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Theories for new particle and early-Universe physics abound with pseudo-Nambu-Goldstone fields
that arise when global symmetries are spontaneously broken. The coupling of these fields to
the Chern-Simons term of electromagnetism may give rise to cosmological birefringence (CB), a
frequency-independent rotation of the linear polarization of photons as they propagate over cosmo-
logical distances. Inhomogeneities in the CB-inducing field may yield a rotation angle that varies
across the sky. Here we note that such a spatially-varying birefringence may be correlated with
the cosmic microwave background (CMB) temperature. We describe quintessence scenarios where
this cross-correlation exists and other scenarios where the scalar field is simply a massless specta-
tor field, in which case the cross-correlation does not exist. We discuss how the cross-correlation
between CB-rotation angle and CMB temperature may be measured with CMB polarization. This
measurement may improve the sensitivity to the CB signal, and it can help discriminate between
different models of CB.

I. INTRODUCTION

Much attention has focused recently on cosmological
birefringence (CB), a frequency-independent rotation of
the linear polarization of a photon that propagates over
cosmological distances [1]. The rotation may arise if the

pseudoscalar of electromagnetism FµνF̃µν is coupled to
a pseudo-Nambu-Goldstone field (PNGB field) that has
variations on cosmological distances or timescales. This
field may be identified with the quintessence field [2, 3]
introduced to account for cosmic acceleration [4–6]. In
fact, the flatness required of the quintessence potential
is naturally accommodated if quintessence is a PNGB
field [7, 8]. However, the scalar field may have nothing
to do with quintessence—any PNGB field is expected to
have such a coupling [9]. There may also be dark-matter
mechanisms for CB [10].
Cosmological birefringence has been sought with po-

larized cosmological radio sources [1, 11, 12], but here we
focus on cosmic-microwave-background (CMB) probes of
CB [13]. If the CB-rotation angle α is uniform across the
sky, as may result from the homogeneous evolution of
quintessence, then there are parity-violating EB and TB
correlations between the CMB temperature (T) and the
curl-free (E) and curl (B) components of the CMB polar-
ization [13]. Such a rotation has been sought for several
years [14], and the tightest current limits on the rotation
angle, −1.41◦ < α < 0.91◦ (95%C.L.), come from a com-
bined analysis of the WMAP [15], BICEP [16, 17], and
QUaD [18, 19] experiments [15]. It is worth noting, in
the context of the current constraints, that the uniform
rotation angle is generally nonzero in quintessence mod-
els for CB, while the massless-scalar-field models have no
homogeneous time evolution and thus predict no uniform
rotation.
It has been pointed out that [9, 10, 20], more gener-

ally, the CB-rotation might be anisotropic, giving rise to
α(n̂) as a function of direction n̂ in the sky. Refs. [20–
22] showed how measurement of the characteristic non-
Gaussianities in the CMB polarization induced by a

spatially-varying CB can be used to reconstruct α(n̂)
from the CMB. The current best constraint to the root-
variance of α,

〈
(∆α)2

〉1/2
. 4◦, comes from observations

of active galactic nuclei [12].

In this paper we explore the possibility that CB may
be correlated with primordial density perturbations and
thus also with temperature fluctuations in the CMB.
Such correlations are to be expected, for example, if the
CB-inducing field is a quintessence field with adiabatic
primordial perturbations seeded during inflation. On the
other hand, correlations between the CB angle and pri-
mordial perturbations may be absent if, for example, the
CB-inducing field is a massless scalar [9].

We first work out the predictions for spatially-varying
α(n̂) for a massless-scalar-field model in which there is
no uniform rotation. In this case, the rotation-angle
pattern α(n̂) is completely uncorrelated with the CMB-
temperature pattern T (n̂), and so we calculate only the
CB-angle autocorrelation power spectrum Cαα

L . We then
move on to quintessence models in which the αT cross-
correlation exists and calculate this cross-correlation
power spectrum CαT

L .

We derive the minimum-variance estimators for the
αT cross-correlation and estimate the detectability of
CB-angle fluctuations and CB-angle–temperature corre-
lations with current and forthcoming CMB experiments.
We find that the cross-correlation can help improve the
sensitivity of experiments to a signal in some cases where
the signal would otherwise be only marginally detectable.
We show that experiments like SPIDER [24] and Planck
[25] may be able to detect a cross-correlation if the CB
signal is near its current upper bounds, while the cross-
correlation may be detectable with a future experiment,
like CMBPol/EPIC [26], even if the CB power spectrum
is several orders of magnitude smaller than the current
upper limit.

This paper is organized as follows: In Section II we
introduce the two anisotropic-CB scenarios and their pa-
rameters and calculate the corresponding αα and αT
power spectra. In Section III we discuss how α can
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be reconstructed from a CMB temperature/polarization
map, and then how the cross-correlations can be mea-
sured. Here, we present the expressions for the minimum-
variance estimators of the auto-correlation and cross-
correlation power spectra, and expressions for their vari-
ances. We then evaluate those variances for SPIDER,
Planck, and CMBPol/EPIC and estimate detectability
thresholds for these three experiments. A summary and
concluding remarks are presented in Section IV. Ap-
pendix A details the evolution of the scalar-field pertur-
bations, and Appendix B provides the full expression for
the variance of the αT cross-correlation.

II. SCENARIOS FOR ANISOTROPIC

ROTATION

We consider theories of a cosmic scalar φ(xµ) coupled
to the Chern-Simons term of electromagnetism via the
Lagrangian

L = −
1

2
(∂µφ)(∂

µφ)− V (φ)

−
1

4
FµνFµν −

βφ

2M
Fµν F̃µν , (1)

where F̃µν = ǫµνρσF
ρσ/2 is the dual of the electromag-

netic tensor, ǫµνρσ is the Levi-Civita tensor (totally an-
tisymmetric), and M is a parameter with dimensions of
mass. If φ is a PNGB field, then M is the vacuum ex-
pectation value for the broken global symmetry, and β
is a coupling [7, 8]. Such a parity-violating term in the
Lagrangian introduces a modification of Maxwell’s equa-
tions that results in different dispersion relations for left-
and right-circularly polarized photons. Consequently,
linearly-polarized electromagnetic waves that propagate
over cosmological distances undergo CB, a frequency-
independent rotation of the plane of polarization by an
angle α, where [1]

α =
β

M

∫
dτ

(
∂

∂τ
− n̂ · ~∇

)
φ

=
β

M
∆φ, (2)

where ∆φ is the change in φ over the photon trajectory,
and τ is the conformal time. For the CMB, the polar-
ization rotation is determined by the change in φ since
recombination, when the CMB polarization pattern was
largely established.
Allowing for spatial fluctuations δφ in the cosmic scalar

field, the anisotropy in the CB-rotation angle is then
∆α(n̂) = (β/M)δφ(n̂), evaluated at recombination.
Below we consider two scenarios for the scalar field.

In the first, the scalar is massless, with no homoge-
neous time evolution, while in the second, the scalar is
quintessence. In both cases, CB-angle fluctuations arise
from scalar-field fluctuations at the surface of last scatter
(LSS).

A. Massless scalar field

In the first scenario, we suppose that the φ field is
simply a massless scalar with a potential that vanishes,
V = 0. In this case, the value of the field is completely
uncorrelated with primordial density perturbations1 [9].
If φ is effectively massless during inflation there will be
a scale-invariant power spectrum of perturbations to φ,
Pδφ(k) = H2

I /2k
3, with an amplitude fixed by the Hub-

ble parameter HI evaluated during inflation2. If we split
the field into a smooth background component and a per-
turbation on top of it, the evolution of the homogeneous
component is given by the following equation of motion

φ̈+ 2Hφ̇+ a2V ′ = 0, (3)

where H = ȧ/a, a is the scale factor, and dots denote
derivatives with respect to conformal time. For a van-
ishing potential, this equation has only a decaying and
a constant solution; thus, the value of the field is fixed
in time in each causally disconnected region of the early
Universe. This precludes the scalar-field perturbations
from having any correlation with perturbations in the
matter/radiation density. This is manifest in the absence
of any source term in the perturbed equation of motion
for the scalar field (compare to the Fourier transform of
the full equation, Eq. (A2), after taking (dφ/dτ) = 0,
and V = 0),

δφ̈+ 2Hδφ̇− k2δφ = 0. (4)

A solution to Eq. (4) is a transfer function Tk(τ) ∝
j1(kτ)/(kτ), which describes the conformal-time evolu-
tion of a given Fourier mode of wavenumber k during
matter domination.
The angular power spectrum Cαα

L for the rotation an-
gle is then

Cαα
L = 4π

(
β

M

)2 ∫
k2 dk

2π2
Pφ(k) [jL(k∆τ)Tk(τlss)]

2

=
1

π

(
βHI

M

)2 ∫
dk

k
[jL(k∆τ)Tk(τlss)]

2 . (5)

Here ∆τ is the conformal-time difference between last
scattering and today, and τlss is the conformal time at
the LSS. For large angular scales, L . 100, the transfer
function evaluates to Tk(τlss) ≃ 1, in which case

Cαα
L ≃

(βHI/M)2

2πL(L+ 1)
, forL . 100. (6)

1 We imagine that some mechanism has nullified the quantum-
gravity effects that generically break global symmetries [27].

2 It is also imaginable that a white-noise spectrum of φ fluctuations
is imprinted by some post-inflation phase transition, but we will
not consider that scenario here.
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The left-hand panel of Fig. 1 shows the result of a nu-
merical calculation of Cαα

L for this scale-invariant power
spectrum.
The mean-square rotation amplitude measured by a

probe with angular resolution of ∼ 1◦ is

〈
(∆α)2

〉
=

∞∑

L=2

2L+ 1

4π
Cαα

L [WL(θ)]
2

≃ 332

(
βHI

M

)2

deg2. (7)

Here, WL(θ) ≡ exp
[
−L2θ2/(16 ln2)

]
is a Gaussian win-

dow function of full-width half-maximum θ (in radians).
The best current constraint to the variance of the rota-
tion angle,

〈
(∆α)2

〉
. (4◦)2, from AGN data [12], places

a bound βHI/M . 0.2 to the combination of parame-
ters that control the rotation-angle amplitude in this sce-
nario. We may therefore write the rotation-angle power
spectrum as

Cαα
L = 0.015α2

4

∫
dk

k
[jL(k∆τ)Tk(τls)]

2

≃
7.7× 10−3α2

4

L(L+ 1)
, forL . 100. (8)

Here, α4 ≡
〈
(∆α)2

〉1/2
/4◦ parametrizes the amplitude of

the rotation-angle power spectrum in units of the maxi-
mum value currently allowed.
The CMB temperature power spectrum is given by

CTT
L =

2

π

∫
k2 dk [∆T,L(k)]

2
PΨ(k), (9)

where PΨ(k) is the primordial power spectrum for the
gravitational potential, and ∆T,L(k) is the transfer func-
tion that quantifies the contribution of a density mode
of wavenumber k to CTT

L , and may be obtained from
numerical Boltzmann codes [28].
As discussed above, scalar-field fluctuations are not

sourced by the gravitational potentials for this V = 0
model; similarly, energy-density fluctuations in the scalar
field have only second-order corrections due to δφ, and
so their effect on gravitational potentials is also small. In
this case, the αT cross-correlation power spectrum van-
ishes, CαT

L = 0.

B. Quintessence

In the second scenario, we suppose that φ is a
quintessence field with a nonzero potential and homo-
geneous component that undergoes time evolution. In
this case, gravitational-potential perturbations directly
source (and are also sourced by) scalar-field fluctuations,
see Eq. (A2). A cross-correlation between CB-angle and
CMB-temperature fluctuations is therefore inevitable, al-
though its amplitude and detailed features depend on the
specific potential V .

Since every CMB photon that comes from a given di-
rection n̂ last scattered at the spacetime point in the
direction n̂, when the Universe had some fixed temper-
ature, the CB-rotation angle α(n̂) is determined by the
value of φ at that point of spacetime. In other words, the
CB-angle anisotropies are determined by the scalar-field
perturbations on surfaces of constant CMB temperature,
or equivalently, on surfaces of constant synchronous-
gauge time.
We suppose that the initial value of φ is set by some

post-inflationary physics so that the primordial perturba-
tion to φ is adiabatic. In this case, the synchronous-gauge
scalar-field perturbation (δφ)syn is initially zero. How-
ever, the scalar-field perturbation is sourced by the grav-
itational potentials, as described by Eqs. (A1) or (A2).
The synchronous-gauge scalar-field perturbation at the
LSS is then approximately (see Appendix A),

(δφ)syn,lss = −
2

9

(
3Ωφ(1 + wφ)

8π

)1/2

MPlΨ, (10)

where the equation-of-state parameter wφ and the
energy-density parameter Ωφ are evaluated at recombi-
nation. The primordial power spectrum for the gravita-
tional potential, for large scales (small k) is given by

PΨ =
9

25

2π2

k3
∆2

R, (11)

where we have taken a scalar spectral index to be ns = 1
for simplicity, and the curvature-perturbation amplitude
is ∆2

R(k0) = 2.43(±0.11)×10−9 [29]. To evolve the power
spectrum from primordial to the LSS,we need to multiply
it by transfer functions, which are a suppression factor
for small scales (large k’s). The angular power spectrum
for the CB-rotation angle in the quintessence model is
then

Cαα
L =

2

27
Ωφ(1 + wφ)

(
βMPl

M

)2

×

∫
k2 dk

2π2
PΨ(k)[jL(k∆τ)Tk(τlss)]

2. (12)

For large scales, L . 100, we can approximate Tk(τlss) ≃
1, in which case we can again write the CB-rotation–angle
power spectrum as in Eq. (8), but now with

α4 ≃ 6.7× 10−5
√
Ωφ(1 + wφ)(βMPl/M). (13)

In other words, the αα power spectrum for the
quintessence scenario will be similar to that for the
massless-scalar-field scenario in the small-L limit where
Tk(τlss) can be approximated as a constant.
However, in the quintessence model, there will also be

a cross-correlation with the CMB temperature, since the
CMB temperature is determined largely by the potential
Ψ at the LSS. From Eqs. (9) and (12), we get

CαT
L = −

4π

3

√
Ωφ(1 + wφ)

6π

βMPl

M



4

Figure 1: Shown are the power spectra for the cosmological-
birefringence rotation angle Cαα

L and its cross-correlation with
the CMB temperature CαT

L (logarithm of the absolute value),
for a quintessence model in which the CB-angle fluctuations
are due to scalar-field fluctuations at the LSS. The black solid
curves are the theoretical prediction for (from top to bottom)
α4 = 1, 0.1, and 0.01, where α4 is the fluctuation amplitude
for the CB angle in units of the maximum currently allowed
amplitude [12]. We also show the noise power spectra antici-
pated for SPIDER (red, dot-dashed), Planck (green, dashed),
and CMBPol (blue, dotted).

×

∫
k2 dk

2π2
PΨ(k)∆T,L(k)jL(k∆τ)Tk(τlss).

(14)

The absolute value of this cross-correlation is also shown
in Fig. 1. The passage through zero at L ∼ 50 arises
because of the relative contributions of the monopole and
dipole contributions of the photon distribution function
to ∆T,L(k).

III. PROSPECTS FOR DETECTION

In this Section, we first review the procedure presented
in Refs. [20–22] for constructing the minimum-variance
estimator for the CB-rotation angle from a CMB tem-
perature/polarization map. We then extend this work to
show how the cross-correlation with the temperature can
be reconstructed. At the end, we evaluate the detectabil-
ity of the CB-rotation with both the auto-correlation and
the cross-correlation for the CB scenarios discussed in
Section II.

A. Measuring the rotation angle

Refs. [20, 21] show how the CB-rotation–angle
spherical-harmonic coefficients αLM can be reconstructed
from a full-sky CMB temperature/polarization map.
While these coefficients can be obtained from EE, TE,
TB, and EB cross-correlations, the best sensitivity will
ultimately come from the EB cross-correlation. We there-
fore restrict our attention to reconstruction of α(n̂) from
the EB power spectra.
To begin, the E/B spherical-harmonic coefficients,

Emap
lm and Bmap

lm , are constructed from the full-sky map of
the Stokes parameters, Q(n̂) and U(n̂), in the usual way
[30, 31]. Following Refs. [20, 21], the minimum-variance
estimator for the rotation-angle spherical-harmonic coef-
ficient is

α̂LM = Cαα,noise
L

∑

mm′,l′≥l

ξLM
lml′m′ [V L

ll′E
map
l′m′B

map
lm

+V L
l′lE

map
lm Bmap

l′m′ ], (15)

where

V L
ll′ ≡

FL,BE
ll′

(1 + δll′)C
BB, map
l CEE, map

l′

, (16)

FL,BE
ll′ ≡ 2CEE

l′

(
l L l′

2 0 −2

)
WlWl′ , FL,EB

ll′ ≡ FL,BE
l′l ,

(17)
and

ξLM
lml′m′ ≡ (−1)m

√
(2l + 1)(2l′ + 1)(2L+ 1)

4π

×

(
l L l′

−m M m′

)
. (18)

Here, the objects in parentheses are Wigner-3j symbols,
and Wl is the window function defined in Section II.
CEE,map

l and CBB,map
l are, respectively, power spectra

for the E and B modes from the map (including instru-
mental noise); i.e.,

CXX′, map
l ≡ CXX′

l |Wl|
2 + CXX′, noise

l , (19)

where XX ′ ∈ {TT,EE,BB,ET,EB, TB}. The noise
power spectra are

CTT , noise
l ≡

4πf0
sky(NET)

2

tobs
,

CEE, noise
l = CBB, noise

l ≡ 2CTT , noise
l ,

CEB, noise
l = CTB, noise

l ≡ 0,

(20)

where tobs is the total observation time, f0
sky is the frac-

tion of the sky surveyed (taken to be different from 1 only
for SPIDER, where f0

sky = 0.5), and NET is the noise-
equivalent temperature. We assume no cross-correlation
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between the noises in polarization and temperature and
apply the null assumption (no B modes in the signal), so
there are no TB and EB correlations. The power spec-

trum CBB, map
l thus contains only the contribution from

instrumental noise.
We note here that weak gravitational lensing induces

a contribution to the B mode. However, the power spec-
trum for this B-mode contribution is smaller than that
of the noise, even for CMBPol [23], and so our sensitivity
estimates should be unaffected by neglecting it. While
weak gravitational lensing also induces off-diagonal EB
correlations, the EB correlations from weak lensing can
be distinguished geometrically from those due to CB; see
Appendix B in Ref. [21]. Moreover, weak lensing affects
the temperature map, while CB does not; this provides
an additional avenue to distinguish their relative contri-
butions.
Under the null hypothesis of no rotation, the expec-

tation value of the estimator in Eq. (15) is zero, and
its variance is the αα noise power spectrum as given in
Ref. [21],

Cαα,noise
L ≡

〈
|α̂LM |2

〉

=

[
∑

ll′

(2l + 1)(2l′ + 1)(FL,BE
ll′ )2

4πCBB, map
l CEE, map

l′

]−1

.(21)

If the polarization pattern at the LSS is a realization of
a statistically isotropic field, then there are 2L+1 statis-
tically independent M modes for each L in α̂LM . In this
case, each M mode provides an independent estimator
of the rotation power spectrum, Cαα

L . The minimum-
variance estimator is then

Ĉαα
L =

1

2L+ 1

L∑

M=−L

|α̂LM |2. (22)

Each α̂LM is a sum of products of Gaussian random vari-
ables and is thus not a Gaussian random variable. How-
ever, if the number of terms in the sum is large, the
central-limit theorem holds, and α̂LM can be approxi-
mated as Gaussian. In this case, the expression for the

variance of Ĉαα
L takes on the usual form,

(
∆Ĉαα

L

)2
≃

2

fsky(2L+ 1)

(
Cαα,noise

L

)2
, (23)

where fsky is the sky-cut used in the analysis, taken to
be 0.8 for Planck and CMBPol and 0.5 for SPIDER.

B. Measurement of the rotation-temperature

cross-correlation

In analogy with the derivation in Ref. [30] of the esti-
mator for CTE

l , the estimator for CαT
L is

ĈαT
L =

1

2L+ 1

L∑

M=−L

α̂LM (Tmap
LM )∗W−1

L , (24)

where Tmap
LM is the temperature spherical-harmonic coef-

ficient obtained from the map. Under the null hypoth-

esis, T̂LM has no correlation with any BLM s, and it is
correlated with ELM with the same L and M , but un-
correlated with any other ELM . The estimator α̂LM de-
pends on a large number of Elm’s but does not include
{lm} = {LM}. There is therefore no correlation (un-

der the null hypothesis) of α̂LM and T̂LM ; i.e., there is
no noise contribution to CαT

L . Again, if α̂LM is approxi-
mately Gaussian, then the variance with which CαT

L can
be measured is approximately that obtained assuming
α̂LM is Gaussian. To check the validity of this assump-
tion for the purpose of calculating the sensitivity of future
CMB experiments to the CB signal (see Section III C),
we evaluate the full expression for this variance (without
assuming Gaussianity of α̂LM , see Eq. (B1)) and confirm
that the numerical results agree up to a level of a few
percent. Thus, for simplicity, and without any loss in ac-
curacy, we can invoke analogy with the variance of CTE

l
(see, e.g., Ref. [30]) to get

(
∆ĈαT

L

)2
≃

1

fsky(2L+ 1)
Cαα,noise

L CTT,map
L W−2

L . (25)

C. Sensitivity to Detection: αT vs. αα

We now return to our two models for CB which pre-
dict that the rotation α is a realization of a random field
with the power spectra Cαα

L and CαT
L presented in Fig. 1.

Our aim here is to evaluate the smallest signal amplitude
detectable by measurement of the rotation alone, as well
as the smallest amplitude detectable by measurement of
the rotation-temperature cross-correlation.

We write the power spectra as Cαα
L ≡ α2

4C
αα,fiducial
L ,

and CαT
L ≡ α4C

αT ,fiducial
L , where the fiducial model (α4 =

1) is the quintessence model in Fig. 1 with the largest
amplitude allowed by current rotation-angle constraints.
The inverse-variance with which the amplitude α2

4 of the
αα power spectrum can be obtained from the rotation-
angle auto-correlation is [32]

1

[∆(α2
4)]

2
=
∑

L

(
∂Cαα

L

∂(α2
4)

)2
1

(
∆Ĉαα

L

)2

=
∑

L

(
Cαα,fiducial

L

∆Ĉαα
L

)2

. (26)

Similarly, the inverse-variance with which the amplitude
α4 of the αT power spectrum can be obtained from the
cross-correlation of the rotation with the temperature is

1

(∆α4)
2

=
∑

L

(
∂CαT

L

∂α4

)2
1

(
∆ĈαT

L

)2

=
∑

L

(
CαT ,fiducial

∆ĈαT
L

)2

. (27)
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From these relations, we can estimate the signal-to-noise
ratio for measurement of α2

4 from the αα autocorrela-
tion to be (S/N)αα = α2

4/
[
∆(α2

4)
]
and a signal-to-noise

for measurement of α4 from the αT cross-correlation to
be (S/N)αT = α4/(∆α4). We evaluate these expres-
sions for our fiducial model (α4 = 1), for different in-
strumental parameters in Section III D. The smallest α4

detectable at the 2σ level from the cross-correlation and
auto-correlation are then 2∆α4 and

[
2∆(α2

4)
]1/2

, respec-
tively.

Instrument θ NET tobs (S/N)αα (S/N)αT

SPIDER 60 3.1 0.016 9 7

Planck 7.1 62 1.2 11 9

CMBPol/EPIC 5 2.8 4 2× 105 1200

Table I: Instrumental parameters from Refs. [24–26] for
the three experiments considered in this work: beamwidth
θ (in arcminutes), noise-equivalent temperature (NET) (in

µK sec1/2), and observation time tobs (in years). The last
two columns list signal-to-noise ratios (S/N) for the CB-angle
auto-correlation and its cross-correlation with the CMB tem-
perature, for our fiducial quintessence model (α4 = 1) shown
in Fig. 1. Note that the signal-to-noise scales with the signal
amplitude α4 as (S/N)αα ∝ α2

4 and (S/N)αT ∝ α4.

D. Numerical Results

We now present numerical results for the αα and αT
noise power spectra and evaluate the largest possible
signal-to-noise and the smallest detectable amplitude α4

for three CMB polarization experiments: (i) SPIDER’s
150 GHz channel [24], (ii) Planck’s 143 GHz channel [25],
and (iii) CMBPol’s (EPIC-2m) 150 GHz channel [26]. We
obtain the CMB temperature-polarization power spectra
from CMBFAST [28] using WMAP-7 cosmological pa-
rameters [15]. The instrumental parameters we use are
listed in Table I. Fig. 1 shows the noise power spectra3

Cαα,noise
L and CαT,noise

L . For CαT
L , strictly speaking, there

is no instrumental-noise contribution, only the effective
noise, arising from cosmic variance. Table I lists signal-
to-noise ratios, assuming α4 = 1, for the auto- and cross-
correlations, for these three experiments. We find that
SPIDER and Planck may already have the sensitivity to
detect not only the signal, but also its cross-correlation
with with the temperature, in the best-case scenario of
α4 ≃ 1, where the signal is just below the current detec-

3 Note that there is a difference in normalization between the noise
and the variance: CXX′,noise

L ≡
√

(2L+ 1)/2∆ĈXX′

L , where
XX′ = {αα, αT}. It is customary to plot the noise power spec-
tra, even though the variance enters the expressions for signal-
to-noise.

tion limit4. In both cases, the sensitivity to the signal
may be improved if the auto- and cross-correlations are
measured in tandem. CMBPol should have sensitivity
to a signal as small as α4 ∼ 10−5, and a detection of
the cross-correlation of very high signal-to-noise may be
obtained with CMBPol if α4 ≃ 1.

IV. SUMMARY AND DISCUSSION

If a quintessence field gives rise to cosmological bire-
fringence, then a correlation between CB–rotation-angle
fluctuations and CMB-temperature fluctuations is in-
evitable. We calculated that cross-correlation assuming
the initial quintessence perturbations are adiabatic. We
also discussed, by way of contrast, a scenario in which
the CB-inducing field is just a massless scalar field that
has no correlation with primordial perturbations.
We derived the minimum-variance estimator for the

αT power spectrum that can be obtained from a CMB
temperature-polarization map. We find that measure-
ment of this cross-correlation may improve sensitivity to
the CB signal in some cases where the signal would oth-
erwise be only marginally detectable. We further show
that a high signal-to-noise measurement of this cross-
correlation is conceivable with forthcoming and future
CMB experiments if the rotation-angle power-spectrum
amplitude is near its current upper limit. Measurement
of this cross-correlation may thus provide another empir-
ical handle with which to discover new physics indicated
by cosmological birefringence.
We have restricted our attention to the EB estimator

for the rotation angle, as it is expected to provide the
best sensitivity. However, there may be some improve-
ment, though probably small, with the inclusion of the
TE, TB, and EE estimators for the rotation. We leave
this calculation for future work. Likewise, we have left
more careful investigation of the impacts of partial-sky
analysis, foregrounds, uneven noise, and the effect of CB
on cosmological parameter extraction[33] for future work.
We have refrained from discussing details of the

quintessence model here, as the angular dependence of
the CB power spectra at superhorizon scales at the time
of recombination, L . 100, is insensitive to these de-
tails. The dependence of the amplitudes of the αα and
αT power spectra is given in terms of the quintessence
parameters Ωφ and w at the LSS by Eqs. (12) and (14).
However, if the quintessence field couples to the pseu-
doscalar of electromagnetism, it is natural to expect it to
be a pseudo-Nambu-Goldstone field, and if so, then its
potential should be V (φ) ∝ [1 − cos(φ/f)]. In this case,

4 Here we have assumed that the errors to the rotation-angle esti-
mators are approximately Gaussian. However, if the signal is just
detectable (for example, for experiments like SPIDER if α4 ≃ 1),
then this assumption may break down, and if so, the precise
quantitative forecasts for the signal-to-noise may differ slightly.
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the quintessence field φ is frozen at early times leading
to spatial variations in α that are unobservably small.
In this case, though, additional fluctuations in α may be
produced during the epoch of reionization [34].
For the massless scalar field, the uniform CB-rotation

angle is expected to be zero, and so a search for the fluctu-
ations is essential to detect the signal. For quintessence,
however, the uniform rotation is expected to be nonzero
and generically quite a bit larger than the fluctuations,
which, given the current best constraint may imply a rel-
atively small amplitude of the fluctuations power spec-
trum. However, CMBPol may be sensitive to a fluctua-
tion amplitude as small as ∼ 10−5 of the current upper
limit to the uniform rotation, which, if detected, would
help distinguish between different CB scenarios. More-
over, the fluctuation amplitude in the quintessence sce-
nario could be larger than a measured uniform-rotation
angle. This could occur if, for example, the uniform-
rotation angle (which can only be recovered mod π) hap-
pens to be close to an integer multiple of π. It will
be interesting, with forthcoming precise CMB maps, to
address these questions empirically rather than through
theoretical speculation.
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Appendix A: Quintessence Perturbations

As discussed in the paper, the CB-angle fluctuation is
determined by the synchronous-gauge scalar-field fluctu-
ation (δφ)syn at the LSS. To obtain this fluctuation, we
start from adiabatic initial conditions, and then evolve
the scalar-field–perturbation equation of motion forward
in time, from the early radiation-dominated epoch to the
LSS. The equation of motion is

δφ̈+ 2Hδφ̇+ a2V ′′δφ−∇2δφ = −
1

2
ḣφ̇, (A1)

in the synchronous gauge, and

δφ̈+2Hδφ̇+a2V ′′δφ−∇2δφ = φ̇(3Φ̇+Ψ̇)−2a2V ′Ψ, (A2)

in the conformal-Newtonian/longitudinal gauge. (See
Ref. [35] for definitions of the metric variables Φ, Ψ, η,
and h.) Adiabatic initial conditions require that the per-
turbations of the scalar field vanish at early times. How-
ever, the subsequent evolution of the scalar field is not

adiabatic, meaning that (δφ)syn,lss does not necessarily
vanish at the LSS, even though all the matter and radia-
tion perturbations do. All of our numerical integrations
that give the power spectra presented in the Figure are
done in the synchronous gauge, using a modified version
of CMBFast [28].
For the numerical work, we assume a quintessence po-

tential of the PNGB form V (φ) = m4(1 − cosφ/f), as
expected if φ is an axion-like field. We take an ini-
tial value φ, m, and f so that Ωφ = 0.7 today and
the density-weighted average equation-of-state parame-
ter 〈w〉 ≃ −0.95, which gives ∆φ = 0.045MPl for the
change in the scalar field between decoupling and today.
However, the numerical results presented in the Figure
will be similar for any quintessence potential that has
wφ → −1 at early times.
The numerical results can be largely reproduced

with the analytic approximation for (δφ)syn,lss, given in
Eq. (10), which we now derive. We now work in the
conformal-Newtonian/longitudinal gauge and we make
the approximation that decoupling takes place well into
matter domination; we assume that most of the growth in
perturbations happens during this epoch. For wφ → −1,
the V ′′ term in Eq. (A2) is negligible. Additionally, in the
superhorizon limit, valid for multipoles L . 100, we can
neglect the spatial-gradient term. The simplified equa-
tion of motion is then,

δφ̈+ 2Hδφ̇ ≃ −2a2V ′Ψ. (A3)

Aside from the homogeneous solutions that are either
constant or decaying, it also has an inhomogeneous solu-
tion that grows as

(δφ)con ≃ −a2τ2V ′Ψ/27, (A4)

during matter domination. The potential derivative V ′

can be expressed, using the quintessence slow-roll approx-
imation, from

a2V ′ ≃ −3Hφ̇. (A5)

Also,

φ̇2 = a2ρφ(1 + wφ), (A6)

with ρφ = Ωφρc and ρc = 3H2M2
Pl/(8π). We then find

(δφ)con =
4

9

[
3

8π
Ωφ(1 + wφ)

]1/2
MPlΨ. (A7)

The result in Eq. (10) is then obtained by going back to
the synchronous gauge, using the gauge-transformation
equations [35]

(δφ)syn = (δφ)con − αφ̇ (A8)

(δφ̇)syn = (δφ̇)con − αφ̈, (A9)

after noting that α ≃ (2/3)Ψ/H, during matter domina-
tion.
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We derive the initial conditions in the conformal-
Newtonian/longitudinal gauge, for the sake of complete-
ness, which can then be used to evolve Eq. (A2). To ob-
tain the initial conditions in this gauge, we use Eq. (A9),
where α = (1/2)Ψ/H during radiation domination. At
early times, deep in the radiation era, we can set the frac-
tional energy-density perturbation in the radiation field
to δr = −2Ψ [35], and assume that the equation-of-state
parameter wφ → −1, and changes slowly with time. Fur-
thermore, the pressure and energy density of the scalar
are given as

pφ =
1

2a2
φ̇2 − V (φ),

ρφ =
1

2a2
φ̇2 + V (φ),

pφ + ρφ =
1

a2
φ̇2,

(A10)

and the perturbation in the energy density is

(δρφ)con =
1

a2
φ̇ ˙δφ+ V ′(φ)δφ −

1

a2
φ̇2Φ, (A11)

while the adiabatic initial conditions require that the en-
tropy density perturbation vanishes at early times, so
that

S ≡
δρφ

ρφ + pφ
−

δρr
ρr + pr

. (A12)

Combining these assumptions into the gauge-
transformation equations, along with the observation
that δφ vanishes in the synchronous gauge, we get the

initial conditions for the scalar-field perturbations in the
conformal-Newtonian/longitudinal gauge,

(δφ)con =
1

2

φ̇

H
Ψ, (A13)

(δφ̇)con = φ̇Φ−
3

2
φ̇Ψ−

1

2

a2V ′

H
Ψ. (A14)

These initial conditions can also be derived by requiring
that S and Ṡ vanish at early times.

Appendix B: Full expression for the variance of αT
cross-correlation

If we do not assume α̂LM is a Gaussian, then the
full expression for the variance of its cross-correlation
with the CMB temperature becomes a 6-point correla-
tion function. After applying Wick’s theorem and taking
into account the properties of the Wigner 3j symbols to
simplify the terms, the full expression becomes

(∆ĈαT
L )2 =

(Cαα,noise
L )2CBB, noise

L

4πW 2
L

[2(V L
LL)

2(CTE, map
L )2

+
∑

l

[2
(2l + 1)2

(2L+ 1)2
(V L

ll )
2CEE, map

l CTT , map
L

+(1 + δlL)(V
L
lL)

2(CTE, map
L )2]

+
∑

ll′

(1 + δll′)
(2l + 1)(2l′ + 1)

(2L+ 1)
(V L

ll′ )
2CTT , map

L CEE, map
l′ ].
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