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1 Introduction

The modeling of physics at high energy colliders relies heavily on our under-
standing of QCD. Quarks and gluons – collectively, partons – that are produced in
high energy reactions are observed as jets of hadrons. The structure of each jet is
determined by the pattern of radiation of additional partons from the original one
produced in the central hard scattering reaction. For this reason, much attention
has been given the past few years to the development of methods for creating parton
showers, systems of partons created with the distributions predicted by QCD.

The traditional approach to the generation of parton showers is based on splitting
off partons through a 1 → 2 branching process. This philosophy is incorporated
in the widely used event generator programs PYTHIA [1] and HERWIG [2]. The
construct of building a shower from 1 → 2 branching, often called a ‘dipole shower’,
omits an important aspect of the physics. The longitudinal momentum distribution
in the 1→ 2 splitting is given by the Altarelli-Parisi splitting functions [3]. In QCD,
partons are emitted coherently from the two legs of a color dipole. The emission
amplitude is then enhanced inside the dipole and, more importantly, cancels outside
the dipole. In the 1980’s, Marchesini and Webber argued that this effect could be
incorporated into dipole showers by imposing angular ordering of emissions [4]. Thus,
HERWIG is built around an angular-ordered parton shower, and PYTHIA, though
it uses a different ordering scheme to choose its branchings, vetos emissions that are
out of angular ordering.

Alternatively, one might build up a parton shower directly from the color dipoles,
using the 2 → 3 process of emission of a parton by a dipole as the basic branching
process. This construct is called an ‘antenna shower’. The scheme was realized in the
program ARIADNE, by Andersson, Gustafson, Lönnblad, and Pettersson [5] and,
more recently, by the program VINCIA, by Giele, Kosower, and Skands [6]. The
approach is of interest both in creating new parton shower codes for the purpose of
matrix element-parton shower matching and because of its promise to yield a more
accurate treatment of color dynamics in parton showers.

Recently, there has been much interest in the tagging of boosted heavy particles
such as the top and Higgs observed as exotic jets [7]. Since tagging methods rely
heavily on color flow, it is interesting to have a variety of approaches to the simulation
of color flow in parton showers in order to test the robustness of these algorithms.

We have been engaged in providing a well-defined foundation for antenna show-
ers, giving explicit calculations of the splitting functions that generate these showers
and generalizing previous work to spin-dependent formulae. In a previous paper,
we presented the complete set of spin-dependent antenna splitting functions needed
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to describe quark and gluon parton showers [8]. In this paper, we continue our
study of this approach by presenting the spin-dependent antenna splitting functions
for showers with massive particles. In constructing a shower for massless particles,
spin-dependence is a convenience, especially for matching with full QCD amplitudes.
For massive particles, it is more important to preserve spin information, because the
decays of heavy particles such as the top quark are spin-dependent and so the exper-
imental acceptance for the heavy particles varies significantly with their longitudinal
polarization.

The formalism presented here has the same strengths and weaknesses as our pre-
vious work. We will calculate in the kinematics of final-state showers, using effective
operators of definite spin to represent the 2-particle color dipole state before the split-
ting. We will work in the limit of a large number of colors in QCD for which the
concept of a color dipole is strictly defined. Within this approximation, we will derive
formulae for splitting functions with any ratio m/Q between the mass of the particle
and the mass of the two-particle system. These formulae will necessarily be less sim-
ple than those found in [8] for the massless case. We will see, though, that we can
make use of spinor product formalism [9] to write these splitting functions relatively
compactly. The simplicity of these expressions is connected to their relation to the
Maximally Helicity Violating amplitudes of QCD. This point was originally made for
the massless case in [10] and is discussed in some detail in [8].

The formalism of QCD antennae was originally developed as a tool for the sub-
traction of infrared divergences in higher-order QCD calculations. This approach
to QCD calculation was pioneered by by Kosower [11,12]. Gehrmann-De Ridder,
Gehrmann, Glover, and their students have developed this approach into a sophisti-
cated method applicable to NLO and even NNLO computations [13,14]. Using this
formalism, Gehrmann-De Ridder, Gehrmann, and Glover have proposed forms for the
spin-summed antenna splitting functions of massless quarks and gluons [15,16]. Our
previous paper reviews this latter work and compares the results from our method to
theirs. There is no universal form for antenna splitting functions. The behavior of the
splitting functions is prescribed in the soft and collinear limits but, away from those
limits, different expressions are possible, depending on the framework used in the
derivation. The systematic differences between the different proposals are explored
in [8].

Following the methods of [15,16], splitting functions for massive, spin summed an-
tennae were constructed in [17–19]. Again, our expressions agree with these in having
the correct soft and quasi-collinear behavior but differ away from these limits. The
addition of mass greatly complicates both the expressions for the splitting functions
and the precise specification of the boundaries of phase space. Because of this, we do
not present a detailed comparison to other massive splitting functions here.
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The outline of this paper is as follows: In Section 2, we will analyze the case
of gluon radiation from an antenna composed of a massive spin-1

2
fermion (Q) and

a massless spin 1
2

fermion (q) in a configuration of zero helicity. All of the new
complications that arise when we deal with massive particles can be illustrated in
this context. We will write expressions for the splitting functions in terms of spinor
products of lightlike vectors associated with the massive vectors of the particles before
and after the splitting. In Section 3, we will discuss the kinematics of these massive
splittings and the evaluation of the the spinor product expressions.

With this introduction, we can go systematically through the various cases of
antennae composed of massive and massless particles. In Sections 4 and 5 we will
analyze in turn the cases of antennae with spin 0 and spin 1

2
massive particles recoiling

against quarks and gluons in which the antennae emits another quark or gluon. In
Section 6, we discuss the analysis of the general case of a pair of massive particles,
spin 0 or spin 1

2
, radiating gluons. In Section 7, we discuss antennae that create a

pair of massive particles. Section 8 gives some conclusions. We collect the complete
set of massive antenna splitting functions derived in this paper in Appendix A.

2 The spin zero fermion-quark antenna

The simplest case of a splitting function with massive particles arises in the system
of a massive and a massless fermion created by a spin 0 operator. In this section,
we will work out the spin-dependent splitting functions for this case following the
prescriptions in [8]. We will then discuss the interpretation of these formulae and
their comparison to the standard Altarelli-Parisi splitting functions for a massive
quark [20].

In [8], each case of a spin-dependent splitting is associated with a gauge-invariant
operator that creates the antenna. For this case, the required operator is

O = QLqR (1)

where q is an ordinary quark whose mass can be ignored and Q is a massive quark.
This operator creates a 2-particle state

QLqL (2)

with total spin zero about the production axis. Antennae with overall opposite helicity
or with antiquarks have the same splitting functions, by the P and C invariance of
QCD.
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In [8], we wrote the basic formula for final-state antennae splitting of massless
particles in the following way: Notate the splitting as AB → acb, with

(A+B)2 = sAB = Q2 . (3)

Throughout this paper, for any 4-vectors i, j, we will define

sij = (i+ j)2 = m2
i + 2i · j +m2

j . (4)

Let za, zb, zc be the momentum fractions of a, b, and c relative to their maximum
value,

za =
2Q · q
Q2

, etc. za + zb + zc = 2 . (5)

Then the probability of a splitting is given by∫
dProb = Nc

αs
4π

(
Q

2K
)
∫
dzadzb S(za, zb, zc) . (6)

where Nc = 3 is the number of colors in QCD and K is the momentum of the partons
in the center of mass system of the original 2-particle antenna. In the massless case,
Q/2K = 1. The distribution S is the splitting function. In [8], we computed this
function as the ratio of 3- to 2- body amplitudes of an appropriate local operator,

S = Q2

∣∣∣∣M(O → acb)

M(O → AB)

∣∣∣∣2 . (7)

This formula is still correct for the massive particle antennae discussed in this paper.
We will discuss the kinematics of these antennae in more detail in Section 3.

In the limit in which c becomes collinear with a or b, the antenna splitting functions
reduce to the Altarelli-Parisi functions P (z) that describe 1 → 2 splittings. For this
limit, the formulae are not as simple in the massive case as they are in the all-massless
case. We will present the explicit formulae and check them for the spin zero antenna
later in this section.

To compute the amplitudes in (7), we use the spinor product formalism for massive
particles of Schwinn and Weinzierl [21]. For a massless particle, the states of definite
helicity are well-defined and Lorentz invariant. For a massive particle, the spin states
depend on the frame chosen to evaluate them. In the Schwinn-Weinzierl formalism, a
massless reference vector q is used to define that frame. The spinors for an outgoing
massive fermion of mass m are written

uL(p) =
[q(p+m)

[qp[]
uR(p) =

〈q(p+m)

〈qp[〉
, (8)
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where the flatted vector p[ is defined by

p[ = p− m2

2q · p
q (9)

A particularly useful choice for q is the lightlike vector in the opposite direction from
p. Rotating coordinates so that

p = (E, 0, 0, p) with E2 = p2 +m2 , (10)

let

p] =
1

2
(E + p)(1, 0, 0,−1) , (11)

Then if we set q = p], the flatted vector is

p[ =
1

2
(E + p)(1, 0, 0, 1) . (12)

This is very convenient. With this choice of q, the spinors defined in (8) are just
the usual spinors of definite helicity. Using the basis of Dirac matrices where γ5 is
diagonal, it is easy to see that (8) reduces to

uL =
(√

E−p
2

√
E+p
2

)
⊗ ( 0 1 )

uR =
(√

E+p
2

√
E−p
2

)
⊗ ( 1 0 ) . (13)

Using these conventions, we can easily compute the 2 particle matrix elements
of the operator (1). Denote the momenta of the initial-state heavy quark and light
antiquark as A and B, respectively. Then

M(QLqL) =
[qAB〉
[qA[]

= 〈A[B〉

M(QRqL) =
m〈qB〉
〈qA[〉

(14)

The helicity of the q must be L, but the heavy quark created by (1) could be in
either spin state. However, with the usual definition of helicity, the production of
QRqL from a spin 0 operator would be forbidden by angular momentum. Indeed,
when we set q = A],

M(QRqL) ∼ 〈A]B〉 = 0 , (15)

because A] is a lightlike vector parallel to B. The only nonzero matrix element is
then

M(QLqL) = 〈A[B〉 ; (16)
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this gives the denominator in (6). It is convenient that

|〈A[B〉|2 = Q2 −m2 = 2QK , (17)

with K as in (6).

It is straightforward to work out the numerator of (6) for the four possible spin
states of the 3-particle system QgqL. As in [8], we label the three final-state momenta
as (a, c, b), with the emitted particle as c. The results, using a general reference vector
q in (8), are

M(QLgLqL) = − 1

[qc]

{〈ca[〉[qQb〉
sac −m2

+
[qQa[〉

[bc]

}

M(QLgRqL) = − 〈a[b〉[cQb〉
〈bc〉(sac −m2)

M(QRgLqL) = − m

[a[c]〈qa[〉

{〈cq〉[a[Qb〉
sac −m2

+
[a[Qq〉

[bc]

}

M(QRgRqL) = − m〈qb〉[cQb〉
〈bc〉〈qa[〉(sac −m2)

(18)

We have omitted the overall factor of (gT a). When we put q = a], we can recognize
the simplification

[a]Qa[〉 = [a[Qa]〉 = 0 . (19)

This follows from the fact that the 4-vector Q is a linear combination of the two
lightlike vectors a[ and a]. Now square these expressions and combine with (17) to
evaluate (7). This gives

S(QLgLqL) =
Q

2K

∣∣∣∣〈a[c〉[a]Qb〉[a]c][cac〉

∣∣∣∣2
S(QLgRqL) =

Q

2K

∣∣∣∣〈a[b〉[cQb〉〈bc〉[cac〉

∣∣∣∣2
S(QRgLqL) =

m2Q

2K

∣∣∣∣ 〈a]c〉[a[Qb〉〈a]a[〉[a[c][cac〉

∣∣∣∣2
S(QRgRqL) =

m2Q

2K

∣∣∣∣ 〈a]b〉[cQb〉〈a]a[〉〈bc〉[cac〉

∣∣∣∣2 (20)

In the all-massless case, we managed to produce antenna splitting functions that
were simple rational functions of the za [8]. Here, the antenna splitting functions
are more complicated, but not excessively so. The main complications come from the
denominators (sac−m2) = [cac〉, which do not factorize simply, and from the multiple
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lightlike vectors needed to characterize the state of the massive quark. In this case,
it is not so difficult to write the splitting functions in terms of 4-vector products:

S(QLgLqL) =
Q

K

sa[c(2a
] ·Qb ·Q− a] · bQ2)

sa]c(sac −m2)2

S(QLgRqL) =
Q

K

sa[b(2b ·Qc ·Q− b · cQ2)

sbc(sac −m2)2

S(QRgLqL) =
m2Q

K

sa]c(2a
[ ·Qb ·Q− a[ · bQ2)

sa]a[sa[c(sac −m2)2

S(QRgRqL) =
m2Q

K

sa]b(2b ·Qc ·Q− b · cQ2)

sa]a[sbc(sac −m2)2
(21)

However, the structure of the expressions is more clearly visible in the form (20).

The expressions (20) contain exact tree-level matrix elements for the transition of
the operator O to a three-particle state. They are correctly used in a parton shower
for any values of m/Q and pT/Q among the final-state particles, as long as the
virtuality at the previous and successive branchings of the shower are well separated
from Q. In the all-massless case discussed in [8], we made approximations to the
splitting functions valid in the soft and collinear limits. It is less obvious here which
approximations are appropriate, and, in any case, we did not see how to achieve much
further simplification. So we will stop at this point for this set of splitting fuctions
and for all of the massive particle splitting functions quoted in this paper.

To evaluate expressions of the type of (20), we find it easiest not to convert the
expressions in (20) into 4-vector products or dimensionless scalars built from these
but, rather, to directly evaluate the spinor brackets. We will discuss a strategy to
evaluate these brackets in the next section.

Finally, we must discuss the collinear limits and the connection to the the Altarelli-
Parisi splitting functions. For the spin zero antennae, this connection is easiest to
discuss for the limit c ‖ b, where only massless particles are involved. We must still
take account of the fact that, because b and c recoil against a massive particle, their
maximum momentum is limited. To account for this, let

z̃b,c =
zb,c

(1−m2/Q2)
. (22)

so that z̃b and z̃c run from 0 to 1 and, in the limit c ‖ b, z̃b + z̃c = 1. Then, in this
collider limit, S has the singularity

S ∼ δa,A
Q2

sbc
PB→c(z̃c) . (23)
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The expressions in (20) satisfy this relation. The splitting functions to QRgL,R must
have no collinear singularity. This follows from the fact that [a[Qb〉 and 〈a]b〉 vanish
when b becomes opposite to a. The cases of QLgL,R do have singularities proportional
to s−1a]c and s−1bc , with the correct coefficients to match (22).

In the limit c ‖ a, where the 1 → 2 splitting involves a massive particle, the
limit is slightly more complicated. For the splitting of a massive particle, the usual
Altarelli-Parisi formula for the collinear splitting is conventionally rewritten as∫

dProb = Nc
αs
2π

∫
dz
∫ dp2T

(p2T + z2m2)
P (z, pT ) . (24)

We divide the usual expressions for P (z, pT ) by 2 so that these functions give the
contribution from one of the two antennae that contribute to a collinear singularity.
Mass-suppressed terms can contain an additional factor of (p2T + z2m2) in the de-
nominator; this is why we have allowed the Altarelli-Parisi function to depend on pT .
With this formalism, for c becoming parallel to a,

S(za, zb, zc)→
Q2

sac −m2
A

P (z̃c, pT ) (25)

where sac = (a + c)2. Here again, the parameter z̃c must be scaled to equal 1 at its
maximum value, as in (22). For the present case in which the (ac) system recoils
against a massless parton, z̃c = zc.

To discuss the limits c ‖ a, we first need to recall the Altarelli-Parisi functions for
splitting of a gluon from a massive fermion. The Altarelli-Parisi functions are defined
in the limit of not only collinear but also high energy emission. For a particle of
energy E splitting to particles with transverse momentum pT and finite masses mi,
these functions describe the regime pT ∼ mi � E. For a splitting Q → gQ, as we
have in this case, the spin-summed splitting function is [20]

P (z) =
1 + (1− z)2

z
− m2

a · c
(26)

This expression becomes clearer when it is written as a set of spin-dependent Altarelli-
Parisi functions. In the convention defined by (24),

P (QL → QLgL) =
p2T

p2T + z2m2

1

z

P (QL → QLgR) =
p2T

p2T + z2m2

(1− z)2

z

P (QL → QRgL) =
m2

p2T + z2m2

z4

z

P (QL → QRgR) = 0 (27)
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The sum of these terms does reproduce (26). The placement of the factors of z
implements the dead cone in which soft radiation from a massive particle is suppressed
within a cone of size 1/γ, where γ is the boost of the heavy particle [22,23].

We can now compare the c ‖ a limits of our antenna splitting functions to (27).
In the collinear limit,

sac −m2 =
p2T + z2m2

z(1− z)
. (28)

Using this formula and the collinear limits of the spinor products, we find that (20)
does satisfy (25) with (27), up to corrections of relative order m2/Q2. In particular,
in the limit c ‖ a, a] becomes collinear with b. Then the vanishing of 〈a]b〉 with no
compensatory vanishing in the denominator gives the zero in the last line of (27).

The spin-dependent splitting functions in the remaining sections of this paper also
satisfy these checks on the collinear limits. For convenience, we list the complete set
of mass-dependent, spin-dependent Altarelli-Parisi splitting functions that are needed
for these checks in Appendix B.

3 Kinematics of massive antennae

The splitting functions computed in the previous section were written in terms
of spinor products of massless vectors associated with the massive 4-vectors of the
antenna. One should ask, how are these massless vectors computed? A similar
question arises in the context of the formula (6) for the antenna splitting probability.
This equation is easily written down as the ratio of a cross section to produce a 3-
body final state, integrated over 3-body phase space, to the cross section to produce
a 2-body final state, without a radiated parton, integrated over 2-body phase space.
In particular, the integral

∫
dzadzb is an integral over 3-body phase space. One should

ask, what is the boundary of the region of integration for these variables, and how
does one sample points in the interior of this region?

For massless antenna, the answers to these questions are straightforward. For
antenna with both radiators in the final state (FF antennae in the notation of [8]),
the complete phase space region is the triangle

0 < za, zb < 1 za + zb > 1 (29)

and the region well described by the radiation process AB → acb, with c soft, is the
smaller region where

0 < zc < za < 1 and 0 < zc < zb < 1 (30)
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To create an additional radiated particle in a state with N massless particles, we
choose a color-connected pair of particles AB, boost so that A and B are of equal
length and back-to-back, choose (za, zb) as a random point in the region (30), replace
the 2-particle system AB by the chosen 3-particle system acb, and, finally, reverse
the boost to bring acb back into the original frame. The corresponding phase space
regions and algorithms for antennae including initial-state particles are described in
[8]. In this paper, however, we will only discuss final-state showers.

We believe that these 4-vector configurations for massless particles provide a good
starting point for constructing 4-vector configurations that include massive particles.
Given a point {`i} in the phase space of of N massless particles, one can obtain a
point {ki} in the phase space of N massive particles by rescaling

~ki = λ~̀i (31)

where λ obeys ∑
i

Êi = ECM , with Êi = (|λ~̀i|2 +m2
i )

1/2 . (32)

Conversely, every point of the massive phase space can be constructed uniquely in
this way. The scale factor λ is close to unity unless one of the massive particles is
nonrelativistic. The relation of the phase space measures for the massive and massless
variables is [24]

dΠN(k) = dΠN(`) · λ2N−4
∏
i

|λ~̀i|
Ei

∑
i |λ~̀i|∑

i |λ~̀i|2/Ei
. (33)

We will refer to the massless vectors {`i} as the backbone of the massive configuration.

We now have a strategy for the constructing the N particle phase space of a parton
shower that involves massive particles. Starting with a system of 2 massless particles,
construct a shower of massless vectors according to the procedure described above.
In each antenna, let the momentum fractions of the (massless) final particles a, b be
wa, wb. Rescale within the antenna by λ and use the massless vectors and this value
of λ to compute the splitting probabilities. For example, for the splitting described
in the previous section with particle a massive, the equation for λ is

Ea + λ(|~̀b|+ |~̀c|) = Q . (34)

The splitting probability is given by∫
dProb = Nc

αs
4π

(
Q

2K
)
∫
dwadwb · λ2 · (

λwa
Ea

)
λ

|λwa|2Q/2Ea + λ(wb + wc)
S . (35)
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To evaluate the splitting function S we need the flatted and sharped vectors a[ and
a]. The first of these is given by

a[ =
1

2
(Ea/λ|~̀a|+ 1)λ`a , (36)

and a] is the massless vector of the same length pointing in the opposite direction.
Once the configuration is chosen, the three new massless vectors are boosted back to
the frame of the shower, and we are ready to generate the next antenna. When the
shower is completed, the entire backbone must be rescaled to put the final massive
particles on shell. In this prescription, the recoil due to emissions is done locally
in each antenna to the extent that the particles are relativistic, but the recoil for
nonrelativistic massive particles is distributed over the whole shower.

There is one more complication that should be discussed. For a massless particle,
the spin state is determined by the helicity in a way that is independent of frame. For
a massive particle, a change of frame can rotate the spin. The helicity is preserved by
rotations and by boosts along the direction of motion. Other boosts, at an angle to
the direction of motion, change the spin orientation. In the massive particle shower
described here, we ignore this effect. In any event, it is unimportant when the mas-
sive particles are relativistic, and this accounts for most of the radiation from these
particles.

4 Antennae with a massive spin 0 particle

We are now ready to put together a catalogue of the antenna splitting functions
that describe the emission of quarks and gluons in the showering of massive particles.
We begin with the case of a spin 0 massive particle S recoiling against a quark or a
gluon.

In the quark case, the antenna is described by an operator

O = S† 〈2| qR (37)

where 〈2| is a spin-1
2

spurion that controls the quark polarization. Here and in the
rest of the paper, we will analyze a subset of the various discrete choices from which
the rest can be derived using the P and C symmetries of QCD. Here, for example,
the two cases

SqL → SgLqL and SqL → SgRqL (38)

considered below suffice to provide all of the possble spin-dependent splitting functions
for Sq → Sgq and Sq → Sgq.
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The 2-particle matrix element of the operator (37) is

M(O → SqL) = 〈2B〉 . (39)

Then, for the 2-particle antenna SqL with S moving the 3̂ direction, 2 should be a
massless fermion moving parallel to S. In the following, we will set 2 = A[. This choice
follows the methods used in [8]. In that paper, the polarization vectors associated
with operators O with nonzero spin are built from massless vectors 1 and 2, chosen
in the directions of B and A, respectively. With this choice, the denominator of the
expression (7) for the splitting function is again evaluated as (17).

The 3-particle matrix elements of (37) are

M(O → SgLqL) =
〈A[(b+ c)ac〉

[cac〉[bc]

M(O → SgRqL) = −〈A
[b〉〈bac]

[cac〉〈bc〉
(40)

Here again, we strip off the factors of g and color matrices. The final results are
surprisingly compact.

For an antenna containing a massive scalar and gluon, we need to find an operator
that defines an antenna whose initial state includes a gluon of a definite polarization.
For the antenna with a left-handed gluon, we may choose [8]

O =
i√
2
S† 〈2|σ · F |2〉 (41)

where

σ · F =
1

2
σmσnFmn . (42)

This operator projects onto anti-self-dual gauge fields or left-handed physical gluons.
The corresponding operator σ · F can be used to define the antenna with an initial
right-handed gluon. The two-particle matrix elements of (41) are

M(O → SgL) = 〈2B〉2 M(O → SgR) = 0 . (43)

The zero for a gR is just as one should have expected. As above, we set 2 = A[.

There are two types of 3-particle matrix elements of (41). First, the antenna can
radiate a gluon. The corresponding matrix elements are

M(O → SgLgL) =
1

[bc]

[〈A[b〉2[bac〉
[cac〉

+ 2〈A[c〉〈A[b〉+
〈A[c〉2[cab〉

[bab〉

]
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M(O → SgRgL) = −〈A
[b〉2〈bac]

[cac〉〈bc〉

M(O → SgLgR) = −〈A
[c〉2〈cab]

[bab〉〈bc〉
M(O → SgRgR) = 0 , (44)

following the pattern established in (40). Second, the gluon may split into a quark-
antiquark pair. For this, we need the matrix elements

M(O → SqRqL) = −〈A
[b〉2

〈bc〉

M(O → SqLqR) =
〈A[c〉2

〈bc〉
. (45)

The splitting functions derived from these matrix elements using (7) are listed sys-
tematically in Appendix A.

5 Antennae with a massive spin 1
2 particle

In the same way, we can construct operators that correspond to the initial states
of antennae involving a massive Dirac fermion Q with a quark or gluon. The massive
fermion can have helicity ±1

2
. Because the Q is massive, an initial left-handed Q can

flip over after radiation to a right-handed Q, or vice versa. We have seen this already
in the special case considered in Section 2. In this section, we will recall the results
from Section 2 and compare them to those of the other three possible antennae of
this type.

The antennae with an initial state containing F and a quark can be arranged in
a state with total spin about the axis of motion |J3| equal to 0 or 1. The spin 0 case
was considered in Section 2. The appropriate operator O is

O = QqR . (46)

The matrix elements of this operator between two-particle Fq states are

M(O → QLqL) = 〈A[B〉 M(O → QLqR) = 0 (47)

in our convention that A] should be used as the reference vector for Q. The three-
particle matrix elements are then readily computed. If we use a] from the beginnning
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as the reference vector for Q, (18) gives

M(QLgLqL) = −〈ca
[〉[a]Qb〉

[a]c][cac〉

M(QLgRqL) = −〈a
[b〉[cQb〉
〈bc〉[cac〉

M(QRgLqL) = −m 〈ca]〉[a[Qb〉
[a[c]〈a]a[〉[cac〉

M(QRgRqL) = −m 〈a]b〉[cQb〉
〈bc〉〈a]a[〉[cac〉

. (48)

The antenna splitting function can be constructed from these elements in the manner
described in Section 2.

The spin 1 case can be treated in the same way. As described in [8] and at the
beginning of Section 4, we introduce lightlike vectors 1 and 2 in the direction of B
and A, respectively. Then an appropriate operator to define this antenna is

O = Q 1〉[2 qL . (49)

The two-particle matrix elements of this operator are

M(O → QLqR) = 〈A[1〉〈2B〉 , M(O → QRqR) = 0 , (50)

Thus, this operator does correctly represent the initial situation. We will set 2 = A[

and 1 = B in the following expressions.

The splitting function for the antenna to radiate a gluon is computed from the
three-particle matrix elements of this operator to Fgq final states. These are

M(QLgRqR) = −〈a
[B〉[A[(b+ c)ac]

〈cac]〈bc〉

M(QLgLqR) = − [A[b]

〈cac][bc][a]a[]

{
[a]ac〉[bQB〉+m2〈cB〉[a]b]

}

M(QRgRqR) =
m〈a]B〉[A[(b+ c)ac]

〈a]a[〉〈cac]〈bc〉

M(QRgLqR) =
m[A[b]

〈a]a[〉〈cac]〈bc〉

{
〈a]B〉〈cab] + 〈a]c〉〈Bcb]

}
. (51)

The splitting functions derived from these formulae and those in (48) are catalogued
in Appendix A.
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Figure 1: Feynman diagrams for the computation of the Fg → Fgg splitting functions [8].

For the antennae with Q and a gluon, we again use the operator σ · F to define
the initial state as containing a gluon of definite left-handed polarization. There are
two cases, with total spin 1

2
and 3

2
. For the spin 1

2
case, the appropriate operator is

O = − i√
2
Qσ · F |2〉 . (52)

The dominant two-particle matrix element of this operator is

M(O → QLgL) = 〈A[B〉〈2B〉 . (53)

If we recall that the vector 2 is identified with A[, we see that this puts the initial
Q and g into just the correct orientation. The matrix elements to QLgR, QRgL, and
QRgR all vanish if 1 is taken parallel to B.

The splitting functions for the radiation of a gluon from this antenna are given
by the matrix elements of (53) to Qgg final states. As in [16] and in [8], these matrix
elements are given by the computation of the set of diagrams shown in Fig. 1. The
last diagram in the figure comes from the two-gluon vertex of the operator σ ·F . The
third diagram is required to make the computation gauge-invariant. Its origin is most
easily seen by thinking of the Q as a color octet. Then this diagram is obviously an
essential contribution to the radiation from the Qg dipole.

With this observation, we find for the three particle matrix elements of (53)

M(QLgLgL) =
1

[bc][a]a[]

{〈A[b〉
〈cac]

(Q2[a]ac〉 −m2[a]Qc〉) +
〈A[c〉
〈bab]

(Q2[a]ab〉 −m2[a]Qb〉)
}

M(QLgRgL) =
〈a[b〉〈A[b〉〈bac]
〈cac]〈bc〉

M(QLgLgR) =
〈a[c〉〈A[c〉〈cab]
〈bab]〈bc〉

M(QLgRgR) = 0
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M(QRgLgL) =
m

〈a]a[〉[bc]

{〈A[b〉
〈cac]

(〈a]aQc〉 −Q2〈a]c〉) +
〈A[c〉
〈bab]

(〈a]aQb〉 −Q2〈a]b〉)
}

M(QRgRgL) =
m〈a]b〉〈A[b〉〈bac]
〈a]a[〉〈cac]〈bc〉

M(QRgLgR) =
m〈a]c〉〈A[c〉〈cab]
〈a]a[〉〈bab]〈bc〉

M(QRgRgR) = 0 . (54)

The case of a Qg antennae in the spin 3
2

state is treated similarly. The operator
that defines the initial state is

O = − i√
2
Q 1] 〈2|σ · F |2〉 . (55)

The two-particle matrix elements of this operator are

M(O → QRgL) = 〈1A[〉〈2B〉2 (56)

and all other matrix elements are equal to zero for the choice of 1 parallel to B. We
will set 2 = A[ and 1 = B in the expressions that follow.

The three-particle matrix elements of (55) to Qgg final states are

M(QRgLgL) = − [a[B]

[bc]

{〈A[b〉〈A[(b+ c)ac〉
〈cac]

+
〈A[c〉〈A[(b+ c)ab〉

〈bab]

}

M(QRgRgL) = − 〈A
[b〉2

〈cac]〈bc〉

{
[a[c]〈bQB] +m2 〈a]b〉

〈a]a[〉
[cB]

}

M(QRgLgR) = − 〈A
[c〉2

〈bab]〈bc〉

{
[a[b]〈cQB] +m2 〈a]c〉

〈a]a[〉
[bB]

}
M(QRgRgR) = 0

M(QLgLgL) = − m[a]B]

〈a]a[〉[bc]

{〈A[b〉〈A[(b+ c)ac〉
〈cac]

+
〈A[c〉〈A[(b+ c)ab〉

〈bab]

}

M(QLgRgL) = −m〈A
[b〉2

[a]a[]

([a]B]〈bac] + [a]c]〈bcB])

〈cac]〈bc〉

M(QLgLgR) = −m〈A
[c〉2

[a]a[]

([a]B]〈cab] + [a]b]〈cbB])

〈bab]〈bc〉
M(QLgRgR) = 0 . (57)

The splitting functions for Qg → Qgg that are derived from these expressions and
those in (54) are catalogued in Appendix A.
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The Qg antennae can also radiate by gluon splitting to a pair of quarks. For the
spin 1

2
case, the relevant matrix elements are

M(QLqRqL) =
〈a[b〉〈A[b〉
〈bc〉

M(QLqLqR) = −〈a
[c〉〈A[c〉
〈bc〉

M(QRqRqL) =
m〈a]b〉〈A[b〉
〈a]a[〉〈bc〉

M(QRqLqR) = −m〈a
]c〉〈A[c〉

〈a]a[〉〈bc〉
(58)

For the spin 3
2

case, the matrix elements are

M(QRqRqL) =
[a[B]〈A[b〉2

〈bc〉

M(QRqLqR) = − [a[B]〈A[c〉2

〈bc〉

M(QLqRqL) =
m[a]B]〈A[b〉2

[a]a[]〈bc〉

M(QLqLqR) = −m[a]B]〈A[c〉2

[a]a[]〈bc〉
(59)

The splitting functions for Qg → Qgg that are derived from these expressions are
catalogued in Appendix A.

6 Antennae of a pair of massive particles

After a pair of massive scalars or fermions are produced, their first emission of
a gluon is described by an antenna in which the two massive particles both appear.
For a complete description, we need the splitting functions for these antenna as well.
These formulae are somewhat more complicated than those derived above, since some
of the simplifications that are possible when the particle b is massless no longer apply.
There is little additional complexity in the cases in which the two massive particles
have different masses, so we will write the formulae for that more general situation.
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The case of a pair of scalars is relatively straightforward. The scalar particles
themselves are spinless, so there is only one case, described by the spin-0 operator

O = S†1S2 . (60)

The matrix element of this operator to create the state S1S2 is simply 1. The matrix
elements for gluon emission are

M(S1gLS2) =
1

[a[c]

{
[a[ac〉
[cac〉

− 〈a
[bc]

〈cbc]

}

M(S1gRS2) = − 1

〈a[c〉

{〈a[ac]
〈cac]

− 〈a
[bc]

〈cbc]

}
. (61)

Each expression can be brought down to one term using the Schouten identity

〈caf ]〈dbg]− 〈daf ]〈cbg] = −〈cd〉[fabg] . (62)

This identity is valid when a and b are massive vectors, possibly with different masses;
c, d, f , and g must be massless. To prove the identity, write a as a linear combination
of a[ and a]. Using (62),

M(S1gLS2) = − 〈cabc〉
〈cac][cbc〉

M(S1gLS2) =
[cabc]

[cac〉〈cbc]
. (63)

The splitting functions are readily assembled from these expressions.

For the antenna of a massive fermion and a massive scalar, the general case is
described by the spin 1

2
operator

O = Q1 1〉S2 . (64)

The two-body matrix elements of this operator are

M(Q1LS2) = 〈A[1〉 (65)

and zero for Q1R. If we take 1 = B[ following the prescriptions above,

|〈A[1〉|2 = (E1 +K)(E2 +K) , (66)

where E1, E2, and K are the two energies and the momentum in the antenna center
of mass frame.

18



The matrix elements for the operator (64) to create QgS states is given by the
expression

M = −gT
a

√
2
u(a)

[
ε/(c)(a/+ c/+m)

[cac〉
1〉 − 1〉2b · ε(c)

[cbc〉

]
, (67)

where ε(c) is the polarization vector of the gluon. A convenient way to treat this is
to manipulate

ε/(c)(a/+ c/+m) = 2a · ε(c) + ε/(c)c/ (68)

plus a term proportional to (a/ −m) that gives zero when applied to u(a). The first
term in (68) combines with the last term in (67) to give an amplitude proportional
that of the scalar-scalar case, (61) or (63) above. The term with ε/(c) vanishes for gR
and gives a simple but nonzero term for gL. The final results for the two amplitudes,
after dropping the factor of (gT a), are

M(QLgRS) =
〈a[1〉〈cabc〉
〈cac][cbc〉

M(QRgRS) =
m1〈a]1〉〈cabc〉
〈a]a[〉〈cac][cbc〉

M(QLgLS) = −〈a
[1〉[cabc]

[cac〉〈cbc]
+
〈a[c〉〈c1〉

[cac〉

M(QRgLS) = − m1

〈a]a[〉

[〈a]1〉[cabc]
[cac〉〈cbc]

− 〈a
]c〉〈c1〉
[cac〉

]
. (69)

Here m1 is the mass of the fermion Q1. The formulae apply for any values of the
masses of the fermion and scalar, as long as the 4-vectors a and b are properly on
mass shell.

The decomposition of the gluon coupling to a massive fermion given in (68) is
equivalent the representation of this coupling by the second-order Dirac equation, in
which the fermion is replaced by a field with a scalar-type coupling and a magnetic
moment coupling. The single-gluon magnetic moment coupling has a chiral structure
and vanishes for specific combinations of the fermion and gluon spin. This second-
order Dirac formalism is discussed in more detail in [25].

For massive fermions, there are two cases, corresponding to total spin 0 and 1
along the antenna axis. For the spin 0 case, we could use the operator QLQL to
create the antenna, similarly to the choices in Sections 2 and 5. However, in the case
in which both fermions are massive, that operator creates both QLQL and QRQR

states. We will avoid that problem here by taking the operator that creates an initial
state of QLQL to be

O = Q1 1〉〈2Q2 (70)
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Figure 2: The single Feynman diagram for the computation of the gg → gFF splitting
function [8].

The two-body matrix elements of this operator are

M(Q1LQ2L) = 〈A[1〉〈2B[〉 , (71)

and zero for the other three helicity states. Similarly, for the spin 1 case, we will use
the operator

O = Q1 1〉[2Q2 . (72)

to create an initial state of QLQR. The two-body matrix elements of this operator
are

M(Q1LQ2R) = 〈A[1〉[2B[] , (73)

and zero for the other three helicity states. The QgQ matrix elements of these
operators are easily computed using the methods presented earlier in this section.
The results for the splitting functions are tabulated in Appendix A.

7 Antennae with massive particle production

There is one more situation that we must consider. At very high energies, massive
particles can be produced by gluon splitting. At the LHC, for example, parton-parton
scattering can give quark-gluon and gluon-gluon collisions with center of mass energies
well above 1 TeV. Final state gluon antennae in these collsions can produce pairs of
top quarks. The pair production amplitudes are relatively simple, since each requires
only one Feynman diagram, as shown in Fig. 2 for the gg → gtt case. The final pair
of heavy particles must have equal mass and equal spin. However, there are a large
number of cases to enumerate. The massive scalar or fermion pair can be formed
from a spin 1

2
or a spin 3

2
qg antenna or from a spin 0 or spin 2 gg antenna.

For scalar pair production, the formalism is actually quite simple. The spin 1
2

and
spin 3

2
qg antennae can be represented by the operators

O1/2 = − i√
2
q σ · F |2〉
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O3/2 = − i√
2
q 1] 〈2|σ · F |2〉 . (74)

If the gluon splits to a pair of scalars, both cases involve the operator σ · F dotted
with the gSS vertex. This product is

1

2
[(b/+ c/)γµ − γµ(b/+ c/)](b− c)µ ≡ [b, c] (75)

so that the relevant three-particle matrix elements are

M(qLSS) = −〈a[b, c]2〉
sbc

(76)

for the spin 1
2

case and

M(qRSS) =
[a1]〈2[b, c]2〉

sbc
(77)

for the spin 3
2

case.

Similarly, the spin 0 and spin 2 gg antennae, corresponding to the gLgL and gRgL
initial states, can be represented by the operators

O0 =
1

2
tr[(σ · F )2]

O2 = [1|σ · F |1] 〈2|σ · F |2〉 . (78)

The manipulation (75) again gives a simple form for the three-particle matrix ele-
ments. The corresponding splitting functions are given in Appendix A.

For the case of massive fermion pair production, this formalism is necessarily more
complex. With the choice of helicity states that we have used throughout this paper,
the vertex to create a pair of massive fermions is a Dirac matrix. For the case of a
final-state QRQL, for example, this matrix has the form

V = c[]〈b[ − m2

〈c]c[〉[b[b]]
b]]〈c] (79)

Then the matrix element of σ · F contains the structure

〈R1 [(b+ c), V ]R2〉 (80)

with a commutator bracketed between reference vectors R1 and R2. However, the
frame-dependent choice of the vectors b], c] makes it difficult to simplify this expres-
sion further. It is true that (b+c) = Q−a, where a is now massless. In some cases, we
have R1 = a, in which case the a term cancels. In other cases, we have R1 = 2 = A[,
so that the a term vanishes if a is collinear with A. We list the full expressions for
these splitting functions in Appendix A.
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8 Conclusion

In this paper, we have provided new materials for the construction of parton
showers that include massive spin 0 and spin 1

2
particles. We hope that this formalism

we have presented will be useful in describing the QCD dynamics of the top quark
and other heavy particles at LHC.

A Catalogue of massive antenna splitting functions

In this appendix, we catalogue the various antenna splitting functions for massless
particles derived in this paper. Antenna splitting functions not listed are equal to
cases listed below that are related by the P and C symmetries of QCD.

A.1 Splitting functions with one massive scalar

A.1.1 Spin 1
2
antenna: initial dipole SqL

S(SgLqL) =
Q

2K

∣∣∣∣〈A[(b+ c)ac〉
[cac〉[bc]

∣∣∣∣2
S(SgRqL) =

Q

2K

∣∣∣∣〈A[b〉〈bac][cac〉〈bc〉

∣∣∣∣2 (81)

A.1.2 Spin 1 antenna: initial dipole SgL

S(SgLgL) =
1

(2K)2

∣∣∣∣ 1

[bc]

[〈A[b〉2[bac〉
[cac〉

+ 2〈A[c〉〈A[b〉+
〈A[c〉2[cab〉

[bab〉

]∣∣∣∣2

S(SgRgL) =
1

(2K)2

∣∣∣∣〈A[b〉2〈bac][cac〉〈bc〉

∣∣∣∣2

S(SgLgR) =
1

(2K)2

∣∣∣∣〈A[c〉2〈cab][bab〉〈bc〉

∣∣∣∣2
S(SgRgR) = 0

S(SqRqL) =
1

(2K)2
[bA[b〉2

[bcb〉
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S(SqLqR) =
1

(2K)2
[cA[c〉2

[bcb〉
(82)

Note that the last two expressions are already squared and evaluate to values that
are real and positive for the case of a final-state antenna. For example,

S(SqRqL) =
1

(2K)2
(2b · A[)2

2b · c
.

A.2 Splitting functions with one massive fermion

A.2.1 Spin 0 antenna: initial dipole QLqL

S(QLgLqL) =
Q

2K

∣∣∣∣〈a[c〉[a]Qb〉[a]c][cac〉

∣∣∣∣2
S(QLgRqL) =

Q

2K

∣∣∣∣〈a[b〉[cQb〉〈bc〉[cac〉

∣∣∣∣2
S(QRgLqL) =

m2Q

2K

∣∣∣∣ 〈a]c〉[a[Qb〉〈a]a[〉[a[c][cac〉

∣∣∣∣2
S(QRgRqL) =

m2Q

2K

∣∣∣∣ 〈a]b〉[cQb〉〈a]a[〉〈bc〉[cac〉

∣∣∣∣2 (83)

A.2.2 Spin 1
2
antenna: initial dipole QLgL

S(QLgLgL) =
1

(2K)2

∣∣∣∣〈A[b〉(Q2[a]ac〉 −m2[a]Qc〉)
[a]a[]〈cac][bc]

+
〈A[c〉(Q2[a]ab〉 −m2[a]Qb〉)

[a]a[]〈bab][bc]

∣∣∣∣2
S(QLgRgL) =

1

(2K)2

∣∣∣∣〈a[b〉〈A[b〉〈bac]〈cac]〈bc〉

∣∣∣∣2
S(QLgLgR) =

1

(2K)2

∣∣∣∣〈a[c〉〈A[c〉〈cab]〈bab]〈bc〉

∣∣∣∣2
S(QLgRgR) = 0

S(QRgLgL) =
m2

(2K)2

∣∣∣∣〈A[b〉(〈a]aQc〉 −Q2〈a]c〉)
〈a]a[〉〈cac][bc]

+
〈A[c〉(〈a]aQb〉 −Q2〈a]b〉)

〈a]a[〉〈bab][bc]

∣∣∣∣2
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S(QRgRgL) =
m2

(2K)2

∣∣∣∣〈a]b〉〈A[b〉〈bac]〈a]a[〉〈cac]〈bc〉

∣∣∣∣2
S(QRgLgR) =

m2

(2K)2

∣∣∣∣〈a]c〉〈A[c〉〈cab]〈a]a[〉〈bab]〈bc〉

∣∣∣∣2
S(QRgRgR) = 0

S(QLqRqL) =
1

(2K)2
[ba[b〉[bA[b〉

[bcb〉

S(QLqLqR) =
1

(2K)2
[ca[c〉[cA[c〉

[bcb〉

S(QRqRqL) =
m2

(2K)2
[ba]b〉[bA[b〉
[a]aa]〉[bcb〉

S(QRqLqR) =
m2

(2K)2
[ca]c〉[cA[c〉
[a]aa]〉[bcb〉

(84)

As in A.1.2, the last four expressions here are already squared and evaluate to
real, positive values.

A.2.3 Spin 1 antenna: initial dipole QLqR

S(QLgRqR) =
1

(2K)2

∣∣∣∣〈a[B〉[A[(b+ c)ac]

〈cac]〈bc〉

∣∣∣∣2
S(QLgLqR) =

1

(2K)2

∣∣∣∣ [A[b]([a]ac〉[bQB〉+m2〈cB〉[a]b])
[a]a[]〈cac][bc]

∣∣∣∣2
S(QRgRqR) =

m2

(2K)2

∣∣∣∣〈a]B〉[A[(b+ c)ac]

〈a]a[〉〈cac]〈bc〉

∣∣∣∣2
S(QRgLqR) =

m2

(2K)2

∣∣∣∣ [A[b](〈a]B〉〈cab] + 〈a]c〉〈Bcb])
〈a]a[〉〈cac]〈bc〉

∣∣∣∣2 (85)

A.2.4 Spin 3
2
antenna: initial dipole QRgL

S(QLgLgL) =
m2Q2

(2QK)3

∣∣∣∣ [a]B]

[a]a[][bc]

{〈A[b〉〈A[(b+ c)ac〉
〈cac]

+
〈A[c〉〈A[(b+ c)ab〉

〈bab]

}∣∣∣∣2
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S(QLgRgL) =
m2Q2

(2QK)3

∣∣∣∣〈A[b〉2([a]B]〈bac] + [a]c]〈bcB])

[a]a[]〈cac]〈bc〉

∣∣∣∣2

S(QLgLgR) =
m2Q2

(2QK)3

∣∣∣∣〈A[c〉2([a]B]〈cab] + [a]b]〈cbB])

[a]a[]〈bab]〈bc〉

∣∣∣∣2
S(QLgRgR) = 0

S(QRgLgL) =
Q2

(2QK)3

∣∣∣∣ [a[B]

[bc]

{〈A[b〉〈A[(b+ c)ac〉
〈cac]

+
〈A[c〉〈A[(b+ c)ab〉

〈bab]

}∣∣∣∣2

S(QRgRgL) =
Q2

(2QK)3

∣∣∣∣ 〈A[b〉2〈cac]〈bc〉

{
[a[c]〈bQB] +m2 〈a]b〉

〈a]a[〉
[cB]

}∣∣∣∣2

S(QRgLgR) =
Q2

(2QK)3

∣∣∣∣ 〈A[c〉2〈bab]〈bc〉

{
[a[b]〈cQB] +m2 〈a]c〉

〈a]a[〉
[bB]

}∣∣∣∣2
S(QRgRgR) = 0

S(QLqRqL) =
m2Q2

(2QK)3
[Ba]B〉[bA[b〉2

[a]aa]〉[bcb〉

S(QLqLqR) =
m2Q2

(2QK)3
[Ba]B〉[cA[c〉2

[a]aa]〉[bcb〉

S(QRqRqL) =
Q2

(2QK)3
[Ba[B〉[bA[b〉2

[bcb〉

S(QRqLqR) =
Q2

(2QK)3
[Ba[B〉[cA[c〉2

[bcb〉
(86)

As in A.1.2, the last four expressions here are already squared and evaluate to
real, positive values.

A.3 Splitting functions with two massive scalars

A.3.1 Spin 0 antenna: initial dipole S1S2

S(S1gLS2) = Q2

∣∣∣∣ 〈cabc〉〈cac][cbc〉

∣∣∣∣2
S(S1gRS2) = Q2

∣∣∣∣ [cabc]

[cac〉〈cbc]

∣∣∣∣2 (87)
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A.4 Splitting functions with a massive fermion and a massive scalar

A.4.1 Spin 1
2
antenna: initial dipole Q1S2

S(Q1LgLS2) =
Q2

(E1 +K)(E2 +K)

∣∣∣∣〈a[B[〉〈cabc〉
〈cac][cbc〉

− 〈a
[c〉〈cB[〉
〈cac]

∣∣∣∣2
S(Q1RgLS2) =

m2
1Q

2

(E1 +K)(E2 +K)

∣∣∣∣ 1

〈a]a[〉

{〈a]B[〉〈cabc〉
〈cac][cbc〉

− 〈a
]c〉〈cB[〉
〈cac]

}∣∣∣∣2
S(Q1LgRS2) =

Q2

(E1 +K)(E2 +K)

∣∣∣∣〈a[B[〉[cabc]
[cac〉〈cbc]

∣∣∣∣2 .
S(Q1LgRS2) =

m2
1Q

2

(E1 +K)(E2 +K)

∣∣∣∣ 1

〈a]a[〉
〈a]B[〉[cabc]

[cac〉〈cbc]

∣∣∣∣2 (88)

A.5 Splitting functions with two massive fermions

A.5.1 Spin 0 antenna: initial dipole Q1LQ2L

S(Q1LgLQ2L) =
Q2

((E1 +K)(E2 +K))2

∣∣∣∣〈a[B[〉〈cabc〉〈A[b[〉
〈cac][cbc〉

−〈a
[c〉〈cB[〉〈A[b[〉
〈cac]

− 〈a
[B[〉〈A[c〉〈cb[〉

[cbc〉

∣∣∣∣2
S(Q1LgLQ2R) =

m2
2Q

2

((E1 +K)(E2 +K))2

∣∣∣∣ 1

〈b[b]〉

{〈a[B〉[〈cabc〉〈A[b]〉
〈cac][cbc〉

−〈a
[c〉〈cB[〉〈A[b]〉
〈cac]

− 〈a
[B[〉〈A[c〉〈cb]〉

[cbc〉

}∣∣∣∣2
S(Q1RgLQ2L) =

m2
1Q

2

((E1 +K)(E2 +K))2

∣∣∣∣ 1

〈a]a[〉

{〈a]B〉[〈cabc〉〈A[b[〉
〈cac][cbc〉

−〈a
]c〉〈cB[〉〈A[b[〉
〈cac]

− 〈a
]B[〉〈A[c〉〈cb[〉

[cbc〉

}∣∣∣∣2
S(Q1RgLQ2R) =

m2
1m

2
2Q

2

((E1 +K)(E2 +K))2

∣∣∣∣ 1

〈a]a[〉〈b]b[〉

{〈a]B[〉〈cabc〉〈A[b]〉
〈cac][cbc〉

−〈a
]c〉〈cB[〉〈A[b]〉
〈cac]

− 〈a
]B[〉〈A[c〉〈cb]〉

[cbc〉

}∣∣∣∣2

26



S(Q1LgRQ2L) =
Q2

((E1 +K)(E2 +K))2

∣∣∣∣〈a[B[〉[cabc]〈A[b[〉
〈cac][cbc〉

}∣∣∣∣2
S(Q1LgRQ2R) =

m2
2Q

2

((E1 +K)(E2 +K))2

∣∣∣∣ 1

〈b[b]〉
〈a[B[〉[cabc]〈A[b]〉
〈cac][cbc〉

∣∣∣∣2
S(Q1RgRQ2L) =

m2
1Q

2

((E1 +K)(E2 +K))2

∣∣∣∣ 1

〈a]a[〉
〈a]B〉[[cabc]〈A[b[〉
〈cac][cbc〉

∣∣∣∣2
S(Q1RgRQ2R) =

m2
1m

2
2Q

2

((E1 +K)(E2 +K))2

∣∣∣∣ 1

〈a]a[〉〈b]b[〉
〈a]B[〉[cabc]〈A[b]〉
〈cac][cbc〉

∣∣∣∣2 (89)

A.5.2 Spin 1 antenna: initial dipole Q1LQ2R

S(Q1LgLQ2L) =
m2

2Q
2

((E1 +K)(E2 +K))2

∣∣∣∣ 1

〈b[b]〉

{〈a[B[〉〈cabc〉[A[b]]
〈cac][cbc〉

− 〈a
[c〉〈cB[〉[A[b]]
〈cac]

}∣∣∣∣2
S(Q1LgLQ2R) =

Q2

((E1 +K)(E2 +K))2

∣∣∣∣〈a[B[〉〈cabc〉[A[b[]
〈cac][cbc〉

− 〈a
[c〉〈cB[〉[A[b[]
〈cac]

}∣∣∣∣2
S(Q1RgLQ2L) =

m2
1m

2
2Q

2

((E1 +K)(E2 +K))2

∣∣∣∣ 1

〈a]a[〉[b[b]]

{〈a]B[〉〈cabc〉[A[b]]
〈cac][cbc〉

− 〈a
]c〉〈cB[〉[A[b]]
〈cac]

}∣∣∣∣2
S(Q1RgLQ2R) =

m2
1Q

2

((E1 +K)(E2 +K))2

∣∣∣∣ 1

〈a]a[〉

{〈a]B[〉〈cabc〉[A[b[]
〈cac][cbc〉

− 〈a
]c〉〈cB[〉〈A[b[〉
〈cac]

}∣∣∣∣2
S(Q1LgRQ2L) =

m2
2Q

2

((E1 +K)(E2 +K))2

∣∣∣∣ 1

[b[b]]

{〈a[B[〉[cabc][A[b]]
〈cac][cbc〉

− 〈a
[B[〉[A[c][cb]]

[cbc〉

}∣∣∣∣2
S(Q1LgRQ2R) =

Q2

((E1 +K)(E2 +K))2

∣∣∣∣〈a[B[〉[cabc][A[b[]
〈cac][cbc〉

− 〈a
[B[〉[A[c][cb[]

[cbc〉

∣∣∣∣2
S(Q1RgRQ2L) =

m2
1m

2
2Q

2

((E1 +K)(E2 +K))2

∣∣∣∣ 1

〈a]a[〉[b[b]]

{〈a]B[〉[cabc][A[b[]
〈cac][cbc〉

− 〈a
[B[〉[A[c][cb]]

[cbc〉

}∣∣∣∣2
S(Q1RgRQ2R) =

m2
1Q

2

((E1 +K)(E2 +K))2

∣∣∣∣ 1

〈a]a[〉

{〈a]B[〉[cabc][A[b[]
〈cac][cbc〉

− 〈a
[B[〉[A[c][cb[]

[cbc〉

}∣∣∣∣2 (90)

A.6 Splitting functions with pair production of scalars

A.6.1 Spin 0 antenna: initial dipole gLgL

S(gLSS) =
1

Q2

∣∣∣∣〈a[b, c]a〉
sbc

∣∣∣∣2 (91)
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A.6.2 Spin 1
2
antenna: initial dipole qLgL

S(qLSS) =
1

Q2

∣∣∣∣〈a[b, c]A〉
sbc

∣∣∣∣2 (92)

A.6.3 Spin 3
2
antenna: initial dipole qRgL

S(qRSS) =
1

Q4

∣∣∣∣ [aB]〈A[b, c]A〉
sbc

∣∣∣∣2 (93)

A.6.4 Spin 2 antenna: initial dipole gRgL

S(gRSS) =
1

Q6

∣∣∣∣ [aB]2〈A[b, c]A〉
sbc

∣∣∣∣2 (94)

A.7 Splitting functions with pair production of fermions

A.7.1 Spin 0 antenna: initial dipole gLgL

S(gLQLQL) =
m2

Q2s2bc

∣∣∣∣〈aQb]]〈c[a〉[b[b]]
+
〈aQc]]〈b[a〉

[c[c]]

∣∣∣∣2
S(gLQLQR) =

1

Q2s2bc

∣∣∣∣〈aQc[]〈b[a〉+
m2

[b[b]]〈c[c]〉
〈aQb]]〈c]a〉

∣∣∣∣2
S(gLQRQL) =

1

Q2s2bc

∣∣∣∣〈aQb[]〈c[a〉+
m2

〈b[b]〉[c[c]]
〈aQc]]〈b]a〉

∣∣∣∣2
S(gLQRQR) =

m2

Q2s2bc

∣∣∣∣〈aQc[]〈b]a〉[b[b]]
+
〈aQb[]〈c]a〉

[c[c]]

∣∣∣∣2 (95)

A.7.2 Spin 1
2
antenna: initial dipole qLgL

S(qLQLQL) =
m2

4Q2s2bc

∣∣∣∣〈aQb]]〈c[A〉[b[b]]
+
〈aQc]]〈b[A〉

[c[c]]
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+
〈A(Q− a)b]]〈c[a〉

[b[b]]
+
〈A(Q− a)c]]〈b[a〉

[c[c]]

∣∣∣∣2
S(qLQLQR) =

1

4Q2s2bc

∣∣∣∣〈aQc[]〈b[A〉+
m2

[b[b]]〈c[c]〉
〈aQb]]〈c]A〉

+〈A(Q− a)c[]〈b[a〉+
m2

[b[b]]〈c[c]〉
〈A(Q− a)b]]〈c]a〉

∣∣∣∣2
S(qLQRQL) =

1

4Q2s2bc

∣∣∣∣〈aQb[]〈c[A〉+
m2

〈b[b]〉[c[c]]
〈aQc]]〈b]A〉

+〈A(Q− a)b[]〈c[a〉+
m2

〈b[b]〉[c[c]]
〈A(Q− a)c]]〈b]a〉

∣∣∣∣2
S(qLQRQR) =

m2

4Q2s2bc

∣∣∣∣〈aQc[]〈b]A〉[b[b]]
+
〈aQb[]〈c]A〉

[c[c]]

+
〈A(Q− a)c[]〈b]a〉

[b[b]]
+
〈A(Q− a)b[]〈c]a〉

[c[c]]

∣∣∣∣2 (96)

A.7.3 Spin 3
2
antenna: initial dipole qRgL

S(qRQLQL) =
m2

Q4s2bc

∣∣∣∣[aB]
{〈A(Q− a)b]]〈c[A〉

[b[b]]
+
〈A(Q− a)c]]〈b[A〉

[c[c]]

}∣∣∣∣2
S(qRQLQR) =

1

Q4s2bc

∣∣∣∣[aB]
{
〈A(Q− a)c[]〈b[A〉+

m2

[b[b]]〈c[c]〉
〈A(Q− a)b]]〈c]A〉

}∣∣∣∣2
S(qRQRQL) =

1

Q4s2bc

∣∣∣∣[aB]
{
〈A(Q− a)b[]〈c[A〉+

m2

〈b[b]〉[c[c]]
〈A(Q− a)c]]〈b]A〉

}∣∣∣∣2
S(qRQRQR) =

m2

Q4s2bc

∣∣∣∣[aB]
{〈A(Q− a)c[]〈b]A〉

[b[b]]
+
〈A(Q− a)b[]〈c]A〉

[c[c]]

}∣∣∣∣2 (97)

A.7.4 Spin 2 antenna: initial dipole gRgL

S(gRQLQL) =
m2

Q6s2bc

∣∣∣∣[aB]2
{〈A(Q− a)b]]〈c[A〉

[b[b]]
+
〈A(Q− a)c]]〈b[A〉

[c[c]]

}∣∣∣∣2
S(gRQLQR) =

1

Q6s2bc

∣∣∣∣[aB]2
{
〈A(Q− a)c[]〈b[A〉+

m2

[b[b]]〈c[c]〉
〈A(Q− a)b]]〈c]A〉

}∣∣∣∣2
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S(gRQRQL) =
1

Q6s2bc

∣∣∣∣[aB]2
{
〈A(Q− a)b[]〈c[A〉+

m2

〈b[b]〉[c[c]]
〈A(Q− a)c]]〈b]A〉

}∣∣∣∣2
S(gRQRQR) =

m2

Q6s2bc

∣∣∣∣[aB]2
{〈A(Q− a)c[]〈b]A〉

[b[b]]
+
〈A(Q− a)b[]〈c]A〉

[c[c]]

}∣∣∣∣2 (98)

B Spin-dependent Altarelli-Parisi functions for massive par-
ticles

In this Appendix, we present the spin-dependent Altarelli-Parisi splitting functions
for massless and massive particles. The massless cases were derived in the original
paper of Altarelli and Parisi [3]. Spin-summed Altarelli-Parisi functions for the cases
with massive particles arise in NLO QCD calculations for supersymmetric particle
production. They have been catalogued by Catani, Dittmaier, and Trócsányi in [20].
The spin-dependent functions can be worked out by textbook methods. Here we
present these functions in a representation convenient for comparison to the antenna
splitting functions derived in this paper. We omit the overall color factor of Nc and
divide by 2 so that the splitting accounts the contents of an individual antenna.

Note that, since we work at the leading order in Nc and normalize to a single
antenna, there is no difference between the splitting function for a heavy quark or a
gluino to radiate a gluon. Thus, there are only two cases, the cases of a heavy scalar
S or a heavy quark Q radiating a gluon. The cases of a heavy particle splitting to a
heavy particle by radiating a gluon are given by the same expressions with z → (1−z).

For S → gS,

P (S → SgLS) =
p2T

p2T + z2m2

1− z
z

P (S → SgRS) =
p2T

p2T + z2m2

1− z
z

(99)

For Q→ gQ,

P (QL → QLgL) =
p2T

p2T + z2m2

1

z

P (QL → QLgR) =
p2T

p2T + z2m2

(1− z)2

z
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P (QL → QRgL) =
m2

p2T + z2m2

z4

z

P (QL → QRgR) = 0 (100)
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