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Abstract 

 The seasonal polar caps of Mars can be used to test the equivalence principle in 

general relativity. The north and south caps, which are composed of carbon dioxide, wax 

and wane with the seasons. If the ratio of the inertial (passive) to gravitational (active) 

masses of the caps differs from the same ratio for the rest of Mars, then the equivalence 

principle fails, Newton’s third law fails, and the caps will pull Mars one way and then the 

other with a force aligned with the planet’s spin axis. This leads to a secular change in 

Mars’s along-track position in its orbit about the Sun, and to a secular change in the 

orbit’s semimajor axis. The caps are a poor Eötvös test of the equivalence principle, 

being 4 orders-of-magnitude weaker than laboratory tests and 7 orders-of-magnitude 

weaker than that found by lunar laser ranging; the reason is the small mass of the caps 

compared to Mars as a whole. The principal virtue of using Mars is that the caps contain 

carbon, an element not normally considered in such experiments. The Earth with its 

seasonal snow cover can also be used for a similar test. 
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I. INTRODUCTION 

 

 Mars has an atmosphere composed primarily of carbon dioxide. Each Martian 

year a significant fraction of the CO2 atmosphere freezes out in the form of polar caps [1, 

2]. These caps, which wax and wane with the seasons, can be used to test the equivalence 

principle in general relativity. 

 The basic idea is the following. Assume for the moment Mars has only one polar 

cap. If the equivalence principle fails, then the gravitational mass of the cap attracts the 

rest of Mars with a gravitational force which differs in magnitude from Mars attracting 

the cap’s inertial mass. It follows that Newton’s third law fails and the planet will self-

accelerate. The absence of a measurable self-acceleration indicates the equivalence 

principle holds, at least within the limits of error. The spirit of this astronomical test is 

thus similar to that of Bartlett and Van Buren [3], who used the heterogeneity of the lunar 

crust and the Moon’s lack of observable self-acceleration to make a stringent test of the 

equivalence principle. 

 The terminology here follows that of Turyshev [4], who uses the terms 

“gravitational mass” and “inertial mass”. The terms “active mass” and “passive mass” are 

often used instead. 

 The qualitative details of the polar cap test are shown in the schematic diagram in 

Figure 1. Mars orbits around the Sun. For the purposes of illustration, Mars is shown to 

have an obliquity (axial tilt) of 90°. The Sun heats up Mars’s north pole when it is over 

that pole (bottom of the figure). The northern polar cap shrinks over time while the 

southern cap grows. This creates a net gain of CO2 in the southern hemisphere (right) and 

a net self-acceleration (if there is one) along the spin axis, as shown by the thick arrow. 

The arrow opposes the motion, as shown in the figure, if the effect is such that the 

southern cap pulls on Mars more than Mars pulls on the cap. When the Sun shines on 

Mars’s south polar cap (top), that cap shrinks and the northern cap grows, and once again 

the self-acceleration opposes the motion (left) for the sign of the effect adopted in the 

figure. The end result is a net negative along-track acceleration when averaged over one 

revolution of Mars about the Sun; the semimajor axis of the orbit shrinks with time. 
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The thick arrows are shown in Figure 1 as opposing the motion. However, 

because the sign of the self-acceleration is not known a priori without a theory, the 

arrows could just as easily point the other way. In this case, the orbit would expand 

secularly with time. The lag between the maximum insolation and the minimum size of 

the cap is taken to be 90° in Figure 1 for ease of illustration; the lag for the real Mars is 

less than 90° (see below), but not zero. 

 

II. EQUATIONS OF MOTION 

 

The body of Mars will be taken to be a sphere. Each seasonal polar cap will be 

assumed to be a spherical cap centered on the pole, and with a uniform mass density 

which increases and decreases with time. The surface density of the northern polar cap 

will be σN = mN/AN, where mN is the mass of seasonal north polar cap, and AN = 2π R2 (1 

− cos θN) is the cap’s area, where θN is the colatitude of the edge of the cap. Likewise, the 

southern seasonal cap has the corresponding quantities σS = mS/AS and θS. In the 

following θN and θS are each taken to be constant. Thus a cap’s edge does not advance or 

retreat, as observed. The surface densities σN and σS are constant in latitude or longitude, 

but vary with time. In other words, at any given time the CO2 cover in each cap has a 

constant thickness, but the thickness changes with time. These assumptions will introduce 

an error whose magnitude is estimated below. 

 The gravitational surface mass density σNg of the northern seasonal cap will exert 

a force  

 

df =
GMiσ NgdA

R2  

 

on the inertial mass Mi of Mars, where G is the universal constant of gravitation, R is 

Mars’s radius, and dA = R2 sin θ dθ dλ is an element of area, with θ being colatitude and 

λ being longitude. The force df is directed radially outward from the center of Mars. The 

total component of force along Mars’s spin axis is then 
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fN p = GMiσ Ng sin θ cos θ
0

2π∫0

θN∫ dλdθ =
GMimNg

R2 K (θN )p  

 

where p is the unit vector in the positive spin axis direction, mNg is the gravitational mass 

of the northern cap, and 

 

K(θN ) = 1− cos 2θN

4(1− cos θN )
   .        (1) 

 

The body of Mars will pull on the northern cap with a force FN = GMg mNi K(θN)/R2 in the 

direction opposite to fN, where mNi is the inertial mass of the northern cap, and Mg is the 

gravitational mass of the rest of Mars. The acceleration of Mars will then be 

approximately  

 

aN p ≈ fN − FN

M p

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ p = ΓGmNi

R2 K(θN )p  

 

due to the northern cap alone, where 

 

Γ =
mNg

mNi

−
M g

Mi

  .         (2) 

 

Thus the test involves the CO2 caps and the crust-mantle-core of Mars, whose 

compositions are quite different. The equivalence principle fails if Γ ≠ 0. Note that the 

equivalence principle can still fail if (mNg/mNi) ≠ 1 and (Mg/Mi) ≠ 1, but (mNg/mNi) = 

(Mg/Mi); in such a case Γ = 0 and the failure will be invisible in this test. 

Analogously, the southern cap will give an acceleration aS 

 

aSp ≈ − fS − FS

M p

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ p = ΓGmSi

R2 K (θS )p   . 
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in the direction opposite to aN. The net acceleration of Mars along its spin axis will then 

be 

 

aNSp = (aN − aS )p = ΓG
R2 [mNiK(θN )− mSiK(θS )]p      (3) 

 

If the quantity in brackets is nonzero and Γ ≠ 0, then Mars will self-accelerate. 

 If all of the mass in a cap is concentrated at the pole, then K = 1. Observations 

indicate that each polar cap extends to a maximum of about 35° in latitude from their 

respective poles [5]. In this case K(θN) ≈ K(θS) = 0.91, so that (1) is fairly insensitive to 

cap size. In the following, it will be assumed that K(θN) = K(θS) = K, so that (3) becomes 

 

aNSp = (aN − aS )p = ΓGK
R2 (mNi − mSi )p       (4) 

 

and in the numerical calculation below K is taken to be 0.9. 

The northern and southern cap masses vary with time. The principal terms are  

 

mNp = cN1 sin (L − δN1) + cN2 sin (2L − δN2)      (5) 

 

mSp = cS1 sin (L − δS1) + cS2 sin (2L − δS2)      (6) 

 

where L = ω + f is the areocentric longitude of the Sun measured in a Mars-fixed frame, 

with ω being the L of perigee and f being the true anomaly of Mars’s orbit about the Sun. 

Because Mars’s orbit is fairly eccentric with an eccentricity e = 0.09, f does not increase 

uniformly with time. However, the mean anomaly M does increase almost uniformly with 

time. To average equations over time to get the secular effects on Mars’s orbit, it proves 

convenient to express L in terms of M. To first order in e [6] 

 

sin f ≅ sin M          (7) 
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cos f ≅ −e + cos M         (8) 

 

sin 2f ≅ −2e sin M + sin 2M        (9) 

 

cos 2f ≅ −2e cos M + cos 2M        (10) 

 

Using these in the expression for mNp in (5) yields 

 

mNi = −e cN1 (cos δN1 sin ω − sin δN1 cos ω) 

 + cN1 (cos δN1 cos ω + sin δN1 sin ω) sin M 

 + cN1 (cos δN1 sin ω − sin δN1 cos ω) cos M 

 − 2e cN2 (cos δN2 cos 2ω + sin δN2 sin 2ω) sin M 

 − 2e cN2 (cos δN2 sin 2ω − sin δN2 cos 2ω) cos M 

+ cN2 (cos δN2 cos 2ω + sin δN2 sin 2ω) sin 2M 

+ cN2 (cos δN2 sin 2ω  − sin δN2 cos 2ω) cos 2M     (11) 

 

with an analogous expression for mSi.  

The evolution of Mars’s orbital semimajor axis a with time t is given by 

 

da
dt

= 2
nr(1− e2 )1/2 [a(1− e2 )S + (er sin f )U ]      (12) 

 

where r = a(1 − e2)/(1+ e cos f) is the Mars-Sun distance, n = Mars’s mean motion about 

the Sun, U is Mars’s acceleration directed radially outward from the Sun, and S is the 

acceleration in the orbital plane and is perpendicular to U, so that S is nearly the along-

track acceleration for modest orbital eccentricities [7]. Using (7) – (10) in (12) yields 

 

da
dt

≈ 2
n

(S + eS cos M + eU sin M )       (13) 

 

to first order in e. 
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Let r = cos L x + sin L y be the unit vector in the direction of U, where unit vector 

x points to the right in the plane of the orbit as shown in Fig. 1, and y points to the top of 

the figure. The unit vector t = − sin L x + cos L y points in the direction of S. Unlike what 

is shown in Fig. 1, Mars’s spin axis p = + sin Θ y + cos Θ z lies out of the orbital plane, 

where Θ = 25° is the present obliquity of Mars and z is the unit vector normal to the 

orbital plane. Then S = (p •t) aNS and U = (p •t) aNS, where 

 

(p •t) = sin Θ cos L ≈ sin Θ (−e cos ω − sin ω sin M + cos ω cos M)  (14) 

 

(p •r) = sin Θ sin L ≈ sin Θ (−e sin ω + cos ω sin M + sin ω cos M)  .  (15) 

 

by (7) – (10). By (11) and (14), and the acceleration S becomes 

 

S ≈ (GΓKsin Θ/2R2){−cN1 sin δN1 + cS1 sin δS1 

 − 2e[cN2 sin (ω − δN2) − cS2 sin (ω − δS2)]}      (16) 

 

ignoring the periodic terms and retaining only the secular terms, and remembering that 

cN1, cN2, cS1, and cS2 have units of kilograms. It turns out that by (14) and (15)  eS cos M + 

eU sin M = 0 to order e in (13), so that 

 

da
dt

≈ 2S
n

  .          (17) 

 

III. RESULTS AND DISCUSSION 

 

 The following numerical values are used for Mars: R = 3.39 × 106 m, e = 0.09, n = 

1.06 × 10-7 s-1, Θ = 25°, and L= 251° [8], while G = 6.67 × 10-11 m3 kg-1 s-2. Also, K is 

taken to be 0.9, as mentioned above. Smith et al. have recovered the coefficients and 

phase angles in (5) – (6) from the Mars Global Surveyor spacecraft orbiting Mars [2]; 

which are given in Table 1. These authors find that the cycles vary little from Martian 

year to Martian year. Using all these numbers in (16) and (17) yields 
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S = 3.5 × 10-9 Γ m s-2         (18) 

 

and 

 

da/dt = 2.1 × 108 Γ m century-1  .       (19) 

 

One source of error in the above estimates is the value for K. This is because the 

carbon dioxide caps are assumed to have a fixed size, and only thicken or sublime. The 

thickness of the real caps vary both spatially and with time. However, K is fairly 

insensitive to size; even if θN = 50°, K(θN) goes down to only 0.82. Hence it seems likely 

that setting K(θN) = K(θS) = K = 0.9 produces an error in the treatment of the caps of no 

more than ∼10%. 

 Another source of error is the neglect of the Mars atmosphere. As the caps wax 

and wane the atmosphere thins and thickens. The atmosphere “feels” the topography, 

changing the CO2 mass distribution and essentially creating another surface mass layer in 

addition to the caps. The atmospheric effect is about 10% that of the caps [9] and will be 

ignored here. 

It remains to estimate Γ. Krasinsky and Brumberg find that the the solar system, 

as measured by the Astronomical Unit, may be expanding by 15 ± 4 m century-1, for 

which they find no satisfactory explanation [10]. Attributing all of the expansion to 

Mars’s polar caps in yields a value of ⏐Γ ⏐≤ 7.1 × 10-8 by (19). 

The Earth’s changing snow cover will also generate a polar cap-type effect, which 

can complicate solar system tests, since the Earth is often used as one leg of a test. The 

Earth’s seasonal snow cover has a maximum mass of about 1015 kg [11], which is about 

the same as the Martian CO2 caps. The radius of the Earth is almost twice as great as 

Mars’s in (4), and the Earth’s mean motion about the Sun is also almost twice as great as 

Mars’s in (17). If the value for Γ for the Earth’s H2O − (crust-mantle-core) system is 

comparable to the value of Γ for Mars’s CO2 − (crust-mantle-core) system, then da/dt for 

Earth is ∼15% that of Mars, and a closer look at the Earth’s polar cap effect appears to be 
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warranted. The Earth will not be as simple as Mars, because of the distribution of the 

snow on the irregularly-shaped continents, and the fact that sea level will go up and down 

as the snow cover changes. 

Other solar system tests of the equivalence principle are also not considered (e.g., 

[12]). Given these complications and the absence of a more detailed study, it seems 

reasonable to increase the limit on Γ by a factor of 10 to 

 

⏐Γ ⏐≤ 7.1 × 10-7         (20) 

 

This limit is 4 orders-of-magnitude greater than that given by laboratory experiments, and 

7 orders-of-magnitude greater than that given by the Moon (see, e.g., [4]), so that Mars is 

a poor Eötvös experiment by comparison. 

Mars does have the virtue of testing the equivalence principle with a novel 

combination of elements. The caps are almost entirely CO2, so that the caps contain 

carbon. The composition of Mars’s body is not entirely certain, but a recent model has 

the crust and mantle consisting of SiO2 (44.4% by weight), MgO (30.2%), FeO (17.9%), 

and Al2O3 (3.1%), plus 4.4% other elements; while the core consists of Fe (77.8%), S 

(14.2%), and Ni (8.0%) [13]. Carbon versus these other heavier elements is not usually 

used in tests of the equivalence principle. 
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TABLE I 

 

The coefficients and phase angles for the north and south cap masses from [2]. 

 

 

cN1 = (−1.534 ± 0.028) × 1015 kg 

cN2 = (−0.486 ± 0.029) × 1015 kg 

 

δN1 = 43.64° ± 1.07°   

δN2 = 47.88° ± 3.34° 

 

cS1 = (−3.058 ± 0.032) × 1015 kg 

cS2 = (−0.917 ± 0.033) × 1015 kg 

 

δS1 = 223.84° ± 0.61° 

δS2 = 52.85° ± 2.02° 
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Figure 1 

 

Schematic of the Mars equivalence principle test. Mars orbits the Sun. Mars’s spin axis is 

shown as lying in the orbital plane for the purposes of illustration. The polar caps (white) 

wax and wane with insolation. When one cap is larger than the other, there is a self-force 

(thick arrows) if the equivalence principle fails. The planet self-accelerates, leading to a 

secular change in the size of the orbit. For the case shown below the orbit shrinks. If the 

thick arrows pointed the other way, the orbit would expand. 

 
 


