion. In the Appendix we summarize our

conventions and the computation of closed holonomies.
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II. PRELIMINARIES: THE k=1 COSMOLOGY

The spacetimes under consideration are of the form M = Σ×R, where Σ is a topological

three-sphere S3. It is standard to endow Σ with a fiducial basis of one-forms oωia and vectors

oeai . The fiducial metric on Σ is then oqab := oωia
oωjb kij, with kij the Killing-Cartan metric

on su(2). Here, the fiducial metric oqab is the metric of a three sphere of radius a0. The

volume of Σ with respect to oqab will be denoted by V0 = 2π2 a3
0. We also define the quantity

`0 := V
1/3

0 . It can be written as `0 =: σ a0, where the quantity σ := (2π2)1/3 will appear in

many expressions.1

The isotropic and homogeneous connections and triads can be written in terms of the

fiducial quantities as follows,

Aia =
c

`0

oωia ; Ea
i =

p

`2
0

√
oq oeai . (2.1)

Here, c is dimension-less and p has dimensions of length-squared. The metric and extrinsic

curvature can be recovered from the pair (c, p) as follows,

qab =
|p|
`2

0

oqab and γKab =

(
c− `0

2

)
|p|
`2

0

oqab (2.2)

Note that the total volume V of the hypersurface Σ is given by V = |p|3/2. The Poisson

bracket for the phase space variables (c, p) is given, as in the k=0 case by,

{c, p} =
8πGγ

3
, (2.3)

with γ the Barbero-Immirzi parameter. From here, one can calculate the curvature F k
ab of

the connection Aia on Σ as,

F k
ab =

c2 − 2σc

`2
0

εij
k oωia

oωjb (2.4)

The only relevant constraint is the Hamiltonian constraint that has the form,

Hgrav =

∫
Σ

d3x
[
εijk e

−1Ea
i E

b
j F

k
ab − 2(1 + γ2)e−1Ea

i E
b
j K

i
[aK

j
b]

]
(2.5)

where e =
√
|detE|, and Ki

a is the extrinsic curvature. By means of the relation Aia =

Γia + γKi
a, with Γia the spin-connection compatible with the triad, we can re-express the

1 Note that these conventions follow those of [14] (compare to [18]). In spite of this, several of our equations

will be different.
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second term of the Hamiltonian constraint as,

Ea
i E

b
j K

i
[aK

j
b] =

1

2γ2
εijk E

a
i E

b
j (F

k
ab − Ωk

ab) . (2.6)

Here Ωk
ab is the curvature of the spin-connection Γia. The advantage of this substitution is

that for this model, this expression has a simple form,

Ωk
ab = − 1

a2
0

εij
k oωia

oωjb (2.7)

With this, the gravitational constraint can be reduced to,

Hgrav = − 3

8πGγ2

√
|p|
[
(c− σ)2 + γ2σ2

]
(2.8)

It is convenient to introduce new variables [8]: β := c/|p|1/2 and V = p3/2. The quantity V

is just the volume of Σ and β is its canonically conjugate,

{β, V } = 4πGγ (2.9)

We can then compute the evolution equations of V and β in order to find interesting geo-

metrical scalars. Then,

V̇ = {V,Hgrav} =
3

γ

(
βV − σV 2/3

)
(2.10)

from which we can find the standard Friedman equation using the constraint equation H =

Hgrav +Hmatt ≈ 0 and Hmatt = V ρ,

H2 :=

(
V̇

3V

)2

=
8πG

3
ρ− σ2

V 2/3
. (2.11)

We can now compute β̇ = {β,H},

β̇ := − 3

2γ

[
β2 − 4

3
σβV −1/3 +

1

3
(1 + γ2)σ2V −2/3

]
+ 4πGγP (2.12)

where we have used the standard definition of pressure as P := ∂Hmatt

∂V
. We can readily find

the time evolution of the expansion parameter θ = 3H as,

θ̇ = 4πG(ρ− 3P )− 3 σ2

V 2/3
(2.13)

From Eq. (2.11) we can see that the condition for a turnaround point, namely when H = 0

is that the density satisfies ρturn := 3
8πG

σ2

V 2/3 . This is the point where the Hubble parameter

vanishes. From (2.12) we see that, if P > −ρ/3 then θ̇ < 0 at the turnaround point, which

means that there is a transition from an expanding phase (where θ > 0) to a contracting

phase (where θ < 0), so it corresponds to a point of re-collapse.
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III. LOOP QUANTIZATION I: THE CURVATURE WAY

This section has two parts. In the first one, we recall the effective equations for the

quantization of the k=1 model as developed in Ref.[14] and [26], and explore some of its

consequences for arbitrary matter content. In the second part we restrict our attention to

the case of a mass-less scalar field.

A. Effective equations for curvature-based quantization

The basic strategy of loop quantization is that the effects of quantum geometry are

manifested by means of holonomies around closed loops that carry the information about

the field strength of the connection. As is shown in detail in the Appendix, the curvature

takes then the form,

λF k
ab =

sin2 µ̄(c− σ)− sin2(µ̄σ)

µ̄2`2
o

εij
k oωia

oωjb (3.1)

where µ̄ =
√
λ2/|p|. In terms of the new variables β = c|p|−1/2 and V = |p|3/2, it can be

written as,

λF k
ab =

V 2/3

λ2`2
0

[
sin2(λβ −D)− sin2D

]
εij

k oωia
oωjb (3.2)

where we have defined D := λσ/V 1/3. With this form of the curvature, as defined by closed

holonomies, and neglecting the so called inverse triad corrections, one can arrive at the form

of the effective Hamiltonian,

Heff = − 3

8πGγ2λ2
V
[
sin2(λβ −D)− sin2D + (1 + γ2)D2

]
+ ρV (3.3)

We can now compute the equations of motion from the effective Hamiltonian as,

V̇ = {V,Heff} = {V, β}∂Heff

∂β
=

3

λγ
V sin(λβ −D) cos(λβ −D) .

From here, we can find the expansion as,

θ =
V̇

V
=

3

λγ
sin(λβ −D) cos(λβ −D) =

3

2λγ
sin 2(λβ −D) . (3.4)

From the above equation we can see that the absolute value of expansion has an absolute

upper limit equal to |θ| ≤ 3/2λγ. We can now compute the modified, effective Friedman
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equation, by computing H2 = θ2

9
,

H2 =
1

λ2γ2

(
8πGγ2λ2

3
ρ+ sin2D − (1 + γ2)D2

)(
1− 8πGγ2λ2

3
ρ− sin2D + (1 + γ2)D2

)
=

8πG

3
(ρ− ρ1)

(
1− ρ− ρ1

ρcrit

)
(3.5)

where ρ1 = ρcrit[(1 + γ2)D2 − sin2D] and ρcrit = 3/(8πGγ2λ2) is the critical density of the

k = 0 FRW model. We can immediately note from Eq. (3.5) that there are two points

where the Hubble parameter H vanishes and the Universe has a turnaround. The first one

corresponds to the point ρ = ρ1. Note that ρ1, in the limit λ → 0, tends to ρ1 7→ 3
8πG

σ2

V 2/3 ,

which is the classical value for re-collapse as given by Eq. (2.11). Thus, in the limit of large

volumes one expects ρ1 to represent the density at re-collapse. The second value for density

where the Hubble parameter vanishes is given by ρ = ρcrit + ρ1. Note that these densities,

where there is a turnaround, is not an universal constant for all trajectories as was the case

for the k=0 model (for the bounce at ρ = ρcrit). Instead, the quantity ρ1 is a function of

volume and depends on each individual trajectory. The second density for turnaround is

bounded below by ρcrit.
2 There is an alternate way of analyzing the two turnaround points.

From the expression of the expansion (3.4) we can see that the Hubble parameter vanishes

when

sin 2(λβ −D) = sin(λβ −D) cos(λβ −D) = 0 (3.6)

There are two possibilities for this.

i) When λβ −D = (2n+1)
2

π ,

for n integer, which corresponds to ρ = ρcrit + ρ1. The other possibility is,

ii) λβ −D = mπ

where m is an integer number. This corresponds to ρ = ρ1.

In fact, these considerations suggest that we could define a new variable β̃ := β−D/λ =

(c − σ)/
√
p, that would also be ‘conjugate’ to V ({β̃, V } = 4πGγ). In terms of β̃ many

expressions would simplify, and it would reduce to β in the k=0 case.

2 Also note that since ρ1 depends explicitly on the volume, the values it takes at the bounce and classical

turnaround point are different, so it could happen that ρ = ρ1 is actually larger than the other root, and

it corresponds to the bounce while ρ = ρcrit + ρ1 corresponds to a re-collapse [27].
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In order to determine which of the turnaround points corresponds to a bounce and which

one to a re-collapse, we need to consider the rest of the effective equations of motion,

β̇ = 4πGγP

− 1

2γλ2

[
3 sin2(λβ −D)− 3 sin2D +D sin 2(λβ −D) +D sin 2D + (1 + γ2)D2

]
= −4πGγ [ρ− ρ2 + P ]

(3.7)

where

ρ2 =
ρcritD

3

[
2(1 + γ2)D − sin 2(λβ −D)− sin 2D

]
(3.8)

The Ricci scalar is given by,

R = 2θ̇ +
4θ2

3
+

6σ2

V 2/3

= 8πGρ

(
1 + 2

ρ− ρ1

ρcrit

)
+ 32πGρ1

(
1− ρ− ρ1

ρcrit

)
− 24πG(P − ρ3)

(
1− 2

ρ− ρ1

ρcrit

)
+

6σ2

V 2/3

(3.9)

The time derivative of the expansion is given by,

θ̇ = cos 2(λβ−D)

(
3

γ
β̇ +

θD

γλ

)
=

(
3

γ
β̇ +

θD

γλ

)[
1− 2

ρ− ρ1

ρcrit

]
= −12πG (ρ− ρ3 + P )

[
1− 2

ρ− ρ1

ρcrit

]
(3.10)

with

ρ3 = ρ2 +
ρcritD

3
sin 2(λβ −D) =

ρcritD

3

[
2(1 + γ2)D − sin 2D

]
Finally, the contracted Ricci curvature appearing in Raychaudhuri equation is given by,

Rabξ
aξb = −θ̇−1

3
θ2 = 4πGρ

(
1− 4

ρ− ρ1

ρcrit

)
+8πGρ1

(
1− ρ− ρ1

ρcrit

)
+12πG(P−ρ3)

(
1− 2

ρ− ρ1

ρcrit

)
It is straightforward to show that the continuity equation ρ̇+ 3H(ρ+P ) = 0 is also satisfied

in this case [18].

Let us now determine the nature of the turnaround points. From Eq. (3.10) we can see

that in case i) above, where θ = 0 and ρ = ρcrit + ρ1, we have then,

θ̇ = −1

γ
β̇ (3.11)

Therefore, the nature of the turnaround is determined by the sign of β̇. If β̇ < 0 then

θ̇ > 0 and the point corresponds to a bounce. However, if β̇ > 0 then θ̇ < 0 and the point

corresponds to a re-collapse.
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For case ii), again from Eq. (3.10), and using θ = 0 and ρ = ρ1 we can see that,

θ̇ =
1

γ
β̇ (3.12)

Therefore, if β̇ < 0 then θ̇ < 0 and the point corresponds to a re-collapse. In the other case,

when β̇ > 0 then θ̇ < 0 and the point corresponds to a bounce. From this discussion, we can

see that the nature of the turnaround points can change if, during the dynamical evolution,

β̇ changes sign. This phenomena has indeed been observed in certain cases [27].

B. Concrete example: A massless scalar

Up until now, we have considered arbitrary matter sources. Let us now restrict our

attention to the simplest case of a massless scalar field φ, where the density is given by

ρ = φ̇2/2 [14]. In this case, β̇ < 0 and does not change during the dynamical evolution.

This means that the case i) above corresponds to the bounce and case ii) to the re-collapse.

In order to find the minimum and maximum volume we can put the maximum or minimum

density in one side of the expression of density to have,

p2
φ

2V 2
max

= ρcrit

[
(1 + γ2)

λ2σ2

V
2/3

max

− sin2 λσ

V
1/3
max

]
(3.13)

and
p2
φ

2V 2
min

= ρcrit

[
1 + (1 + γ2)

λ2σ2

V
2/3

min

− sin2 λσ

V
1/3

min

]
(3.14)

From numerical simulations performed in Ref. [14] and analytical considerations for the k=0

model [12], we know that the constant of the motion pφ determines how semiclassical the

state is. To be precise, as one increases the value of pφ, in natural Planck units, it becomes

easier to construct semiclassical states peaked on that value of the field momenta. It is then

natural to expect that pφ measures in a way, how large the Universe can grow before the

re-collapse phase starts. That is certainly true for the classical equations of motion. Since

we expect that the classical equations are a good approximation to the effective equations

of motion in the low density regime, the volume at with the expansion stops should coincide

when this transition happens at low densities in Planck units. Therefore, let us assume that

V
1/3

max � σλ, which means,

p2
φ = 2V 2

max ρcrit

[
(1 + γ2)

λ2σ2

V
2/3

max

− sin2

(
λσ

V
1/3

max

)]
≈ 2V 2

max ρcrit
γ2λ2σ2

V
2/3

max

(3.15)
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from which we can see that the maximum value of volume approaches the classical value

Vmax =

(
64πG

3σ2

)3/4

p
3/2
φ (3.16)

from above. Let us now estimate the value of the bounce in the same regime, where the

value of pφ is large.

p2
φ = 2V 2

min ρcrit

[
1 + (1 + γ2)

λ2σ2

V
2/3

min

− sin2

(
λσ

V
1/3

min

)]
≈ 2V 2

min ρcrit (3.17)

Therefore, the volume at the bounce also approaches the k=0 value

Vmin =
1√

2ρcrit

pφ (3.18)

from above.
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FIG. 1: For three values of the volume at the bounce Vb, we plot the time evolution of the volume V

(left) and the density ρ (right). These correspond to the values Vb = 500`Pl (—- line), Vb = 1000`Pl

(−−−−− line), and Vb = 4000`Pl (− · − · − · − line).

In Fig. 1 we have plotted the time evolution of three universes for three different values

of volume Vb at the bounce. From our previous expressions we see that the higher the value

of the volume at the bounce, the higher the field momentum pφ and the more semiclassical

the trajectory. Note that this can be seen from the fact that the universe grows to larger

values as one increases pφ, and the density at the bounce decreases and tends to the value

ρcrit.

To summarize this section, we have seen that the effective dynamics of the holonomy

based quantization, as defined in [14], yields a cyclic universe with a bounce at a matter
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densities that are larger than in the flat k=0 case. In the ‘large volume regime’, the volume

at which the expansion of the universe stops approaches the value given by general relativity.

Through-out the evolution, a key geometrical scalar such as the expansion of cosmological

observers remains absolutely bounded, and is saturated by all trajectories at the end of the

superinflation regime that follows the bounce. These results complement those of [18] where

it was shown that, within this quantization, singularity resolution in generic for a large class

of matter.

IV. LOOP QUANTIZATION II: THE CONNECTION WAY

For Bianchi II and IX cosmological models, where the spatial geometry has non trivial

curvature, it was realized that the standard method of loop quantization based on holonomies

for closed loops, was not implementable in the Hilbert space of loop quantum cosmology. A

new quantization prescription was put forward in [22] and also employed in [24]. The basic

idea is to define an operator for the connection, by means of open holonomies, from which

one can define the curvature. In this section we shall employ this quantization procedure to

the closed k=1 FRW model.

To be precise, we define the connection by an open holonomy, from which we arrive at

the expression for the connection

Aia =
sin µ̄c

µ
oωia (4.1)

where µ̄ is the length of the curve which we use to calculate the holonomy along it and here

we take µ̄ =
√
λ2/|p|. Just as in the previous section, we shall use the variables β and V

instead of c and p.

This section has three parts. In the first one we derive the loop quantization for this

prescription, writing in detail the quantum equations that define the theory when the matter

is given by a massless scalar field. This resulting formalism can then be directly compared

to that of [14]. In the second part, we consider the effective Hamiltonian and equations of

motion derived from the quantum theory and analyze some of their general properties. In

the last part we specialize in the massless scalar case where we can find explicit formulas

for some of the relevant parameters of the solutions.
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A. Quantum Kinematics

Let us start by recalling the classical Hamiltonian constraint,

Hclass = − 3

8πGγ2

[
V β2 − 2V 2/3σβ + V 1/3(1 + γ2)σ2

]
+ ρV (4.2)

where σ = `o/ao = (2π)1/3 and ρ = p2
φ/2V

2 + U(φ)

As is standard in loop quantum cosmology, the gravitational part of the kinematical

Hilbert space where the constraints are to be implemented, is given by the so called polymer

Hilbert space [23]. In that Hilbert space, we can choose a basis of eigenstates,

v̂|v〉 = v|v〉 (4.3)

which is related to the volume V̂ as follows: V̂ =
(

8φγ
6

)3/2 |v|
K

with K = 2
√

2/(3
√

3
√

3). In

this basis, exp iλβ becomes a translation operator.

eiλβ/2|v〉 = |v + 1〉 (4.4)

then

sinλβ|v〉 =
1

2i
(|v + 2〉 − |v − 2〉) (4.5)

The quantum gravitational part of the Hamiltonian constraint operator is:

Ĥgrav = − 3

8πGγ2λ2

[
V̂ 1/4 sinλβV̂ 1/2 sinλβV̂ 1/4 − 2λσV̂ 1/3 sinλβV̂ 1/3 + λ2σ2(1 + γ2)V̂ 1/3

]
(4.6)

When the matter is given by a massless scalar field the quantum Hamiltonian constraint is

Ĥ =− 3

8πGγ2λ2

[
V̂ 1/4 sinλβV̂ 1/2 sinλβV̂ 1/4 − 2λσV̂ 1/3 sinλβV̂ 1/3 + λ2σ2(1 + γ2)V̂ 1/3

]
+
p̂2
φ

2
V̂ −1

(4.7)

To define the operator V̂ −1, we first need to define |̂p|−1/2 by means of Thiemann’s prescrip-

tion and, since |̂p|−1/2 is well defined, then we can take its cube to define V̂ −1,

|̂p|−1/2Ψ(v) =
35/6λ

2
|v|1/3

∣∣|v + 1|1/3 − |v − 1|1/3
∣∣Ψ(v) (4.8)

and then

V̂ −1Ψ(v) =

√
3

λ3
f(v) (4.9)
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where

f(v) =

(
3

2

)3

|v|
∣∣|v + 1|1/3 − |v − 1|1/3

∣∣3 . (4.10)

The action of the Hamiltonian constraint operator on a state is given by

−~2∂2
φΨ(v;φ) = Θ̂Ψ(v;φ) (4.11)

where the operator Θ̂ is given by

Θ̂Ψ(v;φ) = −2
√

3f(v)−1

λ3
ĈΨ(v;φ)

= −
√

3
1/3
λ2

8πGγ2
[
λ2

31/3
|v(v + 4)|1/4

√
|v + 2|

4
Ψ(v + 4;φ)− iλ

2σ

31/6
|v(v + 2)|1/3Ψ(v + 2;φ)

+ [
λ2

31/3

√
|v + 2|+

√
|v − 2|

4
− λ2σ2(1 + γ2)|v|1/3]Ψ(v;φ)

− iλ
2σ

31/6
|v(v − 2)|1/3Ψ(v − 2;φ) +

λ2

31/3
|v(v − 4)|1/4

√
|v − 2|

4
Ψ(v − 4;φ)]

(4.12)

The final quantum theory has a structure very similar to that of [14]. The non-separable

Hilbert spaceHkin of the gravitational degrees of freedom is decomposed into an uncountable

number, label by a parameter ε, of superselected sectors Hε, each of which is by itself,

separable. The space of solutions can be given a Hilbert space structure if one restricts

attention to positive frequency, with respect to the internal time φ. Thus physical solutions

ψ satisfy the Schroedinger like equation,

−i∂φ Ψ =
√

Θ̂ Ψ (4.13)

A physical inner product can be defined on the space of solutions from which the physical

Hilbert space can be constructed. An interesting avenue would be to perform a detailed

analysis of the solutions of this theory, along the lines of [14]. We shall leave that for

future work. Let us now consider the effective description associated to the quantum theory

described in this part.

B. Effective Equations

It is straightforward to see that the effective Hamiltonian one obtains from the quantum

theory of the previous part, when neglecting inverse scale factor effects (as was done in [14]
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and [18]), is

Heff = − 3

8πGγ2λ2
V
[
(sinλβ −D)2 + γ2D2

]
+ ρV . (4.14)

It is then straightforward to compute the corresponding effective equations of motion. In

particular, by computing V̇ = {V,Heff}, we can find the expression for the expansion as

θ =
3

λγ
cosλβ (sinλβ −D) . (4.15)

From which we can find the effective Friedman equation,

H2 =
1

λ2γ2
cos2 λβ (sinλβ −D)2 =

8πG

3
(ρ− ρ1)(1− ρ− ρ2

ρcrit

) , (4.16)

where ρ1 = ρcritγ
2D2 and ρ2 = ρcritD[(1 + γ2)D − 2 sinλβ]. Let us now explore what is

the difference in the behavior of the universe as described by these equations, compared to

the dynamics given by the curvature-based quantization. The first obvious observation from

Eq. (4.15) is that the universe undergoes a turnaround whenever the expansion vanishes.

This can happen either when: a) sinλβ = D, or b) when cosλβ = 0. The first condition can

also be written, by using (4.16), as ρ = ρ1 = ρcritγ
2D2, and in the limit D � 1 –when the

volume is large in Planck units– corresponds to the point of re-collapse. It is interesting to

note that, in contrast to the other quantum theory, the expression for the point of re-collapse

here coincides exactly with that of the classical theory (recall that in the previous case, we

only recovered this value in the large volume/momentum limit).

Just as we had in the previous case, we expect that the nature of the turnaround points

(whether they correspond to a bounce or a re-collapse) will be determined only after we

consider the rate of change of the expansion (the Hubble). The second condition above,

namely condition b) can be written as ρ = ρcrit + ρ2, or alternatively, as cosλβ = 0. Now,

for this condition “b)”, there is a crucial difference with the previous case. While in the

effective description of the holonomy based quantization all equations were invariant under

the mapping β → β + π/λ (and therefore implementing an effective periodicity of β with

period π/λ), this is no longer the case here. Even when the zeros of the term cosλβ have

that periodicity, the term sinλβ−D does not. Therefore, there are two kind of roots for the

equation cosλβ = 0. The first root ‘b.1’ occurs when βn = (4n+1)π
2λ

, where sinλβn = 1. The

other root ‘b.2’ is when βm = (4m+3)π
2λ

, in which case sinλβm = −1. The important thing

here to notice is that the density (and therefore, volume) are different in these two cases,

which implies that there are two different kind of turnarounds of type ‘b)’.
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In order to identify the nature of these turnaround point, let us use the rest of the

equations of motion,

β̇ = 4πGγP − 1

2γλ2

[
3 sin2 λβ − 4D sinλβ + (1 + γ2)D2

]
, (4.17)

and, from the continuity equation, we get

β̇ = −4πGγ(ρ− ρ3 + P ) where ρ3 =
2ρcritD

3

[
(1 + γ2)D − sinλβ

]
(4.18)

Finally, we have the change of the expansion function given as

θ̇ =
3

γ
β̇ (cos 2λβ +D sinλβ) +

Dθ

λγ
cosλβ (4.19)

From this last equation we can then determine the identity of the turnaround points. For

the different cases as defined above we have,

Case a): It is defined by sinλβ = D, or alternatively by ρ = ρ̃1 = ρcritγ
2D2. In this case,

θ̇ =
3

γ
β̇(cos2 λβ − sin2 λβ +D sinλβ) =

3

γ
β̇ cos2 λβ (4.20)

Thus, just as it happened in the curvature-based quantization, when β̇ < 0 this point

corresponds to a re-collapse, while in the case that β̇ > 0, this is a bounce.

Case b): It is defined by cosλβ = 0, or equivalently by ρ = ρcrit[1+D((1+γ2)D−2 sinλβ)].

In this case we have two subcases, corresponding to the two roots of the equation cosλβ = 0.

Case b.1) This corresponds to the roots λβn = (4n+1)π
2λ

, for n integer. In this case, sinλβn = 1,

so the change of the expansion in given by,

θ̇1 = −3

γ
β̇ (1−D) (4.21)

Thus, we see that the nature of the turnaround depends not only on the sign of β̇ but also on

the magnitude of D. In the large volume regime, where D � 1, we have the same situation

as in the curvature-based quantization, namely that in the β̇ < 0 case, the turnaround point

corresponds to a bounce (and in the β̇ > 0 case, to a re-collapse). The density is given then

by,

ρ1
b = ρcrit

[
(1−D)2 + γ2D2

]
, (4.22)

Let us now consider the other root.

Case b.2) This corresponds to the root λβm = (4m+3)π
2

for m integer. In this case, sinλβn =

−1, so the change of the expansion in given by,

θ̇2 = −3

γ
β̇ (1 +D) . (4.23)
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We have the same situation as in the curvature-based quantization, namely that in the β̇ < 0

case, the turnaround point corresponds to a bounce (and in the β̇ > 0 case, to a re-collapse).

The density is given then by,

ρ2
b = ρcrit

[
(1 +D)2 + γ2D2

]
. (4.24)

To summarize, instead of two turnaround points as in the curvature-based quantization,

this new quantization has the novel feature that there are three different turnaround points.

In the case of large volume and for β̇ < 0, they correspond to two bounces and a re-collapse.

For extreme situations near the Planck scale and for certain matter content one might have

different scenarios [27].

C. An example: A massless scalar

Let us now consider as matter field a massless scalar field φ, for which β̇ < 0 and does

not change sign during the dynamical evolution. Furthermore, we shall assume D < 1, in

which case, the case a) above corresponds to the point of re-collapse, while the points b.1)

and b.2) correspond to the two distinct bounces. The maximum value of volume is exactly

given by,

Vmax =

(
64πG

3σ2

)3/4

p
3/2
φ (4.25)

which is equal to the classical value for maximum volume for the FRW model with k=1.

The equations for minimum volumes which correspond to the two different bounces are

p2
φ

2V 2
min

= ρcrit

[
(1 +

λσ

V
1/3

min

)2 +
γ2λ2σ2

V
2/3

min

]
(4.26)

and
p2
φ

2V 2
min

= ρcrit

[
(1− λσ

V
1/3

min

)2 +
γ2λ2σ2

V
2/3
min

]
(4.27)

In the limit of large field’s momentum pφ, since the volume is also large then we have

D � 1. We can then write the density at the two bounces as follows,

ρ1
b = ρcrit

[
(1 +D)2 + γ2D2

]
and ρ2

b = ρcrit

[
(1−D)2 + γ2D2

]
,

from which it follows that, in the limit D � 1, they both tend to ρcrit from above. Therefore

the density at the bounce for both approaches with different quantization, in this limit,
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approaches ρcrit, the critical density for the k=0 FRW model. Since both bounce densities

have the same limit, then the minimum value of the volume for both cases goes to

Vmin ≈
√

1

2ρcrit

pφ (4.28)

therefore, when the field’s momentum pφ is very large, since we can ignore the negative

powers of volume, the maximum absolute value of expansion for the second approach goes

to 3/2γ which is the same as in first approach.
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FIG. 2: For three values of the volume at the bounce Vb, we plot the time evolution of the volume V

(left) and the density ρ (right). These correspond to the values Vb = 500`Pl (—- line), Vb = 1000`Pl

(−−−−− line), and Vb = 4000`Pl (− · − · − · − line).

In Fig. (2) we have plotted the time evolution of the universe for different values of the

minimum volume at the bounce. As we can see, as we increase this value, and therefore the

field’s momentum pφ, the two bounces tend to each other, both in terms of the value of the

volume and in the maximum value of the densities. Note that the densities at the ‘strongest’

bounce are much higher, in this regime, than in the curvature-based quantization, and that

they decrease as one increases the value of pφ. One can further compare both descriptions

by fixing the value of pφ and comparing the time evolution of volume and density. We have

plotted such comparison in Fig. (3) for pφ = 105. Note that the density at the bounce in

the curvature-based quantization is in-between the two densities for the connection-based

quantization. The period between the point of re-collapse is not the same for both schemes

but, as one increases pφ, they approach each other, just at the volume and density at the

bounce converge.
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FIG. 3: We plot the time evolution of the volume V (left) and the density ρ (right), for the two

quantization methods, for pφ = 105.

Let us summarize the results of this section. First, we developed the quantum theory

for k=1 loop quantum gravity coupled to a scalar field, employing a quantization method

that uses open holonomies to regulate the field strength appearing in the constraint. In the

second part we derived some of the consequences of such a quantum theory, by means of

its effective description. We found that the most dramatic difference from the quantization

previous explored is that the cyclic universe undergoes cycles of contraction and expansion,

but alternating between two different quantum bounces (or alternating between two kinds

of points of re-collapse and a bounce). Furthermore, we saw that for ‘large universes’, where

the universe expands to a large volume (in Planck units), the densities (and volumes) of the

two distinct bounces approach each other and converge to the values attained in the k=0

theory.

V. DISCUSSION

In this article we have explored a quantization ambiguity that exists for certain models

in loop quantum cosmology. This correspond to the freedom of using closed holonomies

around loops to define curvature or open holonomies to define connections. Since it is only

the latter choice that is available for anisotropic models with non-trivial spatial curvature,

it is important to understand the particular features of this quantization, and compare it

to the original curvature-based loop quantization. In this regard, the isotropic k=1 FRW
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model is ideal since both quantizations exist and are not equivalent (while they are in the

case of k=0 and Bianchi I). We have explored some of the differences between these two

theories, by means of their corresponding effective descriptions. The equations of motion

for both theories are not the same, and therefore their underlying dynamics are different.

The most dramatic difference is that, while the universe is cyclic in the curvature-based

quantization with a bounce followed by a re-collapse, in the new quantization the situation

is more complicated, with three different turnaround points. In the semiclassical limit where

the universe is a assumed to grow large, we have seen that there are two kinds of bounces with

different densities that alternate with the re-collapse. The volume at which the expansion

stops and the universe starts to contract is also different for the two quantizations.

Interestingly, in the limit of large universes both theories converge and the two distinct

bounces of the connection-based theory approach that of the curvature-based quantization.

In this limit both descriptions approximate general relativity during the small density epochs

of the cyclic universes, making them almost indistinguishable. It would be interesting to

explore further the similarities and differences of the two approaches regarding singularity

resolution, as was done in [18] for the curvature based description. Further numerical anal-

ysis with various matter fields might yield significant differences that could have potential

observable consequences. This shall be reported elsewhere [27]. Let us end with a remark.

We have considered in both quantization schemes, the simplest possible effective equations,

where the ‘inverse triad corrections’ have been neglected. The justification for doing that

is the following. Effective equations are only expected to provide a good description of the

quantum dynamics in some regime. From a detailed numerical [7] and analytical [12] study

of semiclassical states in the k=0 case we have learned that the effective description is only

a good approximation when the universe is ‘large’. By this we mean that the volume of

the universe (or the fiducial cell in the open case) at the bounce is large in Planck units.

On the other hand, if the universe bounces near the Planck scale, its dynamics is not well

captured by the effective theory. This feature has also been observed numerically in the

curvature-based k=1 theory [14]. But this is precisely the regime where inverse triad correc-

tions become important. Therefore, it is justifiable to ignore such effects since we are only

interested in the regime of large universes where the effective description can be trusted,

and the inverse triad corrections are rather small.
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Appendix A: The three sphere, holonomies and curvature

For a 3-sphere with ‘radius equal to ao’, the line element can be written as

ds2 = a2
o(dα

′2 + dβ′2 + dγ′2 + 2 cos βdα′dγ′)

where 0 ≤ α′ ≤ π, 0 ≤ β′ ≤ π/2 and 0 ≤ γ′ ≤ 2π. With a simple redefinition of coordinates,

α = 2α′, β = 2β′ and γ = 2γ′, it can be written as

ds2 =
a2
o

4
(dα2 + dβ2 + dγ2 + 2 cos βdαdγ) (A1)

where 0 ≤ α ≤ 2π, 0 ≤ β ≤ π and 0 ≤ γ ≤ 4π. For this metric, the volume of Σ is

V0 = 2φ2 a0. Recall that we have defined `o = V
1/3
o , and σ = `o/ao = (2π2)1/3.

Let us now compute the holonomy along the edge e with length `′, parameterized by `,

tangential to vector ta = (∂/∂`)a. It is given by

h(µ) = exp(

∫
e

A · de(`)) = exp(

∫ `′

0

taAjaτjd`) . (A2)

If we want to use some angular parameters like θ instead of ` we will have, for a general

integral, ∫ `′

0

d` t(F ) =

∫ `′/a

0

dθ t′(F ) (A3)

with t′ = ∂
∂θ

and a playing the role of a ‘radius’, since ` = a θ. For our problem, we can

define

t′ = ±ao
2

oe3 = ± `o
2σ

oe3 or ± ao
2
ξ3 = ± `o

2σ
ξ3 .

Therefore, to calculate a component of F k
ab of the curvature, we can construct a closed loop

as follows. In coordinates (α, β, γ)

i) Move from (0, π/2, 0) to (0, π/2, 2σµ) following oe3 = ∂/∂γ,

ii) Then move from (0, π/2, 2σµ) to (2σµ, π/2, 2σµ) following −ξ3 = ∂/∂α,
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iii) Next, move from (2σµ, π/2, 2σµ) to (2σµ, π/2, 0) following −oe3, and finally

iv) Move from (2σµ, π/2, 0) to (0, π/2, 0) following ξ3.

The open holonomy along one edge, with parameter µ is given by

h(µ) = exp(

∫ 2µ`o/ao

0

t′aAjaτjdθ) (A4)

where θ = α or γ depending on the edge, and the effective radius of the 3-sphere used to

translate from lengths to angles is a0/2 (compatible with the fiducial metric (A1)). Thus,

we will have for the closed loop defined above,

h231 = h4h3h2h1 = eτ1µce−τ3µce−(sin(2σµ)τ2+cos(2σµ)τ1)µceτ3µc (A5)

then we have

oea3
oeb1F

k
ab = lim

µ→0

2

µ2`2
o

Tr(h231τ
k) = − 1

`2
o

(c2 − 2σc) (A6)

recovering thus the classical expression for curvature. If we do not take the limit µ → 0

but instead take the area as the smallest eigenvalue of the area operator, or equivalently

µ̄2|p| = λ2 then the curvature can be approximated, at scale λ, as

λF k
ab =

sin2 µ̄(c− σ)− sin2(µ̄σ)

µ̄2`2
o

εij
k oωia

oωjb (A7)

where µ̄ =
√
λ2/|p|.
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