
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Supersymmetric Galileons
Justin Khoury, Jean-Luc Lehners, and Burt A. Ovrut

Phys. Rev. D 84, 043521 — Published 15 August 2011
DOI: 10.1103/PhysRevD.84.043521

http://dx.doi.org/10.1103/PhysRevD.84.043521


DF10840

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Supersymmetric Galileons

Justin Khoury1, Jean-Luc Lehners2, Burt A. Ovrut1

1Department of Physics, University of Pennsylvania,

Philadelphia, PA 19104-6395, U.S.A.

2Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute),

D-14476 Potsdam/Golm, Germany

Abstract

Galileon theories are of considerable interest since they allow for stable violations

of the null energy condition. Since such violations could have occurred during a high-

energy regime in the history of our universe, we are motivated to study supersymmet-

ric extensions of these theories. This is carried out in this paper, where we construct

generic classes of N = 1 supersymmetric Galileon Lagrangians. They are shown to

admit non-equivalent stress-energy tensors and, hence, vacua manifesting differing con-

ditions for violating the null energy condition. The temporal and spatial fluctuations

of all component fields of the supermultiplet are analyzed and shown to be stable on

a large number of such backgrounds. In the process, we uncover a surprising connec-

tion between conformal Galileon and ghost condensate theories, allowing for a deeper

understanding of both types of theories.

1 Introduction and Overview

Matter in the universe is typically assumed to satisfy the Null Energy Condition

(NEC) [1]. This is because standard two-derivative theories generically lead to the

appearance of ghosts or gradient instabilities on NEC-violating backgrounds [2]. More-

over, higher-derivative theories — generically associated with equations of motion that

are of third- and higher-order in derivatives — also lead to the appearance of ghosts

and are, therefore, catastrophically unstable [3]−[5].

However, in recent years it has become clear that these theoretical limitations are

neither necessary nor, perhaps, desirable. Indeed, there are a number of cosmologi-
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cal situations in which violations of the NEC become inevitable, including inflation-

ary models with extra dimensions [6, 7], string gas cosmological scenarios [8]−[11]

(see [12] for a review), and pre-big bang [13] and ekpyrotic theories with cosmic

bounces [14]−[50] in which the universe reverts from contraction to expansion (see [51,

52] for reviews of ekpyrotic/cyclic theories). Furthermore, there is an important caveat

to the theorem of [2] — namely, the existence of stable, NEC-violating higher-derivative

theories that nevertheless lead to equations of motion with at most two derivatives act-

ing on any field. Two classes of such theories have been studied in the literature so

far. The first is ghost condensate theories [53], in which the Lagrangian is taken to

be an analytic function of a scalar field φ and X ≡ −1
2(∂φ)

2. The second example

is provided by the Galileons [54]−[64], in which higher-derivative terms are combined

precisely so that the equations of motion have at most two derivatives acting on each

field. Both types of theories have the remarkable property that they allow for stable vi-

olations of the NEC and, hence, both types of theories can be used as effective theories

to model novel cosmological scenarios. Indeed, ghost condensates have been used to

violate the NEC [65] and, hence, enable cosmic bounce from contraction to expansion

in the New Ekpyrotic Scenarios in [34, 35, 36]. Similarly, galileons have been used to

devise cosmological scenarios in which the universe expands from asymptotically flat

initial conditions [66, 67].

The relationship of these theories to string theory is not yet entirely clear, although

it is interesting that (in a certain small field limit) the Galileon theories describe the

fluctuations of a brane embedded in a higher-dimensional space-time [69] (see also [70]

for a derivation of the Galileons via compactification of Lovelock gravity). Such sce-

narios arise naturally in heterotic M-theory [71]−[74], for example, where five-branes

wrapped on holomorphic two-cycles [75]−[79] can exist in the five-dimensional bulk

space. The visible sector of such theories can contain exactly the supersymmetric

standard model [80]−[86] and, hence, present realistic vacua to explore Galileon cos-

mology. If ghost condensate or Galileon theories turn out to be relevant in modeling

the dynamics of the universe in the high-energy regime, then it would seem necessary

to consider these theories in a supersymmetric context. Quite independently, it is of

theoretical interest to have a model that allows one to study the interplay between

supersymmetry and NEC violation. As we will consider global supersymmetry in this

paper, what we mean by NEC violation is that the sum of energy density ρ and pres-

sure P is negative (more specifically, we are interested in solutions for which ρ = 0 and

P < 0). In previous work [87], we supersymmetrized the ghost condensate models. In

this paper, we further this viewpoint by constructing generic N = 1 supersymmetric
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extensions of Galileon theories.

In [87], we studied the N = 1 supersymmetric extension of ghost condensate theo-

ries using chiral multiplets. As reviewed in Sec. 2, the extra scalar and auxiliary fields

required by supersymmetry are well-behaved for such models, while the fermionic mem-

ber of the supermultiplet is not. Specifically, the fermion kinetic term on the ghost

condensate background violates Lorentz-covariance — the spatial-derivative part has

the wrong sign while the time-derivative part has the correct one. In this paper, we

show that a manifestly supersymmetric interaction can be added to this theory which

has the property of restoring the fermion kinetic term to its canonical form. This will

be the subject of Sec. 3. When we examine the effect of adding this term on the bosonic

part of the theory, we find a surprise: the resulting scalar field theory is precisely the

second- and third-order conformal Galileon theory! Hence, in rendering the fluctua-

tions around the ghost condensate background canonical, we re-discover the second-

and third-order conformal Galileon model. Moreover, using a field redefinition, the

ghost condensate background is easily seen to be equivalent to the “self-accelerating”

de Sitter solution of the Galileon theory. The real difference between these two theories

lies in the form of the spatial gradient terms. Generally speaking, the Galileon theories

are much better behaved with regard to spatial gradients than their ghost condensate

counterparts, as will be discussed in Sec. 4.

When we consider the fourth-order conformal Galileon Lagrangian, we find that

there are now many choices in how to construct a supersymmetric generalization. Since

these choices become vastly more numerous for the fifth- (and highest) order Galileon

theory, we only present terms up to fourth-order in this paper. There are two reasons

for this proliferation. The first is that, using integration by parts, one may rewrite

a given action into one that is equivalent up to total derivatives. If we now discard

the total derivatives and supersymmetrize the new action, we generically end up with

inequivalent results. This is an important ambiguity regarding higher-derivative the-

ories — that is, different theories, though related by integrations by parts (on a flat

background), lead to different stress-energy tensors and, hence, different conditions

for NEC violation. We provide a detailed treatment of these issues in Sec. 5. The

second reason for this proliferation of choices is intrinsically supersymmetric. As in

our previous paper on ghost condensate theories, we construct supersymmetric exten-

sions of many-field terms by using a number of smaller building blocks. And for some

terms, there are several inequivalent ways of subdividing them into separate building

blocks. It is interesting to note that the resulting supersymmetric extensions can be

quite different, and can now contain non-canonical fluctuations of the fermion field for
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example. This will be discussed in detail in Sec. 6.

In Sec. 7, we discuss our results and speculate on future applications. Two appen-

dices are included. The first provides useful formulae regarding the supersymmetric

building blocks that we are using, and the second discusses in more detail those su-

persymmetric extensions that contain non-covariant kinetic terms for the fermionic

fields.

2 Supersymmetric Ghost Condensate

2.1 A Review of Ghost Condensation

The simplest form of a “ghost condensate” [53] arises within the context of a single

real scalar field φ in four dimensions. Assuming space-time is flat and non-dynamical,

the evolution of φ is governed by a higher-derivative Lagrangian of the form

L = P (X) , (1)

where P (X) is an arbitrary function that is analytic around zero in

X ≡ − 1

2m4
(∂φ)2 =

1

2m4
(φ̇2 − φ,iφ,i) . (2)

The mass scale m is introduced to render X dimensionless. To simplify notation, we

set m = 1 in most of the paper. For purely time-dependent solutions, the associated

equation of motion is given by

d

dt

(

P,X φ̇
)

= 0 . (3)

Clearly, φ = const. is a solution. However, (3) also allows for solutions with arbitrary

constant X, that is,

φ = c t , (4)

where c is a constant. Although in this paper space-time is taken to be non-dynamical,

we note that in a cosmological context the equation of motion on a Friedmann-Robertson-

Walker background becomes
d

dt

(

a3P,X φ̇
)

= 0 , (5)

where a(t) is the scale factor of the universe. For a generic choice of P (X), this implies

that φ̇ must redshift as the universe expands. However, there is one key exception: if

P (X) has an extremum at some X = c2/2, then φ = c t is a solution to (5) indepen-

dent of the behavior of a(t). Moreover, this solution is an attractor on an expanding

4



background — small departures away from the extremum are driven to zero by Hubble

friction. This solution, φ = c t, spontaneously breaks Lorentz invariance and is called

a ghost condensate.

Returning to a flat background and expanding in fluctuations

φ = c t+ δφ(t, ~x) (6)

around a ghost condensate, to quadratic order in δφ the Lagrangian becomes

Lquad = XP,XX · (δφ̇)2 − 0 · δφ,iδφ,i . (7)

As a result of Lorentz-breaking, the coefficients in front of the time and spatial deriva-

tive terms are unequal. We see that the condition for the absence of a ghost is

XP,XX > 0 , (8)

which is automatically satisfied close to a local minimum of P (X). (For a general X =

const. solution, the ghost-free condition is XP,XX + P,X/2 > 0 [88].) We, henceforth,

assume this is the case. However, the vanishing of the second term in (7) is troubling,

since it clearly signals that the ghost condensate is on the verge of a gradient instability.

Can this potential instability be removed? Happily, the answer is affirmative, although

it requires introducing higher-derivative terms, such as [53]

−(2φ)2

M2
, (9)

into the Lagrangian that are not of the P (X) type. Such corrections are expected from

an effective field theory point of view. Because this term involves two derivatives per

field, the background φ = c t clearly remains a solution. However, (9) does affect the

gradient term of the fluctuations, giving rise to the dispersion relation ω2 ∼ k4/M2.

For large enough mass M , this higher-derivative term can be consistently treated as a

small correction. Be this as it may, the question of temporal ghosts and/or gradient

instabilities in ghost condensate theories is an important one, and will become even

more important in the supersymmetric context.

Before proceeding, we introduce the following simplification. Sufficiently close to the

ghost condensate point, P (X) is approximately quadratic. Without loss of generality,

one can rescale the field φ so that the minimum lies at X = 1/2 (corresponding to

c = 1) and write the prototypical ghost condensate action as

L = −X +X2 = +
1

2
(∂φ)2 +

1

4
(∂φ)4 . (10)
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The quadratic Lagrangian (7) now becomes

Lquad = (δφ̇)2 − 0 · δφ,iδφ,i . (11)

We will use Lagrangian (10), which contains all of the essential physics, to supersym-

metrize ghost condensate theories.

2.2 Supersymmetric Ghost Condensate

In [87], we presented an N = 1 supersymmetric extension of the bosonic ghost con-

densate theory in (10). To do this, consider a chiral superfield

Φ = A+ iθσµθ̄A,µ +
1

4
θθθ̄θ̄2A+ θθF +

√
2θψ − i√

2
θθψ,µσ

µθ̄ , (12)

with the complex scalar A(x), the auxiliary field F (x) and the spinor ψα(x) being

functions of the ordinary space-time coordinates xµ. Spinor indices which we do not

write out explicitly are understood to be summed according to the convention ψθ =

ψαθα and ψ̄θ̄ = ψ̄α̇θ̄
ᾱ. The complex scalar is chosen so that

A =
1√
2
(φ+ iχ) , (13)

where φ is the real field of the bosonic condensate theory. The imaginary component

χ is a new real scalar degree of freedom, introduced into the condensate theory by

supersymmetry. That is, φ is taken to be the lowest component of the N = 1 chiral

supermultiplet (φ, χ, ψ, F ).

It was shown in [87] that a supersymmetric extension of the prototypical ghost

condensate Lagrangian (10) is given by 1

LSUSY =

(

−ΦΦ† +
1

16
DΦDΦD̄Φ†D̄Φ†

) ∣

∣

∣

∣

θθθ̄θ̄

, (14)

where |θθθ̄θ̄ indicates taking the θθθ̄θ̄-component of a superfield. (Here and throughout

the paper, derivatives are understood as acting only on the nearest superfield, unless

noted otherwise. For example, DΦDΦD̄Φ†D̄Φ† = (DΦ)(DΦ)(D̄Φ†)(D̄Φ†). Similarly

for space-time derivatives acting on component fields.) In terms of component fields,

(14) becomes

LSUSY =
1

2
(∂φ)2 +

1

4
(∂φ)4 +

1

2
(∂χ)2 − 1

2
(∂φ)2(∂χ)2 + (∂φ · ∂χ)2

− i

2
(ψ,µσ

µψ̄ − ψσµψ̄,µ)−
i

4
(∂φ)2(ψ,µσ

µψ̄ − ψσµψ̄,µ)

− φµφ,ν
i

2
(ψ,νσµψ̄ − ψσµψ̄,ν) + . . . (15)

1As discussed in [87], there exists a second (inequivalent) supersymmetric extension of X2, which however

leads to the exact same issues with the fermionic fluctuations as those discussed below. Our discussion, and

the cure proposed below, are thus general.
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where we display terms to quadratic order only in χ, ψ and set F = 0. (In the

absence of a superpotential, the terms involving F can be set to zero consistently. They

are immaterial to the present discussion, but, if needed, can be found in our earlier

paper [87].) Note that for χ = ψ = 0, this expression exactly reduces to Lagrangian

(10). It is in this sense that LSUSY is the supersymmetric extension of the prototype

bosonic condensate theory. Since χ always appears at least to quadratic order, it can

consistently be set to zero. Thus the equations of motion can be solved by the ghost

condensate

φ = c t , χ = 0 . (16)

The classical fermion solution is, of course, zero. That is, the Lorentz-violating ghost

condensate continues to exist as a vacuum of the supersymmetrized theory.

Setting c = 1 and expanding in fluctuations

φ = t+ δφ(t, ~x) , χ = δχ(t, ~x) , ψ = δψ(t, ~x) (17)

around this vacuum, we find to quadratic order that

LSUSY
quad = ( ˙δφ)2 − 0 · δφ,iδφ,i

+ 0 · ( ˙δχ)2 + δχ,iδχ,i

+
i

4

(

δψ,0σ
0δψ̄ − δψσ0δψ̄,0

)

− i

4

(

δψ,iσ
iδψ̄ − δψσiδψ̄,i

)

. (18)

The first line reproduces the standard result (11) for the single φ field ghost condensate,

as it must. That is, the time derivative term is ghost-free but, at the minimum of P (X),

the spatial gradient term for δφ vanishes. As discussed above, higher-derivative terms

of the form (9) cure the potential gradient instability in the bosonic theory and stabilize

the dispersion relation. Can one find a supersymmetric generalization of these terms?

In [87] we showed that this can indeed be done. The simplest such example is

− 1

211
DΦDΦD̄Φ†D̄Φ†

(

{D, D̄}{D, D̄}(Φ + Φ†)
)2
∣

∣

∣

∣

θθθ̄θ̄, quad
= −(2δφ)2 , (19)

where we have evaluated this up to quadratic order in fluctuations around a ghost

condensate background. To this order, (19) does not contain χ, ψ or the auxiliary field

F at all.

Now consider the second line in LSUSY
quad . This is the kinetic term for the scalar

fluctuation δχ and, hence, is new to the supersymmetric theory. Note that this suffers

from two serious problems. The first is that the temporal derivative term vanishes

and, hence, this field is marginally a ghost. Secondly, the spatial gradient term has
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the wrong sign. Fortunately, it was shown in [87] that supersymmetric terms can be

added to (14) that solve both problems. These are, for example,

[

8

162
DΦDΦD̄Φ†D̄Φ†

(

{D, D̄}(Φ− Φ†){D, D̄}(Φ† − Φ)
)

− 4

163
DΦDΦD̄Φ†D̄Φ†

(

{D, D̄}(Φ + Φ†){D, D̄}(Φ −Φ†)
)2
]∣

∣

∣

∣

θθθ̄θ̄, quad

= −2(∂φ)4(∂χ)2 − (∂φ)4(∂φ · ∂χ)2 . (20)

Adding these to Lagrangian (14), and expanding to quadratic order around the ghost

condensate, changes both the time and spatial gradients of χ in (18) to the Lorentz-

covariant expression

LSUSY
quad = . . . + (δχ̇)2 − δχ,iδχ,i + . . . (21)

This renders the χ fluctuations stable, without adversely affecting anything else. In

particular, since (20) vanishes when χ is set to zero, the sum of (14) and the superfield

expression in (20) remains a supersymmetric generalization of the P (X) bosonic theory.

It will be helpful in the next section if we analyze this result in more detail. First, note

that adding (20) to the second term in (14) gives

[

8

162
DΦDΦD̄Φ†D̄Φ†

(

{D, D̄}(Φ − Φ†){D, D̄}(Φ† − Φ)
)

− 4

163
DΦDΦD̄Φ†D̄Φ†

(

{D, D̄}(Φ + Φ†){D, D̄}(Φ − Φ†)
)2

+
1

16
DΦDΦD̄Φ†D̄Φ†

]∣

∣

∣

∣

θθθ̄θ̄,quad

=
[

−2(∂φ)4(∂χ)2 − (∂φ)4(∂φ · ∂χ)2
]

+

[

−1

2
(∂φ)2(∂χ)2 + (∂φ · ∂χ)2

]

, (22)

where we have not shown irrelevant pure φ terms or terms involving fermions. When

evaluated around the ghost condensate vacuum (16) with c = 1, (22) reduces to

[

−2(∂χ)2 − (χ̇)2
]

+

[

1

2
(∂χ)2 + (χ̇)2

]

= −3

2
(∂χ)2 . (23)

That is, adding (20) to the second term of (14) exactly cancels the Lorentz-violating

term. In addition, the signs are such that the resulting Lorentz-covariant kinetic term

for χ is ghost free with correct sign spatial gradient. Second, adding this to the first

term in (14) produces the canonical normalization while leaving the correct sign un-

changed. That is,
[

1

2
(∂χ)2

]

+

[

−3

2
(∂χ)2

]

= −(∂χ)2 , (24)

which gives (21) precisely.

Finally, consider the kinetic term for the fermion fluctuation δψ. This is given in

the third line of (18) and, as with δχ, is new to the supersymmetric theory. We see

from (18) that, although the magnitudes of the coefficients of the two δψ terms are
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equal, the time-derivative term is ghost-free while the spatial gradient term has the

wrong sign. Note that this is not the same kind of gradient instability as occurs for φ.

There, the coefficient of the spatial derivative term is zero or small and, hence, higher-

derivative terms can play a role in guaranteeing stability over an extended time period.

For ψ, on the other hand, the coefficient of the wrong-sign spatial gradient term is not

small. It follows that the inclusion of higher-derivative terms, such as those in (19), is

necessarily irrelevant. The situation for the fermion, therefore, is more akin to that of

the second scalar χ, whose deep wrong-sign spatial gradient had to be corrected by the

addition of a new second order term — the sum of the two kinetic spatial gradients

having the correct sign. However, within the context of the supersymmetric extension

of the pure P (X) theory, we are unable to find a fermionic analog of this mechanism.

That is, the fermion kinetic spatial gradient term has the wrong sign!

As discussed in [87], it is unclear whether or not this is physically unacceptable.

This will be explored elsewhere [89]. In this paper, we ask a different question: by

modifying the bosonic theory so that it is no longer purely a P (X) theory, can one find

a supersymmetric extension that is free of both ghost-like and gradient-like instabilities

in all of its component fields? The answer, as we will see, is yes, and leads to another

interesting class of higher-derivative Lagrangians — the conformal Galileon theories.

3 Curing the Fermion Gradient Instability

To solve the gradient instability problem for the fermion, we proceed by analogy with

the χ scalar. That is, 1) we find a supersymmetric interaction which, when added to

the second term in (14), cancels the Lorentz-violating part of its fermion quadratic

terms — rendering the fermion kinetic term Lorentz-covariant with the correct sign —

and 2) we add this to the first term in (14) to canonically normalize the coefficient.

However, there is one important caveat. As stated above, our attempts to do this with

precisely the two terms in (14) failed. To solve this problem, it turns out that one must

make a mild modification of each of these terms — a modification that, however, does

not reduce to the pure P (X) theory, or even the generalized P (X,φ) theory discussed

in [87].

With this in mind, recall from (14) and (15) that

1

16
DΦDΦD̄Φ†D̄Φ†

∣

∣

∣

θθθ̄θ̄
=

1

4
(∂φ)4 − i

4
(∂φ)2(ψ,µσ

µψ̄ − ψσµψ̄,µ)

− i

2
φ,µφ,ν(ψ

,νσµψ̄ − ψσµψ̄,ν) + . . . (25)

Here and henceforth in this section, we drop irrelevant terms containing χ and set

9



F = 0 (that this can be done consistently will be shown in section 6) . Let us now

modify this term to

[

1

4(Φ + Φ†)4
DΦDΦD̄Φ†D̄Φ†

]

∣

∣

∣

∣

∣

θθθ̄θ̄

=
1

4φ4
(∂φ)4 − i

4φ4
(∂φ)2(ψ,µσ

µψ̄ − ψσµψ̄,µ)

− i

2φ4
φ,µφ,ν(ψ

,νσµψ̄ − ψσµψ̄,ν) + . . . (26)

To the order we are working, the only effect of (Φ + Φ†)−4 is to multiply expression

(25) by an overall factor of φ−4. Furthermore, setting ψ = 0 reduces (26) to X2/φ4. In

other words, this modified term is a supersymmetric extension of the P (X,φ) theories

discussed in [87]. When evaluated on a ghost condensate background, the first fermionic

term in (26) remains Lorentz-covariant, while the last term explicitly breaks Lorentz

invariance.

Can one find a supersymetric interaction that will exactly cancel this Lorentz-

violating fermion kinetic term? Consider

[ −1

24(Φ + Φ†)3

(

DΦDΦD̄2Φ† + h.c.
)

]
∣

∣

∣

∣

θθθ̄θ̄

= − 1

6φ3
2φ(∂φ)2

− i

6φ3
φ,µ(ψ,νσ

ν ψ̄,µ − ψ,µσν ψ̄,ν) +
i

12φ3
2φ(ψ,νσ

νψ̄ − ψσνψ̄,ν)

− i

12φ3
φ,µ(ψσ

µ
2ψ̄ −2ψσµψ̄) − i

4φ4
(∂φ)2(ψ,νσ

νψ̄ − ψσνψ̄,ν) , (27)

where we work to quadratic order in the ψ fluctuations. (Useful intermediate steps in

evaluating the above expression can be found in Appendix A). An important technical

fact is that, while the first four terms are contained in the component expansion of

(DΦDΦD̄2Φ†+h.c.) |θθθ̄θ̄, the last term arises due to a contribution from the prefactor.

This did not occur in (26) which, to the order that concerns us, was simply multiplied

by a factor of φ−4. Here, however, the prefactor is significant and must be included to

solve the fermion gradient instability problem. Integrating the second and fourth terms

by parts, and dropping all interactions that vanish on a ghost condensate background,

we find that (27) dramatically simplifies to

[ −1

24(Φ + Φ†)3

(

DΦDΦD̄2Φ† + h.c.
)

]∣

∣

∣

∣

θθθ̄θ̄

= − 1

6φ3
2φ(∂φ)2

+
i

2φ4
φ,µφ,ν(ψ

,νσµψ̄ − ψσµψ̄,ν) .(28)

Note that the fermion term is simply −1 times the Lorentz-violating last term of (26) —

a fact requiring, amongst other things, the Φ+Φ† prefactors in both (26) and (28). Also,

when setting the fermion to zero (28) reduces to −2φ(∂φ)2/6φ3, which is manifestly

not of the P (X,φ) form. Instead, we recognize this as the cubic term of Galileon
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theories (more precisely, conformal Galileon theories, as we will see shortly). The fact

that (28) goes beyond the P (X,φ) form is consistent with our earlier conclusion that

the fermionic instability could not be removed within the context of supersymmetric

ghost condensates!

Adding (26) and (28) together, the Lorentz-violating fermion term exactly cancels

and one obtains the Lorentz-covariant fermionic Lagrangian
[ −1

24(Φ + Φ†)3

(

DΦDΦD̄2Φ† + h.c.
)

+
1

4(Φ + Φ†)4
DΦDΦD̄Φ†D̄Φ†

]∣

∣

∣

∣

θθθ̄θ̄

= − 1

6φ3
2φ(∂φ)2 +

[

1

4φ4
(∂φ)4 − i

4φ4
(∂φ)2(ψ,µσ

µψ̄ − ψσµψ̄,µ)

]

+ . . . (29)

Integrating twice by parts, the first term can be expressed as

− 1

6φ3
2φ(∂φ)2 = − 1

6φ4
(∂φ)4 +

1

18φ2
(∂µ∂νφ)

2 − 1

18φ2
(2φ)2 . (30)

It follows that
[ −1

24(Φ + Φ†)3

(

DΦDΦD̄2Φ† + h.c.
)

+
1

4(Φ + Φ†)4
DΦDΦD̄Φ†D̄Φ†

]∣

∣

∣

∣

θθθ̄θ̄

=
1

12φ4
(∂φ)4 +

1

18φ2
(∂µ∂νφ)

2 − 1

18φ2
(2φ)2 − i

4φ4
(∂φ)2(ψ,µσ

µψ̄ − ψσµψ̄,µ) + . . .(31)

Three fundamental conclusions can be drawn from (31): 1) the fermion kinetic term

is Lorentz-covariant and, for any purely time-dependent background, of the correct

sign — that is, ghost-free with correct-sign spatial gradient; 2) the first term is simply

X2/3φ4 and is manifestly of the P (X,φ) type; 3) the remaining φ terms are of a

different differential form and not of the P (X,φ) type. Thus, by moving away from

purely P (X,φ) theory we have solved the problem of the fermion gradient instability.

As with χ, one must now add this equation to the first term in Lagrangian (14).

Since canceling the Lorentz-violating fermion kinetic term required a modification of

the higher-derivative operators, we must also appropriately modify the first term in

(14). Clearly, this requires multiplying the θθθ̄θ̄-component of −ΦΦ† by 1/φ4. Al-

though naively one might think this would be accomplished by the expression−4ΦΦ†/(Φ+

Φ†)4, the correct result is more subtle, as discussed in [90]. Defining

K(Φ,Φ†) =
2

3(Φ + Φ†)2
, (32)

the appropriate modification is given by

−K(Φ,Φ†)
∣

∣

∣

θθθ̄θ̄
=

1

2φ4
(∂φ)2 − i

2φ4
(ψ,µσ

µψ̄ − ψσµψ̄,µ) , (33)

where we suppress irrelevant χ and F contributions. The first term is just −X/φ4 and

hence of the P (Xφ) form. Although not strictly necessary, we choose to add (31) to
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(33) in such a way that the X dependent contribution for φ takes the canonical ghost

condensate form (10). This will be the case if one takes the complete Lagrangian to

be (33)+3×(31):
[

−K(Φ,Φ†)− 1

8(Φ + Φ†)3

(

DΦDΦD̄2Φ† + h.c.
)

+
3

4(Φ + Φ†)4
DΦDΦD̄Φ†D̄Φ†

]∣

∣

∣

∣

θθθ̄θ̄

=
1

2φ4
(∂φ)2 +

1

4φ4
(∂φ)4 +

1

6φ2
(∂µ∂νφ)

2 − 1

6φ2
(2φ)2

− i

2φ4

(

1 +
3

2
(∂φ)2

)

(ψ,µσ
µψ̄ − ψσµψ̄,µ) + . . .

=
1

φ4
(−X +X2) +

1

6φ2

(

(∂µ∂νφ)
2 − (2φ)2

)

+
i

4φ4
(

ψ,µσ
µψ̄ − ψσµψ̄,µ

)

+ . . . (34)

The first bracketed term is of the P (X,φ) type, whereas the second group of scalar

terms is not. Be that as it may, the ghost condensate φ = c t with c = 1 is a vacuum

solution of the equations of motion. The coefficient of the fermion kinetic term in the

final line of (34) has been evaluated in this vacuum. As promised, the fermion kinetic

term is ghost free with correct-sign spatial gradients and, rescaling ψ →
√
2ψ, has

canonical normalization. By canonical we mean that the ratio of the fermion kinetic

coefficient to the coefficients of the φ and χ kinetic terms is the same as in a standard

supersymmetric Lagrangian. Note, however, that in the present case all three kinetic

terms are multiplied by the common prefactor 1/φ4 = 1/t4. For completeness, we point

out that similar vacua can be achieved by choosing the Lagrangian to be−c2×(33)−c3×
3×(31) for any negative coefficients c2, c3

2. In this case, a ghost condensate solution

φ = c t still exists, but with c =
√

c2/c3.

Although the equations of motion continue to have a ghost condensate solution

of the form (16), the Lagrangian (34) is not a supersymmetrized ghost condensate

theory! Therefore, the price one pays to solve the gradient instability problem for

the fermion is a modification of the bosonic part of the theory. Remarkably, (34),

and its generalizations to arbitrary positive coefficients −c2 and −c3, is precisely the

Lagrangian for a well-known class of higher-derivative models — the conformal Galileon

theories — to which we now turn.

4 Galileons and their Relation to P (X, φ) Theo-

ries

Galileon scalar field theories were first discovered in the context of the Dvali-Gabadadze-

Porrati (DGP) brane-world model [91, 92] and arise generically in brane-induced grav-

2The coefficients ci are defined so as to conform with the standard notation used in the following section.
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ity models [93]−[100]. In a certain decoupling limit [54, 55, 101], the theory becomes

local in four dimensions and describes a real scalar field π (the brane-bending mode)

with

LDGP = −1

2
(∂π)2 − 1

Λ3
(∂π)22π +

1√
6MPl

πT µ
µ , (35)

where Tµν is an external source, and the strong coupling scale Λ is related to the

four- and five-dimensional Planck scales as Λ ≡
√
6M2

5 /MPl. (Despite the conformal

coupling to T µ
µ, the theory is nevertheless consistent with tests of gravity because π is

screened in the vicinity of massive sources [54, 96, 101, 102]. See [103, 104] for reviews

of screening mechanisms.) As a vestige of five-dimensional Poincaré invariance, this

theory has two independent internal symmetries [55, 56],

δcπ = c

δvπ = vµx
µ , (36)

where c and vµ are constant. The first transformation in (36) is just a standard shift

symmetry, whereas the second is called a Galilean symmetry. The latter protects the

cubic interaction from being renormalized [55, 56]. Remarkably, despite its higher-

derivative form, (35) leads to an equation of motion that is second-order in derivatives.

In [57], Lagrangian (35) was generalized to include all possible interactions that

are invariant under the shift and Galilean symmetries, and which lead to second-order

equations of motion. In addition to the linear, quadratic and cubic terms in π shown

in (35), it was found that quartic and quintic interactions are also allowed. The most

general “Galileon” theory is found to be a linear combination of the Lagrangians [57]

LGal, 2 = −1

2
(∂π)2

LGal, 3 = −1

2
(∂π)22π

LGal, 4 = (∂π)2
[

−1

2
(2π)2 +

1

2
π,µνπ,µν

]

LGal, 5 = (∂π)2
[

−1

2
(2π)3 − π,µνπ,νρπ

,ρ
µ +

3

2
2ππ,µνπ,µν

]

, (37)

where we have set the associated mass scales of each term to unity to simplify notation.

As with the cubic term, these interactions are protected by non-renormalization the-

orems. The construction stops with LGal, 5 — no higher-order interactions can satisfy

the simultaneous requirements of shift/Galilean invariance and second-order equations.

The symmetries in (36) can be promoted to a subgroup of the conformal group,

with infinitesimal dilation and special conformal transformations acting respectively as

δcπ = c (1 + xµ∂µπ)
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δvπ = vµx
µ − ∂µπ

(

1

2
vµx2 − (v · x)xµ

)

. (38)

In the limit of small π, these reduce to (36). The unique Lagrangians invariant under

these symmetries and leading to second-order equations of motion are [57, 69]

L2 = −1

2
e2π(∂π)2

L3 = −1

2
(∂π)22π − 1

4
(∂π)4

L4 = e−2π(∂π)2
[

− 1

2
(2π)2 +

1

2
π,µνπ,µν

+
1

5
(∂π)22π − 1

5
π,µπ,νπ,µν −

3

20
(∂π)4

]

L5 = e−4π(∂π)2
[

− 1

2
(2π)3 − π,µνπ,νρπ

,ρ
µ

+
3

2
2ππ,µνπ,µν +

3

2
(∂π)2(2π)2 − 3

2
(∂π)2π,µνπ,µν

−15

7
(∂π)42π +

15

7
(∂π)2π,µπ,νπ,µν −

3

56
(∂π)6

]

. (39)

The class of theories obtained by taking general linear combinations of these terms

are called conformal Galileon theories. To compare Galileons to P (X,φ) theories, it is

useful to change variables to

φ ≡ e−π . (40)

The above Lagrangians then become

L2 = − 1

2φ4
(∂φ)2

L3 =
1

2φ3
2φ(∂φ)2 − 3

4φ4
(∂φ)4

= − 1

4φ4
(∂φ)4 − 1

6φ2
(∂µ∂νφ)

2 +
1

6φ2
(2φ)2

L4 = − 1

2φ2
(∂φ)2(2φ)2 +

1

2φ2
(∂φ)2φ,µνφ,µν +

4

5φ3
(∂φ)42φ

− 4

5φ3
(∂φ)2φ,µφ,νφ,µν −

3

20φ4
(∂φ)6

L5 = (∂φ)2
[

1

2φ
(2φ)3 +

1

φ
φ,µνφ,νρφ

,ρ
µ

− 3

2φ
2φφ,µνφ,µν −

3

4φ2
∂µ(∂φ)

2∂µ(∂φ)2 +
3

φ2
2φφ,µνφ,µφ,ν

+
6

7φ3
(∂φ)2φ,µνφ,µφ,ν −

6

7φ3
(∂φ)42φ− 3

56φ4
(∂φ)8

]

= (∂φ)2
[

1

2φ
(2φ)3 +

1

φ
φ,µνφ,νρφ

,ρ
µ

− 3

2φ
2φφ,µνφ,µν −

3

4φ2
(∂φ)2(2φ)2 +

3

4φ2
(∂φ)2φ,µνφ,µν
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+
9

14φ3
(∂φ)42φ− 9

14φ3
(∂φ)2φ,µφ,νφ,µν −

3

56φ4
(∂φ)8

]

, (41)

where the second versions of L3 and L5 follow from integration by parts.

Note that although the bosonic Galileon Lagrangians L2 and L3 were introduced for

entirely different reasons, they are precisely of the form — derived in detail in Sec. 3 —

required by a quadratic and cubic supersymmetric theory to have a ghost condensate

vacuum with Lorentz-covariant and canonical sign fermion kinetic energy. Specifically,

the purely φ-dependent part of (33) and 3× (31) are

1

2φ4
(∂φ)2 = −L2 (42)

and
1

4φ4
(∂φ)4 +

1

6φ2
(∂µ∂νφ)

2 − 1

6φ2
(2φ)2 = −L3 , (43)

respectively! Thus, as claimed in Sec. 3, Galileon theories arise naturally in general-

ized supersymmetric ghost condensate theories, independently of their original origin

in [91, 55, 56, 57]. It is of interest, although somewhat peripheral to our main dis-

cussion, to ask what scalar sector would emerge if we allowed the quadratic and cubic

supersymmetrized ghost condensate theory to have a Lorentz-violating fermion kinetic

term. This possibility is explored in detail in Appendix B.

The most general Galileon Lagrangian is given by

L = c2L2 + c3L3 + c4L4 + c5L5 , (44)

where the ci coefficients are constant. Restricting to time-dependent fields only, it

follows from (41) that

L =
1

φ4
P (X) ; P (X) = c2X − c3X

2 +
6

5
c4X

3 − 6

7
c5X

4 , (45)

where X = φ̇2/2. In other words, for purely time-dependent backgrounds, the Galileon

theory reduces to a P (X) theory with an overall multiplicative factor of φ−4. However,

the spatial gradients are radically different, and much better behaved, than in the

P (X,φ) case. This fact has important consequences, which we discuss below. Nev-

ertheless, the connection with P (X,φ) theories considerably simplifies the analysis of

time-dependent solutions, as we now demonstrate.

It follows from the above discussion that the “de Sitter” solution

πdS = − ln(H0t) (46)

of the Galileon theory is simply the ghost-condensate solution

φ = H0t (47)
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of the associated P (X,φ) theory. The constant H0, as it is usually denoted in the

Galileon literature, thus corresponds to the coefficient c of the ghost condensate,

c = H0 . (48)

For such solutions, where X is constant, the equation of motion derived from action

(45) is

2XP,X − P = 0 . (49)

In terms of the ci coefficients and H0, this reduces to

c2 −
3

2
c3H

2
0 +

3

2
c4H

4
0 − 3

4
c5H

6
0 = 0 . (50)

Interestingly, since the energy density ρ is given by

ρ =
1

φ4
(2XP,X − P ) , (51)

the equation of motion (49) implies that ρ = 0. That is, in order to have a solution

with constant X, the energy density must vanish 3 . This fact, which appeared to be

coincidental in previous treatments of the Galileon self-accelerating solution, can now

be seen to be a general requirement.

What are the conditions for these X = const. solutions to be stable against small

perturbations? As demonstrated in [57], Galileon theories have the property that they

modify the spatial gradients of the φ field in just such a way as to render the La-

grangian for fluctuations δφ(t, ~x) covariant, despite the Lorentz-breaking background.

Hence, it suffices to require positivity of the temporal kinetic term of the perturbations.

Substituting

φ = H0t+ δφ(t, ~x) (52)

into (45) yields the quadratic Lagrangian

Lquadratic =
1

H4
0 t

4
( ˙δφ)2

(

1

2
c2 −

3

2
c3H

2
0 +

9

4
c4H

4
0 − 3

2
c5H

6
0

)

+ . . . (53)

Stability requires the expression in brackets to be positive; that is,

c2 − 3c3H
2
0 +

9

2
c4H

4
0 − 3c5H

6
0 > 0 . (54)

Note that the this inequality can easily be satisfied simultaneously with constraint (50)

derived from the equation of motion.

3Note that the energy density is zero despite the fact that the solution breaks supersymmetry! This

is possible because Lorentz invariance is also broken, and the energy density ρ does not coincide with the

Hamiltonian; rather, if gravity were included, ρ would correspond to the gravitational energy density, or, in

other words, to the time-time component of the energy-momentum tensor. For a more general discussion of

this point see [53].
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5 Violating the Null Energy Condition

Galileons are interesting theoretically because they can violate the NEC

Tµνn
µnν ≥ 0 , (55)

where nµ is an arbitrary null vector, while having stable temporal and spatial fluctu-

ations. This is no small feat since, under very general conditions, theories with two

derivatives are inevitably plagued with ghost or gradient instabilities on NEC-violating

backgrounds [2]. Galileon (and ghost condensate [65]) Lagrangians circumvent this

problem by having more than two derivatives and, hence, can have vacua with stable

violations of the NEC [66]. This is particularly interesting for cosmological applica-

tions. In a cosmological context, (55) reduces to ρ+P ≥ 0, where P denotes pressure.

Since Ḣ = −(ρ + P)/2, violating this inequality then allows the universe to bounce

from a contracting to an expanding phase.

In this section, we derive the conditions under which the conformal Galileon La-

grangian (44) violates the NEC. Although this question has been studied in earlier

work [66], here we point out important new ambiguities in defining the stress tensor,

above and beyond the usual field theory ambiguities in Tµν . Remarkably, even on a

flat-space background (which is what we consider in this paper), Tµν is sensitive to how

one defines the theory, including total divergence terms. In particular, two flat-space

Lagrangians that differ only by integration by parts can have physically different stress

tensors.

Before proceeding, we point out an important distinction between Galileons and

ghost condensate theories. Recall from Section 4 that for purely time-dependent so-

lutions, φ = φ(t), the conformal Galileon Lagrangian (44) reduces to the particular

P (X,φ) theory in (45). The full Galileon Lagrangian, of course, differs from the

corresponding P (X,φ) theory by spatial gradient terms, but these are irrelevant in

computing the φ equation of motion (50), its energy density (51) and the ghost-free

condition (54). However, the gradient terms are important for computing the pressure.

Setting the gradient terms to zero in the action does not commute with varying the

action to obtain the pressure, as we will see explicitly in the examples below.

A standard way to derive the stress tensor is by covariantizing the theory and

varying with respect to the metric. Alternatively, entirely within the context of field

theory on flat space, the stress tensor is derived via the Noether/Belinfante method.

For theories that include up to two derivatives per field, that is, L(φ, ∂µφ, ∂µ∂νφ), the
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Belinfante stress tensor is given by [105]

T µν = ηµνL − ∂λ

(

∂L
∂(∂µ∂νφ)

∂λφ

)

−1

2

∂L
∂(∂µφ)

∂νφ− 1

2

∂L
∂(∂νφ)

∂µφ+ ∂λ

(

∂L
∂(∂λ∂µφ)

)

∂νφ+ ∂λ

(

∂L
∂(∂λ∂νφ)

)

∂µφ .

(56)

By construction, this is both symmetric and conserved. Moreover, in all cases we have

checked, the Belinfante definition agrees with the covariantization method and, hence,

gives the correct stress tensor that sources gravity.

To compute the pressure, let us set µ = ν = i and assume φ = φ(t). In this case,

the second line in (56) vanishes and the pressure is given by

P = L+
d

dt

(

∂L
∂(∂i∂iφ)

φ̇

)

, (57)

where no summation is assumed in the second term. This clearly elucidates the dif-

ference between Galileons and the corresponding P (X,φ) theories mentioned earlier.

For pure P (X,φ), the second term is manifestly absent, and (57) reduces to the usual

P = L = P (X,φ). For Galileons, however, the second term will in general contribute

to the pressure, even on purely time-dependent backgrounds.

First consider L2 = −(∂φ)2/2φ4. In this case, (57) gives

P2 =
1

2φ4
φ̇2 =

1

2H2
0 t

4
, (58)

where we have substituted (47) in the last step. Next, let us compute the pressure

for L3. This is the simplest example that displays the integration-by-parts ambiguities

alluded to earlier. We begin with the definition of L3 given by the second line in (41),

L1st version
3 =

1

2φ3
2φ(∂φ)2 − 3

4φ4
(∂φ)4 . (59)

In this case, 2φ(∂φ)2 contributes to the second term in (57). Hence, the pressure

differs from the corresponding P (X,φ) result and

P1st version
3 =

3

2φ4
φ̇4 − 3

4φ4
φ̇4 =

3

4t4
. (60)

This agrees with P3 derived in [66], since their definition of L3 was identical to (59).

Now, instead, define L3 by the third line in (41), namely

L2nd version
3 = − 1

4φ4
(∂φ)4 − 1

6φ2
(∂µ∂νφ)

2 +
1

6φ2
(2φ)2 . (61)
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Although this was obtained from (59) solely by integration by parts, the associated

pressure is different! Indeed,

P2nd version
3 = − 1

4t4
, (62)

which disagrees with (60). The resolution of this paradox is as follows. As men-

tioned earlier, the Belinfante stress tensor gives the same answer as the covariantization

method evaluated on a flat background. The point is that although (59) and (61) differ

only by a total derivative, their covariant versions do not. Indeed, in going from (59)

to (61) we have canceled the terms

1

6φ2
(∂µ2φ−2∂µφ) ∂

µφ . (63)

Although fully justified in flat space, such terms do not cancel on a curved background.

Instead, they give rise to the non-minimal coupling

1

6φ2
(∇µ2φ−2∇µφ) ∂

µφ = − 1

6φ2
Rµν∂

µφ∂νφ . (64)

Even though this non-minimal coupling vanishes on a flat background, its variation

does not! It is the contribution of the variation of this non-minimal term to the stress

tensor that accounts for the discrepancy between (60) and (62). The lesson is that

the stress tensor of Galileon theories, thanks to their higher-derivative nature, depends

on the precise form of the theory in flat space. If two Lagrangians differ by a total

derivative, then their stress tensors will agree provided that in the process of integrating

by parts one only cancels terms that would also cancel on a curved background. For

example, the stress tensor for L2 is unambiguous, but that of L3 and higher-order

Galileon terms clearly are not.

In the next section, we will see that in order to supersymmetrize L4, it is most

convenient to use a new version of L4, related to the version in (41) by integration by

parts. In order to avoid any confusion, we quote the results for the pressure for the

conformal Galileon Lagrangians, as defined in (39), and then also for the version that

we supersymmetrize. With the Galileon Lagrangians defined as in (39), substituting

into (56) and setting π(t) = − ln(H0t) as the background solution, the pressure is

P2 =
1

2H2
0 t

4

P3 =
3

4t4

P4 = −9H2
0

4t4
(65)

P5 = −21H4
0

8t4
.
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In particular, since our convention for the form of L4 and L5 differs from that of [66],

our results for the pressure do not agree. We have checked that all of these agree with

the covariantization method, evaluated on a flat-space background. Since ρ = 0 on

this background, the condition for violating the NEC for the full Lagrangian (44) is

therefore

P ∝ c2 +
3

2
c3H

2
0 − 9

2
c4H

4
0 − 21

4
c5H

6
0 < 0 . (66)

When we supersymmetrize these theories, we use the same form for L2 and L3, but

for L4 we use instead the last line in (78), and, for the reasons described before, we do

not supersymmetrize L5 explicitly. We then obtain

PSUSY
4 =

3H2
0

4t4
, (67)

and in our case the condition for violating the NEC becomes

PSUSY ∝ c2 +
3

2
c3H

2
0 +

3

2
c4H

4
0 < 0 . (68)

6 Supersymmetric Galileons

Having discussed Galileons associated with a single real scalar field φ, we proceed

to supersymmetrize these theories by embedding φ in an N = 1 chiral superfield

Φ = (φ, χ, ψ, F ). The procedure we follow is identical to that used in supersym-

metrizing P (X,φ) theories in [87] and employs formulae discussed there, such as the

supersymmetry algebra

{Dα, D̄α̇} = −2iσµαα̇∂µ (69)

and its immediate consequence

{D, D̄}Ψ{D, D̄}Ξ = −8∂Ψ∂Ξ (70)

for any chiral superfields Ψ and Ξ. In addition, in writing the supersymmetric exten-

sions of the Galileon Lagrangians we are making use of several new building blocks,

whose component expressions have been written out explicitly in Appendix A.

We find that the possible supersymmetric extensions of L2 and L3 are very limited.

However, there are several options on how to build supersymmetric extensions of the φ-

dependent Lagrangian L4. When we reach L5, the choices on how to supersymmetrize

become so numerous, and the corresponding expressions so large, that it becomes

impractical — and not very illuminating — to write them out explicitly, though there

is no obstacle in principle. Hence, we only consider the Galileon Lagrangians up to L4

from this point on.
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6.1 L2

The supersymmetric extension of L2 in (41) has already been discussed in Sec. 3.

Defining

K(Φ,Φ†) =
2

3(Φ + Φ†)2
, (71)

the complete supersymmetrized L2 action is given by

LSUSY
2 = K(Φ,Φ†)

∣

∣

∣

θθθ̄θ̄

= − 1

2φ4
(∂φ)2 − 1

2φ4
(∂χ)2 +

1

φ4
F ∗F +

i

2φ4
(ψ,µσ

µψ̄ − ψσµψ̄,µ) . (72)

Note that this matches the corresponding expression in (41) when χ = F = ψ = 0.

6.2 L3

In Sec. 3, we “discovered” the third-order Galileon Lagrangian by looking for a cure

for the wrong-sign fermionic spatial gradient term obtained in supersymmetrizing the

ordinary ghost condensate theory. We now examine L3 in more detail, including all

fields of the chiral supermultiplet (φ, χ, F, ψ). Working to quadratic order in all fields

except for φ, we find
[

1

(Φ + Φ†)3

(

DΦDΦD̄2Φ† + h.c.
)

]∣

∣

∣

∣

θθθ̄θ̄, quad
=

4

φ3
2φ(∂φ)2 − 4

φ3
2φ(∂χ)2 +

8

φ3
2χ(∂φ · ∂χ)

− 8

φ3
2φF ∗F +

12

φ4
(∂φ)2F ∗F +

4i

φ3
φ,µ(ψ,νσ

νψ̄,µ − ψ,µσνψ̄,ν)−
2i

φ3
2φ(ψ,νσ

νψ̄ − ψσν ψ̄,ν)

+
2i

φ3
φ,µ(ψσ

µ
2ψ̄ −2ψσµψ̄) +

6i

φ4
(∂φ)2(ψ,νσ

ν ψ̄ − ψσν ψ̄,ν) (73)

and
[

1

(Φ + Φ†)4
DΦDΦD̄Φ†D̄Φ†

]∣

∣

∣

∣

θθθ̄θ̄, quad
=

1

φ4
(∂φ)4 − 2

φ4
(∂φ)2(∂χ)2 +

4

φ4
(∂φ · ∂χ)2

− 4

φ4
(∂φ)2F ∗F − i

φ4
(∂φ)2(ψ,µσ

µψ̄ − ψσµψ̄,µ)−
2i

φ4
φ,µφ,ν(ψ

,νσµψ̄ − ψσµψ̄,ν) . (74)

These can be combined to give a supersymmetric extension of the L3 conformal Galileon

Lagrangian

LSUSY
3, quad =

1

8(Φ + Φ†)3

[

DΦDΦD̄2Φ† + h.c.
] ∣

∣

∣

θθθ̄θ̄
− 3

4(Φ + Φ†)4
DΦDΦD̄Φ†D̄Φ†

∣

∣

∣

θθθ̄θ̄

= − 1

4φ4
(∂φ)4 − 1

6φ2
(∂µ∂νφ)

2 +
1

6φ2
(2φ)2

− 1

φ3
∂µχ∂νχ∂µ∂νφ+

(

− 1

φ3
2φ+

9

2φ4
(∂φ)2

)

F ∗F

+
5i

φ4
(∂φ)2(ψ,νσ

νψ̄ − ψσν ψ̄,ν)−
2i

φ3
2φ(ψ,νσ

νψ̄ − ψσν ψ̄,ν)
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+
4i

φ3
φ,µ(ψ,νσ

νψ̄,µ − ψ,µσν ψ̄,ν) +
2i

φ3
φ,µ(ψσ

µ
2ψ̄ −2ψσµψ̄)

− 2i

φ4
φ,µφ,ν(ψ

,νσµψ̄ − ψσµψ̄,ν) . (75)

To obtain the bosonic part of (75), we have used (30) and the fact that, integrating by

parts,

1

φ3
2χ(∂φ · ∂χ) = 3

φ3
(∂φ · ∂χ)2 − 1

φ3
χ,µχ,νφ,µν −

3

2φ4
(∂φ)2(∂χ)2 +

1

2φ3
2φ(∂χ)2. (76)

Note that (75) reduces to L3 in (41) when χ = ψ = F = 0, as it should.

Finally, integrating the third and fourth fermion terms by parts and dropping any

term that vanishes on a ghost condensate background (where φ,µν = 0 and, hence,

X = const.), LSUSY
3, quad reduces to

LSUSY
3, quad, X=const = − 1

4φ4
(∂φ)4 +

9

2φ4
(∂φ)2F ∗F +

3i

4φ4
(∂φ)2(ψ,µσ

µψ̄ − ψσµψ̄,µ) . (77)

Remarkably, at quadratic order, the second scalar χ does not contribute to LSUSY
3 on a

constant X background. Another interesting feature of this Lagrangian is that, despite

its higher-derivative nature, no kinetic term for F is generated. Hence, the auxiliary

field can be eliminated as described in our previous paper [87].

6.3 L4

While the supersymmetric extension of L3 derived above was relatively straightforward,

the analogous construction for L4 is more complicated. First of all, for L4 in (41)

the building blocks necessary to constructing supersymmetric generalizations are not

manifest. It is useful, therefore, to use integration by parts to rewrite this fourth-order

Lagrangian as

L4 = − 1

2φ2
(∂φ)2(2φ)2 +

1

2φ2
(∂φ)2φ,µνφ,µν +

4

5φ3
(∂φ)42φ

− 4

5φ3
(∂φ)2φ,µφ,νφ,µν −

3

20φ4
(∂φ)6

= − 1

4φ2
∂µ(∂φ)

2∂µ(∂φ)2 +
1

φ2
2φφ,µφ,νφ,µν −

1

5φ3
(∂φ)42φ

+
1

5φ3
(∂φ)2φ,µφ,νφ,µν −

3

20φ4
(∂φ)6

= − 1

4φ2
∂µ(∂φ)

2∂µ(∂φ)2 +
1

φ2
2φφ,µφ,νφ,µν −

1

4φ3
(∂φ)42φ . (78)

The last expression consists of only three terms and is particularly simple. We will

focus on this version, and construct supersymmetric extensions for each of its three
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terms. For the first term, consider

LSUSY
4, 1st term =

1

64(Φ + Φ†)2
{D, D̄}(DΦDΦ){D, D̄}(D̄Φ†D̄Φ†)

∣

∣

∣

θθθ̄θ̄
. (79)

In components, up to quadratic order in fields other than φ and using integration by

parts, this becomes

LSUSY
4, 1st term, quad = − 1

4φ2
∂µ(∂φ)

2∂µ(∂φ)2

+
1

φ3
φ,µ∂µ(∂φ)

2(∂χ)2 − 1

φ2
2(∂φ)2(∂χ)2 − 1

φ2
χ,µχ,νφ,λ

µφ,νλ

+
1

φ2
(∂φ)2∂F · ∂F ∗ +

1

2φ2
∂µ(∂φ)

2∂µ(F ∗F ) +
1

φ2
φ,µνφ,µνF

∗F

+
i

2φ3
∂µ(∂φ)

2 (∂µ(ψσνφ,ν)ψ̄ − ψσν∂µ(ψ̄φ,ν)
)

+
i

4φ2
∂µ(φ,νψ)σ

ν σ̄λσκ∂µ(ψ̄,κφ,λ)−
i

4φ2
∂µ(φ,νψ,λ)σ

λσ̄νσκ∂µ(ψ̄φ,κ)

− i

2φ2
∂µ(φ,νψ)σ

ν∂µ(ψ̄,λφ
,λ) +

i

2φ2
∂µ(φ,νψ

,ν)σλ∂µ(ψ̄φ,λ)

+
i

4φ2
∂µ(φ,νψ)σ

ν∂µ(ψ̄2φ)− i

4φ2
∂µ(2φψ)σ

ν∂µ(ψ̄φ,ν) , (80)

which reduces to the first term in (78) when χ = ψ = F = 0. Moreover, on a ghost

condensate background, and dropping higher-derivative kinetic terms for fields other

than φ, (80) further simplifies to

LSUSY
4, 1st term, quad,X=const = − 1

4φ2
∂µ(∂φ)

2∂µ(∂φ)2 +
1

φ2
(∂φ)2∂F · ∂F ∗

− 9i

4φ4
(∂φ)2φ,µφ,ν(ψ

,µσνψ̄ − ψσν ψ̄,µ). (81)

There are three noteworthy features here. First, we see that the scalar χ does not

contribute at quadratic order on a constant X background. Second, note that (81) con-

tains a kinetic term for the “auxiliary” field F. And third, on a purely time-dependent

background, the fermion kinetic term becomes non-covariant since it contains only the

time-derivative part. These last two issues will be discussed in detail below.

The second term in the last line in (78) can be supersymmetrized as

LSUSY
4, 2nd term =

−1

128(Φ + Φ†)2

(

{D, D̄}(Φ + Φ†){D, D̄}(DΦDΦ)D̄2Φ† + h.c.
)

∣

∣

∣

∣

θθθ̄θ̄

.

(82)

In terms of φ and χ, and using integration by parts, we obtain to quadratic order in

fields other than φ,

LSUSY
4, 2nd term, quad =

1

2φ2
φ,µ∂µ(∂φ)

2
2φ+

1

2φ2
(∂χ)2

[

− 2

φ
(∂φ)22φ+ (2φ)2 + φ,µ∂µ2φ

]
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+
1

2φ2
∂µ(∂φ)

2χ,µ
2χ+

1

φ2
φ,µφ,νχ,µν2χ

+
1

2φ2
φ,µ
[

− (F2φ),µF
∗ − (F ∗

2φ),µF + (∂F · ∂φ),µF ∗

+(∂F ∗ · ∂φ),µF − (Fφ,ν),µF
∗,ν − (F ∗φ,ν),µF

,ν

]

+
1

4φ2
∂µ(∂φ)

2∂µ(F ∗F )− 1

φ3
φ,µ∂µ(∂φ)

2F ∗F

+
i

4φ2
∂µφ

(

∂µ(φ,νψ,λ)σ
λσ̄νσκψ̄,κ − ψ,κσ

κσ̄νσλ∂µ(ψ̄,λφ,ν)
)

+
i

2φ2
∂µφ

(

ψ,λσ
λ∂µ(ψ̄,νφ,ν)− ∂µ(φ,νψ,ν)σ

λψ̄,λ

)

+
i

4φ2
∂µφ

(

∂µ(2φψ)σν ψ̄,ν − ψ,νσ
ν∂µ(ψ̄2φ) + ∂µ(φ,νψ)σ

ν
2ψ̄ −2ψσν∂µ(ψ̄φ,ν)

)

+
i

4φ2
2φ

(

∂µ(φ,νψ)σ
ν ψ̄,µ − ψ,µσν∂µ(ψ̄φ,ν)

)

+
i

4φ2
∂µ(∂φ)2

(

ψ,νσ
νψ̄,µ − ψ,µσ

νψ̄,ν

)

+
i

2φ3
2φ∂µφ

(

ψσν∂µ(ψ̄φ,ν)− ∂µ(φ,νψ)σ
ν ψ̄
)

+
i

2φ3
∂µφ∂

µ(∂φ)2
(

ψσνψ̄,ν − ψ,νσ
νψ̄
)

. (83)

When χ = ψ = F = 0, this is simply the second term in the final line of (78). On

a ghost condensate background, dropping higher-derivative kinetic terms for ψ and

integrating by parts, this further reduces to

LSUSY
4, 2nd term, quad,X=const =

1

2φ2
φ,µ∂µ(∂φ)

2
2φ+

3

φ3
(∂φ)4F ∗F − 2

φ2
(∂φ · ∂F )(∂φ · ∂F ∗)

+
9i

4φ4
(∂φ)4(ψ,νσ

ν ψ̄ − ψσν ψ̄,ν)

+
3i

4φ4
(∂φ)2φ,µφ,ν(ψ

,µσν ψ̄ − ψσν ψ̄,µ) . (84)

The expression above contains a non-Lorentz-covariant kinetic term for F on a time-

dependent background, as well as both a covariant and a non-covariant kinetic term

for ψ.

For the third term in the last line of (78), we have a choice of how to supersym-

metrize since one can take either (∂φ)4 or (∂φ)22φ as the basic building block. This

leads to inequivalent results.

Choice 1 — based on (∂φ)4: The supersymmetric extension in this case is given by

LSUSY
4, 3rd term(1), quad =

1

64(Φ + Φ†)3
DΦDΦD̄Φ†D̄Φ†{D, D̄}{D, D̄}(Φ + Φ†)

∣

∣

∣

θθθ̄θ̄,quad

= − 1

4φ3
2φ

[

(∂φ)4 + (∂χ)4 − 2(∂φ)2(∂χ)2 + 4(∂φ · ∂χ)2 − (∂φ)2F ∗F
]
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+
i

4φ3
2φ[(∂φ)2(ψ,νσ

νψ̄ − ψσν ψ̄,ν) + 2φ,µφ,ν(ψ
,µσνψ̄ − ψσν ψ̄,ν)]

+
i

4φ3
(∂φ)2∂µφ(ψσ

µ
2ψ̄ −2ψσµψ̄) . (85)

For χ = ψ = F = 0, this gives the third term in the final line of (78). Because of the 2φ

prefactor, quadratic fluctuations in χ and F vanish on a ghost condensate background

and, dropping higher-derivative terms for ψ, we are left with

LSUSY
4, 3rd term(1), quad, X=const = − 1

4φ3
(∂φ)42φ

− 3i

4φ4
(∂φ)2φ,µφ,ν(ψ

,µσν ψ̄ − ψσν ψ̄,µ) . (86)

Choice 2 — based on (∂φ)22φ: Here we have additional freedom since there is some

ambiguity about how to write the supersymmetric version of the (∂φ)2 factor. That is,

LSUSY
4, 3rd term(2), quad =

(DΦDΦD̄2Φ† + h.c.)

64(Φ + Φ†)3

(

(1− a)

4
{D, D̄}(Φ + Φ†){D, D̄}(Φ + Φ†)

+a{D, D̄}Φ{D, D̄}Φ†

)∣

∣

∣

∣

θθθ̄θ̄,quad

= − 1

4φ3

(

2φ(∂φ)2 −2φ(∂χ)2 + 22χ∂φ · ∂χ− 22φF ∗F
)

×
(

(∂φ)2 + a(∂χ)2
)

+
i

8φ3
(∂φ)2∂µφ[4(ψ

,µσνψ̄,ν − ψ,νσ
ν ψ̄,µ) +2ψσµψ̄ − ψσµ2ψ̄]

+
i

8φ3
(∂φ)22φ(ψ,νσ

ν ψ̄ − ψσν ψ̄,ν) +
3i

8φ4
(∂φ)4(ψ,νσ

νψ̄ − ψσν ψ̄,ν)

+
i

4φ3
2φφ,µφ,ν(ψ

,µσνψ̄ − ψσν ψ̄,µ) , (87)

where a is an arbitrary real number. Note that for χ = ψ = F = 0, this also leads to

the third term in the last line of (78). Specializing to a ghost condensate background,

integrating by parts and dropping higher-derivative kinetic terms for ψ, (87) becomes

LSUSY
4, 3rd term(2), quad,X=const = − 1

4φ3
(∂φ)42φ− 3

2φ4
(∂φ)2(∂φ · ∂χ)2 + 3

4φ4
(∂φ)4(∂χ)2

− 3i

8φ4
(∂φ)4(ψ,νσ

νψ̄ − ψσν ψ̄,ν)

+
9i

8φ4
(∂φ)2φ,µφ,ν(ψ

,µσνψ̄ − ψσν ψ̄,µ) . (88)

The terms proportional to a have disappeared and, hence, one can choose a convenient

value for a, such as a = 1. Note that the term containing F ∗F is also missing. The

fermion appears both with a canonical and a Lorentz-breaking fluctuation term on

a constant X background. Note that, contrary to all previous terms, LSUSY
4, 3rd term(2)

introduces kinetic terms for the second scalar χ, both covariant and non-covariant.
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In general, one can use a linear combination of Choices 1 and 2 above. We therefore

define our supersymmetric generalization of L4 to be

LSUSY
4 = LSUSY

4, 1st term + LSUSY
4, 2nd term + (1− b)LSUSY

4, 3rd term(1) + bLSUSY
4, 3rd term(2) , (89)

where b is an arbitrary real number. In components, and restricted to a ghost conden-

sate background with quadratic fluctuation terms up to two-derivatives, this becomes

LSUSY
4,quad,X=const = L4(φ)−

3b

2φ4
(∂φ)2(∂φ · ∂χ)2 + 3b

4φ4
(∂φ)4(∂χ)2

+
3

φ3
(∂φ)4F ∗F +

1

φ2
(∂φ)2∂F · ∂F ∗ − 2

φ2
(∂φ · ∂F )(∂φ · ∂F ∗)

+

(

18− 3b

8

)

i

φ4
(∂φ)4(ψ,νσ

ν ψ̄ − ψσν ψ̄,ν)

+

(−18 + 15b

8

)

i

φ4
(∂φ)2φ,µφ,ν(ψ

,µσν ψ̄ − ψσν ψ̄,µ) . (90)

When χ = ψ = F = 0 this reduces to the φ-dependent Galileon term L4 in (78),

as it should. However, as it stands, the above Lagrangian still contains a number of

troubling features. We now discuss how to address these.

First, the scalar χ appears with a non-covariant kinetic term. This, however, is not

a serious problem since it can be dealt with in exactly the same manner as discussed

in and below (20). That is, the non-covariant term can be eliminated by adding

− 3b

29(Φ + Φ†)4
DΦDΦD̄Φ†D̄Φ†

(

{D, D̄}(Φ + Φ†){D, D̄}(Φ − Φ†)
)2
∣

∣

∣

∣

θθθ̄θ̄, quad

= − 3b

2φ4
(∂φ)4(∂φ · ∂χ)2 . (91)

Moreover, the coefficient in front of the covariant kinetic term for χ can be modified

arbitrarily by adding a term proportional to

1

28(Φ + Φ†)4
DΦDΦD̄Φ†D̄Φ†

(

{D, D̄}(Φ− Φ†){D, D̄}(Φ† −Φ)
)

= − 1

φ4
(∂φ)4(∂χ)2 (92)

without affecting anything else. Hence, the stability of χ can always be assured.

Second, there are two troubling terms for the “auxiliary” field F , namely

1

φ2
(∂φ)2∂F · ∂F ∗ − 2

φ2
(∂φ · ∂F )(∂φ · ∂F ∗) . (93)

These act as kinetic terms for F which, hence, is no longer an auxiliary field. We

note that this occurs because we are interested in a time-dependent background φ(t).

Around the usual zero vacuum, such terms would be higher-order interactions and
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would not trouble us unduly. A propagating F -field is not necessarily a problem. It

would imply that both complex components of the Weyl spinor ψ would now propagate

— giving a supersymmetric multiplet with four bosonic and four fermionic physical

degrees of freedom. However, in this paper we will follow a conservative approach and

add the appropriate terms that restore F to its auxiliary field status. Consider the

following supersymmetric terms evaluated for constant X,

− 1

28(Φ + Φ†)2
DΦDΦD̄Φ†D̄Φ†{D, D̄}D2Φ{D, D̄}D̄2Φ†

∣

∣

∣

θθθ̄θ̄,quad

=
8

(A+A∗)2
(∂A)2(∂A∗)2∂F · ∂F ∗

=
1

φ2
(∂φ)4∂F · ∂F ∗ , (94)

and

1

210(Φ + Φ†)2
DΦDΦD̄Φ†D̄Φ†|{D, D̄}Φ{D, D̄}D2Φ|2

∣

∣

∣

θθθ̄θ̄,quad

=
16

(A+A∗)2
(∂A)2(∂A∗)2(∂A · ∂F )(∂A∗ · ∂F ∗)

=
1

φ2
(∂φ)4(∂φ · ∂F )(∂φ · ∂F ∗) . (95)

At quadratic order, these do not involve χ or ψ. Therefore, they can be added with

suitable coefficients to LSUSY
4 to cancel the unwanted kinetic terms for F , again without

changing anything else. Thus, one can ensure that the auxiliary field remains truly

auxiliary.

Finally, consider the fermionic kinetic terms in (90). The first is covariant, and

unproblematic. The second one is Lorentz-violating and, hence, undesirable. This

term can be eliminated by choosing b = 6/5. With this choice, and adding in the terms

just discussed, we find that a healthy supersymmetric extension of the fourth-order

conformal Galileon Lagrangian is given by

L̂SUSY
4 =

(

1

64(Φ + Φ†)2
{D, D̄}(DΦDΦ){D, D̄}(D̄Φ†D̄Φ†)

− 1

128(Φ + Φ†)2

[

{D, D̄}(Φ + Φ†){D, D̄}(DΦDΦ)D̄2Φ† + h.c.
]

− 1

5× 64(Φ + Φ†)3
DΦDΦD̄Φ†D̄Φ†{D, D̄}{D, D̄}(Φ + Φ†)

+
6

5× 64(Φ + Φ†)3
(DΦDΦD̄2Φ† + h.c.){D, D̄}Φ{D, D̄}Φ†

− 9

28 × 5(Φ + Φ†)4
DΦDΦD̄Φ†D̄Φ†

(

{D, D̄}(Φ + Φ†){D, D̄}(Φ− Φ†)
)2

+
1

28(Φ + Φ†)2
DΦDΦD̄Φ†D̄Φ†{D, D̄}D2Φ{D, D̄}D̄2Φ†
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− 1

29(Φ + Φ†)2
DΦDΦD̄Φ†D̄Φ†

∣

∣

∣{D, D̄}Φ{D, D̄}D2Φ
∣

∣

∣

2
)∣

∣

∣

∣

θθθ̄θ̄

. (96)

In components, up to quadratic order in fields other than φ on a constant X back-

ground, this reduces to

L̂SUSY
4, quad, X=const = − 1

4φ2
∂µ(∂φ)

2∂µ(∂φ)2 +
1

φ2
2φφ,µφ,νφ,µν −

1

4φ3
(∂φ)42φ

+
9

10φ4
(∂φ)4(∂χ)2 +

3

φ3
(∂φ)4F ∗F +

9i

5φ4
(∂φ)4(ψ,νσ

νψ̄ − ψσν ψ̄,ν) .

(97)

It is encouraging to see that healthy supersymmetric extensions of the Galileon La-

grangians exist, as demonstrated above. We would like to emphasize once more that,

as should be clear already from the discussion around (78), the supersymmetric ex-

tension of L4 given above is not unique. Hence it would be interesting to see, should

a derivation of a supersymmetric Galileon theory be found in a more fundamental

setting, precisely which form of the Lagrangian would arise.

7 Discussion and Outlook

In this paper, we have shown how to construct supersymmetric extensions of the con-

formal Galileon theories. In doing so, we have uncovered a deep connection between

Galileon and ghost condensate theories. That is, conformal Galileons can be seen as

equivalent to ghost condensate models — in terms of the temporal gradients alone,

the two theories are identical up to an overall factor of φ−4 — but with improved be-

havior of the spatial gradients. This connection clarifies the role of both theories, and

significantly simplifies the analysis of time-dependent solutions of the Galileon theories.

In our analysis, we have encountered two important subtleties, one related to super-

symmetry and the other inherent already in the bosonic Galileons. For the quadratic

and cubic Galileon Lagrangians, the supersymmetric extensions are highly constrained

and, around a ghost-condensate/self-accelerating-de-Sitter background, lead to covari-

ant fluctuations for all fields. In contrast, for the quartic (and quintic) conformal

Galileon Lagrangian there are many inequivalent ways to construct supersymmetric

extensions. For some of these options, non-covariant fluctuations in some fields can

arise, as well as kinetic terms for the “auxiliary” field. We have discussed these possi-

bilities, and have provided an illustrative example of a completely healthy supersym-

metric version of the fourth-order conformal Galileons, for which all fluctuations are

covariant, and where the auxiliary field remains truly auxiliary.
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A second subtlety we encountered, and which is inherent in higher-derivative theo-

ries, is that Lagrangians related using integration by parts generically lead to different

stress-energy tensors and thus, for example, different conditions for violating the NEC.

Keeping this subtlety in mind, let us now put all our results together and see if we can

truly have a stable, NEC-violating solution of our supersymmetric conformal Galileon

theory. For the Lagrangian

LSUSY = c2LSUSY
2 + c3LSUSY

3 + c4LSUSY
4 , (98)

with LSUSY
2 given by (72), LSUSY

3 by (75) and LSUSY
4 by (96), the conditions for hav-

ing a) a ghost-condensate/self-accelerating-de-Sitter solution, b) stability, c) NEC-

violation and d) canonical and correct-sign fermionic fluctuations are

c2 −
3

2
c3H

2
0 +

3

2
c4H

4
0 = 0 (99)

c2 − 3c3H
2
0 +

9

2
c4H

4
0 > 0 (100)

c2 +
3

2
c3H

2
0 +

3

2
c4H

4
0 < 0 (101)

c2 −
3

2
c3H

2
0 +

18

5
c4H

4
0 > 0 , (102)

respectively. These can be satisfied simultaneously provided that

c2 <
3

2
c3H

2
0 < 0, (103)

with the value of c4H
4
0 determined by (99). Hence, we have an example of a supersym-

metric conformal Galileon theory that has a background solution which is both stable

and can violate the NEC at the same time! We note that this is merely a proof of

principle, and that using a supersymmetric L5, or other choices for supersymmetrizing

L4, will lead to a variety of such theories. For these, the conditions for violating the

NEC and having canonical fermionic fluctuations will have to be re-evaluated on a

case-by-case basis, but it seems likely to us that healthy supersymmetric models might

also exist for which all the conditions mentioned above can be satisfied with c2 > 0. In

that case, even the ordinary zero vacuum would be stable.

We anticipate a number of applications for our results:

• Since the (non-supersymmetric) conformal Galileon theories can be derived as

the Lagrangians describing the fluctuations of a brane in a higher-dimensional

space-time, there does not seem to exist a fundamental obstacle to deriving the

supersymmetric Galileons in a supergravity context. It will then be interesting to

see precisely which version of the supersymmetric Galileons comes out naturally.
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Moreover, such a treatment would require one to extend the present work to

local supersymmetry and the coupling to gravity, which will be of importance for

cosmological applications. This derivation will appear elsewhere [106].

• As we discussed in detail in the paper, two Galileon actions, related using integra-

tion by parts and dropping the surface terms, are physically inequivalent in that

they lead to the same time-dependent backgrounds, but to different pressures.

Hence, for two such theories, the conditions for violating the NEC are different.

It may be that one theory allows for stable violations of the NEC, while the other

does not. It will be interesting to investigate this situation further in a cosmo-

logical context. Indeed, it means that in approaching a regime where the NEC is

violated, such as a cosmic bounce, spatial gradients must necessarily make their

presence felt, and either allow or disallow entering into the NEC-violating regime.

This should be the case regardless of how small the spatial gradients are initially!

It will be of interest to see how this works out in a concrete model.

Supersymmetric Galileons provide a fascinating theoretical laboratory in which to

study the connections between higher derivatives, supersymmetry and violations of the

NEC. This is at present largely unchartered territory, but, in this paper, we hope to

have provided the basic tools necessary for mapping it out.
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Appendix A: Useful Superfield Expressions

In constructing the supersymmetric extensions of the higher-derivative scalar actions

discussed in this paper, we make frequent use of a number of building blocks. We list

them here for reference, our notation and conventions being those of Wess and Bagger

[90]:

DΦDΦ = 2ψψ + 4
√
2Fθψ + 4

√
2iψσµθ̄A,µ + 4θθF 2 − 4θ̄θ̄(∂A)2
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+8iθσµθ̄FA,µ − 4iθψψ,µσ
µθ̄ + 4iθψ,µψσ

µθ̄

+2
√
2θ̄θ̄(θψ2A+ ψ,µσ

µσ̄νθA,ν − 2A,µθψ,µ)

+2
√
2iθθ(F,µψσ

µθ̄ − 3Fψ,µσ
µθ̄)

+θθθ̄θ̄(4F2A− 4∂F · ∂A− ψ2ψ + ∂ψ · ∂ψ − ψ,µσ
µσ̄νψ,ν) , (104)

D2Φ = −4F + 4
√
2iψ,µσ

µθ̄ − 4θ̄θ̄2A

+4iθσµθ̄F,µ − 2
√
2θ̄θ̄θ2ψ − θθθ̄θ̄2F . (105)

Multiplying the first of these building blocks with the hermitian conjugate of the second,

we obtain, up to quadratic order in the spinor ψ,

DΦDΦD̄2Φ† = −8ψψF ∗ − 16
√
2θψFF ∗ − 16

√
2iψσµθ̄A,µF

∗

−8θθψψ2A∗ − 16θθF 2F ∗ + 16iθθψσµψ̄,µF + 16θ̄θ̄(∂A)2F ∗

−32iθσµθ̄A,µFF
∗ + 32ψσµθ̄θσνψ̄,νA,µ

−8iθσµθ̄ψψF ∗
,µ + 16iθψψ,µσ

µθ̄F ∗ − 16iθψ,µψσ
µθ̄F ∗

+8
√
2θθ

(

− 2iψσµθ̄A,µ2A
∗ − 2σµψ̄,µσ

ν θ̄FA,ν

+iψσµθ̄FF ∗
,µ − iψσµθ̄F,µF

∗ + 3iψ,µσ
µθ̄FF ∗

)

+8
√
2θ̄θ̄

(

2iθσµψ̄,µ(∂A)
2 + θσµσ̄νψA,νF

∗
,µ

+2A,µθψ,µF
∗ − θψ2AF ∗ − ψ,µσ

µσ̄νθA,νF
∗
)

+θθθ̄θ̄
(

16(∂A)22A∗ − 162AFF ∗ + 16F ∗∂F · ∂A− 16F∂F ∗∂A

+8iψ,µσ
µσ̄νσλψ̄,λA,ν − 16iψ,µσ

νψ̄,νA
,µ + 8iψσν ψ̄,ν2A

+8iψσµ2ψ̄A,µ + 4ψ2ψF ∗ − 4∂ψ · ∂ψF ∗ + 4ψ,µσ
µσ̄νψ,νF

∗

+4ψσµσ̄νψ,νF
∗
,µ − 4ψ,µσ

ν σ̄µψF ∗
,ν − 2ψψ2F ∗

)

. (106)

We also make frequent use of

(Φ + Φ†)k = (A+A∗)k + k
√
2(A+A∗)k−1(θψ + θ̄ψ̄) + kθθ(A+A∗)k−1F

+kθ̄θ̄(A+A∗)k−1F ∗ + kiθσµθ̄(A+A∗)k−1(A,µ −A∗
,µ) , (107)

where we have dropped the top component as well as terms quadratic and higher in

fields other than φ.

Appendix B: Non Lorentz-Covariant Fermion Ki-

netic Terms

In Sec. 3, we showed that the exact linear combination of (28) + (26) not only gives the

conformal third-order scalar Galileon Lagrangian, but also results in a Lorentz-invariant
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fermion kinetic term. In this Appendix, we generalize this analysis by allowing for a

more general linear combination. The fermion kinetic term now breaks Lorentz invari-

ance, and the resulting generalized Galileon theory is only invariant under dilations but

not special conformal transformations.

Instead of (31), consider the more general expression

(28) + (1 + ∆)× (26) =
1

12φ4
(∂φ)4 +

1

18φ2
(∂µ∂νφ)

2 − 1

18φ2
(2φ)2 +

∆

4φ4
(∂φ)4

− i(1 + ∆)

4φ4
(∂φ)2(ψ,µσ

µψ̄ − ψσµψ̄,µ)−
i∆

2φ4
φ,µφ,ν(ψ

,νσµψ̄ − ψσµψ̄,ν) + . . .

(108)

where ∆ is a constant. It follows that 3 × (31), the higher-derivative term entering

expression (34), is now replaced by

L∆ − 3i(1 + ∆)

4φ4
(∂φ)2(ψ,µσ

µψ̄ − ψσµψ̄,µ)−
3i∆

2φ4
φ,µφ,ν(ψ

,νσµψ̄ − ψσµψ̄,ν) + . . . (109)

where

L∆ ≡ −L3 +
3∆

4φ4
(∂φ)4 , (110)

and L3 is the third-order conformal Galileon Lagrangian in (41).

For ∆ = 0, the last term in (109) vanishes, and the fermion kinetic term is Lorentz-

covariant with the correct sign on the ghost condensate background. Furthermore,

L∆=0 = −L3 is the standard conformal Galileon action discussed in Sec. 4. As men-

tioned in Sec. 4, L3 is invariant, up to a total derivative, under the infinitesimal dilations

and special conformal transformations given in (38). We now show that in the more

general case, when ∆ 6= 0, only the dilation symmetry survives.

To see this, we work in terms of π and decompose L3 as

L3 = L3A + L3B , (111)

with

L3A = −1

2
(∂π)22π ; L3B = −1

4
(∂π)4 (112)

being of order O(π3) and O(π4) respectively. In this notation, the generalized La-

grangian L∆ can be written as

L∆ = −L3A − (1 + 3∆)L3B . (113)

First consider the dilation transformation δcπ = c (1 + xµ∂µπ). Since each π in (112)

is acted on by at least one derivative, the relevant variation is

δc∂µπ = c∂µ(x
α∂απ) . (114)
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This preserves the order in π and, hence, the variations of L3A and L3B cannot cancel

against each other. Instead they must be separately invariant (up to a total derivative)

under this transformation. It is straightforward to check that this is indeed the case.

And since L∆ is just a linear combination of these two terms, it too is dilation invariant.

Now consider the infinitesimal special conformal transformation, given by the sec-

ond equation in (38). The relevant variation in this case,

δv∂µπ = vµ − ∂µ

(

∂απ

(

1

2
vαx2 − (v · x)xα

))

, (115)

has both 0th- and 1st-order contributions in π. Thus, unlike the previous transforma-

tion, the variations of the two terms in (112) can cancel against each other, so that

neither need be a total divergence. For example, consider

δvL3B = −vµ(∂µπ)(∂π)2 +O(π4) . (116)

Since δvL3A is at most cubic in π, the O(π4) term in (116) must be a total derivative,

which is indeed the case. However, the first term need not a total derivative, and, in

fact, it is not. This is most easily checked by defining an action − ∫ d4x vµ(∂µπ)(∂π)2.
If the integrand were a total derivative, then the variation of this action would vanish

identically. Instead we find the non-zero result

− δ

δπ

∫

d4x vµ(∂µπ)(∂π)
2 = 2vµ(∂µπ)2π + 4vµ(∂απ)(∂µ∂απ) 6= 0 . (117)

It follows that L3B is not by itself invariant under (115). The invariance of L3 relies

on a cancellation between the first term in (116) and the O(π3) part of the variation

of L3A (the O(π2) term in δvL3A is a total derivative).

The immediate corollary is that L∆ is not invariant under the transformation (115)

for ∆ 6= 0. In other words, when the fermion kinetic term is not Lorentz invariant on

the condensate background, the purely π-dependent part of Lagangian is still invariant

under dilations (114) but breaks special conformation transformations (115). This

generalized class of “detuned” Galileon theories, and their supersymmetric extension

discussed above, admit a ghost condensate vacuum and are potentially interesting in

their own right, such as for cosmological applications. We will explore their properties

elsewhere [89].
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