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Abstract

We consider the possibility that dark matter can communicate with the Standard Model fields

via flavor interactions. We take the dark matter to belong to a “dark sector” which contains at

least two types, or “flavors”, of particles and then hypothesize that the Standard Model fields

and dark matter share a common interaction which depends on flavor. As, generically, interaction

eigenstates and mass eigenstates need not coincide, we consider both flavor-changing and flavor-

conserving interactions. These interactions are then constrained by meson decays, kaon mixing,

and current collider bounds, and we examine their relevance for direct detection and LHC.
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I. INTRODUCTION

Although the case for dark matter (DM) is now quite convincing (for reviews summariz-

ing the evidence for DM, see, for example, [1, 2]), very little is yet known about its identity.

The mass or masses of dark matter particles remains essentially unconstrained. Aside from

limits from direct detection experiments [3–7] and from observations of the bullet cluster

[8], we have essentially no data on DM interactions with itself or with the Standard Model

(SM). Meanwhile, the list of possible DM candidates is extensive and includes the light-

est supersymmetric particle, axions, sterile neutrinos, and Kaluza-Klein DM; an extensive

review of traditional DM candidates is given in [9].

Perhaps most importantly, we do not even know how many species of dark matter there

are, and, even if DM is comprised of just one species of particle, we do not know whether or

not that particle is just the lightest in some “dark sector”. In recent years, we have seen an

increasing number of models with more complex DM scenarios, such as two-component DM

[10], multicomponent DM [11], exciting DM [12], inelastic DM [13], and related models [14].

Given this state of affairs, it makes sense to consider models with multiple DM components

or novel DM-SM interactions.

At the same time, the SM leaves unanswered many questions regarding the quark and

lepton flavors. Although in the last few years the precision with which the elements of

the Cabibbo-Kobayashi-Maskawa (CKM) matrix are known has improved significantly [15],

there remains a need for better understanding of the triplication of the fermion generations

in the SM, or how the three fermion generations could be related through some physics

beyond the SM (BSM). (For reviews of quark flavor physics, see [16–18].)

Here, we consider the possibility that BSM physics which controls interactions between

DM and the SM fields and the new physics which explains the flavor structure of the SM

may be related. We assume that DM belongs to a dark sector which contains at least two

“flavors” of particles, f and f ′, both of which we take to be fermionic.1 We take mf < mf ′

and assume that DM is comprised of either f or some mixture of f and f ′. We will consider

1 For a model of DM which has implications for flavor physics, but where the DM itself does not carry

flavor, see [19]. For a model of asymmetric DM which utilizes a flavor symmetry in both the SM and dark

sectors, see [20]. DM which can interact with the SM through flavor-changing operators was also utilized

in [21].
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a wide range of DM masses, mf . TeV.

Given the lack of information on dark matter interactions, and the wide range of flavor

models available, we find it appropriate to consider SM-DM interactions from a phenomeno-

logical point of view, instead of trying to incorporate DM into a specific model of flavor. For

this work, we concentrate on flavor interactions which involve the SM quark fields; as an

illustration here, we will concentrate mainly on d and s quarks. We consider two example

interactions: 1) the case where both the SM quarks and the DM fields interact through

purely vector couplings, and 2) where both interact through purely right-handed interac-

tions. Generically, one would expect both flavor-conserving and flavor-changing interactions;

we include both possibilities here.

The layout of this paper is as follows. First, in Sec. II, we introduce the idea of flavored

DM and specify our notation and assumptions. In Sec. III, we review the current constraints

on flavor interactions involving DM and d and s quarks from low-energy measurements and

collider experiments and explore implications of the relic density on the interactions of

flavored DM with the SM. In Sec. IV, we consider limits from direct-detection experiments,

taking into account the possibility that the dark sector may contain more than one long-lived

component. Next, we present two toy models of flavor gauge interactions in Sec. V. The

relevance of TeV-scale flavor and DM interactions to LHC is explored in Sec. VI. Finally,

in Sec. VII, we conclude.

II. NOTATION

In this section, we will specify the interactions which we will consider among s and d

quarks and our dark sector particles f and f ′. For low-energy observables, we will primarily

be interested in effective operators of the form

Cg
mnab

Λ2
Og

mnab =
Cg

mnab

Λ2
(f̄mΓ

µfn)(q̄aΓµqb) (1)

which give interactions between the SM quarks and the dark sector. We will also occasionally

consider the four-quark operators

Cg
abcd

Λ2
Og

abcd =
Cg

abcd

Λ2
(q̄aΓ

µqb)(q̄cΓµqd). (2)

In these operators, the indices m and n indicate whether we are talking about f or f ′, while

a, b, c, and d on the quark fields q indicate whether the quark flavor is s or d. We will assume
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that these flavor interactions are mediated by heavy gauge bosons (which we will denote

generically as Z ′), and, thus, we will confine our discussion to the example cases of purely

vector (g = V ) interactions with Γµ = γµ and purely right-handed (g = R) interactions with

Γµ = γµ(1 + γ5)/2.

Each of these operators is multiplied by a coefficient Cg
mnab/Λ

2 (or Cg
abcd/Λ

2) where Λ

is taken to be some high new physics scale. As we assume that the SM and DM share

a common flavor interaction, we expect these operators to have similar scales. However,

the operator coefficients may also contain small mixing angles; in the SM weak interaction,

these small mixing angles cause the effective scales between different four-quark operators

to differ by more than 2 orders of magnitude. Here, we will keep all of our results in terms

of Cg
mnab/Λ

2 and Cg
abcd/Λ

2.

For some parts of this analysis, we will have to also consider possible interactions involving

other quark fields. In the case of vector interactions, we must include both right-handed

quarks (which are singlets under the SM SU(2) weak interaction), as well as the left-handed

SU(2) doublets; this necessarily requires that we also consider up-type quarks, weighted by

the appropriate angles of the CKM matrix. Additionally, the interactions we have specified

above, if taken in isolation or without careful arrangement of quantum numbers, lead to

anomalies in triangle diagrams involving the Z ′s and the SM gauge bosons; however, as

the choice of quantum numbers for the SM and dark sector fields needed to cancel these

anomalies is not unique, we will not consider these additional interactions throughout most

of this paper.

Finally, among the operators included in Eq. (2), there exist some (Og
sdsd and their

Hermitian conjugates) which change strangeness by two units, and, thus, can contribute

to K0 − K̄0 mixing. Constraints on the effective new physics scale for these operators are

O(103 TeV) [18]. As we are interested in effects which may be observed at LHC or DM direct

detection experiments, our analysis will only be applicable to flavor models which do not

have tree-level contributions to K0− K̄0 mixing. In Sec. V, we will present two toy models,

one with right-handed couplings and one with vector couplings, which are anomaly-free and

which do not contribute to K0 − K̄0 mixing at tree level.
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III. CONSTRAINTS ON FLAVORED DARK MATTER

In this section, we will review some of the relevant measurements which constrain BSM

flavor interactions involving d and s quarks with each other and with the dark sector particles

f and f ′. We begin with constraints obtainable from low-energy observables. We first

consider the case where the f (and possibly also the f ′) is very light, mf . 180 MeV. In

this case, we would expect to have the decay K+ → π+f f̄ (and possibly decays to final

states containing f ′ or f̄ ′ as well). Thus, considering the branching fraction of K+ to a π

plus neutrinos [15]

Br(K+ → π+νν̄) = 1.7± 1.1× 10−10 (3)

and taking the 2σ bound on this measurement as a limit on the branching fraction to f f̄ ,

and taking the ratio of this branching fraction to that of the SM process K+ → e+νπ0, we

obtain, for purely right-handed interactions,

|CR
mnsd|
Λ2

<
1

(47 TeV)2
(4)

for mf (and possibly also mf ′) << 180 MeV. We can also consider the case where f is

very light, but mf ′ is somewhat heavier, by comparing to the SM process K+ → µ+νπ0,

obtaining
|CR

ff ′sd|
Λ2

.
1

(42 TeV)2
(5)

for mf ′ ≈ mµ. (Here, we assume that the limit on K+ → π+f f̄ is not substantially degraded

when one of the final-state dark sector particles acquires a mass of O(100 MeV).)

We see from these bounds that the case of very light f is very strongly constrained.

(Although in both cases here we assumed that f was very light, mf << 180 MeV, we can

infer from the strength of these constraints that we would still obtain significant bounds

on the new physics scale for all cases in which K+ decay was not strongly phase-space

suppressed.) The limits derived here are only applicable to the operators OR
mnsd as shown

above (and, unless m = n = f , only to the case where both f and f ′ are light). As

interaction and mass eigenstates need not coincide, we may be tempted to interpret these

results as a tentative order-of-magnitude estimate of expected bounds on the new physics

scale for the operators OR
mndd and OR

mnss as well; however, small mixing angles (. 0.1) can

easily invalidate this interpretation.
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Our results are similar for the case of vector interactions,

|CV
mnsd|
Λ2

.
1

O(80 TeV)2
(6)

for the case where both final-state dark sector particles are light, and

|CV
mnsd|
Λ2

.
1

O(70 TeV)2
(7)

for the case where one is light and the other has a mass of O(100 MeV). In this case,

however, because vector interactions with quarks necessarily involve the left-handed quark

doublets, and because the interaction eigenstates in the left-handed doublets differ from the

mass eigenstates by a rotation via the Cabibbo angle θC , the operators OV
mnab necessarily

involve some significant quark mixing. Since we have no good reason to believe that the

interaction eigenstates would be aligned with the down-type quarks, it therefore may be

more compelling in this case to interpret the bounds on
|CV

mnsd
|

Λ2 as a tentative bound on the

a = b = d, s cases as well.

We note that one can also obtain limits on the right-handed operators for the case a =

b = d from limits on supernova cooling, assuming that mf . few× 10 MeV. We can apply

the limit on the branching fraction Br(π0 → νν̄) < 3.2 × 10−13 [15, 22] to the case of a

light f . For mf ≈ few × 10 MeV, we obtain limits on the new physics scale of order ∼ 1

TeV. However, as the decay π0 → f f̄ is helicity-suppressed, this limit quickly degrades with

decreasing mf . Similar statements apply in the case that one or both final-state particles is

an f ′.

We now move on the the case of heavier f . We will first consider constraints which can

be obtained from K0− K̄0 mixing. As we limit ourselves to models which have no tree-level

contribution to K0− K̄0 mixing, we will only concern ourselves with contributions from the

diagram shown in Fig. 1, which gives effective contributions to the operators Og
dsds that

change strangeness by two units2. (In the case of vector interactions, there are also loop

diagrams containing up-type quarks which can contribute toK0−K̄0 mixing. We will briefly

discuss these contributions when we consider toy models in Sec. V.) For simplicity, we will

only consider the case where mf , mf ′ >> mK/2.

First, we will consider operators which change flavor on both the SM and dark sector

2 We note that the Z ′d̄s vertices in Fig. 1 will lead to K0−K̄0 mixing at tree level unless the Z ′ is complex.

6



s s

d d
f, f ′

f, f ′

Z ′ Z ′

FIG. 1: K0 − K̄0 mixing contribution from internal dark fermion loop.

fields. For a right-handed interaction, we have

CR
f ′fds

Λ2
OR

f ′fds =
CR

f ′fds

Λ2
(f̄ ′

Rγ
µfR)(d̄RγµsR) (8)

while for a vector interaction, we have

CV
f ′fds

Λ2
OV

f ′fds =
CV

f ′fds

Λ2
(f̄ ′γµf)(d̄γµs). (9)

First, we note that these interactions, taken in isolation, do not contribute to the diagram

in Fig. 1; the f created in one of the vertices in the loop would have to transform into an f ′

before it is destroyed at the other vertex. However, we note that, in general, we would not

expect the interaction eigenstates in the dark sector to necessarily coincide with the mass

eigenstates f and f ′. We can introduce interaction eigenstates f1 and f2, related to f and

f ′ by




f

f ′



 =





α β

−β∗ α∗









f1

f2



 (10)

where |α|2 + |β|2 = 1 and, in the case of the right-handed interaction, the fields in Eq. (10)

are taken to be the right-handed components only. (Here, we assume that f1,2 do not mix

with any other states.) Using the relation (see, for example, [23] for a recent review of meson

mixing)

∆mK
=

|〈K0|L|∆S|=2|K̄0〉|
mK

(11)

where L|∆S|=2 is the part of the effective Lagrangian, generated by the diagram in Fig. 1,

which changes strangeness by two units, we can now place limits on combinations of the

coefficients Cg
f2f1ds

/Λ2, the parameters α and β which control the mixing, and the mass

splitting, δ = mf ′ −mf . In the case of right-handed interactions, the diagram in Fig. 1 is
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finite; we obtain, for the mass difference between KL and KS,

∆mK
=

∣

∣

∣

∣

∣

∣

Af 2
KmKα

∗2β2

(

CR
f2f1ds

Λ2

)2
1

(4π)2
δ2

∣

∣

∣

∣

∣

∣

(12)

where fK ≈ 160 MeV is the kaon decay constant and A is a constant which depends on the

relative size of mf and mf ′ ; for mf ≈ mf ′ , A ≈ 8/9, while, for mf << mf ′ , A ≈ 2/3. We can

then compare this to the experimental value ∆mK
= 3.48× 10−15 GeV [15]; for Λ = 1 TeV,

we obtain upper bounds on |CR
f2f1ds

α∗βδ| of approximately 7− 8 GeV.

We get a similar order-of-magnitude expression for the case of vector interactions,

∆mK
≈

∣

∣

∣

∣

∣

∣

8

3
f 2
K

m3
K

(ms +md)2
α∗2β2

(

CV
f2f1ds

Λ2

)2
1

(4π)2
δ2 ln

(

Λ2

m2
f ′

)

∣

∣

∣

∣

∣

∣

(13)

where the logarithmic behavior comes from the running of CV
dsds between the new physics

scale and mf ′ induced by the diagram in Fig. 1. For Λ = 1 TeV, this gives an upper bound

on |CV
f2f1ds

α∗βδ| of ≈ 1 GeV. Here, we have taken the logarithmic factor in the vector case

to be of order unity, but we note that the upper bound on |CV
f2f1ds

α∗βδ| can be strengthened

considerably if f and f ′ are very light. Thus, we see that fairly small mass splittings are

phenomenologically interesting in these scenarios.

We also briefly consider the operators which do not change dark sector flavor. For both the

right-handed and vector interactions, the diagram in Fig. 1 will be quadratically divergent.

If we regulate this divergence using dimensional regularization, we find that the contribution

to ∆mK
from the operator for the right-handed case,

CR
ffds

Λ2
OR

ffds =
CR

ffds

Λ2
(f̄Rγ

µfR)(d̄RγµsR) (14)

will contain factors of mf instead of δ and, thus, this operator will be more strongly con-

strained than the operators which change dark sector flavor as long as mf is substantially

larger than δ. The analogous vector operator, on the other hand, will contain factors of mK

instead of δ or mf ; the scale for this operator will be constrained to be at least O(TeV).

We also mention that the limits derived from ∆mK
above depend only on the magnitude of

Cg
f2f1ds

α∗β, not its phase. However, the CP-violation parameter ǫK is sensitive to a complex

phase in the kaon mixing matrix, which depends on Cg
f2f1ds

α∗β. Depending on the choice

of these phases, the upper bound on |Cg
f2f1ds

α∗βδ| could be strengthened by more than an

order of magnitude for a given value of Λ.
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We briefly mention relevant collider bounds. CDF [24] has directly looked for heavy

neutral gauge bosons, Z ′, decaying to jets. They have excluded the mass range of 320− 740

GeV, assuming SM couplings. (For limits on lighter Z ′ gauge bosons, see results from UA2

[25, 26].) However, these limits can be easily evaded by making the couplings between the

quarks and the Z ′ slightly smaller than those in the SM. Additionally, indirect limits on

specific flavor models from fits to collider data were given in [27].

Finally, we consider constraints obtained from the observed DM density of Ωdark = 0.228±
0.013 [28]. If DM consists of only one species, obtaining the correct relic density requires

a velocity-averaged annihilation cross-section at freezeout < σvr > of ≈ 3 × 10−26cm3/s,

where vr is the relative speed of DM particles, with a mild dependence on mf . As long as

mf & O(GeV), each of our purely right-handed operators will contribute a term

< σvr >
R
mnab≈

|CR
mnab|2
Λ4

3m2
f

8π
(15)

to the annihilation cross-section fmf̄n → qaq̄b. (Here, we have neglected velocity-dependent

terms.) This gives a value for the sum of the squares of the operator coefficients,

∑ |CR
mnab|2
Λ4

≈ 1

(2.6 TeV)4

(

TeV

mf

)2

. (16)

We see that the new physics scale decreases with decreasing mf . We note, however, that,

if we allow f to comprise only a fraction of DM (and thus have a smaller relic density), we

can allow larger values for < σvr >, and thus lower values for the new physics scale. Thus,

if we have only one operator with a nonzero coefficient, say, OR
ffdd, then 2.5 TeV should be

regarded as an approximate upper bound on the new physics scale. (Note that all of our

other constraints place lower bounds on the scale of new physics.) Of course, this upper

bound on the scale of new physics can be raised by having additional terms with nonzero

coefficients in the sum shown in Eq. (16), so this should not be taken as a rigorous upper

bound on the NP scale.

We get a similar term

< σvr >
V
mnab=

|CV
mnab|2
Λ4

6m2
f

π
(17)

for the operators with purely vector interactions. Here, we have included a factor of 2 in

the cross-section, as gauge invariance demands that we include both the upper and lower

components of the left-handed quark doublets. This gives

∑ |CV
mnab|2
Λ4

≈ 1

(5.2 TeV)4

(

TeV

mf

)2

. (18)
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We note that our relic density calculations assume the simplest scenario for DM self-

annihilation f f̄ → qq̄. If f and f ′ have masses which differ by only a few percent or less, the

more complicated coannihilation calculation [29] is relevant; coannihilations can significantly

reduce the relic density of f , and thus loosen the limits in (16) and (18), if the annihilation

cross-section for f ′f̄ ′ is substantially larger than that for f f̄ . Additionally, this calculation

also neglects the possibility of other annihilation channels for f f̄ , which can substantially

raise the new physics scale.

IV. SIGNATURES IN DARK MATTER DIRECT DETECTION EXPERIMENTS

We now discuss the prospects for direct detection of flavored DM. We will distinguish

between two experimentally distinct cases, depending on the mass splitting δ. In the first

case, δ & few × 100 keV − 1 MeV. (The range of masses given here reflects the difference

between the right-handed and vector operators.) In this case, f is the only long-lived particle

in the dark sector, and it interacts elastically with nucleons, fN → fN . In the second case,

as we will show below, it is possible that the heavier state f ′ can also be long-lived and

form a sizable component of DM, thus allowing exothermic down-scattering of the form

f ′N → fN . (Additionally, for δ . few × 100 keV, up-scattering of the form fN → f ′N

becomes possible, thus making flavored DM a possible example of inelastic Dark Matter

[13], introduced to possibly explain the apparent conflict between DAMA [30] and other

experiments. Although this scenario is significantly constrained [4, 31, 32], it remains a

viable possibility for explaining the DAMA results if δ ∼ O(200 keV) [33].3)

First, we will discuss the case where δ is sufficiently large that f ′ is not long-lived, and

DM can interact in direct detection experiments only through the elastic reaction fN →
fN . In this case, we can directly apply the constraints from existing DM experiments;

here, we will only consider spin-independent contributions to the cross-section, as they

are significantly more strongly constrained than spin-dependent contributions. As direct

detection experiments search for interactions between DM and nucleons, we are interested

3 We note, however, that arranging for up-scattering to occur while suppressing the elastic interaction

fN → fN presumably requires significant fine-tuning of mixing angles; [33] utilize inelastic scattering

cross-sections which are 10 orders of magnitude larger than the elastic scattering cross-sections ruled out

by [5] to address the DAMA results. This does not preclude, however, the existence of inelastic scattering

with much smaller cross-sections, which could require less fine-tuning of mixing angles.
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in operators which contain d quarks (and u quarks, in the case of vector interactions). For the

purely right-handed interactions, the measured spin-independent DM-nucleon cross-section

takes the form

σSI =
|CR

ffdd|2
Λ4

1

16π
M2

red

(Z + 2(A− Z))2

A2
, (19)

where Mred is the reduced mass of the DM-nucleon system and A and Z are the atomic mass

number and atomic number of the target nucleus, respectively. The dependence on A and

Z takes into account the fact that limits from DM direct-detection experiments assume that

the cross-sections for DM scattering on protons and neutrons are equal; f interacts only

with d quarks, and not u quarks; thus, the cross-section for a neutron is four times that of

a proton. For the purely vector interactions we have

σSI =
|CV

ffdd|2
Λ4

9

π
M2

red (20)

where the factor of 9 includes the contributions from both u and d quarks. (As f interacts

identically with u and d quarks, the cross-sections here are the same for protons and neutrons;

we ignore corrections due to the Cabibbo angle.)

We can compare these expressions to the cross-section limits from direct detection experi-

ments; here we will assume that all of DM is comprised of f . We consider three specific values

for mf . For the CoGeNT signal region, mf ≈ 10 GeV [3], we take σSI ≈ 5 × 10−41 cm2

(although this is in conflict with [5, 6]). For mf ≈ 1 TeV and the range of DM masses

where these limits are strongest, mf ≈ O(10’s of GeV), we use the results from XENON100

[5], who report a spin-independent cross-section upper bound for these mass ranges of

σSI . 8 × 10−44 cm2 and σSI . 7 × 10−45 cm2, respectively. Our results are shown in

Table I.

mf (|CR
ffdd|/Λ2)−1/2/TeV (|CV

ffdd|/Λ2)−1/2/TeV

∼ 10 GeV ∼ 0.7 ∼ 2

few×10 GeV & 7 & 19

∼ 1 TeV & 4 & 11

TABLE I: Results for the new physics scale from DM direct detection experiments. The first line

refers to NP scale corresponding to the CoGeNT signal region [3], while the last two are lower

bounds on the NP scale obtained from the results of XENON100 [5].
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It should be noted that these direct detection limits on the lower bound for the new physics

scale disagree with the upper bounds from the relic density calculation unless f interacts

with more than just d (and, in the case of the vector operators, one family of up-type) quarks.

Given the significant tension between the direct detection limits and the relic density bounds,

it may be necessary to solve this problem by, for example, introducing annihilation channels

of DM particles into leptons [34, 35], introducing additional interactions and/or particles to

the dark sector, or positing mechanisms which would give f a non-thermal cross-section. As

these issues are not specific to flavored DM, we will not try to address them here; we will

instead take the attitude that explaining the relic density will require the construction of a

specific model. (We also note that if we relax the assumption that f comprises all DM, the

direct detection constraints are also loosened.)

We now address the question of when the excited state f ′ can be suitably long-lived

to form a significant component of DM. Here, we make the conservative assumption that

the couplings of f̄ f ′ to dd̄ and ss̄ are not significantly smaller than those to ds̄ and sd̄.

(If couplings which change SM flavor dominate, f ′ decays will be suppressed by factors

greater than those shown below for the flavor-diagonal case; this may happen, for example,

in the toy models presented in Sec. V if the DM interaction eigenstates are closely aligned

with the mass eigenstates.) For the case of right-handed interactions, f ′ can decay at tree-

level as f ′ → fπ0 if δ > mπ; tree-level decay for the vector coupling case can occur via

f ′ → f + jets for somewhat higher δ. In both of these cases, f ′ will not be long-lived unless

the scale of new physics is extremely high; thus, we consider the cases of substantially smaller

δ and decays involving neutrinos and photons. For the case of right-handed interactions, we

consider f ′ → fνν̄ and decays containing one or two photons. We will find that f ′ decays

are substantially more weakly constrained in the case of vector couplings; in this case, we

will consider the decays f ′ → fγγγ and f ′ → fe+e− as well. We note that, while we are

interested in the case where f ′ lives long enough to comprise a significant fraction of DM

today, there also exist constraints on DM particles with lifetimes substantially less than the

age of the universe but greater than O(1 second); see [36] and references therein.

For the case of right-handed interactions, the strongest constraint we obtain is by con-

sidering the f ′ → fγ diagram shown in Fig. 2. This diagram is superficially logarithmically

divergent; however, if we consider this diagram from an effective-operator point of view,

gauge invariance requires that the decay occur via an effective transition magnetic moment
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operator, f̄σµνf ′Fµν . As this operator contains an explicit factor of the photon momentum,

the number of factors of loop momenta that we integrate over must be reduced by one; this

renders the diagram finite. We will assume that the integrals over the loop momenta can be

reasonably estimated by cutting them off at our new physics scale Λ; for simplicity, we take

the CR
mnab to be O(1).

Z ′

f ′ f

Z ′

γ

s, d

FIG. 2: Diagram contributing to f ′ → fγ in the case of right-handed couplings to the Z ′.

The diagram in Fig. 2 contains a sub-diagram which couples two Z ′ bosons to a photon

via a quark loop. We take this sub-diagram to be similar to the fermion loop contribution

to the SM effective ZZγ vertex [37], which depends very weakly on the fermion mass in the

scenario of large gauge boson momentum, as is relevant here. However, this sub-diagram is

anomalous (as will be discussed in more detail in Sec. V). Therefore, when we sum over all

possible fermions in the loop, terms which are independent of fermion mass will cancel, and

we must look at mass-dependent terms, which, roughly speaking, will contribute a factor of

m2
q/Λ

2 to the decay amplitude, where mq is the mass of the fermion in the loop. We thus

arrive at our estimate for the decay of f ′ to fγ:

Γ ∼ 1

(4π)8
α
(mq

Λ

)4 m2
fδ

3

Λ4
. (21)

We then utilize the results of [38], who use the Milky Way γ ray line search to constrain

dark matter decays containing monoenergetic photons. For the values of δ relevant here,

they exclude such decays if Γ & 10−49mf . Here, we take Λ = 1 TeV and mq = ms
4; this

4 We take the value of mS(1 TeV) = 47±14

13
MeV from [39]; we note that the error on this number can

probably be reduced using the recent results of [40], but we emphasize that here we are interested in an

order-of-magnitude result for δ.
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latter choice is valid if the flavor charges of the SM are arranged to cancel the anomalies; if,

instead, new (heavy) particles are added, substantially stronger constraints will be obtained.

For these values, we obtain

δ . (1200 keV)

(

GeV

mf

)1/3

(22)

as an order-of-magnitude upper bound on the values of δ which will allow f ′ to be long-

lived. Although this is an approximate limit, we would like to point out that considering f ′

decaying via a virtual pion will give values for δ of the same order of magnitude.

For vector interactions, the f ′ lifetime depends strongly on whether or not the decay

channel f ′ → fe+e− is kinematically allowed. For δ < 2me, only the decay channels f ′ →
fνν̄ and f ′ → f+photons are allowed. We considered many diagrams that could contribute

to these decays. The Z ′ does not mix into an on-shell photon, so f ′ → fγ does not occur at

one-loop order. A quark loop connected to three vector bosons vanishes identically, which

eliminates f ′ → fγγ at one-loop order as well as f ′ → fγ via the two-loop diagram shown

in Fig. 2. f ′ → fγγ via a virtual π0 does not occur for a purely vector interaction, and

f ′ → fγγ via a virtual ρ is forbidden by charge-conjugation invariance. The largest nonzero

contributions to f ′ decay via Z ′s are f ′ → fνν̄ via Z ′ − Z mixing and contributions to

f ′ → fγγγ via a quark loop or virtual ρ and/or π0 mesons; example diagrams contributing

to these processes are shown in Fig. 3. Both of these processes will be strongly suppressed;

f ′ → fνν̄ will be suppressed by factors of both the Z ′ and Z masses, while the rate for

f ′ → fγγγ is suppressed by many factors of the small photon momenta. As in the case

of right-handed couplings, if we do not add additional fermion fields, anomaly cancellation

requires that coefficients of the operators with first and second generation quarks have equal

magnitude and opposite sign, which renders the diagram in Fig. 3(a) finite. If we take δ = 1

MeV and insist that f ′ have a lifetime comparable to the age of the universe, this diagram

gives limits on the new physics scale weaker than O(GeV). (We note that it may be possible

to slightly improve these limits using observations of dark matter halos [41].) We also obtain

order-of magnitude constraints on the new physics scale using diagrams for f ′ → fγγγ such

as those in Fig. 3 (b) and using the limits on dark matter decays involving photons from

[38]; for δ = 1 MeV and mf ∼ 100 MeV, the limit on the new physics scale is no better than

O(10 GeV); this limit weakens with growing mf .

Although the limits from these diagrams are very weak, we note that it is possible to
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q

Z

νν̄

a)

Z ′

f ′ f

b)

π0

γ γ γ

Z ′

f ′ f

Z ′

f ′ f

γ

γ γ

q

FIG. 3: Diagrams contributing to f ′ decay in the case of vector couplings to the Z ′. a) f ′ → fνν̄

via Z ′ − Z mixing. b) Example diagrams contributing to f ′ → fγγγ.

have the f ′ decay in this scenario for δ < 2me and for interesting values of the new physics

scale if we make some assumptions about the scalar sector of the model. We will mention

this briefly in Sec. V when we discuss toy models.

Finally, we mention for the case of vector interactions that if δ > 2me, f
′ can decay much

faster via a diagram similar to that in Fig. 3 (a) but with the SM Z replaced by a photon

and with the neutrinos replaced by an e+e− pair.

Thus, we conclude that for δ . few × 100 keV (for right-handed interactions) or δ .

1 MeV (for vector interactions), f ′ can possibly be long-lived. This opens up the possibility

that f ′ could be discovered via its distinctive down-scattering signatures at direct-detection

experiments; for works where such signatures have been considered, see [42–46]. Although

these signatures would be useful only for very small δ, if observed, they would provide strong

evidence for multicomponent dark matter.

V. TOY MODELS

Here, we present two toy models which contain, respectively, the purely right-handed and

purely vector couplings described above. We show that they are anomaly-free and do not

contribute significantly to K0 − K̄0 mixing. In both cases, we assume that quarks from the

first and second generations transform as a doublet under a gauged SU(2)F flavor symmetry,

under which all other SM fields are singlets. In the first case, only the right-handed down-
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type quarks transform under the SU(2)F flavor symmetry, while in the second case all quarks

from the first and second generations transform under the symmetry. In both scenarios, the

f and f ′ also transform as a doublet under the same SU(2)F symmetry. We now describe

the particle content and couplings in each of these toy models.

A. Right-handed couplings

In this model, the right-handed down-type quarks form a doublet under SU(2)F :

DR =





dR1

dR2



 (23)

while all other SM fields are SU(2)F singlets. Here, we perform a rotation such that d1

and d2 are aligned with the right-handed components of the mass eigenstates dR and sR,

respectively; we neglect possible mixing with bR. Similarly, we have

FR =





fR1

fR2



 (24)

where we do not assume that fR1 and fR2 are necessarily closely aligned with the mass

eigenstates fR and f ′
R. The three gauge bosons of SU(2)F are labeled Z ′

i for i = 1, 2, 3;

we assume that these gauge bosons obtain their mass through a scalar SU(2)F doublet ϕ

acquiring a vacuum expectation value which, for some SU(2) rotation, can be written in the

form

ϕ →





0

v′√
2



 . (25)

We must consider the possibility of anomalies arising from triangle diagrams in this

model. For a given triangle diagram with external gauge bosons Aa
µ, A

b
ν , A

c
ρ, the anomaly is

proportional to

Tr[(−1)nT a{T b, T c}] (26)

where the T i are the generators corresponding to each of the gauge bosons, n = 0(1) for

left-handed (right-handed) fermions, and the trace is over all fermions that can run in the

loop. A triangle diagram with exactly one Z ′ boson does not give a triangle anomaly, as

the trace over a single SU(2)F Pauli sigma matrix in (26) gives zero. A diagram with three

external Z ′ bosons similarly vanishes.
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Thus, we need only consider those diagrams with two or zero SU(2)F gauge bosons. For

those diagrams with two SU(2)F gauge bosons, Z ′
i and Z ′

j, those which contain a graviton

or a SM SU(3) or SU(2) gauge boson are zero. However, there is a constraint from the

diagram with a hypercharge gauge boson; the anomaly for a diagram with an external Z ′
i,

Z ′
j and hypercharge gauge boson B is proportional to

Tr[(−1)nY {τ i, τ j}] (27)

where Y is hypercharge, and the τa are the SU(2)F Pauli sigma matrices. Setting this to

zero implies

δij
∑

SU(2)F

(−1)nY = 0 (28)

where the sum is over SU(2)F doublets. With just f , f ′, and the SM particle content,

this relation is not satisfied, as the only nonzero term in the sum is DR, with hypercharge

Y = −1/3. We can solve this problem by adding either another right-handed SU(2)F

doublet with Y = 1 or a left-handed SU(2)F doublet with Y = −1 which is a singlet under

the other SM interactions. (Here a factor of three arises since quarks carry color.) However,

we must also make sure we do not produce anomalies via diagrams which contain no Z ′

gauge bosons, as this would spoil the anomaly cancellation of the SM. We can achieve this

by adding in two additional SU(2)F right-handed singlets, with hypercharge Y = −1. We

assume that all non-SM fields other than f and f ′ are sufficiently heavy to have escaped

current experimental constraints.

We now consider the possible contributions to K0 − K̄0 in this toy model. At tree level,

the operator OR
sdsd = s̄γµds̄γµd is not generated, as it does not obey the SU(2) symmetry.

Additionally, loop diagrams which do not contain SM W± bosons or the DM particles f, f ′

will not generate OR
sdsd. Although one might expect this operator to possibly arise at one

loop due to SM W± exchange, no contributions arise beyond those of the SM; as OR
sdsd

contains only down-type quarks, any diagram which contains only one W± boson must be

such that the W± starts and ends on the same quark line. However, as the Z ′ does not

couple to up-type quarks, no one-loop diagram with only one W± can be constructed which

contributes to OR
sdsd. With two W± bosons, one recovers the usual SM K0 − K̄0 mixing

contribution. However, when we include the diagram shown in Fig. 1, we obtain the results

described in Sec. III. (Similar conclusions also apply to the SU(2)F doublet added in to

cancel anomalies, as discussed above.)
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B. Vector couplings

In this case, both the right-handed and left-handed quarks transform under the SU(2)F

symmetry. As the left-handed quarks come in SU(2) weak doublets, we must include both

the up-type and down-type quarks here. Thus, we define, along with DR,

UR =





uR1

uR2



 (29)

and

QL =





QL1

QL2



 (30)

where the QLi are the left-handed weak quark doublets. Although we again take the inter-

action eigenstates to be quasi-aligned with the mass eigenstates, there is necessarily some

mixing with the third generation, as the weak quark doublets are themselves not precisely

aligned with the mass eigenstates.

We now consider anomalies for the case of vector interactions. We again must consider

the triangle diagram with two SU(2)F gauge bosons Z ′
i and Z ′

j and one hypercharge gauge

boson. In this case, the constraint is

δij
∑

SU(2)F

(−1)nmY (31)

where notation is as before, except that m = 1 for UR and DR, but m = 2 for QL, as QL

contains both up- and down-type quarks. Y (UR) = 2/3, Y (DR) = −1/3, and Y (QL) = 1/6.

Thus, the sum in Eq. (31) is zero without the addition of any particles beyond the SM.

Therefore, we need not consider diagrams containing only SM gauge bosons, as the anomalies

cancel just as they do in the SM.

We now consider possible contributions to K0 − K̄0 mixing. Like in the right-handed

case, OV
sdsd is not generated at tree level. However, it can be generated at one-loop level

via the diagram shown in Fig. 1 or by a similar diagram with the dark sector particles

replaced by quarks, or by the diagram in Fig. 4. The diagrams containing quark loops are

suppressed by two factors of SM quark mixing angles and by quark masses (with the largest

contributions coming from c quarks) and their contributions to ∆mK
give limits on the new

physics scale of O(1 TeV).
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FIG. 4: K0 − K̄0 mixing contribution in the case of vector interactions.

We found in Section III that K0− K̄0 mixing implied a small mass difference δ or a small

mixing angle between the mass and interaction eigenstates. For vector interactions, the

SU(2)F symmetry allows a bare mass term mF̄F without a coupling to ϕ. Mass splitting

and mixings can be accomplished, however, by coupling F̄F to ϕ through higher-dimensional

operators, such as F̄ϕϕ†F . As we would expect these operators to be suppressed by some

mass scale, it may be reasonable to generate small mass splittings (even for large mf) and/or

small mixings in the dark sector.

If we assume that such higher-dimensional operators give effective couplings of ϕ to both

our DM sector and the quark sector, we can have diagrams that allow f ′ to decay, in addition

to those studied in Sec. IV. Here, we consider a diagram similar to that in Fig. 2 but with

one of the Z ′ bosons replaced with a scalar; we take the quark loop to contain a c quark. If

we take the effective coupling yF of ϕ to F̄F to be roughly ∼ δ/v′, and also assume that a

similar relation holds for the quark mass splittings, such that yc ∼ mc/v
′, we estimate the

decay width of the f ′ to be

Γ ∼ 1

mf

(

δ

4πmf

)(

e2m2
cy

2
Fy

2
cm

2
fδ

2

(4π)8Λ4

)

(32)

where the term in the first set of parentheses is a phase space factor and the term in

the second set of parentheses comes from an order-of-magnitude estimate of the amplitude

squared for this two-loop diagram. For δ = 1 MeV and v′ ∼ Λ ∼ TeV, this gives Γ ∼ 10−50

GeV; for this mass splitting, the results of [38] exclude an f ′ → fγ for which Γ & 10−49mf ;

thus, for rather small mf , this diagram starts to probe an interesting region of the new

physics scale. We find no diagrams which give stronger constraints.
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VI. SIGNATURES AT LHC

We now consider the prospects for discovering flavored DM at LHC. For the new physics

scales which we have been considering, O(few TeV), the effective operator formalism which

we have been using up until now is no longer applicable. Here, we assume that flavor

interactions are mediated by a heavy gauge boson, which we will label as Z ′. We note

that the new physics scales which we have been considering include couplings, and that, for

example, a new physics scale of 3 TeV, which is allowed by K − K̄ mixing and can still be

accommodated by direct detection experiments, could easily correspond to a 1-TeV Z ′.

For concreteness, we will consider the right-handed toy model described in Section V.

This model contains three Z ′ gauge bosons, all of which we will generically denote Z ′, and

all of which we will assume have a mass of MZ′ = 1 TeV. We will take the f and f ′ to

have masses much less than MZ′, and, for simplicity, we take the mixing angle between

interaction and mass eigenstates to be zero. All other fermions which are added into the

model to cancel anomalies are assumed sufficiently massive that they are not accessible at

LHC. The SU(2) coupling is taken to be the same as the SM SU(2) coupling g. These

assumptions correspond to values of the effective operator coefficients

|CR
ffdd|
Λ2

=
|CR

ffss|
Λ2

=
|CR

f ′f ′dd|
Λ2

=
|CR

f ′f ′ss|
Λ2

=
g2

4 TeV2 ≈ 1

(3 TeV)2

|CR
ff ′sd|
Λ2

=
|CR

f ′fds|
Λ2

=
g2

2 TeV2 ≈ 1

(2 TeV)2
(33)

with all other coefficients CR
mnab between the dark and SM sectors 0.

As an example of a possible search channel at LHC, we will consider the case where the Z ′

is produced in conjunction with a jet, pp → Z ′j5, and decays invisibly to produce a monojet

signature. (For a discussion of monojet signatures at LHC, see [47]; for previous work on

monojets with regards to DM, see [48–50].) An invisible decay of the Z ′ can consist of f f̄ ,

but, in the case where f ′ is adequately long-lived to leave the detector (which we assume

here), we must also include the final states f ′f̄ , f f̄ ′, and f ′f̄ ′. We use MadGraph/MadEvent

[51] to calculate the cross-sections for these processes and for the SM backgrounds pp → Zj

(with Z → νν̄) and pp → W±j (where the W± decays leptonically and the charged lepton

5 Here, we consider all hard subprocesses of the forms qag → qbZ
′, q̄ag → q̄bZ

′, and qaq̄b → Z ′g where qa

and qb can be either s or d.
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is lost down the beampipe, η > 2.5). We greatly reduce these backgrounds by placing a very

tight cut on the transverse momentum pT of the jet.

The pT distributions for our Z ′ signal and the SM background are shown in Fig. 5 for a

center-of-mass energy
√
s = 14 TeV. Although the two distributions are similar, the signal

distribution falls off more slowly for large pT . Given the eventual expected data set for

LHC (an integrated luminosity of ∼ 100 fb−1), the discovery potential for such a Z ′ would

be expected to be limited by systematic errors, not by statistics. Although a full study of

systematics is beyond the scope of this paper, we note that a value of S/B of 10% can be

obtained by requiring the monojet pT to be > 440 GeV. This cut has been applied in Fig.

5, giving signal and background cross-sections of 0.047 pb and 0.47 pb, respectively, and,

for an integrated luminosity of 100 fb−1, S/
√
B ≈ 22. S/B = 20% can be achieved with a

pT cut of 625 GeV. Although this is far from a complete analysis of this signature at LHC,

these numbers indicate that this search channel merits further study.

10
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10
-1

500 750 1000 1250 1500 1750 2000 2250 2500

Z+j, W+j
Z'+j

√s=14 TeV

MZ'=1 TeV

pT/GeV

σ/
pb

FIG. 5: Monojet pT distributions for a 1-TeV Z ′ signal and the SM background at
√
s = 14 TeV.

A cut has been placed requiring pT > 440 GeV, which gives S/B = 10%.

We briefly mention a few other possible signatures of this model at LHC. First, we note

that [52] have studied the potential of discovering an invisibly-decaying Z ′ produced in

conjunction with an SM Z which decays to leptons. They conclude that a 5σ discovery of a

1-TeV Z ′ from a BSM U(1) with gauge coupling of unity could be accomplished with 30 fb−1

of data. (See also [53] for a similar study of an invisible Z ′ produced in conjunction with

a γ.) Additionally, visible decays of the Z ′ could be considered. In addition to Z ′ → jj,

21



we have, for example, Z ′ → f ′f̄ ′; for mf ′ & few GeV, and mf << mf ′ , an f ′ with a few

hundred GeV of energy will decay in the detector, which can give, among other signals,

Z ′ → f̄ ′f ′ → f̄ fjjjj; depending on mZ′ , mf ′ , and mf , displaced vertices are also possible.

We do not consider these signals here, but mention that they could be studied in a more

complete treatment.

VII. CONCLUSIONS

We see that flavored DM is a rich subject. Here, we have examined DM which interacts

with quarks of the first two generations; we have then placed constraints on these interactions

using low-energy measurements and direct detection, and considered the implications of the

relic density for possible flavored DM models. We also see that flavored DM has possible

signatures at LHC and that it can give inelastic scattering (both up- and down-scattering)

in direct detection experiments. Throughout this analysis, we have strived to be as model-

independent as possible.

We collect some general results in Table (II). Here, we show the approximate NP scale

probed by each of these observables under the assumption of flavored DM. We must empha-

size that not all of these results will apply to all models, and, without a specific model, these

numbers should not be compared to each other. (For example, the results from K+ decays

are only applicable to very light DM.) Additionally, these results can also be significantly al-

tered in models with small mixing angles. For these reasons, we give only order-of-magnitude

estimates of the reach for each of these observables. We do not include a number for K− K̄

mixing as it depends very strongly on the mass splitting δ. Additionally, we have not done

a complete study of the signatures of flavor Z ′s at LHC, but we take a few TeV to be a

reasonable estimate of the new physics reach for these scenarios.

Under the assumption that our particle f comprises all of DM and couples to first-

generation quarks, the constraints from direct detection are quite strong; in particular, in

the case of vector couplings, only a very light f would possibly be observable at LHC.

However, considerations of the relic density indicate that additional interactions may be

necessary; these additional interactions may introduce new signatures at LHC. Thus, it may

be fruitful to attempt to incorporate flavored DM into a more complete model. If such

a model contained multiple types of DM, the constraints on couplings to first-generation
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Observable Approximate NP scale reach

K+ decays O(40− 80 TeV)

K − K̄ mixing δ-dependent

Relic density few TeV

Direct detection (elastic) O(1− 10 TeV)

LHC few TeV

TABLE II: Order-of-magnitude estimates of the NP reach for various observables in flavored DM

scenarios. Note that, without a specific model, these numbers cannot be meaningfully compared

with each other. For more detailed information, see text.

quarks from direct detection could also be loosened, opening up additional parameter space

accessible at LHC.

Finally, we note that we have confined ourselves to interactions involving d and s quarks

(plus u and c quarks where necessary), and have limited ourselves to purely right-handed

and purely vector couplings. However, we would like to point out that the range of flavor

interactions which could potentially be applied to DM is immense. One could consider

scalar interactions, interactions with leptons, and, perhaps most interestingly, interactions

involving the third family of quarks. This last option in particular could lead to interesting

signatures in top physics at LHC. We leave these ideas for future work.
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