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Abstract

We conjecture that all CP violations (both Dirac and Majorana types) arise from a common origin
in neutrino seesaw. With this conceptually attractive and simple conjecture, we deduce that µ−τ
breaking shares the common origin with all CP violations. We study the common origin of µ−τ
and CP breaking in the Dirac mass matrix of seesaw Lagrangian (with right-handed neutrinos being
µ−τ blind), which uniquely leads to inverted mass-ordering of light neutrinos. We then predict a
very different correlation between the two small µ−τ breaking observables θ13− 0◦ and θ23− 45◦ ,
which can saturate the present experimental upper limit on θ13. This will be tested against our
previous normal mass-ordering scheme by the on-going oscillation experiments. We also analyze the
correlations of θ13with Jarlskog invariant and neutrinoless ββ-decay observable. From the common
origin of CP and µ− τ breaking in the neutrino seesaw, we establish a direct link between the
low energy CP violations and the cosmological CP violation for baryon asymmetry. With these
we further predict a lower bound on θ13 , supporting the on-going probes of θ13 at Daya Bay,
Double Chooz and RENO experiments. Finally, we analyze the general model-independent Z2 ⊗Z2

symmetry structure of the light neutrino sector, and map it into the seesaw sector, where one of the
Z2’s corresponds to the µ−τ symmetry Z

µτ
2 and another the hidden symmetry Z

s
2 (revealed in our

previous work) which dictates the solar mixing angle θ12 . We derive the physical consequences of
this Z

s
2 and its possible partial violation in the presence of µ−τ breaking (without or with neutrino

seesaw), regarding the θ12 determination and the correlation between µ−τ breaking observables.
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I. Introduction

We conjecture that all CP violations (both Dirac and Majorana types) arise from a common origin in neutrino
seesaw. With this conceptually attractive and simple conjecture, we deduce that µ−τ breaking shares the common
origin with all CP violations, since the µ−τ symmetric limit enforces vanishing mixing angle θ13 and thus Dirac CP
conservation.
In a recent work [1], we studied the common origin of soft µ−τ and CP breaking in the neutrino seesaw, which

is uniquely formulated in the dimension-3 Majorana mass term of singlet right-handed neutrinos. This formulation
predicts the normal mass ordering (NMO) for light neutrinos. In this work, we study in parallel a different realization
of the common origin of µ−τ and CP breaking in the “µ−τ blind seesaw”, where the right-handed neutrinos are
singlet under the µ−τ transformation. We then find the Dirac mass-matrix to be the unique place for the common
origin of µ−τ and CP breaking in the µ−τ blind seesaw. Since the Dirac mass-matrix arises from Yukawa interactions
with Higgs boson(s), this can also provide an interesting possibility of realizing spontaneous CP violation with CP
phases originating from the vacuum expectation values of Higgs fields. Different from our previous construction [1],
we reveal that the common origin of µ−τ and CP breaking in the Dirac mass-matrix uniquely leads to the inverted
mass-ordering (IMO) of light neutrinos and thus different neutrino phenomenology. Hence, the present mechanism can
be distinguished from the previous one [1] by the on-going and upcoming experiments on the neutrino oscillations [2]
and neutrinoless double-beta decays [3].
The oscillation data from solar and atmospheric neutrinos, and from the terrestrial neutrino beams produced in

the reactor and accelerator experiments, have measured two mass-squared differences
(
∆m2

31, ∆m2
21

)
and two large

mixing angles (θ12, θ23) to good accuracy [4][5]. The two compelling features are [4][5]: (i) the atmospheric neutrino
mixing angle θ23 has only small deviations from its maximal value of θ23 = 45◦ ; (ii) the reactor neutrino mixing
angle θ13 is found to be small, having its allowed range still consistent with θ13 = 0◦ at 90%C.L. Hence, the pattern
of (θ23, θ13) = (45◦, 0◦) is strongly supported by the experimental data as a good zeroth order approximation. It is
important to note that this pattern corresponds to the µ−τ symmetry and Dirac CP conservation in the neutrino
sector, where the µ−τ symmetry is determined by both values of (θ23, θ13) = (45◦, 0◦) and the Dirac CP conservation
is due to θ13 = 0◦ . On the theory ground, it is natural and tempting to expect a common origin for all CP-violations,
although the Dirac and Majorana CP-violations appear differently in the light neutrino mass-matrix of the low energy
effective theory. Given such a common origin for two kinds of CP-violations, then they must vanish together in the
µ−τ symmetric limit. For the µ−τ blind seesaw, we can uniquely formulate this common breaking in the Dirac mass
matrix, leading to distinct neutrino phenomenology.
With such a conceptually attractive and simple construction of the common breaking of two discrete symmetries,

we can predict the µ−τ breaking at low energies and derive quantitative correlations between the two small deviations,
θ23−45◦ and θ13−0◦, very different from that of the previous NMO scheme [1]. Our predicted range of θ13 can saturate
its present experimental upper limit. The improved measurements of θ23 will come from the Minos [7] and T2K [8]
experiments, etc, while θ13 will be more accurately probed by the on-going reactor experiments, Daya Bay [10][11],
Double Chooz [12], and RENO [13], as well as the accelerator experiments T2K [8], NOνA [14] and LENA [15], etc. We
further derive the observed baryon asymmetry via leptogenesis at seesaw scale, and analyze the correlation between
the leptogenesis and the low energy neutrino observables in the present IMO scheme. Especially, we deduce a lower
bound on the reactor neutrino mixing angle θ13 & 1◦ , and demonstrate that most of the predicted parameter space
will be probed by the on-going Double Chooz, Daya Bay, and RENO reactor experiments.
Finally, we will analyze the most general Z2 ⊗ Z2 symmetry structure of the light neutrino sector, and map it into

the seesaw sector, where one of the Z2’s is the µ−τ symmetry Z
µτ
2 and another the hidden symmetry Zs

2 (revealed
in our recent work [1] for the NMO scheme), which dictates the solar mixing angle θ12 . We derive the physical
consequences of the Zs

2 for the most general light neutrino mass-matrix (without seesaw) and for the seesaw models
(with different µ−τ breaking mechanisms). In particular, we analyze the partial violation of Zs

2 in the presence of µ−τ
breaking for the µ−τ blind seesaw, which leads to a modified new correlation between the µ−τ breaking observables,
very different from that of Ref. [1]. The determination of θ12 is systematically studied for the current IMO scheme
and the partial violation of Z

s
2 will be clarified.

We organize this paper as follows. In Sec. II we present a unique construction for the common origin of the µ−τ
and CP breakings in the neutrino seesaw with µ−τ blind right-handed neutrinos. Then, we give in Sec. III a model-
independent reconstruction of light neutrino mass-matrix under inverted mass-ordering and with small µ−τ and CP
violations at low energies. In Sec. IV.A, we explicitly derive the low energy µ−τ and CP violation observables from the
common breaking in the Dirac mass-matrix of the µ−τ blind seesaw. These include the two small deviations for the
mixing angles θ23− 45◦ and θ13− 0◦, the Jarlskog invariant for CP-violations, and the Mee element for neutrinoless
double-beta decays. In Sec. IV.B we study the cosmological CP violation via leptogenesis in our model, this can
generate the observed baryon asymmetry of the universe. Using all the existing data from neutrino oscillations and
the observed baryon asymmetry [16, 17], we derive the direct link between the cosmological CP-violation and the low
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energy Jarlskog invariant J . We further predict a lower bound on the reactor mixing angle θ13 , and deduce a nonzero
Jarlskog invariant J with negative range. We also establish a lower limit on the leptogenesis scale for producing the
observed baryon asymmetry. In Sec. V, we analyze the determination of solar mixing angle θ12 and its relation to
the hidden symmetry Zs

2 in the light neutrino sector (without seesaw) and in the seesaw sector (with two different
realizations of µ−τ breaking). Finally, conclusions are summarized in the last sectionVI.

II.Common Origin of µ−τ and CP Breaking from Neutrino Seesaw

with Inverted Ordering

The current global fit of neutrino data [4] for the three mixing angles and two mass-squared differences is summarized
in Table-I. We note a striking pattern of the mixing angles, where the atmospheric angle θ23 has its central value
slightly below the maximal mixing [18] of 45◦ and the reactor angle θ13 slightly above 0◦. So the neutrino data support
two small deviations θ23 − 45◦ and θ23 − 0◦ of the same order,

−7.0◦ < (θ23 − 45◦) < 5.5◦ , 0◦ 6 (θ13 − 0◦) < 9.5◦ , (2.1)

at 90%C.L., with the best fitted values, (θ23 − 45◦) = −2.2◦ and (θ13 − 0◦) = 5.1◦. This justifies a fairly good
zeroth order approximation, θ23 = 45◦ and θ13 = 0◦, under which two exact discrete symmetries emerge, i.e., the
µ−τ symmetry [19] and the Dirac CP conservation in the neutrino sector. It is clear that the µ−τ symmetry and
the associated Dirac CP-invariance are well supported by all neutrino data as a good zeroth order approximation, and
have to appear in any viable theory for neutrino mass-generation. We also note that the θ13 = 0◦ limit does not
remove the possible low energy Majorana CP-phases, but since the Majorana CP-violation comes from a common
origin with the Dirac CP-violation in our theory construction (cf. below), it has to vanish as the Dirac CP-violation
goes to zero in the µ−τ symmetric limit.

Parameters Best Fit 90% C.L. Limits 99% C.L. Limits 1σ Limits 3σ Limits

∆m2
21(10

−5eV2) 7.59 7.26 − 7.92 7.00− 8.11 7.39 − 7.79 6.90 − 8.20

∆m2
31(10

−3eV2)(NMO) 2.46 2.26 − 2.66 2.14− 2.78 2.34 − 2.58 2.09 − 2.83

∆m2
13(10

−3eV2)(IMO) 2.36 2.18 − 2.54 2.04− 2.68 2.25 − 2.47 1.99 − 2.73

θ12 34.5◦ 32.8◦− 36.0◦ 32.1◦− 37.2◦ 33.5◦− 35.5◦ 31.7◦− 37.7◦

θ23 42.8◦ 38.0◦− 50.5◦ 36.5◦− 52.0◦ 39.9◦− 47.5◦ 35.5◦− 53.5◦

θ13 5.1◦ 0◦− 9.5◦ 0◦− 11.3◦ 1.8◦− 8.1◦ 0◦− 12.0◦

TABLE I. Updated global analysis [4] of solar, atmospheric, reactor and accelerator neutrino data for three-neutrino oscillations,
where the AGSS09 solar fluxes and the modified Gallium capture cross-section [20] are used.

In our theory construction, we conjecture that all CP violations (both Dirac and Majorana types) have a common
origin and thus they must share the common origin with the µ−τ breaking. For the neutrino seesaw with heavy
right-handed neutrinos blind to the µ−τ symmetry, this common origin can only come from the Dirac mass-term.
In the following, we first consider the minimal neutrino seesaw Lagrangian with exact µ−τ and CP invariance, from
which we will derive the seesaw mass-matrix for the light neutrinos. Diagonalizing this zeroth order mass-matrix
we predict the inverted mass-ordering of light neutrinos and deduce the mixing angles, (θ23, θ13)0 = (45◦, 0◦) , as
well as a formula for the solar angle θ12 . Then we will construct the common origin for the µ−τ and CP breaking
in the Dirac mass-matrix. Finally, we systematically expand the small µ−τ and CP breaking effects in the seesaw
mass-matrix to the first nontrivial order.

A. µ−τ and CP Symmetries of Neutrino Seesaw with Inverted Ordering

The right-handed neutrinos are singlets under the standard model gauge group, and thus can be Majorana fields
with large masses. This naturally realizes the seesaw mechanism [21] which provides the simplest explanation for the

3



small masses of light neutrinos. For simplicity, we consider the Lagrangian for the minimal neutrino seesaw [22, 23],
with two right-handed singlet Majorana neutrinos besides the standard model (SM) particle content,

Lss = − L Yℓ ΦℓR − L YνΦ̃ N +
1

2
N TMRĈN + h.c.

= − ℓL Mℓ ℓR − νL mD N +
1

2
N TMRĈN + h.c.+ (interactions) , (2.2)

where L represents three left-handed neutrino-lepton weak doublets, ℓ = (e, µ, τ)T denotes charged leptons, νL =
(νe, νµ, ντ )

T is the light flavor neutrinos, and N = (N1, N2)
T contains two heavy right-handed singlet neutrinos.

The lepton Dirac-mass-matrix Mℓ = v Yℓ/
√
2 and the neutrino Dirac-mass-matrix mD = v√

2
Yν arise from the

Yukawa interactions after spontaneous electroweak symmetry breaking, 〈Φ〉 = (0, v√
2
)T 6= 0 , and the Majorana

mass-term for MR is a gauge-singlet. We can regard this minimal seesaw Lagrangian in Eq. (2.2) as an effective
theory of the general three-neutrino seesaw where the right-handed singlet N3 is much heavier than the other two
(N1, N2) and thus can be integrated out at the mass-scales of (N1, N2), leading to Eq. (2.2). As a result, the minimal
seesaw generically predicts a massless light neutrino [22]; this is always a good approximation as long as one of the
light neutrinos has a negligible mass in comparison with the other two (even if not exactly massless). Extension to
the three-neutrino seesaw will be discussed in Sec. IV.C.
Let us integrate out the heavy neutrinos (N1, N2) in (2.2) and derive the seesaw formula for the 3 × 3 symmetric

Majorana mass-matrix of the light neutrinos,

Mν ≃ mDM−1
R mT

D , (2.3)

where mD is the 3× 2 Dirac mass-matrix, and MR is the 2× 2 Majorana mass-matrix. The diagonalization of Mν is
achieved by unitary rotation matrix Uν via UT

ν MνUν = Dν with Dν = diag(m1, m2, m3) .
The Lagrangian (2.2) is defined to respect both the µ−τ and CP symmetries. Under the µ−τ symmetry Z

µτ
2 , we

have the transformation, νµ ↔ pντ , where p = ± denotes the even/odd parity assignments of the light neutrinos
under Z

µτ
2 . Since the µ−τ symmetry has been tested at low energy via mixing angles of light neutrinos, it is logically

possible that the right-handed heavy Majorana neutrinos in the seesaw Lagrangian (2.2) are singlets under Z
µτ
2 (called

“µ−τ blind”), which is actually the simplest realization of µ−τ symmetry in the neutrino seesaw. In this work we
consider that the right-handed Majorana neutrinos N to be µ−τ blind, i.e., both (N1, N2) are the singlets under Z

µτ
2 ,

and thus can be first rotated into their mass-eigenbasis without affecting the µ−τ symmetric structure of the Dirac
mass-matrix mD . So, in the mass-eigenbasis of (N1, N2), we have MR = diag(M1, M2) . Under the µ−τ and CP
symmetries, the Dirac mass-matrix mD is real and obeys the invariance equation,

GT
ν mD = mD , (2.4)

with

Gν =




1 0 0
0 0 p
0 p 0


 . (2.5)

Next, we note that due to the large mass-splitting of µ and τ leptons, the lepton sector can exhibit, in general, a
different flavor symmetry Gℓ from the µ−τ symmetry Z

µτ
2 in the neutrino sector. The two symmetries Zµτ

2 and Gℓ

could originate from spontaneous breaking of a larger flavor symmetry GF [24]. Under the transformation of left-

handed leptons Fℓ ∈ Gℓ , we have the invariance equation of lepton mass-matrix, F †
ℓ MℓM

†
ℓ Fℓ = MℓM

†
ℓ . As we will

show in Sec. V.B, we are free to choose an equivalent representation dℓ = U †
ℓFℓUℓ of Gℓ from the start under which

the left-handed leptons are in their mass-eigenbasis, where Uℓ is the transformation matrix diagonalizing the lepton

mass-matrix, U †
ℓMℓM

†
ℓUℓ = D2

ℓ with Dℓ = diag(me, mµ, mτ ) . This means that in the lepton mass-eigenbasis, the
conventional Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix V [28] in the leptonic charged current (an
analog of the CKM matrix [29] in the quark sector) is fixed by the transformation Uν of neutrino mass-diagonalization,
V = Uν . We can further rotate the right-handed leptons into their mass-eigenbasis, without affecting the PMNS
matrix, except making the lepton-mass-term diagonal in the seesaw Lagrangian (2.2), i.e., Mℓ = diag(me, mµ, mτ ) .
Under the µ−τ and CP symmetries, we find the Dirac mass-matrix mD to have the following form,

mD =




ā ā′

b̄ c̄

b̄ c̄


 =




σ1 a σ2 a
′

σ1 b σ2 c

σ1 b σ2 c


, (2.6)
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with all elements being real, and σ1 ≡
√
m̂0M1 , σ2 ≡

√
m̂0M2 . As will be shown shortly, the parameter m̂0 is

defined at the seesaw scale and equals the nonzero mass-eigenvalue of the light neutrinos at zeroth-order under the
µ−τ symmetric limit. In (2.6) we have also defined four dimensionless parameters,

(a, b) ≡ (ā, b̄)√
m̂0M1

, (a′, c) ≡ (ā′, c̄)√
m̂0M2

. (2.7)

Then, we find it convenient to define a dimensionless Dirac matrix,

mD ≡ mD(m̂0MR)
− 1

2 =




a a′

b c

b c


. (2.8)

Substituting the above into the seesaw equation (2.3), we derive the µ−τ and CP symmetric mass-matrix for light
neutrinos,

Mν ≃ mDM−1
R mT

D = m̂0

(
mDmT

D

)
= m̂0




a2 + a′2 ab+ a′c ab+ a′c

b2 + c2 b2 + c2

b2 + c2


, (2.9)

which we call the zeroth order mass-matrix. In the next subsection we will further include the small µ−τ and CP
breaking effect. Note that from (2.9), we have det(Mν) = 0 , which generally holds in any minimal seesaw.
Diagonalizing the mass-matrix (2.9), we derive the mass-eigenvalues and mixing angles at zeroth order,

m̂1,2 =
m̂0

2

[
(a2 + a′2 + 2b2 + 2c2)∓

√
[(a2 + a′2)− 2(b2 + c2)]2 + 8(ab+ a′c)2

]
, (2.10a)

m̂3 = 0 , (2.10b)

tan 2θ12 =
2
√
2|ab+ a′c|

|a2 + a′2 − 2(b2 + c2)| , θ23 = 45◦ , θ13 = 0◦ , (2.10c)

where we have made all mass-eigenvalues positive and the mixing angles (θ12, θ13, θ23) within the range
[
0, π

2

]
by

properly defining the rotation matrix. (As shown in Table I, the solar angle θ12 is most precisely measured and its 3σ
range is below 37.7◦, so we always have 2θ12 < π

2 and tan 2θ12 > 0 .) The mixing angles (θ23, θ13) = (45◦, 0◦) are
direct consequence of the µ−τ symmetry, but this symmetry does not fix θ12 . Eqs. (2.10a)-(2.10b) show that the
mass-spectrum of light neutrinos falls into the “inverted mass-ordering” (IMO), m̂2 & m̂1 ≫ m̂3 .

Table I shows that the ratio of two mass-squared differences,
∆m2

21

|∆m2

31
| ≪ 1 . Since for the minimal seesaw model with

IMO, the equation det(Mν) = 0 leads to m̂3 = 0 , so the above ratio requires the approximate degeneracy m̂1 ≃ m̂2

to be a good zeroth order approximation as enforced by the neutrino oscillation data. So, we will realize the exact
degeneracy m̂1 = m̂2 for the µ−τ and CP symmetric mass-matrix (2.9), by imposing the relations for Eq. (2.10a),

(a2 + a′2)− 2(b2 + c2) = 0 , ab+ a′c = 0 . (2.11)

As will be shown in the next subsection, including the common origin of µ−τ and CP breaking in the neutrino seesaw
can produce small non-degeneracy between m̂1 and m̂2 at the next-to-leading order (NLO). Since the mass-parameter
m̂0 is introduced in (2.7) for defining the dimensionless parameters (a, b, c), we can now fix m̂0 by defining

m̂0 ≡ m̂1 = m̂2 , (2.12)

as the zeroth order mass-eigenvalue of light neutrinos, under the normalization condition,

(a2 + a′2) + 2(b2 + c2) = 2 . (2.13)

Combining this relation to Eq. (2.11), we can deduce,

a2 = 2c2 = 1− 2b2 , a′2 = 2b2 , c2 =
1

2
− b2 , a′c = −ab , (2.14)

where we see that three of the four parameters, (a, a′, c), can all be solved in terms of b . The last equation in
(2.14) is not independent, but it helps to fix a relative sign. We note that in (2.9) the µ−τ symmetric seesaw mass-
matrix Mν contains five parameters, the mass-parameter m̂0 and the four dimensionless parameters (a, b, c, a′).
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The inverted mass-spectrum have imposed a LO condition m̂1 = m̂2 , which results in two constraints in (2.11), and
the normalization condition m̂0 ≡ m̂1 in (2.12) leads to the third constraint (2.13). In consequence, we end up with
only two independent parameters, m̂0 and b .
We note that under the condition of (2.11), the mixing angle θ12 given by (2.10c) has no definition at the zeroth

order (the µ−τ symmetric limit) due to the vanishing numerator and denominator in the formula of tan 2θ12 . But
including the small µ−τ breaking effect will generate the nonzero expression of θ12 at the NLO even though its final
formula does not depend on the µ−τ breaking parameter (cf. Sec. II. B). As we will show in Sec. II. B, the µ−τ breaking
arises from deviation in the element c of mD, so we can apply the l ′Hôpital rule to the expression of tan 2θ12 by taking
the first-order derivatives on its numerator/denominator respect to c and deduce,

tan 2θ12 =
|a′|√
2 |c|

=
|ā′|√
2 |c̄|

, (2.15)

which is consistent with (4.5) of Sec. IV.A from the explicit NLO analysis. For the case with µ−τ breaking arising
from deviation in the element b of mD, we can apply the l ′Hôpital rule again to infer the formula,

tan 2θ12 =
|a|√
2 |b|

=

√
2|c|
|a′| , (2.16)

which is the inverse of (2.15). As will be shown in Sec. V.B, the different forms of µ−τ breaking will affect the
determination of the solar mixing angle θ12. But it is worth to note that the expression of θ12 is fixed by the
µ−τ symmetric mD as in (2.15) or (2.16), and does not explicitly depend on the µ−τ breaking parameter. We will
systematically analyze these features in Sec.V and clarify the difference from our previous construction [1].

B. Common Origin of µ−τ and CP Breaking in the µ−τ Blind Seesaw

In this subsection, we will construct a unique breaking term providing a common origin for both µ−τ and CP
breaking. From this we will further derive predictions of the common µ−τ and CP breaking for the low energy light
neutrino mass-matrix, by treating the small breaking as perturbation up to the first nontrivial order (Sec. IV). We
will analyze the seesaw-scale leptogenesis and its correlations with the low energy observables in Sec. IV. B.
As we have explained, the µ−τ symmetry serves as a good zeroth order flavor symmetry of the neutrino sector,

which predicts θ13 = 0 and thus the Dirac CP-conservation. Hence, the µ−τ symmetry breaking is generically small,
and must generate all Dirac CP-violations at the same time. On the theory ground, it is natural and tempting to
expect a common origin for all CP-violations, even though the Dirac and Majorana CP-violations appear differently
in the light neutrino mass-matrix of the low energy effective theory. For the two kinds of CP-violations arising from
a common origin, then they must vanish together in the µ−τ symmetric limit.
Different from our previous study [1], we consider the heavy right-handed neutrinos to be µ−τ blind in the neutrino

seesaw. Thus the Majorana mass-matrix MR of the right-handed neutrinos must be µ−τ singlet. Hence, we deduce
that the unique common origin of the µ−τ and CP breaking must arise from the Dirac mass-matrix of the seesaw
Lagrangian (2.2). For the minimal seesaw, the most general form of mD is

mD =




a a′

b1 c1

b2 c2


 =




σ1 a σ2 a
′

σ1 b1 σ2 c1

σ1 b2 σ2 c2


, (2.17)

where the scaling factors σ1 ≡
√
m̂0M1 and σ2 ≡

√
m̂0M2 are real mass-parameters as defined in Eq. (2.6). The

six elements of mD can be complex in general. But there are three rephasing degrees of freedom for the left-handed
lepton-doublets. So we can always rotate the three elements in the first column of mD to be all real, hence the
remaining CP phases (associated with the µ−τ breaking) have to appear in the elements c1 and c2 because a′

cannot break µ− τ symmetry and thus should be real. We have conjectured that all CP violations arise from a
common origin, which then must originate from the µ−τ breaking; so we can formulate such a common origin as a
single phase in either c1 or c2 in the minimal construction, where the other two elements in the second column of
mD should be real. Hence, we present a unique minimal construction to formulate the common origin of µ−τ and
CP breaking in the Dirac mass-matrix mD as follows,

mD =




σ1 a σ2 a
′

σ1 b σ2 c(1− ζ′)

σ1 b σ2 c(1− ζeiω)


, (2.18)
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where the dimensionless parameters −1 < ζ′ < 1, 0 6 ζ < 1 , and the CP-phase angle ω ∈ [0, 2π) . Here we have
set b1 = b2 ≡ b since (b1, b2) are already made real and thus cannot serves as the common source of the µ−τ and
CP breaking. Inspecting (2.18) we see that, for any nonzero ζ and ω, the µ−τ and CP symmetries are broken by the
common source of ζeiω . We could also absorb the real parameter ζ′ into c by defining c′ ≡ c(1− ζ′) . Thus we have,

mD =




σ1 a σ2 a
′

σ1 b σ2 c
′

σ1 b σ2 c
′(1 − ζ′′eiω

′

)


, (2.19)

with

ζ′′eiω
′

=
ζeiω − ζ′

1− ζ′
. (2.20)

Given the ranges of (ζ, ζ′) as defined above, we see that the corresponding new parameter ζ′′ of the µ−τ breaking has
a much larger range, including values within 1 . |ζ′′| . 3 (when |ζ|, |ζ′| 6 0.6 for instance), which are beyond the
perturbative expansion. We find that if enforce |ζ′′| < 1 , the parameter-space of (2.19) becomes smaller than (2.18)
and insufficient for making the model fully viable. This means that our formulation of (2.18) is more general and
has larger parameter-space for making theoretical predictions. Hence, we will apply (2.18) for the physical analyses
below.
We note another formulation of such a breaking in the Dirac mass-matrix mD ,

m̂D =




σ1 a σ2 a
′

σ1 b σ2 c(1− ζeiω)

σ1 b σ2 c(1− ζ′)


, (2.21)

which is connected to (2.18) by a µ−τ transformation for the light neutrinos ν = (νe, νµ, ντ ) into ν′ = (νe, ντ , νµ) ,
via ν = Gνν

′ , with Gν [p = 1] defined in Eq. (2.5). Accordingly, the mass-matrix (2.21) transforms as,

m̂D → m̂′
D = GT

ν m̂D = mD , (2.22)

which goes back to (2.18). So the two different formulations (2.18) and (2.21) just cause the µ−τ asymmetric parts
in the seesaw mass-matrix Mν = mDM−1

R mT
D to differ by an overall minus sign. As we will comment further in

Sec. IV.A, this does not affect our predictions for the physical observables and their correlations. So we only need to
focus on the formulation (2.18) for the rest of our analysis.
We may also first rotate the three elements in the second column of (2.17) to be real and then formulate the common

origin of µ−τ and CP breaking as follows,

mD =




σ1 a σ2 a
′

σ1 b(1− ζ′) σ2 c

σ1 b(1− ζeiω) σ2 c


. (2.23)

As will be clarified in Sec. V, this will lead to the determination of solar mixing angle θ12 as in (2.16), in contrast
to (2.18) which predicts a different θ12 as in (2.15). Here θ12 is explicitly fixed by the µ−τ and CP symmetric
parameters of mD in either case. But, we find the predictions for all other µ−τ and CP breaking observables and
their correlations to remain the same as those from the construction in (2.18).
Finally, it is interesting to note that for an extended Higgs sector (consisting of two Higgs doublets or more) we can

generate all CP-phases in the Dirac mass-matrix mD via spontaneous CP violation [30], which is beyond the current
scope and will be elaborated elsewhere [31].

C. Perturbative Expansion for µ−τ and CP Breaking

Let us first consider the 3× 3 mass-matrix Mν light neutrinos, which can be generally presented as,

Mν=




A B1 B2

C1 D

C2


 ≡




A0 B0 B0

C0 D0

C0


+




δA δB1 δB2

δC1 δD

δC2




7



≡M (0)
ν + δMν = M (0)

ν + δM (1)
ν +O(ζ2i ) , (2.24)

where the zeroth order matrix M
(0)
ν corresponds to vanishing µ−τ breaking with ζi = 0 , and the NLO mass-matrix

δM
(1)
ν includes the µ−τ breaking to the first nontrivial order. We find it useful to further decompose δM

(1)
ν into the

µ−τ symmetric and anti-symmetric parts,

δM (1)
ν ≡ δM s

ν + δMa
ν ≡




δA δBs δBs

δCs δD

δCs


 +




0 δBa −δBa

δCa 0

−δCa


, (2.25)

with

δBs ≡ 1

2
(δB1 + δB2) , δBa ≡ 1

2
(δB1 − δB2) , (2.26a)

δCs ≡ 1

2
(δC1 + δC2) , δCa ≡ 1

2
(δC1 − δC2) . (2.26b)

This decomposition is actually unique.
From our construction in the previous subsection, the µ−τ and CP breaking Dirac mass-matrix mD as well as the

Majorana mass-matrix MR is uniquely parameterized as follows,

mD =




σ1 a σ2 a
′

σ1 b σ2 c1

σ1 b σ2 c2


, MR = diag(M1, M2) , (2.27)

with σ1,2 ≡
√
m̂0M1,2 and

c1 = c (1− ζ′) , c2 = c
(
1− ζeiω

)
. (2.28)

Thus, we can explicitly derive the seesaw mass-matrix for light neutrinos,

Mν = m̂0




a2 + a′2 ab+ a′c1 ab+ a′c2

b2 + c21 b2 + c1c2

b2 + c22


. (2.29)

Since the neutrino data require the µ−τ breaking to be small, we can further expand Mν in terms of small breaking
parameter ζ as,

Mν ≡ M (0)
ν + δMν = M (0)

ν + δM (1)
ν +O(ζ2) , (2.30)

with

M (0)
ν =m̂0




a2 + a′2 ab+ a′c ab+ a′c

b2 + c2 b2 + c2

b2 + c2


 = m̂0




1 0 0
1
2

1
2

1
2


 , (2.31a)

δM (1)
ν =m̂0




0 −a′c ζ′ −a′c ζeiω

−2 c2ζ′ −c2(ζ′ + ζeiω)

−2c2ζeiω


 , (2.31b)

where we have used the solution (2.14) for the second step of (2.31a) and the µ−τ breaking expression (4.58b) for
deriving (2.31b). For our current model with the expansion up to O(ζ, ζ′), we deduce from (2.31a)-(2.31b) and
(2.25)-(2.26),

A0 = m̂0(a
2 + a′2) = m̂0 , (2.32a)

B0 = m̂0(ab+ a′c) = 0 , (2.32b)
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C0 = D0 = m̂0(b
2 + c2) =

1

2
m̂0 , (2.32c)

and

δA = 0 , δD = −m̂0c
2(ζ′ + ζeiω) ,

δBs = −1

2
m̂0a

′c(ζ′ + ζeiω) , δCs = −m̂0c
2(ζ′ + ζeiω) ,

δBa = −1

2
m̂0a

′c(ζ′ − ζeiω) , δCa = −m̂0c
2(ζ′ − ζeiω) .

(2.33)

Note that from (2.33) we can compute the ratio,

δBa

δCa

=
a′

2c
= − b

a
, (2.34)

where in the last step we have used the resolution (2.14). It is interesting to note that the ratio (2.34) of the µ−τ
asymmetric parts in the light neutrino mass-matrix Mν only depends on the µ−τ symmetric elements of the Dirac
mass-matrix mD . This ratio just corresponds to the determination of the solar angle θ12 in (2.15) and will be further
confirmed later by the full NLO analysis of Sec. IV.A.

III. Inverted Ordering: Reconstructing Light Neutrino Mass Matrix

with µ−τ and CP Violations at Low Energy

In this section, we give the model-independent reconstruction of the Majorana mass-matrix for light neutrinos
under inverted mass-ordering (IMO), in terms of the low energy observables (mass-eigenvalues, mixings angles and
CP phases). We expand this reconstruction by experimentally well-justified small parameters up to the next-to-leading
order (NLO). Applying this reconstruction formulation to our model will allow us to systematically derive the physical
predictions for the correlations among the low energy observables as well as for the link to the baryon asymmetry via
leptogensis at the seesaw scale.

A. Notation Setup and Model-Independent Reconstruction

Let us consider the general 3× 3 symmetric and complex Majorana mass-matrix for the light neutrinos,

Mν ≡



mee meµ meτ

mµµ mµτ

mττ


 ≡



A B1 B2

C1 D

C2


 . (3.1)

In the mass-eigenbasis of charged leptons, the neutrino mass-matrix Mν can be diagonalized by a unitary transfor-
mation V (= Uν) , i.e., V TMνV = Dν ≡ diag(m1, m2, m3) , and thus we can write the reconstruction equation,

Mν = V ∗DνV
† . (3.2)

The mixing matrix V can be generally expressed as a product of three unitary matrices including a CKM-type mixing
matrix U plus two diagonal rephasing matrices U ′ and U ′′,

V ≡ U ′′UU ′ , (3.3a)

U ≡




cscx −sscx −sxe
iδD

ssca − cssasxe
−iδD csca + sssasxe

−iδD −sacx

sssa + cscasxe
−iδD cssa − sscasxe

−iδD cacx


, (3.3b)

U ′ ≡ diag(eiφ1 , eiφ2 , eiφ3) , U ′′ ≡ diag(eiα1 , eiα2 , eiα3) , (3.3c)

where δD is the Dirac CP-phase. For notational convenience, we have denoted the three neutrino mixing angles
of the PMNS matrix as, (θ12, θ23, θ13) ≡ (θs, θa, θx) , by following Ref. [23]. We will further use the notations,
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(ss, sa, sx) ≡ (sin θs, sin θa, sin θx) and (cs, ca, cx) ≡ (cos θs, cos θa, cos θx) . For the diagonal rephasing matrix U ′,
only two of its three Majorana phases are measurable (such as φ3 − φ1 and φ2 − φ1) after extracting an overall phase
factor. The matrix U ′′ contains another three phases which associate with the flavor-eigenbasis of light neutrinos and
are needed for the consistency of diagonalizing a given mass-matrix Mν .

For convenience we define the rephased mass-eigenvalues D̃ν ≡ U ′∗DνU
′† ≡ (m̃1, m̃2, m̃3) = (m1e

−i2φ
1 , m2e

−i2φ
2 ,

m3e
−i2φ

3) , so the reconstruction equation (3.2) becomes,

Mν = V ′∗D̃νV
′† , (V ′ ≡ U ′′U ) . (3.4)

Thus, we can fully reconstruct all elements of Mν in terms of the rephased mass-eigenvalues (m̃1, m̃2, m̃3), the mixing
angles (θs, θa, θx), the Dirac phase δD, and the rephasing phases αi (which do not appear in physical PMNS mixing
matrix),

mee = e−i2α
1

[
c2sc

2
xm̃1 + s2sc

2
xm̃2 + s2xe

−2iδDm̃3

]
, (3.5a)

mµµ = e−i2α
2

[
(ssca − cssasxe

iδD )2m̃1 + (csca + sssasxe
iδD )2m̃2 + s2ac

2
xm̃3

]
, (3.5b)

mττ = e−i2α
3

[
(sssa + cscasxe

iδD )2m̃1 + (cssa − sscasxe
iδD )2m̃2 + c2ac

2
xm̃3

]
, (3.5c)

meµ = e−i(α
1
+α

2
)
[
cscx(ssca−cssasxe

iδD )m̃1−sscx(csca + sssasxe
iδD )m̃2+sasxcxe

−iδDm̃3

]
, (3.5d)

meτ = e−i(α
1
+α

3
)
[
cscx(sssa+cscasxe

iδD )m̃1−sscx(cssa−sscasxe
iδD )m̃2−casxcxe

−iδDm̃3

]
, (3.5e)

mµτ = e−i(α
2
+α

3
)
[
(ssca − cssasxe

iδD )(sssa + cscasxe
iδD )m̃1

+ (csca + sssasxe
iδD )(cssa − sscasxe

iδD )m̃2 − sacac
2
xm̃3

]
, (3.5f)

where among the Majorana phases φ1,2,3 (hidden in the mass-parameters m̃1,2,3) only two are independent because
an overall phase factor of U ′ can be absorbed into the diagonal rephasing-matrix U ′′. For the case with a vanishing
mass-eigenvalue (such as m3 = 0 in our present model), only one independent phase combination, say ei(φ2

−φ
1
), will

survive. If we impose µ−τ symmetry on the light neutrino mass-matrix Mν , we can deduce [1],

(θa, θx)0 = (45◦, 0◦) , α20 = α30 . (3.6)

The solar mixing angle θs is independent of the µ−τ symmetry and is thus left undetermined. To predict θs, we will
uncover a new flavor symmetry beyond the Z

µτ
2 (cf. Sec. V).

B. Reconstruction of Light Neutrino Mass Matrix with Inverted Ordering

Now we are ready to apply the above general reconstruction formalism to the inverted mass-ordering (IMO),
m2 & m1 ≫ m3 , with m3 = 0 (as predicted by the present minimal seesaw model), in contrast to our previous
model which predicts the normal mass-ordering (NMO) [1]. We introduce a small mass-ratio for light neutrinos,

y′ ≡ m2
2 −m2

1

m2
1

=
∆m2

21

∆m2
13

= 0.029− 0.036 ≪ 1 , (3.7)

as constrained by the neutrino data at 90%C.L. (Table I). So it is sufficient to make perturbative expansion in y′ up
to its linear order. Thus, at the zeroth order of y′, we have equal mass-eigenvalues, m10 = m20 = m0 . Under the
y′-expansion up to next-to-leading order (NLO), mi = m0 + δmi , we have

y′ ≃ 2(δm2 − δm1)

m1

=
2(m2 −m1)

m1

. (3.8)

We can define another small ratio z ≡ δm1

m1

= O(y′) , and deduce,

δm1 = z m1 , δm2 =

(
z +

y′

2

)
m1 , (3.9)

where m1 =
√
∆m2

13 is fixed by the neutrino data, and m0 = m1 − δm1 = (1− z)m1 ≃
√
∆m2

13 .
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Next, we consider the mixing angles and CP-phases. Since the neutrino oscillation data strongly support the µ−τ
symmetry as a good approximate symmetry (3.6), we can define the small deviations from the general µ−τ symmetric
solution (3.6),

δa ≡ θa −
π

4
, δx ≡ θx − 0 , (3.10)

which characterize the µ−τ symmetry breaking. From the data in Table I, we can infer the constrained 90%C.L.
ranges,

0 6 δ2x 6 0.027 , 0 6 δ2a 6 0.015 . (3.11)

For our analysis we will systematically expand the small parameters (δa, δx, y
′, z) up to their linear order. For the

Majorana CP-phases, φ3 drops due to m3 = 0 ; we also remove an overall redundant Majorana phase φ1 (from U ′)
into the redefinition of αj (in U ′′). So, the remaining independent Majorana phase is only φ ,

ᾱj ≡ αj + φ1 , (j = 1, 2, 3) , (3.12a)

φ ≡ φ2 − φ1 = φ0 + δφ . (3.12b)

The expansion up to the NLO for our current reconstruction analysis will include (δᾱ1, δᾱ2, δᾱ3, δφ) . The solar
angle θs (≡ θ12) is independent of the µ−τ breaking and thus receives no NLO correction. Furthermore, we note that
the Dirac phase eiδD is always associated with the small mixing parameter sx (≃ δx) , so it only appears at the NLO
and thus receive no more correction at this order of expansion.
Finally, we give a summary of all relevant NLO parameters in our reconstruction analysis,

( y′, z, δa, δx, δᾱ1, δᾱ2, δᾱ3, δφ) , (3.13)

Each of them is defined as the difference between its full value and zeroth-order value under the µ−τ symmetric limit.
In Sec. IV we will derive these deviations from our seesaw model for the common origin of µ−τ and CP breaking, and
analyze their correlations.
Making the perturbative expansion of (3.13) under the inverted mass-ordering, we first deduce the LO form of the

light neutrino mass-matrix (3.1),

m(0)
ee ≡ A0 = m0e

−2iᾱ10

(
c2s + s2se

−i2φ0

)
, (3.14a)

m(0)
eµ = m(0)

eτ ≡ B0 =
1√
2
m0sscse

−i(ᾱ10+ᾱ20)
(
1− e−i2φ0

)
, (3.14b)

m(0)
µµ = m(0)

ττ ≡ C0 =
1

2
m0e

−2iᾱ20

(
s2s + c2se

−2iφ0

)
= D0 , (3.14c)

where we have also matched to our notation of M
(0)
ν in (2.24). Then, we derive elements of the NLO mass-matrix

δM
(1)
ν from (3.5),

δm(1)
ee ≡ δA = m0e

−i2ᾱ
10

[
z +

s2s
2
y′ − i2(s2s δφ+ δᾱ1)

]
, (3.15a)

δm(1)
eµ ≡ δB1 =

m0√
2
e−i(ᾱ

10
+ᾱ

20
)
[
−csss

2
y′ − eiδDδx + i2csssδφ

]
, (3.15b)

δm(1)
eτ ≡ δB2 =

m0√
2
e−i(ᾱ

10
+ᾱ

20
)
[
−csss

2
y′ + eiδDδx + i2csssδφ

]
, (3.15c)

δm(1)
µµ ≡ δC1 = m0e

−i2ᾱ
20

[
z

2
+

c2s
4
y′ − δa − i(c2s δφ+ δᾱ2)

]
, (3.15d)

δm(1)
ττ ≡ δC2 = m0e

−i2ᾱ
20

[
z

2
+

c2s
4
y′ + δa − i(c2s δφ+ δᾱ3)

]
, (3.15e)

δm(1)
µτ ≡ δD = m0e

−i2ᾱ
20

[
z

2
+

c2s
4
y′ − i

2
(2c2s δφ+ δᾱ2 + δᾱ3)

]
, (3.15f)

where we have matched to our notation of δM
(1)
ν as defined in (2.24). In the above formulas, we have used the µ−τ

symmetric relations for the LO parameters, (θa0, θx0) = (π4 , 0) and ᾱ20 = ᾱ30 , as well as m3 ≡ 0 .
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From (2.25), we can uniquely decompose the elements of δM
(1)
ν in (3.15) as the µ−τ symmetric and anti-symmetric

parts, δM
(1)
ν ≡ δM s

ν + δMa
ν , with their elements given by,

δBs ≡ δB1 + δB2

2
=

m0√
2
e−i(ᾱ

10
+ᾱ

20
)
[
−csss

2
y′ + i2csssδφ

]
,

δBa ≡ δB1 − δB2

2
= − m0√

2
e−i(ᾱ

10
+ᾱ

20
)eiδDδx ,

δCs ≡ δC1 + δC2

2
= m0e

−i2ᾱ
20

[
z

2
+

c2s
4
y′ − i

2
(2c2s δφ+ δα2 + δα3)

]
= δD ,

δCa ≡ δC1 − δC2

2
= −m0e

−i2ᾱ
20

[
δa +

i

2
(δα2 − δα3)

]
.

(3.16)

With these, we will be ready to apply the above reconstruction formulas (3.14), (3.15) and (3.16) to match with (2.24)
in our seesaw model at the LO and NLO, respectively. We will systematically solve these matching conditions in the
next section, which allows us to connect the seesaw parameters to the low energy neutrino observables and deduce
our theoretical predictions.
For matching the seesaw predictions to our reconstruction formalism, we note that the latter was presented at the

low energy scale so far. We need to connect the low energy neutrino parameters to the model predictions at the
seesaw scale, where the possible renormalization group (RG) running effects should be taken into account in principle.
Such RG effects were extensively discussed in the literature [25], and can be straightforwardly applied to the present
analysis. Below the seesaw scale, heavy right-handed neutrinos can be integrated out from the effective theory and the
seesaw mass-eigenvalues mj (j = 1, 2, 3) for light neutrinos obey the approximate one-loop RG equation (RGE) [25],

dmj

dt
=

α̂

16π2
mj , (3.17)

to good accuracy [26], where t = ln(µ/µ0) with µ the renormalization scale. For the SM, the coupling-parameter
α̂ ≃ −3g22 +6y2t +λ , with (g2, yt, λ) denoting the SU(2)L weak gauge coupling, the top Yukawa coupling and Higgs
self-coupling, respectively. Hence, we can deduce the running mass-parameter mj from scale µ0 to µ ,

mj(µ) = χ(µ, µ0)mj(µ0) ≃ exp

[
1

16π2

∫ t

0

α̂(t′) dt′
]
mj(µ0) , (3.18)

with t = ln(µ/µ0) . In the present analysis we will choose, (µ0, µ) = (MZ , M1) , with Z boson mass MZ representing
the weak scale and the heavy neutrino-mass M1 characterizing the seesaw scale.
Consider the minimal neutrino seesaw with inverted mass-spectrum, m2 & m1 ≫ m3 = 0 . We note that the

zero-eigenvalue m3 and the mass ratio y′ do not depend on the RG running scale µ . So we can derive the running
of the two nonzero mass-parameters from weak scale to seesaw scale,

m̂1 ≡ m1(M1) = χ1 m1(MZ), (3.19a)

m̂2 ≡ m2(M1) = χ1 m2(MZ) =
√
1 + y′ m̂1 , (3.19b)

with χ1 ≡ χ(M1,MZ) . In Sec. IV, we will compute the RG running factor χ1 ≡ χ(M1,MZ) numerically, which
depends on the inputs of initial values for α2 = g22/(4π) , yt and the Higgs boson mass MH , via the combination α̂
defined above. Using the electroweak precision data [17, 27], α−1

2 (MZ) = 29.57±0.02 , mt = 173.1±1.4GeV, and the
Higgs-mass range 115 6 MH 6 149GeV [90%C.L.] for the SM, we find the running factor χ(M1,MZ) ≃ 1.3−1.4 for
M1 = 1013 − 1016GeV. Other running effects due to the leptonic mixing angles and CP-phases are all negligible for
the present study since their RGEs contain only flavor-dependent terms and are all suppressed by y2τ = O(10−4) at
least [25]. For the analyses below (Sec. IV), we will first evolve the mass-parameters from the seesaw scale M1 down
to the low energy scale for neutrino oscillations, and then match them with those in our reconstruction formalism.
Including such RG effects just requires to replace the light mass-eigenvalues (m̂1, m̂2) at seesaw scale M1 by the
corresponding (m1, m2) at low energy, and vice versa.

IV.Predictions of Common µ−τ and CP Breaking with Inverted Ordering

In this section we apply the reconstruction formalism (including the RG running effects) in Sec. III. B to our common
µ−τ and CP breaking seesaw in Sec. II. C. Then, we systematically derive the predictions for the low energy neutrino
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observables. This includes the nontrivial correlation between two small µ−τ breaking parameters δx (≡ θ13 − 0)
and δa

(
≡ θ23 − π

4

)
. Furthermore, we study the correlations of θ23 − 45◦ and θ13 with Jarlskog invariant J and

neutrinoless ββ-decay observable Mee . Finally, we study the matter-antimatter asymmetry (baryon asymmetry) via
leptogenesis in the µ−τ blind seesaw, and establish the direct link with low energy neutrino observables. Furthermore,
we will derive a nontrivial lower bound on the reactor mixing angle, θ13 & 1◦ , and restrict the Jarlskog invariant into
a negative range, −0.037 . J . −0.0035 .

A. Predicting Correlations of Low Energy Neutrino Observables

Both µ−τ and CP violations arise from a common origin in the seesaw Lagrangian of our model, which is char-
acterized by the breaking parameter ζeiω and shows up at the NLO of our perturbative expansion. Hence, in the
light neutrino mass-matrix, the small µ−τ breaking parameters (δa, δx) together with all CP-phases are controlled
by ζ and ω . In the following, we will use the reconstruction formalism (Sec. III. B) under IMO for diagonalizing
the light neutrino mass-matrix at the NLO. Then, we will further derive quantitative predictions for these low energy
observables and their correlations.
We first inspect the reconstructed LO mass-matrix M

(0)
ν in (3.14). Matching (3.14) with our model prediction

(2.31a) at the same order, we find the solutions,

ᾱ10 = ᾱ20 = φ0 = 0 , (4.1a)

m10 = m20 = m0 , m3 = 0 , (4.1b)

a2 = 2c2 = 1− 2b2 , a′2 = 2b2 , c2 =
1

2
− b2 , a′c = −ab , (4.1c)

which is also consistent with Eq. (2.14). Here all the LO CP-phases (ᾱ10, ᾱ20, φ0) = 0 because the original CP-
violation in the seesaw Lagrangian vanishes in the ζ = 0 limit (Sec. II. B).

Then, we analyze the NLO light neutrino mass-matrix δM
(1)
ν , as given by (2.25) of our model and by the recon-

struction formula (3.15). We match the two sets of equations at the low energy for the µ−τ symmetric elements,

δA = 0 = m0

[
z +

s2s
2
y′ − i2(s2s δφ+ δᾱ1)

]
, (4.2a)

δBs = −m0

2
a′c(ζ′ + ζeiω) =

m0√
2

[
−csss

2
y′ + i2csssδφ

]
, (4.2b)

δCs = −m0c
2(ζ′ + ζeiω) =

m0

2

[
z +

c2s
2
y′ − i(2c2s δφ+ δᾱ2 + δᾱ3)

]
= δD, (4.2c)

and for µ−τ anti-symmetric elements,

δBa = −m0

2
a′c(ζ′ − ζeiω) = −m0√

2
eiδDδx , (4.3a)

δCa = −m0c
2(ζ′ − ζeiω) = −m0

[
δa +

i

2
(δᾱ2 − δᾱ3)

]
, (4.3b)

where using Eq. (3.19) we have run the mass-parameter m̂0 from the seesaw scale down to the corresponding m0

at low energy for the left-hand-sides of Eqs. (4.2) and (4.3).
From the µ−τ symmetric Eqs. (4.2a)-(4.2b), we can infer six independent conditions for the real and imaginary

parts of (δA, δBs, δCs) , respectively,

z = −s2s
2
y′ , (4.4a)

δᾱ1 = −s2s δφ , (4.4b)

csss√
2

y′ = a′c (ζ′ + ζ cosω) , (4.4c)

2
√
2 csssδφ = −a′c ζ sinω , (4.4d)
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z

2
+

c2s
4
y′ = −c2 (ζ′ + ζ cosω) , (4.4e)

−1

2
(2c2s δφ+ δᾱ2 + δᾱ3) = −c2 ζ sinω . (4.4f)

Thus, with the aid of (4.4a) we take the ratio of (4.4c) and (4.4e), and derive

tan 2θs = − a′√
2 c

=

√
2 b

a
, (4.5)

which coincides with (2.15) in Sec. II. A. Using Eq. (4.5), we deduce from Eq. (4.1c),

a = pa cos 2θs , b = pa
1√
2
sin 2θs , (4.6a)

a′ = pa′ sin 2θs , c = −pa′

1√
2
cos 2θs , (4.6b)

with pa, pa′ = ± denoting the signs of (a, a′). Here we see that the four dimensionless LO parameters (a, a′, b, c)
in the Dirac mass-matrix (2.18) are fixed by the solar mixing angles θs , since the conditions in (4.1c) make three of
them non-independent. Finally, we further resolve (4.4) and derive the NLO parameters,

y′ = −2 cos 2θs (ζ
′ + ζ cosω) , (4.7a)

z = s2s cos 2θs (ζ
′ + ζ cosω) , (4.7b)

δᾱ1 = −1

2
s2s(c

2
s − s2s) ζ sinω , (4.7c)

δφ =
1

2
(c2s − s2s) ζ sinω , (4.7d)

δᾱ2 + δᾱ3 = s2s(s
2
s − c2s) ζ sinω . (4.7e)

It is interesting to note that the present model predicts a generically small Majorana CP-phase angle at low energy,
φ = δφ = O(ζ) , in contrast to our soft breaking model [1] where the low energy Majorana CP-phase angle (φ23) is
not suppressed.

Next, we analyze the µ−τ anti-symmetric equations (4.3a)-(4.3b) for δM
(1)
ν . With (4.6), we can deduce from

(4.3a)-(4.3b),

1

2
sin 2θs cos 2θs(ζ

′ − ζeiω) = −eiδD δx , (4.8a)

1

2
cos2 2θs

(
ζ′ − ζeiω

)
= δa +

i

2
(δᾱ2 − δᾱ3) , (4.8b)

which decompose into

cos δD δx = −1

2
sin 2θs cos 2θs (ζ

′ − ζ cosω) , (4.9a)

sin δD δx =
1

2
sin 2θs cos 2θs (ζ sinω) , (4.9b)

δa =
1

2
cos2 2θs (ζ

′ − ζ cosω) , (4.9c)

δᾱ2 − δᾱ3 = − cos2 2θs (ζ sinω) . (4.9d)

Thus the Dirac CP-phase angle δD can be derived from the ratio of (4.9a) and (4.9b),

tan δD =
ζ sinω

ζ cosω − ζ′
=

δᾱ2 − δᾱ3

2δa
. (4.10)

With Eqs. (4.7a), (4.10) and (4.9), we finally deduce,

ζ′ + ζ cosω = − 1

2 cos 2θs
y′ , −ζ sinω =

2 tan δD
cos2 2θs

δa , (4.11)
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and thus

cos δDδx =− sin 2θs
4

(y′ + 4 cos 2θs ζ′) =
sin 2θs

4
(y′ + 4 cos 2θs cosω ζ) , (4.12a)

δa =
cos 2θs

4
(y′ + 4 cos 2θs ζ′) = −cos 2θs

4
(y′ + 4 cos 2θs cosω ζ) , (4.12b)

δᾱ2 − δᾱ3 = 2 tan δD δa . (4.12c)

From Eqs. (4.12a) and (4.12b), we derive a nontrivial correlation between the low energy µ−τ breaking observables
δa and δx ,

δa = − cot 2θs cos δD δx . (4.13)

This shows that at the NLO the two small µ−τ breaking parameters are proportional to each other, δx ∝ δa . Because
of | cos δD| 6 1 , we can infer from Eq. (4.13) a generic lower bound on δx , for any nonzero δa ,

δx > |δa| tan 2θs , (4.14)

where we have δx ≡ θ13 ∈ [0, π2 ] in our convention. It is worth to note that our previous soft breaking model [1] also
predicted a correlation and a lower bound,

δa = − cot θs cos δD δx , (Prediction of Ref. [1]), (4.15a)

⇒ δx > |δa| tan θs , (4.15b)

where the quantitative difference from the present predictions is that we have the coefficient cot 2θs in Eq. (4.13) as
compared to cot θs in Eq. (4.15a). In fact, this is a profound difference. From the present oscillation data in Table I,
we observe that the deviation of the solar angle θs (≡ θ12) from its maximal mixing value is relatively small,

9.0◦ < 45◦ − θ12 < 12.2◦ , (at 90%C.L.), (4.16)

and this limit only relaxes slightly at 99%C.L., 7.8◦ < 45◦ − θ12 < 12.9◦ . Hence, we see that the range of the
deviation 45◦ − θ12 is at the same level as the two other small deviations θ23 − 45◦ and θ13 − 0◦ shown in Eq. (2.1).
So, we can define a new naturally small quantity,

δs ≡ π

4
− θs , (4.17)

and make expansion for δs as well. Then, we immediately observe a qualitative difference between cot 2θs ≃ 2δs ≪ 1
in (4.13) and cot θs ≃ 1 + 2δs & 1 in (4.15a). Hence, we can rewrite the two correlations (4.13) and (4.15a) in the
well expanded form,

δa ≃ −2 cos δD (δsδx) ≪ δx , (Current Prediction), (4.18a)

δa ≃ − cos δD δx = O(δx) , (Prediction of Ref. [1]). (4.18b)

Two comments are in order. First, we deduce from (4.18) the following patterns of the three mixing angles,

(θ12, θ23, θ13) =
(π
4
− δs,

π

4
−O(δsδx), δx

)
, (in the current model), (4.19a)

(θ12, θ23, θ13) =
(π
4
− δs,

π

4
− δa, δx

)
, (in the model of Ref. [1]), (4.19b)

where for the current model Eq. (4.19a) predicts a nearly maximal atmospheric angle θ23 ≃ π
4 ; while for the soft-

breaking model [1], Eq. (4.19b) allows all three deviations to be comparable. Second, for each given nonzero δa =
θ23 − π

4 , we can deduce the lower limits on δx = θ13 from (4.18),

δx >
|δa|
2δs

≫ |δa| , (Current Prediction), (4.20a)

δx > |δa| , (Prediction of Ref. [1]). (4.20b)

Given the 99%C.L. range of 7.8◦ < δs < 12.2◦ , we derive the lower limit from (4.14) or (4.20a) for the present model,

θ13 > (3.6 ∼ 2.1)|θ23 − 45◦| , (4.21)
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FIG. 1. Predictions of θ13 and θ23− 45◦ as functions of the µ−τ breaking parameter ζ cosω and CP breaking parameter δD .
The experimental inputs are scanned within 90%C.L. ranges and the Dirac phase angle δD ∈ [0, 2π) , with 1500 samples. The
shaded region (yellow) denotes the 90%C.L. limits on θ13 and θ23 − 45◦, from Table I.

which allows θ13 to easily saturate its current upper limit. As another illustration, taking the current “best fit” values
(θ12, θ23) = (34.5◦, 42.8◦) as in Table I, we derive from (4.14) or (4.20a) the lower limits θ13 > 6◦ for the present
model, and θ13 > 1.5◦ for Ref. [1]. Hence, in contrast with Ref. [1], the present model favors a larger θ13, and can
saturate its current upper limit, as will be demonstrated in Fig. 2 below.
In the following, we systematically analyze the predicted parameter space and correlations in the present model

(with inverted mass-ordering). We will find these to be very different from that in our soft breaking model (with
normal mass-ordering) [1]. So, the present model can be tested against that in Ref. [1] by the on-going and upcoming
neutrino experiments.
Using the neutrino data for θs and (∆m2

21, ∆m2
13) (Table I), and scanning the Dirac CP phase-angle δD ∈ [0◦, 360◦) ,

we can plot the two µ−τ breaking mixing angles, θ13 (≡ δx) and θ23− 45◦ (≡ δa), from (4.12a)-(4.12b) and (4.13), as
functions of the theory parameter ζ cosω and δD . Our findings are depicted in Fig. 1(a)-(d) with the experimental
inputs varied within 90%C.L. ranges and with ζ cosω ∈ [−0.6, 0.6] in the natural perturbative region. Here we find
that the theory prediction of θ23 − 45◦ lies in the range,

−4◦ 6 θ23 − 45◦ 6 4◦ , (4.22)

which is within the current experimental bounds. On the other hand the predicted θ13 can saturate the current
experimental limits, and has distinct distributions.
From the theory relations (4.12a)-(4.12b), we can further explore the correlation between the two µ−τ breaking

mixing angles θ13 and θ23 − 45◦ . This is displayed in Fig. 2, where we have varied the measured parameters within
their 90%C.L. ranges, and input the Dirac-phase angle δD ∈ [0, 2π) as well as |ζ′| 6 0.6 . The current 90%C.L.
limits on θ13 are shown by the shaded region (yellow), while the θ13 sensitivities of the on-going Double Chooz [12],
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FIG. 2. Correlation between θ13 and θ23 − 45◦ , based on Eqs. (4.12a)-(4.12b), where the experimental inputs are scanned
within 90%C.L. ranges and the Dirac phase angle δD ∈ [0◦, 360◦) , with 1500 samples. The sensitivities of Double Chooz [12],
RENO [13] and Daya Bay [10] experiments to θ13 are shown by the three horizontal (red) solid lines at 90%C.L., as 5.0◦, 4.1◦

and 2.9◦ (from top to bottom). The Daya Bay’s future sensitivity (2.15◦) is shown by the horizontal dashed (red) line.

RENO [13] and Daya Bay [10] experiments are depicted by the three horizontal (red) lines at 90%C.L., as 5.0◦, 4.1◦

and 2.9◦ (from top to bottom), based on three years of data-taking. The horizontal dashed (red) line represents Daya
Bay’s future sensitivity (2.15◦) with six years of running [32].

Inspecting Fig. 2, we find that the sharp edges on the two sides of the allowed parameter space are essentially
determined by the lower bound given in (4.14), δx > |δa| tan 2θs , where the current data require, 2.2 6 tan 2θs 6 3.1
at 90%C.L. (Table I) and the lower limit tan 2θs = 2.2 just corresponds to the slopes of the sharp edges which are
nearly straight lines. Hence, for any measured nonzero value of θ23 − 45◦ 6= 0 , the Fig. 2 imposes a lower bound
on θ13 , which will be tested by the reactor experiments such as Daya Bay, RENO and Double Chooz. The current
oscillation data favor the central value of θ23 to be smaller than 45◦ (Table I) and this feature is quite robust [6]. From
Fig. 2, we see that taking the current central value of θ23 − 45◦ = −2.2◦ (Table I), the lower bound on θ13 is already
very close to the sensitivity of Double Chooz experiment; and a minor deviation of θ23 − 45◦ = −1.4◦ will push θ13
up to the sensitivity of Daya Bay experiment. Hence, the Daya Bay, RENO and Double Chooz reactor experiments
hold great potential to discover a nonzero θ13 . Furthermore, as shown in Fig. 2, detecting a nonzero θ13 & 3◦ will
strongly favor a nonzero θ23−45◦ . Hence, we further encourage the improved measurements of θ23 by Minos [7] and
T2K [8], as well as future neutrino factory and super-beam facility [33, 34].

Note that our previous soft breaking model [1] predicted a lower bound δx > |δa| tan θs with the slope 0.64 6
tan θs 6 0.73 at 90%C.L., which is about 3.4 − 4.2 times smaller than the present model. This means that given
the same nonzero deviation of θ23 − 45◦ , the current model will place a much stronger lower bound on θ13 , higher
than that in Ref. [1] by a factor of 3.4 − 4.2. Hence, the prediction of Fig. 2 is really encouraging for the upcoming
neutrino oscillation experiments, which will probe the µ−τ violating observables θ13−0◦ and θ23−45◦ to much higher
precision.

Then, we analyze our model predictions for the low energy CP-violation (via Jarlskog invariant J) and the neu-
trinoless double-beta decays (via the element |mee| of Mν). From our theory construction in Sec. II. B, the original
CP-phase eiω in the Dirac mass-matrix of seesaw Lagrangian is the common source of both low energy Dirac and
Majorana CP-violations via the phase angles δD and δφ .

The Dirac CP-violation is characterized by the Jarlskog invariant J [35] in the light neutrino sector with nonzero
CP-phase δD and can be measured by the long baseline neutrino oscillation experiments. On the other hand, the
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FIG. 3. Correlations of θ13 (in degree) with the Jarlskog invariant J [plot-(a)] and with the neutrinoless ββ-decay observable
Mee [plot-(b)]. Each plot has computed 1500 samples. The shaded region (yellow) is allowed by the current data at 90%C.L.

neutrinoless double-beta decay observable |mee| contains both δD and Majorana CP-phase δφ . We can express the
Jarlskog invariant J as follows [35],

J ≡ 1

8
sin 2θs sin 2θa sin 2θx cos θx sin δD =

δx
4
sin 2θs sin δD +O(δ2x, δ

2
a) , (4.23)

where as defined earlier, δx ≡ θx and δa ≡ θa − π
4 . The solutions (4.12a)-(4.12b) leads to the correlation (4.13). We

can input the neutrino data for mixing angles, (θs, δx) ≡ (θ12, θ13) , and mass-ratio, y′ ≡ ∆m2
21/∆m2

13 , as well as
scanning the model-parameter ζ′ in its perturbative range |ζ′| 6 0.6 .
We then study the neutrinoless double-beta decays. Our present model predicts the inverted mass-ordering (IMO)

with m3 = 0 , so from (3.5a) we can derive the mass-matrix element |mee| for neutrinoless double-beta decays,

Mee ≡ |mee| =
∣∣∣
∑

V ∗
ej

2mj

∣∣∣ = m1c
2
x

∣∣∣c2s + s2s
√
1 + y′ e−i2φ

∣∣∣

≃ m1

[
1 +

1

2
s2sy

′ − δ2x − 2s2sc
2
sδφ

2

]
, (4.24)

where in the last step we have expanded δx and δφ to the second order since y′ = O(10−2) is relatively small
as constrained by the current data [cf. (3.7)]. Eq. (4.24) shows that the neutrinoless ββ-decay observable Mee only
contains the second orders of the µ−τ breaking quantity δx (= θ13) and the Majorana CP-phase angle δφ . Hence,
Mee is less sensitive to the µ−τ breaking and Majorana CP-violation at low energies.
We plot the correlation between θ13 and the Jarlskog invariant J in Fig. 3(a), and the neutrinoless ββ-decay

observable Mee is depicted in Fig. 3(b). For the analysis of Fig. 3(a), we have used Eq. (4.12a) where we vary the
model-parameter ζ′ ∈ [−0.6, 0.6] in its perturbative range. We scan all other measured parameters within their
90%C.L. ranges. The shaded region (yellow) in Fig. 3 is allowed by the neutrino data at 90%C.L. Fig. 3(a) shows that
any nonzero J will lead to a lower bound on θ13 due to δx > 4|J |/ sin 2θs as inferred from Eq. (4.23). Combining
the current upper limit θ13 < 9.5◦ (shaded region in yellow) with our parameter space in Fig. 3(b), we predict the
allowed range,

− 0.037 . J . 0.037 , (4.25a)

45.5meV . Mee . 50.8meV , (4.25b)

which can be probed by the on-going neutrinoless double beta decay experiments [3].

Before concluding this subsection, we compare our prediction (4.13) with a recent independent work [36]. In Ref. [36],
using a charged lepton perturbation, Friedberg and Lee derived a very interesting prediction, cos 2θ23 = tan2 θ13 ,
leading to

π

4
− θ23 ≃ 1

2
θ213 ≪ θ13 , (4.26)
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which does not contain CP phase and predicts a nearly maximal θ23 . For comparison, we rewrite our predictions
(4.18a)-(4.18b) in the same notations,

π

4
− θ23 ≃ 2 cos δD

(π
4
− θ12

)
θ13 ≪ θ13 , (Current Prediction), (4.27a)

π

4
− θ23 ≃ cos δD θ13 = O(θ13) , (Prediction of Ref. [1]), (4.27b)

where our correlations explicitly contain the CP-phase angle δD . Moreover, our present model predicts a deviation
π
4 −θ23 to be significantly smaller than θ13 as in (4.27a), due to the suppression of π

4 −θ12 = 0.16−0.21 at 90%C.L.
But, taking cos δD = O(1) , we see that the right-hand-side of (4.27a) is larger than that of (4.26) by a factor of
4(π4 − θ12)/θ13 = (36.0− 48.8◦)/θ13 at 90%C.L., which is clearly bigger than one. On the other hand, our previous
soft breaking model [1] predicts the two small µ−τ breaking observabes to be of the same order, π

4 − θ23 = O(θ13) ,
as in (4.27b). Hence, the predictions by Friedberg-Lee [36] and by us differ in a nontrivial and interesting way, which
strongly motivate the on-going and future neutrino experiments for tests and resolution [37].

B. Baryon Asymmetry from µ−τ Blind Seesaw and Direct Link to Low Energy

In this subsection, we study the predictions of our µ−τ blind seesaw model for cosmological baryon asymmetry
(matter-antimatter asymmetry) via thermal leptogenesis [38, 39]. We build up the direct link between leptogenesis
CP-asymmetry and the low energy Dirac CP-phase, and further predict the low energy leptonic Jarlskog invariant
J [35]. Imposing the WAMP data on the baryon asymmetry [16], we predict a negative Jarlskog invariant, J < 0 ,
and derive a lower bound on the reactor mixing angle, θ13 & 1◦ . We also analyze the correlations of the leptogenesis
scale with the low energy observables such as the Jarlskog-invariant J and neutrinoless ββ-decay parameter Mee [3].
We further deduce a lower bound on the leptogenesis scale for producing the observed baryon asymmetry.
Our universe is exclusively dominated by matter rather than antimatter. The asymmetry of baryon-anti-baryon

density nB − nB(≃ nB ) relative to the photon density nγ is measured to be a tiny nonzero ratio [16],

ηB ≡
nB − n

B

nγ

= (6.19± 0.15)× 10−10 . (4.28)

The SM fails to generate the observed baryon asymmetry because of the too small CP-violations from CKM matrix
and the lack of sufficiently strong first-order electroweak phase transition [40], which violate Sakharov’s condition for
baryongenesis [41]. It is important that the seesaw extension of the SM allows the thermal leptogenesis [38] with CP-
violations originating from the neutrino sector and the lepton-number asymmetry produced during out-of-equilibrium
decays of heavy Majorana neutrino Nj into the lepton-Higgs pair ℓH and its CP-conjugate ℓ̄H∗. Then, the lepton
asymmetry can be partially converted to a baryon asymmetry via the nonperturbative electroweak sphaleron [42]

interactions which violate B +L [43] but preserve B −L [44, 45], ηB = ξ
f
Nf

B−L = − ξ
f
Nf

L , where ξ is the fraction

of B−L asymmetry converted to baryon asymmetry via sphaleron process [44] and ξ = 28/79 for the SM. The
dilution factor f = N rec

γ /N∗
γ = 2387/86 is computed by considering standard photon production from the onset of

leptogenesis till recombination [45]. The effect of the heavier right-handed neutrino (N2) decays will be washed out in
the thermal equilibrium, only the lightest one (N1) can effectively generate the net lepton asymmetry for M1 ≪ M2 .
(In the numerical analysis below, we will consider the parameter space with M2/M1 > 5 , to ensure the full washout

of lepton asymmetry from N2-decays.) Thus, the net lepton asymmetry Nf
L is deduced as [45], Nf

L = 3
4κf ǫ1 . Hence,

we can derive the final baryon asymmetry,

ηB = − 3 ξ

4f
κf ǫ1 = −d κfǫ1 , (4.29)

where d ≡ 3ξ/(4f) ≃ 0.96×10−2 , and the factor κf measures the efficiency of out-of-equilibrium N1-decays. The

κf is determined by solving the Boltzmann equation numerically [45, 46]. In practice, useful analytical formulas for
κf can be inferred by fitting the numerical solution of the Boltzmann equation. We find it convenient to use the

following fitting formula of κf [46],

κ−1
f ≃

(
m1

0.55×10−3 eV

)1.16

+
3.3×10−3 eV

m1

, (4.30)

with m1 ≡ (m†
DmD)11/M1 , and mD ≡ mDUR with UR being the rotation matrix diagonalizing the mass-matrix

MR of right-handed neutrinos. In the present µ−τ blind seesaw, it is natural to set the right-handed neutrinos in their
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FIG. 4. Leptogenesis scale M1 is plotted as a function of Dirac CP-phase angle δD , where the seven years of WMAP
measurement (4.28) is imposed. All experimental inputs are scanned within their 90%C.L. ranges, with 1500 samples.

mass-eigenbasis from the start, MR = diag(M1, M2) , as we defined in Sec. II. A. So we have UR = I with I the unit
matrix, and thus mD = mD . (Other fitting formulas than (4.30) to the exact solution of κf in the literature [45]

agree with each other quite well for the relevant range of m1.) The CP asymmetry parameter ǫ1 is defined as

ǫ1 ≡ Γ[N1 → ℓH ]− Γ[N1 → ℓH∗]

Γ[N1 → ℓH ] + Γ[N1 → ℓH∗]
=

1

4πv2
F

(
M2

M1

) ℑm
{
[(m†

DmD)12]
2
}

(m†
DmD)11

, (4.31)

where v denotes the vacuum expectation value of the SM Higgs boson. As we constructed in Sec. II. B, the Dirac
mass-matrix mD is complex and provides the common origin of the µ−τ and CP breaking; the complexity of mD

causes the difference between the decay widths Γ[N1 → ℓH ] and Γ[N1 → ℓH∗] , and thus a nonzero CP asymmetry
ǫ1 6= 0 . For the SM, the function F (x) in (4.31) takes the form,

F (x) ≡ x

[
1− (1 + x2) ln

1 + x2

x2
+

1

1− x2

]
= − 3

2x
+O

(
1

x3

)
, (for x ≫ 1 ) . (4.32)

For our numerical analysis of the thermal leptogenesis, the mass ratio M2/M1 ≫ 1 and thus the above expanded
formula of F (x) holds with good accuracy.
Then, we proceed to compute the matrix elements,

(m†
DmD)11 = m̂0M1

(
a2 + 2b2

)
= m̂0M1 , (4.33a)

(m†
DmD)12 = −m̂0

√
M1M2 bc

(
ζ′ + ζeiω

)
. (4.33b)

So we can deduce the effective mass-parameter m1 as introduced below (4.30),

m1 = m̂0 ≃ χ1

√
∆m2

13 , (4.34)

and the imaginary part,

ℑm
{
[(m†

DmD)12]
2
}

= −1

2
m̂2

0 M1M2 y′ sin 2θs sin δD δx , (4.35)

where the RG running factor χ1 = χ(M1,mZ) is defined in Eqs. (3.18)-(3.19). Using Eq. (4.34) together with the
neutrino data (Table I), we find that the light neutrino mass-parameter m1 lies in the 3σ range, 0.046 < m1/χ1 <
0.053 eV, where the RG factor χ1 ≃ 1.3− 1.4 is evaluated numerically, as explained around the end of Sec. III. B. So,
in Eq. (4.30) the second term on the right-hand-side is negligible and κf is thus dominated by the first term.

With these and from (4.31), we derive the CP asymmetry parameter ǫ1 as follows,

ǫ1 ≃ 3y′m̂0M1

16πv2
sin 2θs sin δD δx . (4.36)

20



HaL

0 100 200 300 400 500
1013

1014

1015

1016

1017

È a È HGeVL

M
1
HG

eV
L

HbL

0 100 200 300 400 500
1013

1014

1015

1016

1017

È b È HGeVL

M
1
HG

eV
L

HcL

0 100 200 300 400 500
1013

1014

1015

1016

1017

È a ¢È HGeVL

M
2
HG

eV
L

HdL

0 100 200 300 400 500
1013

1014

1015

1016

1017

È c È HGeVL

M
2
HG

eV
L

FIG. 5. Seesaw scale M1 and M2 as functions of the elements (ā, b̄) and (ā′, c̄) in the Dirac mass-matrix mD , where the
shaded regions correspond to the natural perturbative region (ā, b̄, ā′, c̄) ∈ [1, 300] GeV, and 600 samples are generated in
each plot. This puts an upper bound, M1 6 3.5× 1015 GeV from plot-(b), and M2 6 1.7× 1015 GeV from plot-(c).

Finally, inspecting Eqs. (4.29), (4.31) and (4.32), we can derive,

ηB
M1

= −d κf

3y′m̂0

16πv2
sin 2θs sin δD δx . (4.37)

Since the WMAP measurement (4.28) finds the baryon asymmetry ηB > 0 , so we can infer the constraint, sin δD < 0 ,
which restricts the Dirac phase angle, δD ∈ (π, 2π) .
Then, from Eq. (4.37) we compute the ratio ηB/M1 for any nonzero sin δD , where we vary all measured quantities

within their 90%C.L. ranges. Since 0 < | sin δD| 6 1 , we can deduce a robust numerical upper bound,

ηB
M1

< 1.8× 10−23GeV−1 . (4.38)

Inspecting (4.37) we can also reexpress the leptogenesis scale M1 in terms of baryon asymmetry ηB and other physical
observables,

M1 =
−16πv2 ηB

3d κfm̂0 y
′ sin 2θs sin δD δx

. (4.39)

With the data of ηB from (4.28), we can plot, in Fig. 4, the leptogenesis scale M1 as a function of Dirac CP-phase δD ,
where all experimentally measured quantities are scanned within their 90%C.L. range (with 1500 samples). Fig. 4
reveals a robust lower bound on M1 ,

M1 > 3.5× 1013GeV . (4.40)

Using Eqs. (2.7) and (4.6), we connect the seesaw scale (M1, M2) to the elements of the Dirac mass-matrix mD ,

M1 =
ā2

m̂0 cos2 2θs
=

2 b̄2

m̂0 sin
2 2θs

, (4.41a)
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FIG. 6. Correlation between θ13 and θ23 − 45◦, where all the inputs are the same as Fig. 2, except requiring successful
leptogenesis in the present analysis, with 1500 samples.

M2 =
ā′2

m̂0 sin
2 2θs

=
2 c̄2

m̂0 cos2 2θs
, (4.41b)

where the Dirac mass-parameters (ā, b̄, ā′, c̄) arise from the Yukawa interactions, (ā, b̄, ā′, c̄) = (ya, yb, ya′ , yc)v/
√
2 .

So we can plot M1 as a function of the magnitude of the Dirac mass-parameter |ā| or |b̄| in Fig. 5(a)-(b), and M2

as a function of the magnitude of the Dirac mass-parameter |ā′| or |c̄| in Fig. 5(c)-(d), where we have varied the
measured quantities in their 90%C.L. ranges. We note that the Yukawa couplings (ya, yb, ya′ , yc) cannot be too
small (to avoid excessive fine-tuning) or too large (to keep valid perturbation). So, we will take the Dirac mass-
parameters (ā, b̄, ā′, c̄) in the natural range [1, 300]GeV, corresponding to the Yukawa couplings yj no smaller than

O(10−2) and no larger than O(yt), where yt =
√
2mt/v ≃ 1 is the top-quark Yukawa coupling in the SM. This

natural perturbative range of (ā, b̄, ā′, c̄) is indicated by the shaded area in Fig. 5(a)-(d), which results in an upper
limit on the seesaw scale (M1, M2) due to the perturbativity requirement. From Fig. 5(b) we infer an upper bound
M1 6 3.5× 1015GeV, while Fig. 5(c) requires M2 6 1.67× 1015GeV. For the above construction of natural thermal
Leptogenesis we consider the parameters space M2/M1 > 5 , so with the upper bound of Fig. 5(c) we further deduce
a stronger limit M1 6 3.3× 1014GeV.
With the above constraint on the parameter space from realizing successful thermal leptogenesis, we can rederive

the correlation between θ13 and θ23 − 45◦ , as shown in the new Fig. 6, which should be compared with Fig. 2 in
Sec. IV.A (without requiring leptogensis). We note that the realization of successful thermal leptogenesis puts a
general lower bound on the mixing angle θ13 ,

θ13 & 1◦ , (4.42)

even for the region around θ23 = 45◦ .
Under successful leptogenesis, the correlations of θ13 with the Jarlskog invariant J and the neutrinoless double

beta decay observable Mee are plotted in Fig. 7(a) and (b), respectively. This should be compared to Fig. 3 where
leptogenesis is not required. We see that due to the constraint from the observed baryon asymmetry, the parameter
space of J > 0 is forbidden in Fig. 7(a). On the other hand, the constrained range for Mee in Fig. 7(b) is almost
the same as Fig. 3(b), since Eq. (4.24) shows that the observable Mee has rather weak dependence on small NLO
parameters δx (= θ13) and δφ via their squared terms. Thus, from Fig. 7(a)-(b), we infer the following constraints
on J and Mee ,

− 0.037 . J . − 0.0035 , (4.43a)
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plot-(b), where all inputs are the same as Fig. 3, except requiring the successful leptogenesis in the present figure, with 1500
samples for each plot.

45.5meV . Mee . 50.7meV , (4.43b)

which should be compared to Eqs. (4.25a)-(4.25b) in Sec. IV.A without requiring the successful leptogensis.
We further analyze the correlations of the neutrinoless ββ-decay observable Mee with the Jarlskog invariant J

and the light neutrino mass m1(≃ m2) , in Fig. 8(a-b) and Fig. 8(c-d), respectively. The two left plots in Fig. 8(a)
and (c) show the correlations of Mee with J and with m1 after imposing the leptogenesis. For the two right plots
in Fig. 8(b)(d), we have replotted the same model-predictions as in the two corresponding left plots of Fig. 8(a)(c)
(all in blue color). For comparison, we have further plotted, in Fig. 8(b)(d) with green color, the model-independent

parameter space of Mee [cf. (4.24)] versus J [cf. (4.23)] or m1 (=
√
∆m2

13) , for the IMO scheme with m3 ≃ 0 , where
the relevant observables are varied within their 90%C.L. ranges and δD ∈ (0, 2π]. This comparison shows that our
model predictions are located at the upper boundaries of the whole parameter space, giving rise to the largest allowed
Mee . This is very distinctive and highly testable. Furthermore, in Fig. 8(b)(d), we have compared our predictions with
the sensitivities of the future neutrinoless ββ-decay experiments CUORE (CU) [47] and Majorana [48]/GERDA III [49]
(M/G), which are depicted by the horizontal dashed lines at 15meV (black) and 20meV (red), respectively.
The leptogenesis scale M1 can be determined from the baryon asymmetry ηB, the reactor angle θ13 , the Dirac

phase sin δD and other neutrino observables as in Eq. (4.39). Since the low energy parameter J in Eq. (4.23) is also
predicted as a function of θ13 and sin δD , so it will correlate with the leptogenesis scale M1. Hence, we can plot
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FIG. 8. Upper plots (a)-(b) show the correlations between the neutrinoless ββ-decay observable Mee and the Jarlskog invariant
J with successful leptogenesis. Lower plots (c)-(d) depict the correlations between Mee and light neutrino mass m1 (≃ m2)
with successful leptogenesis. All experimental inputs are varied within 90%C.L. ranges, for 1500 samples. The background
(green) regions in plots (b) and (d) represent the model-independent parameter space of the IMO scheme with m3 ≃ 0 . The
horizontal dashed lines in (b) and (d) depict the sensitivities of the future neutrinoless ββ-decay experiments CUORE (CU) [47]
and Majorana [48]/GERDAIII [49] (M/G), at 15meV (black) and 20meV (red), respectively.

the correlations of the leptogenesis scale M1 with the reactor angle θ13 in Fig. 9(a), and with the Jarlskog invariant
J in Fig. 9(b). Inspecting Eqs. (4.23) and (4.39), we deduce, J ∝ δx sin δD and M1 ∝ (δx sin δD)−1 , from which we
arrive at, M1 ∝ 1/|J | . This behavior is impressively reflected in Fig. 9(b), as expected. In addition, the relation,
M1 ∝ (δx sin δD)−1 > θ−1

13 , nicely explains the lower arched edge in Fig. 9(a).

C. Extension to General Three-Neutrino Seesaw

In this subsection, we analyze the extension to the general neutrino seesaw with three right-handed neutrinos
N ′ = (N1, N2, N3)

T , where N ′ is µ−τ blind. Then, in the µ−τ and CP symmetric limit, the mass-matrices mD

and MR are extended to 3× 3 matrices,

mD =




ā ā′ ā′′

b̄ c̄ d̄

b̄ c̄ d̄


 ≡




σ1a σ2a
′ σ3a

′′

σ1b σ2c σ3d

σ1b σ2c σ3d


, MR = diag(M1, M2, M3) , (4.44)

with σ1 ≡
√
m̂0M1 , σ2 ≡

√
m̂0M2 , and σ3 ≡

√
m̂0M3 , where the µ−τ blind right-handed neutrinos N ′ can

always be rotated into their mass-eigenbasis without affecting the structure of mD. Thus, we rederive the µ−τ and

24



HaL

0 2 4 6 8 10

5´1013

1´1014

2´1014

5´1014

Θ13

M
1
HG

eV
L

HbL

-0.04 -0.03 -0.02 -0.01 0.00
2´1013

5´1013

1´1014

2´1014

5´1014

J

M
1
HG

eV
L

FIG. 9. Correlations of leptogenesis scale M1 with the reactor mixing angle θ13 in plot-(a), and with the low energy Jarlskog
invariant J in plot-(b). Each plot contains 1500 samples.

CP symmetric seesaw mass-matrix for the light neutrinos,

Mν = m̂0



a2+a′2+a′′2 ab+ a′c+ a′′d ab+ a′c+ a′′d

b2+c2+d2 b2+c2+d2

b2+c2+d2


 ≡




A Bs Bs

Cs Cs

Cs


 , (4.45)

from which we deduce the mass-eigenvalues and mixing angles,

m̂1,2 =
1

2

[
(A+ 2Cs)∓

√
(A− 2Cs)2 + 8B2

s

]

=
m̂0

2

[
(a2 + a′2 + a′′2 + 2b2 + 2c2 + 2d2)

∓
√
[(a2 + a′2 + a′′2)− 2(b2 + c2 + d2)]2 + 8(ab+ a′c+ a′′d)2

]
, (4.46a)

m̂3 = Cs − Cs = 0 , (4.46b)

tan 2θ12 =
2
√
2Bs

A− 2Cs

=
2
√
2|ab+ a′c+ a′′d|

|a2+a′2+a′′2−2(b2+c2+d2)| , (4.46c)

θ23 = 45◦ , θ13 = 0◦ , (4.46d)

where the mass-spectrum remains the inverted mass-ordering (IMO). The third mass-eigenvalue m̂3 vanishes because
our µ−τ blind seesaw (4.44) predicts the seesaw mass-matrix (4.45) with its 23-element equal to the 22-element and
33-element. This is also a general feature of any µ−τ symmetric IMO scheme at the LO, as to be shown in (5.5) of
Sec. V.A. Furthermore, we will demonstrate shortly that the third mass-eigenvalue m̂3 = 0 actually holds up to the
NLO after including the µ−τ and CP breaking in our analysis. So this resembles very much the minimal seesaw we
studied earlier.
Similar to Eqs. (2.11) and (2.13) in Sec. II. A, we can realize the IMO at the LO of three-neutrino seesaw, m̂1 =

m̂2 = m̂0 , which leads to the three extended conditions,

(a2 + a′2 + a′′2) + 2(b2 + c2 + d2) = 2 , (4.47a)

(a2 + a′2 + a′′2)− 2(b2 + c2 + d2) = 0 , (4.47b)

ab+ a′c+ a′′d = 0 . (4.47c)

With these we deduce from (4.45) the generic LO seesaw mass-matrix for the IMO,

M (0)
ν = m̂0




a2+a′2+a′′2 ab+a′c+a′′d ab+a′c+a′′d

b2+c2+d2 b2+c2+d2

b2+c2+d2


 = m̂0




1 0 0
1
2

1
2

1
2


, (4.48)
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which is the same as the LO mass-matrix (2.31a) we derived earlier for the minimal seesaw. Hence, despite that the

LO mass-matrix M
(0)
ν contains two new parameters (a′′, d) at the beginning, the realization of IMO eliminates them

all and reduces M
(0)
ν to the universal LO mass-matrix as shown in the final form of (4.48) which is parameter-free

except an overall mass-scale. As a result of the IMO conditions (4.47), we note that the solar angle formula (4.46c)
gives tan 2θ12 = 0

0 at the LO, which is now undetermined. So, the θ12 has to be derived from the NLO contributions
related to µ−τ breaking terms. Before getting into detail, it is convenient to infer θ12 by using the l ′Hôpital rule,
similar to what we did in Sec. II.A for the minimal seesaw. Thus we have,

tan 2θ12 =
|a|√
2 |b|

, (4.49a)

for µ−τ breaking arising from the deviation in the element b of mD , or

tan 2θ12 =
|a′|√
2 |c|

, (4.49b)

for µ−τ breaking arising from the deviation in the element c of mD , or

tan 2θ12 =
|a′′|√
2 |d|

, (4.49c)

for µ−τ breaking arising from the deviation in the element d of mD .
As noted in Sec. II.B, we can always rotate the first column in mD to be all real by rephasing. For the convenience

of comparison with the minimal neutrino seesaw, we will thus formulate the common origin of µ−τ and CP breaking
in the element c of mD . It is possible to construct such a breaking in the element d of mD , but this does not
affect our physical conclusions as will be clarified below, after Eq.(4.57). [Since we are constructing a common origin
of µ−τ and CP breaking from a single source in mD, we do not consider this breaking to occur in both c and d
elements of mD at the same time.] So, we build the Dirac mass-matrix mD with the common µ−τ and CP breaking
in the following form,

mD =




σ1a σ2a
′ σ3a

′′

σ1b σ2c1 σ3d

σ1b σ2c2 σ3d


, (4.50a)

c1 = c (1− ζ′) , c2 = c
(
1− ζeiω

)
. (4.50b)

Thus we can deduce the NLO part of the seesaw mass-matrix Mν = M
(0)
ν + δM

(1)
ν for light neutrinos,

δM (1)
ν = m̂0




0 −a′c ζ′ −a′c ζeiω

−2c2ζ′ −c2(ζ′+ζeiω)

−2c2ζeiω


, (4.51)

which equals (2.31b) as expected, since the new parameters (a′′, d) appear in the seesaw mass-matrix Mν only via

the products (a′′2, d2, a′′d) with no crossing terms like c1,2a
′′ or c1,2d . With these, we deduce the µ−τ symmetric

and antisymmetric elements of δM
(1)
ν to be the same as Eq. (2.33).

Using the formalism of Sec. III.A and extending Sec. III.B, we can reconstruct the light neutrino mass-matrix Mν

for the IMO with m3 6= 0 , via the NLO parameters,

( y′, z, z′, δa, δx, δᾱ1, δᾱ2, δᾱ3, δφ, δφ
′) , (4.52)

where we have defined z′ ≡ m
3

m
1

and φ′ ≡ φ3 − φ1 = φ′
0 + δφ′ . Note that the LO phases vanish, ᾱi0 = φ0 = φ′

0 = 0 .

So the NLO elements of Mν are reconstructed as follows,

δA = m0

[
z +

s2s
2
y′ − i2(s2s δφ+ δᾱ1)

]
, (4.53a)

δBs =
m0

2
√
2
sin 2θs

[
−1

2
y′ + i2δφ

]
, (4.53b)
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δCs =
m0

2

[
z + z′ +

c2s
2
y′ − i(2c2s δφ+ δα2 + δα3)

]
, (4.53c)

δD =
m0

2

[
z − z′ +

c2s
2
y′ − i(2c2s δφ+ δα2 + δα3)

]
, (4.53d)

δBa = −m0√
2
eiδDδx , (4.53e)

δCa = −m0

[
δa +

i

2
(δα2 − δα3)

]
, (4.53f)

where we note that the Majorana phase δφ′ does not appear at the NLO because it is always suppressed by another
NLO parameter z′ = m

3

m
1

. Moreover, since the µ−τ and CP breaking matrix (4.51) gives Eq. (2.33) with the equality

δCs = δD , we deduce z′ = m
3

m
1

= 0 by comparing (4.53c) with (4.53d), and thus m3 = 0 holds up to the NLO.

Hence, we have shown that our model with the general three-neutrino seesaw under IMO does share the essential
feature of m3 = 0 with the minimal seesaw.
Then, with the NLO µ−τ symmetric parts from (2.33) and (4.53), we deduce the solar angle θ12 ,

tan 2θs = − a′√
2 c

, (4.54)

which coincides with Eq. (4.5) as we derived earlier for the minimal seesaw.
Next, connecting the µ−τ anti-symmetric parts in (2.33) and (4.53) gives,

m0

2
a′c(ζ′ − ζeiω) = −m0√

2
eiδDδx , (4.55a)

−m0c
2(ζ′ − ζeiω) = −m0

[
δa +

i

2
(δᾱ2 − δᾱ3)

]
, (4.55b)

from which we arrive at

cos δD δx =
a′c√
2
(ζ′ − ζ cosω) , (4.56a)

sin δD δx = − a′c√
2
(ζ sinω) , (4.56b)

δa = c2 (ζ′ − ζ cosω) , (4.56c)

δᾱ2 − δᾱ3 = −2c2 (ζ sinω) . (4.56d)

Here for the left-hand-sides of (4.55a)-(4.55b) we have used the Eq. (3.19) to evolve the overall mass-parameter m̂0

from seesaw scale down to the corresponding m0 at low energy.
Finally, using Eqs. (4.54), (4.56a) and (4.56c), we derive the key correlation between two low energy µ−τ breaking

observables δa and δx ,

δa = − cot 2θs cos δD δx , (4.57)

which coincides with (4.13) as we derived earlier for the minimal seesaw.
We note that it is also possible to construct the common origin of µ−τ and CP breaking in the element d of mD ,

instead of the element c . Then we can rewrite the Dirac mass-matrix (4.50) as

mD =




σ1a σ2a
′ σ3a

′′

σ1b σ2c σ3d1

σ1b σ2c σ3d2


, (4.58a)

d1 = d (1− ζ′) , d2 = d
(
1− ζeiω

)
. (4.58b)
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This results in the following NLO seesaw mass-matrix,

δM (1)
ν = m̂0




0 −a′′d ζ′ −a′′d ζeiω

−2d2ζ′ −d2(ζ′+ζeiω)

−2d2ζeiω


, (4.59)

from which we derive the solar angle,

tan 2θs = − a′′√
2 d

, (4.60)

and the reconstruction conditions,

cos δD δx =
a′′d√
2
(ζ′ − ζ cosω) , (4.61a)

sin δD δx = −a′′d√
2
(ζ sinω) , (4.61b)

δa = d2 (ζ′ − ζ cosω) , (4.61c)

δᾱ2 − δᾱ3 = −2d2 (ζ sinω) . (4.61d)

So, from Eqs. (4.60), (4.61a) and (4.61c), we can readily derive the correlation between two µ−τ breaking observables,

δa = − cot 2θs cos δD δx , (4.62)

which coincides with (4.57).
In summary, the general three-neutrino seesaw (with right-handed neutrinos being µ−τ blind) still predicts the

inverted mass-ordering (IMO) for light neutrinos [cf. Eqs. (4.46a)-(4.46b)]. Despite that the LO conditions (4.47) for
the IMO contains two new parameters (a′′, d), the LO seesaw mass-matrix (4.48) is shown to take the same form as
in the minimal seesaw. Furthermore, the NLO µ−τ and CP breaking part of our seesaw mass-matrix (4.51) or (4.59)
exhibits the same structure as in the minimal seesaw. This makes our final physical prediction of the key correlation
(4.57) or (4.62) coincides with (4.13).

V.Hidden Symmetry and Dictation of Solar Mixing Angle

So far, by analyzing the µ−τ symmetry and its breaking, we have studied the atmospheric mixing angle θ23 and the
reactor mixing angle θ13 in great detail. As shown in Table I, the solar mixing angle θ12 is best measured [50, 51] among
the three mixing angles. In this section we will clarify the connection between µ−τ breaking and the determination of
the solar mixing angle θ12 for both inverted mass-ordering (IMO) (cf. Sec. II) and normal mass-ordering (NMO) [1].
Then, we analyze the general model-independent Z2 ⊗ Z2 symmetry structure in the light neutrino sector, and map
it into the seesaw sector, where one of the Z2 symmetries corresponds to the µ−τ symmetry Z

µτ
2 and another the

hidden symmetry Zs
2 (which we revealed in [1] for the NMO of light neutrinos and is supposed to dictate θ12 ). We

will further derive the general consequences of this Zs
2 and its possible violation in the presence of µ−τ breaking for

cases either with or without neutrino seesaw, regarding the θ12 determination.

A. µ−τ Breaking versus θ12 Determination: Inverted Mass-Ordering

In Ref. [1] we proved that the solar mixing angle θ12 (≡ θs) is not affected by the soft µ−τ breaking from the
neutrino seesaw, and we revealed a hidden symmetry Zs

2 for both the seesaw Lagrangian and the light neutrino
mass-matrix which dictates θs , where the normal mass-ordering (NMO) is realized. In this subsection, we generally
analyze mass-eigenvalues and mixing angles for the µ−τ symmetric mass-matrix of light neutrinos under the inverted
mass-ordering (IMO). Then we explain why the µ−τ breaking is invoked for the θs determination and why the hidden
symmetry Z

s
2 will be violated. The µ−τ blind seesaw constructed in Sec. II belongs to an explicit realization of the

IMO scheme.
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Let us start with the general µ−τ symmetric mass-matrix for light neutrinos,

M (s)
ν =




A Bs Bs

Cs D
Cs


 , (5.1a)

which can be diagonalized as follows [1, 54],

m1,2 =
1

2

[
[A+ (Cs+D)]∓

√
[A− (Cs+D)]

2
+ 8B2

s

]
, (5.2a)

m3 = Cs −D , (5.2b)

tan 2θs =
2
√
2Bs

A− (Cs+D)
, θa = 45◦ , θx = 0◦ . (5.2c)

Substituting (5.2c) into (5.2a), we arrive at

m1,2 =
1

2
{[A+ (Cs+D)]∓ |A− (Cs+D)| sec 2θs} . (5.3)

For the IMO scheme, we have the mass-spectrum m2 & m1 ≫ m3 , where a small m3 6= 0 is also generally allowed
for the analysis below. So we can derive, for the general IMO scheme,

∣∣∣∣
A− (Cs+D)

A+ (Cs+D)

∣∣∣∣ =
m2 −m1

m2 +m1

cos 2θs ≃ ∆m2
21

4∆m2
13

cos 2θs = (2.1− 3.8)× 10−3, (5.4)

where in the last step we have used the neutrino data (Table I) to estimate the allowed range of this ratio at 90%C.L.
Literally, Eq. (5.4) shows a fine-tuned cancellation between the mass-matrix elements A and (Cs +D) down to the
level of 10−3. As will be clear in Sec. V.B 2 by using the general reconstruction formalism for the IMO scheme, we

find that the LO form of the µ−τ symmetric mass-matrix M
(0)
ν predicts the exact relations [cf. Eq. (5.44)],

A(0) − (C(0)
s +D(0)) =

[
1−

(
1

2
+

1

2

)]
m0 = 0 , (5.5)

B(0)
s = 0 , C(0)

s −D(0) = 0 ,

which ensures m1 = m2 and m3 = 0 at the LO. So, the small ratio (5.4) naturally arises from the NLO elements
[δA− (δCs + δD)] 6= 0 , and thus there is no real fine-tuning in (5.4). This also means that at the LO the solar
angle θs is undetermined from the formula (5.2c), tan 2θs =

0
0 , and the real determination of θs is given by the NLO

elements of M
(s)
ν ,

tan 2θs =
2
√
2 δBs

δA− (δCs+δD)
, (5.6)

as we will explicitly verify in the next subsection for the general IMO scheme [cf. Eqs. (5.46)-(5.47a)].
For the µ−τ blind seesaw defined in Sec. II. A, we find that the light neutrino mass-spectrum must be inverted

ordering, as given in Eqs. (2.10a)-(2.10b). So, following the consistency with neutrino data (5.4) and matching the
reconstruction formalism (5.5) for the IMO scheme, we can explicitly realize the degeneracy m1 = m2 at the LO by
imposing the condition (2.11) on the elements of mD . (Here m3 = 0 is an outcome of the minimal seesaw.) Thus,
as expected, we find a problem for the θs determination in the µ−τ symmetric limit,

tan 2θs =
2
√
2|ab+ a′c|

|a2 + a′2 − 2(b2 + c2)| =
0

0
, (5.7)

which is just an explicit realization of our above general IMO analysis [cf. (5.5)]. Hence, it is clear that θs must be
inferred from the NLO formula (5.6), where the NLO elements will be predicted by a given model, e.g., by the first
four expressions in Eq. (2.33) in the µ−τ blind seesaw with all NLO corrections arising from the µ−τ breaking [52].
Thus the explicit expression of θs from such underlying models will depend on how the µ−τ breaking is constructed.
This is contrary to the neutrino seesaw with normal mass-ordering (NMO) of light neutrinos as studied in Ref. [1],
where we find that the formula of tan 2θs [cf. (5.2c) above] is well defined in the µ−τ symmetric limit.
As we noted in Sec. II. A, the structure 0

0 in Eq. (5.7) allows us to use the l ′Hôpital rule on (5.7) by taking the first
derivatives on both its numerator and denominator. We need to decide for which parameter in (5.7) the derivatives
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should be taken. There are only two possible choices, either c or b, since the µ−τ breaking under the µ−τ blind seesaw
could appear in either c or b element of mD, as we explicitly constructed in Eqs. (2.18) and (2.23). Thus, applying
the l ′Hôpital rule to (5.7) we have

tan 2θs =





|a′|√
2 |c|

, (µ−τ breaking in c) ,

|a|√
2 |b|

, (µ−τ breaking in b) ,

(5.8)

which, as expected, gives finite expressions for θs , depending only on the LO parameters of the Dirac mass-matrix
mD. This also agrees to Eqs. (2.15)-(2.16) in Sec. II. A. But Eq. (5.8) shows that θs does depend on how the µ−τ
breaking is built in the seesaw Lagrangian, and the two different constructions of µ−τ breaking for mD lead to two
different θs formulas above. This is an essential difference from the soft µ−τ breaking model in Ref. [1], where θs is
dictated by the hidden symmetry Zs

2 under which the soft µ−τ breaking term in MR is an exact singlet. In the next
subsections we will analyze the general model-independent Z2 ⊗ Z2 symmetry in the light neutrino sector, and then
map it into the seesaw sector. This allows us to explore, at a deeper level, the Zs

2 symmetry and its possible partial
violation under the µ−τ breaking in a unified way, concerning θs determination.

B. Z
s

2 Symmetry under General µ−τ Breaking and General Determination of θ12

This subsection consists of two parts. In Sec. V.B. 1, we analyze the general model-independent Z2 ⊗Z2 symmetry
structure of the light neutrino sector, in both the mass and flavor eigenbases. We will show that, in the flavor eigenbasis
of light neutrinos, one of the Z2’s is the Z

µτ
2 symmetry which predicts the mixing angles (θ23, θ13) = (45◦, 0◦) , and

another is the Zs
2 symmetry which generally dictates the solar angle θ12 by its group parameter (allowing deviations

from the conventional tri-bimaximal mixing ansatz). With general µ− τ breaking parameters, we will derive a
nontrivial correlation between the two µ−τ breaking observables which is necessary for holding the Zs

2 symmetry.
In Sec. V.B. 2, we will further analyze the general µ−τ breaking in the light neutrino mass-matrix Mν and derive a
nontrivial consistency condition to hold the Zs

2 symmetry. From this condition and using the general reconstruction
formalism of Sec. III. A, we will deduce the same correlation between the µ−τ breaking observables, for both the
normal mass-ordering and inverted mass-ordering of light neutrinos (without approximating the lightest neutrino
mass to zero) [53].

1. Z
s
2 Symmetry for General Determination of Solar Angle θ12

Let us inspect the flavor symmetries in the lepton and neutrino sectors. In general, the lepton and neutrino sectors
are expected to obey different flavor symmetries. After spontaneous symmetry breaking, the residual symmetry groups
for the lepton and neutrino mass-matrices may be denoted as Gℓ and Gν , respectively. Consider the symmetry
transformations Fj ∈ Gℓ and Gj ∈ Gν for left-handed leptons and neutrinos. Thus the mass-matrices of leptons
(Mℓ) and light neutrinos (Mν) will satisfy the invariance equations [58],

F †
j MℓM

†
ℓFj = MℓM

†
ℓ , GT

j MνGj = Mν . (5.9)

The above mass-matrices can be diagonalized by unitary rotations for left-handed leptons and neutrinos,

U †
ℓMℓM

†
ℓUℓ = Dℓ ≡ diag

(
m2

e, m
2
µ, m

2
τ

)
, UT

ν MνUν = Dν ≡ diag (m1, m2, m3) . (5.10)

Then, combining the invariance equations (5.9) and diagonalization equations (5.10) result in

U †
ℓ F

†
j MℓM

†
ℓFjUℓ = d†ℓDℓdℓ = Dℓ , UT

ν GT
j MνGjUν = dTν Dνdν = Dν , (5.11)

where dℓ and dν are diagonal phase-matrices obeying d†ℓdℓ = I3 and d2ν = I3 (with I3 the 3×3 unit matrix), which

require dℓ = diag(eiγ1 , eiγ2 , eiγ3) and dν = diag(±1, ±1, ±1) . So, up to an overall phase factor, the {d(j)ℓ } forms

the generic Abelian group U(1)⊗ U(1) = Gℓ for leptons, and {d(j)ν } has only two independent dν ,

d(1)ν = diag(1, 1,−1) , d(2)ν = diag(−1, 1, 1) , (5.12)
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forming the generic discrete group Z2 ⊗ Z2 = Gν for neutrinos. From Eq. (5.11) the following consistency solutions
are deduced,

Fj = Uℓd
(j)
ℓ U †

ℓ , Gj = Uνd
(j)
ν U †

ν . (5.13)

This proves that {Fj} and {d(j)ℓ } are just connected by the similarity transformations, and are thus two equivalent

representations of the same group Gℓ ; similarly, {Gj} and {d(j)ν } are two equivalent representations of the same group

Gν . We may call the representation {d(j)ℓ } and {d(j)ν } the “kernel representations”, with which the equivalent “flavor
representations” {Fj} and {Gj} can be generated as in (5.13) via the disgonalization matrices Uℓ and Uν , respectively.

Hence, we are free to choose an equivalent lepton symmetry group representation {Fj} = {d(j)ℓ } with Uℓ = I3 , and
accordingly, rewrite the representation of neutrinos symmetry group,

Gj = V d(j)ν V † , (5.14)

with V = U †
ℓUν = Uν equal to the physical PMNS mixing matrix as defined in Eq. (3.3) of Sec. III[55]. Let us rewrite

the PMNS matrix (3.3), V = U ′′UU ′ = V ′U ′ , with V ′ ≡ U ′′U as introduced in Eq. (3.4). So we see that the
Majorana phase-matrix U ′ cancels in Gj ,

Gj = V ′d(j)ν V ′† . (5.15)

According to the most general reconstruction formulation in Sec. III. A, we can expand the matrix V ′ to NLO in
terms of the small parameters, (δa, δx, δαi) , where (δa, δx) characterizes the low energy µ− τ breaking and the
CP-angle δαi arises from the phase matrix U ′′ (which is not directly observable and only needed for the consistency
of diagonalizing the mass matrix Mν). There is no need to expand the Dirac CP-phase eiδD itself since it is always
associated with the small µ−τ breaking parameter δx . So, under this expansion we derive

V ′ = Vs + δV ′ , (5.16)

with

Vs =




cs −ss 0

ss√
2

cs√
2

− 1√
2

ss√
2

cs√
2

1√
2


, (5.17a)

δV ′ =




icsδα1 issδα1 −δxe
−iδD

− ssδa+csδxe
iδD+issδα2√
2

−csδa+ssδxe
iδD−icsδα2√
2

− δa−iδα2√
2

ssδa+csδxe
iδD−issδα3√
2

csδa−ssδxe
iδD−icsδα3√
2

− δa+iδα3√
2


. (5.17b)

Let us first consider the µ−τ symmetric limit with V ′ = Vs . So substituting Vs into Eq. (5.15) we deduce,

Gµτ ≡ G1 = Vsd
(1)
ν V †

s =



1 0 0
0 0 1
0 1 0


, (5.18)

which, as expected, just gives the Z
µτ
2 symmetry-transformation matrix Gν for light neutrinos as we explicitly con-

structed in (2.5) earlier for the seesaw Lagrangian (2.2).

Next, we derive the symmetry-transformation matrix G0
s corresponding to d

(2)
ν of (5.12) in the µ−τ symmetric

limit with ( δV ′ = 0 ),

G0
s = Vs d

(2)
ν V †

s =



s2s−c2s −

√
2 sscs −

√
2 sscs

c2s −s2s

c2s


 (5.19a)

=
1

1 + k2



k2−1

√
2k

√
2k

1 −k2

1


, (5.19b)
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which is symmetric since Vs and d
(j)
ν are real. (For the same reason Gµτ is also symmetric.) In the last step, for

convenience we have defined,

(ss, cs) =
(−k, 1)√
1 + k2

, (5.20)

with k (or equivalently, tan θs) serving as the group parameter of Zs
2 ,

tan θs = −k , (5.21)

where we can always choose the convention of θs ∈
[
0, π

2

]
such that, tan θs = |k| > 0 . Noting (d

(j)
ν )2 = I3 and using

the relation G0
s = Vsd

(2)
ν V †

s , we can readily verify (G0
s)

2 = I3 and thus indeed G0
s ∈ Zs

2 . Hence, the solar angle θs
is dictated by the group parameter k of the 3-dimensional representation of the hidden symmetry Zs

2 [56]. We stress
that the G0

s in (5.19b), as the 3d representation of Zs
2 , is uniquely fixed by the µ−τ symmetric matrix Vs ; we call

Zs
2 a hidden symmetry since it generally exists for any µ−τ symmetric neutrino mass-matrix M

(s)
ν [cf. Eq. (5.29a)

below], i.e., any µ−τ symmetric neutrino sector must automatically contain the hidden Zs
2 symmetry which dictates

the solar angle θs as in (5.21).
As pointed out in Ref. [1], a particular choice of k = ± 1√

2
gives the conventional tri-bimaximal ansatz [57] tan θs =

1√
2

(θs ≃ 35.3◦), but other choices of the group parameter k allow deviations from the conventional tri-bimaximal

mixing, e.g., we can make a very simple choice of k = ± 2
3 , leading to tan θs = 2

3 (θs ≃ 33.7◦), which agrees to
the neutrino data equally well (cf. Table I). The Zs

2 itself, as the minimal hidden symmetry for θs , is not restrictive
enough to fix its group parameter k . But, extending the Z

µτ
2 ⊗ Z

s
2 symmetry into a larger simple group can fix

a particular k value and thus the solar angle θs . As we demonstrated in Sec. 6.3 of Ref. [1], a simple example is
to enlarge Z

µτ
2 ⊗ Z

s
2 to the permutation group S4 [58], under which we can infer k = 1√

2
, corresponding to the

tri-bimaximal mixing θs = arctan 1√
2
.

Then, we examine how such a Zs
2 symmetry could possibly survive after including general µ−τ breaking terms in

V ′ = Vs+δV ′ . Expanding the small µ−τ breaking parameters up to NLO, we can derive the symmetry-transformation

matrix Gs corresponding to d
(2)
ν of (5.12),

Gs ≡ G2 = V ′d(2)ν V ′† = Vsd
(2)
ν V †

s + (Vsd
(2)
ν δV † + δV d(2)ν V †

s )

≡ G0
s + δGs , (5.22)

where δGs = Re[δGs] + iIm[δGs] with

Re[δGs] =




0 − s
2s

δa+2c2
s
cos δDδx√
2

s
2s

δa+2c2
s
cos δDδx√
2

− s
2s

δa+2c2
s
cos δDδx√
2

−2s2sδa−s2s cos δDδx 0

s
2s

δa+2c2
s
cos δDδx√
2

0 2s2sδa+s2s cos δDδx


, (5.23a)

Im[δGs] =




0
s
2s

(δα1−δα2)−2c2
s
sin δDδx√

2

s
2s

(δα1−δα3)+2c2
s
sin δDδx√

2

− s
2s

(δα1−δα2)−2c2
s
sin δDδx√

2
0 s2s(δα2−δα3)+s2s sin δDδx

− s
2s

(δα1−δα3)+2c2
s
sin δDδx√

2
−s2s(δα2−δα3)−s2s sin δDδx 0


,

(5.23b)

where s2s ≡ sin 2θs . Because the symmetry transformation Gs ∈ Zs
2 , then we must have the condition G2

s = I3 .
So we can expand this condition up to the NLO and deduce,

{G0
s, δGs} = 0 . (5.24)

Substituting G0
s and δGs into (5.24), we derive the following solutions,

δa
δx

= − cot θs cos δD , (5.25)

from the real part of (5.24), and

2δα1 = δα2 + δα3 , (5.26a)
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δα2 − δα3 = −2 cot θs sin δD δx = 2 tan δD δa , (5.26b)

from the imaginary part of (5.24), where in the last step of (5.26b) we have made use of (5.25) for simplification. It
is straightforward to verify that the above solutions lead to δGs = 0 , and thus we can conclude,

Gs = G0
s , (5.27)

which means that the form of Gs is not affected by the µ−τ breaking. It is impressive to note that the correlation
(5.25) precisely agrees to what derived from our soft breaking model in Eq. (4.12a) of Ref. [1]; but now it is re-derived
by requiring that the Zs

2 symmetry persists in the presence of general low energy µ−τ breaking. In addition, the above
Eq. (5.26b) also coincides with Eq. (4.12b) of Ref. [1]. We may thus wonder: why should the Zs

2 symmetry persist
under µ−τ breaking? As we will demonstrate in the next subsection, the above agreement is not accidental, it is
actually due to the fact that the Zs

2 symmetry is independent of the soft µ−τ breaking in the seesaw model of Ref. [1].
We note that in the current construction of common µ−τ and CP breaking with seesaw mechanism (Sec. II. B), such
a Zs

2 symmetry is not fully respected, hence the correlation (5.25) no longer holds and we have predicted a modified
correlation (4.13), which can be tested against (5.25) by the on-going and upcoming neutrino oscillation experiments.
To summarize, as we have demonstrated above from general low energy reconstruction formulation, the transfor-

mations Gµτ = G1 and Gs = G2 in the µ−τ symmetric limit correspond to the discrete groups Z
µτ
2 ⊗ Zs

2 , which
are equivalent to and originate from the generic symmetry Z2 ⊗Z2 in the neutrino mass-eigenbasis because they are
connected by the similarity transformations via (5.13). The µ−τ symmetry Z

µτ
2 has been known before, and the

hidden symmetry Zs
2 (as the minimal group dictating the solar angle θs) was revealed by Ref. [1] in the context of

neutrino seesaw. In this work, we further find that requiring the symmetry Zs
2 to persist in the presence of most

general µ−τ breaking terms will predict a new correlation (5.25) between the small µ−τ breaking parameters (δa, δx) .
As we will prove below, the Zs

2 symmetry is respected by a class of soft µ−τ breaking seesaw models in Ref. [1], but
is partially violated in the present µ−τ breaking seesaw model (Sec. II. B).

2. Z
s
2 Symmetry and Neutrino Mass-Matrix with General µ−τ Breaking

In this subsection, we directly analyze the generally reconstructed light neutrino mass-matrix Mν under the hidden
symmetry Zs

2 and the determination of solar angle θs . The mass-matrix (3.1) can be uniquely decomposed into the
µ−τ symmetric and anti-symmetric parts,

Mν = M (s)
ν + δM (a)

ν , (5.28)

with

M (s)
ν =



A Bs Bs

Cs D
Cs


, δM (a)

ν =



0 δBa −δBa

δCa 0
−δCa


, (5.29a)

Bs ≡ 1

2
(B1 +B2) , Cs ≡ 1

2
(C1 + C2) , (5.29b)

δBa ≡ 1

2
(B1 −B2) , δCa ≡ 1

2
(C1 − C2) , (5.29c)

where we generally allow m1m2m3 6= 0 . Then, from (5.9), the invariance equation of Mν under Gs corresponds to

G†
s(M

(s)
ν + δM (a)

ν )Gs = M (s)
ν + δM (a)

ν , (5.30)

which uniquely gives,

G†
sM

(s)
ν Gs = M (s)

ν , (5.31a)

G†
sδM

(a)
ν Gs = δM (a)

ν . (5.31b)

Note that two possibilities may exist: (i). The Zs
2 symmetry is a full symmetry of the light neutrino mass-matrix Mν

if both (5.31a) and (5.31b) hold. (ii). The Zs
2 symmetry is a partial symmetry of Mν if the µ−τ anti-symmetric part

M
(a)
ν breaks (5.31b).

We can prove that the Zs
2 is always a symmetry of the µ−τ symmetric part M

(s)
ν and generally holds (5.31a).

Substituting (5.16) into (3.4) and noting that the decomposition (5.28) is unique, we can reconstruct the µ− τ
symmetric and anti-symmetric parts of Mν , respectively,

M (s)
ν = V ∗

s D̃νV
†
s , (5.32a)
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δM (a)
ν = V ∗

s D̃νδV
′† + δV ′∗D̃νV

†
s + δV ′∗D̃νδV

′†

= V ∗
s D̃νδV

′† + δV ′∗D̃νV
†
s +O(δ2j ) , (5.32b)

where δj denotes all possible NLO parameters under consideration (such as δx, δa and y′, etc). This shows that

the µ−τ symmetric part M
(s)
ν is diagonalized by Vs, so the corresponding Zs

2 transformation matrix Gs = G0
s in

(5.19) must be the symmetry of M
(s)
ν and thus always holds the invariance equation (5.31a). This proves that the

solar mixing angle θs (as contained in the rotation matrix Vs and symmetry transformation matrix Gs) is generally
dictated by the Zs

2 symmetry, independent of any specific model.
On the other hand, the validity of (5.31b) is highly nontrivial and has to be checked case by case. As we will prove

in Sec. V.C, the µ−τ anti-symmetric part M
(a)
ν will break Z

s
2 in the current µ−τ blind seesaw (Sec. II), while it

preserves Zs
2 in the soft µ−τ breaking seesaw of Ref. [1].

Using the expression of Gs [Eqs. (5.19a) and (5.27)], we can derive the solution from (5.31a) for the µ−τ symmetric
part,

tan 2θs =
2
√
2 Bs

A− (Cs+D)
, (5.33)

and another solution from (5.31b) for the µ−τ anti-symmetric part,

tan θs = −
√
2
δBa

δCa

, (5.34)

which further leads to,

tan 2θs = − 2
√
2 δBaδCa

δC2
a − 2δB2

a

. (5.35)

Hence, if the Zs
2 would be a full symmetry of Mν (including its µ−τ breaking part), the two solutions (5.33) and

(5.35) for the solar angle θs must be identical, leading to a nontrivial consistency condition,

tan 2θs =
2
√
2 Bs

A− (Cs +D)
+ − 2

√
2 δBaδCa

δC2
a − 2δB2

a

. (5.36)

An explicit counter example to this condition will be given in Sec. V.C. 2.
In the following, we apply the most general reconstruction formalism (Sec. III. A) to compute the µ−τ symmetric

and anti-symmetric parts of light neutrino mass-matrix Mν = M
(s)
ν + M

(a)
ν . With these, we will explicitly verify

Eq. (5.33) by using the elements of µ− τ symmetric M
(s)
ν , and we further derive physical consequences of the

consistency condition (5.36) by using the elements of µ−τ anti-symmetric M
(a)
ν .

� Reconstruction Analysis for General Normal Mass-Ordering Scheme

Eq. (3.5) reconstructs all the elements of Mν in terms of three mass-eigenvalues, three mixing angles and relevant
CP-phases. The normal mass-ordering (NMO) has the spectrum m1 < m2 ≪ m3 , so we can define the small ratios,

y1 ≡ m1

m3

, y2 ≡ m2

m3

, y3 ≡ m3−m30

m3

. (5.37)

Thus we have the independent NLO parameters for the NMO analysis, (y1, y2, z, δa, δx, δαi, δφi) . Expanding
them perturbatively, we derive the LO form of the µ−τ symmetric mass-matrix Mν ,

M (0)
ν = m30




0 0 0
1
2 − 1

2
1
2


, (5.38)

with α10 = α20 = α30 ≡ α0 , α30 + φ30 = nπ , and the NLO elements in δMν ,

δA = e−i2α
0

(
e−i2φ

10c2sy1 + e−i2φ
20s2sy2

)
m30 , (5.39a)

δBs = 1
2
√
2
e−i2α

0

(
e−i2φ

10y1 − e−i2φ
20y2

)
sin 2θs m30 , (5.39b)

δCs + δD = e−i2α
0

(
e−i2φ

10s2sy1 + e−i2φ
20c2sy2

)
m30 , (5.39c)

δBa = 1√
2
e−iδ

Dδx m30 , (5.39d)
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δCa = 1
2 [2δa − i (δα2 − δα3)]m30 . (5.39e)

From (5.38), we have A
(0)
s = B

(0)
s = C

(0)
s +D(0) = 0 . Thus, using the µ−τ symmetric NLO elements (5.39a)-(5.39c),

we can compute the ratio,

2
√
2Bs

As − (Cs+D)
=

(e−i2φ
10y1 − e−i2φ

20y2) sin 2θs
(e−i2φ

10y1 − e−i2φ
20y2)(c

2
s − s2s)

= tan 2θs , (5.40)

which explicitly verifies our Eq. (5.33) [as generally derived from the invariance equation (5.31a) under Zs
2] for the

current NMO scheme. This is an explicit proof up to NLO that for a general NMO scheme the µ−τ symmetric

mass-matrix M
(s)
ν = M

(0)
ν + δM

(s)
ν does hold the Zs

2 symmetry.
Then, using the µ−τ anti-symmetric elements (5.39d)-(5.39e), we derive the ratio,

−
√
2
δBa

δCa

= − e−iδDδx

δa − i
2 (δα2−δα3)

= tan θs , (5.41)

where in the last step we have used Eq. (5.34) under the assumption that Zs
2 symmetry also holds for the µ−τ anti-

symmetric mass-matrix M
(a)
ν , i.e., the validity of the invariance equation (5.31b). Analyzing the real and imaginary

parts of (5.41), we deduce two relations,

δa = −δx cot θs cos δD , (5.42a)

δα2 − δα3 = 2 tan δD δa . (5.42b)

These are in perfect agreement with (5.25) and (5.26b), which are generally derived under a single assumption that
the Zs

2 symmetry persists in the presence of µ−τ breaking. But, as will be shown in Sec.V. C. 2, this assumption
does not generally hold, and the current µ−τ blind seesaw (Sec. II. B) provides a nontrivial counter example.

� Reconstruction Analysis for General Inverted Mass-Ordering Scheme

For the inverted mass-ordering (IMO), the light neutrinos have the spectrum m2 & m1 ≫ m3 , so we can define the
small ratios,

z1 ≡ m1 −m0

m1

, z2 ≡ m2 −m0

m1

, z3 ≡ m3

m1

, (5.43)

where we have z1 = z and z2 ≃ z + 1
2y

′ in connection to the NLO parameters (y′, z) introduced in Eqs. (3.7)-(3.9)
of Sec. III. B. Then we have the independent NLO parameters for the IMO analysis, (z1, z2, z3, δa, δx, δαi, δφi).
Expanding them perturbatively, we derive the LO form of the symmetric mass-matrix Mν,

M (0)
ν = m0




1 0 0
1
2

1
2
1
2


 , (5.44)

with α10 = α20 = α30 = α0 , φ10 = φ20 = −α0 , and the NLO elements of Mν ,

δA = m0

[
c2sz1 + s2sz2 − i2(c2sδφ1 + s2sδφ2 + δα1)

]
, (5.45a)

δBs = 1
2
√
2
m0 sin 2θs [z1 − z2 − i2 (δφ1 − δφ2)] , (5.45b)

δCs + δD = m0

[
s2sz1 + c2sz2 − i

(
2s2sδφ1 + 2c2sδφ2 + δα2 + δα3

)]
, (5.45c)

δBa = − 1√
2
m0e

iδD δx , (5.45d)

δCa = −m0

[
δa +

i
2 (δα2 − δα3)

]
. (5.45e)

From (5.44), we have B
(0)
s = 0 and A

(0)
s − (C

(0)
s +D(0)) = 0 . So using the µ−τ symmetric NLO elements (5.45a)-

(5.45c), we can compute the ratio,

2
√
2 Bs

As − (Cs +D)
=

sin 2θs [z1 − z2 − i2 (δφ1 − δφ2)]

cos 2θs [z1 − z2 − i2 (δφ1 − δφ2)]− i (2δα1 − δα2 − δα3)
, (5.46)

from which we deduce the consistent solution,

2
√
2Bs

As − (Cs+D)
= tan 2θs , (5.47a)
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2δα1 = δα2 + δα3 , (5.47b)

which explicitly verifies our Eq. (5.33) [as generally derived from the invariance equation (5.31a) under Zs
2] for the

current IMO scheme. Also the above solution (5.47b) exactly coincide with the general Eq. (5.26). The above is an

explicit proof up to NLO that for a general IMO scheme the µ−τ symmetric mass-matrix M
(s)
ν = M

(0)
ν + δM

(s)
ν does

hold the Zs
2 symmetry.

Then, with the µ−τ anti-symmetric elements (5.45d)-(5.45e), we further evaluate the ratio,

−
√
2
δBa

δCa

= − eiδD δx

δa +
i
2 (δα2 − δα3)

= tan θs , (5.48)

where in the last step we have applied (5.34) under the assumption that the µ−τ anti-symmetric mass-matrix M
(a)
ν

also respects the Zs
2 symmetry, i.e., the invariance equation (5.31b) holds. Inspecting the real and imaginary parts

of (5.48), we deduce the following,

δa = −δx cot θs cos δD , (5.49a)

δα2 − δα3 = 2 tan δD δa , (5.49b)

which coincide with Eqs. (5.42a)-(5.42b) as we derived for the NMO scheme. We see that both (5.49a)-(5.49b) and
(5.42a)-(5.42b) precisely agree to (5.25) and (5.26b) which are generally derived under a single assumption that Zs

2

is a symmetry of the full mass-matrix Mν = M
(s)
ν + δM

(a)
ν including its µ−τ breaking part δM

(a)
ν . But, as we will

prove in Sec.V. C. 2, the above assumption is not generally true and for the µ−τ blind seesaw with IMO (Sec. II. B)

the Zs
2 symmetry is violated by δM

(a)
ν .

So far we have explicitly proven the relations (5.25) and (5.26) for general NMO and IMO schemes via the general
model-independent reconstruction formalism (Sec. III. A), where the only assumption is that the Zs

2 symmetry fully
persists in the presence of µ−τ breaking. In the next subsection, we will map the Z

µτ
2 ⊗Zs

2 symmetry into the neutrino
seesaw Lagrangian, and demonstrate that the hidden Zs

2 symmetry is a full symmetry of our soft µ−τ breaking model
in Ref. [1] where the physical prediction (5.25) holds; while for the current µ−τ blind seesaw model the Zs

2 is only

a partial symmetry (respected by the µ−τ symmetric part M
(s)
ν ), and is violated by the µ−τ anti-symmetric part

δM
(a)
ν , leading to our prediction of the modified new correlation (4.13) in Sec. IV. A, in contrast to (5.49a) or (5.25).

C.Mapping Z2 ⊗ Z2 Hidden Symmetry into Neutrino Seesaw

Consider the general seesaw Lagrangian in the form of (2.2) with two or three right-handed neutrinos. After sponta-
neous electroweak symmetry breaking, consider the invariance of (2.2) under the residual symmetry transformations,

νL → Gj νL , N → GR
j N , (5.50)

where Gj is 3-dimensional unitary matrix, and GR
j is 2× 2 or 3× 3 matrix (depending on two or three right-handed

neutrinos invoked in the neutrino seesaw). Accordingly, we have the following invariance equations for the Dirac and
Majorana neutrino mass-matrices,

GT
j mDGR

j = mD , (5.51a)

GR
j

T
MRG

R
j = MR , (5.51b)

from which we deduce the invariance equation for the seesaw mass-matrix of light neutrinos,

GT
j MνGj = Mν , (5.52)

where Mν = mDM−1
R mT

D . Let us diagonalize the Majorana mass-matrices Mν and MR as follows,

UT
ν MνUν = Dν , UT

RMRUR = DR , (5.53)

in which Dν = diag(m1, m2, m3) and DR = diag(M1, · · ·,Mn) with n = 2 for the minimal seesaw or n = 3 for
three-neutrino-seesaw. Thus, from (5.51)-(5.53), we can express Gj and GR

j as,

Gj = Uνd
(j)
ν U †

ν , GR
j = URd

(j)
R U †

R , (5.54)
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where kernel representation {d(j)ν } is given in (5.12), and corresponds to the product group Z
µτ
2 ⊗Zs

2 via the equivalent

flavor representation {Gj} for the light neutrino sector. For d
(j)
R in (5.54), we give its nontrivial forms,

d
(1)
R = diag(−1, 1) , (for minimal seesaw), (5.55a)

d
(1)
R = diag(1, 1,−1) , d

(2)
R = diag(−1, 1, 1) , (for 3-neutrino-seesaw), (5.55b)

where d
(1)
R forms a Z′

2 symmetry for right-handed neutrinos in the minimal seesaw, and {d(1)R , d
(2)
R } form a product

group Z
′µτ
2 ⊗ Z′s

2 for right-handed neutrinos in the three-neutrino-seesaw. The trivial case with d
(j)
R equal to unity

matrix is not listed here which corresponds to the singlet representation GR
j = I . Since the low energy oscillation data

do not directly enforce a Z
′µτ
2 symmetry for heavy right-handed neutrinos, we find two possibilities when mapping

the Z
µτ
2 to the seesaw sector: (i). the right-handed neutrinos have correspondence with the light neutrinos in each

fermion family and transform simultaneously with the light neutrinos under the Z
µτ
2 to ensure the invariance equation

(5.51a); this means Z
′µτ
2 = Z

µτ
2 . (ii). the right-handed neutrinos are singlet of the usual Zµτ

2 symmetry (called “µ−τ
blind”), so the extra symmetry Z

′µτ
2 in the N sector is fully independent of the Z

µτ
2 for light neutrinos; this means

that under Z
µτ
2 the invariance equation (5.51a) has G1 ∈ Z

µτ
2 for light neutrinos and GR = I for right-handed

neutrinos. As generally shown in Sec. V.B, the Zs
2 symmetry dictates the solar angle θs for light neutrinos. The

extra group Z′s
2 in the right-handed neutrino sector also has two possibilities: one is Z′s

2 = Zs
2 , and another is for

the right-handed neutrinos being singlet of the Zs
2 symmetry with GR

s = I .

1. Neutrino Seesaw with Common Soft µ−τ and CP Breaking

In Ref. [1], we studied the common soft µ−τ and CP breaking in the minimal neutrino seesaw, where the right-
handed neutrinos N = (Nµ, Nτ )

T obeying the same Z
µτ
2 (= Z

′µτ
2 ) at the LO, and small soft µ−τ breaking is uniquely

constructed in MR at the NLO. In the µ−τ symmetric limit, we inferred that the diagonalization matrix UR is a

2× 2 orthogonal rotation with its rotation angle θR ≡ θR23 = π
4 [1], as expected. Thus, inputting (5.55a) for d

(1)
R , we

deduce from (5.54),

GR
µτ =

(
0 1

1 0

)
, (5.56)

which is just the Z
µτ
2 transformation matrix for right-handed neutrinos. With the two right-handed neutrinos N =

(Nµ, Nτ )
T shown above, there is no rotation angle θR12 and also no corresponding Z′s

2 symmetry. So the right-handed

neutrinos can only belong to the singlet representation GR
s = I2 under Zs

2 symmetry, with d
(2)
R = I2 . In our soft

µ−τ breaking model [1], the Dirac mass-matrix,

mD =



a a
b c
c b


, (5.57)

exhibits the exact Z
µτ
2 symmetry, so it should obey the hidden Zs

2 as well,

GT
s mDGR

s = mD , (5.58)

where Gs = G0
s is given by (5.19) and GR

s = I2 . This further leads to the invariance equation for the seesaw
mass-matrix of light neutrinos,

GT
s MνGs = Mν , (5.59)

where Mν = mDM−1
R mT

D , and the invariance equation for MR is trivial here since GR
s = I2 . [Given the form of

Gs = G0
s as constructed in (5.19), we can also explicitly verify the equations (5.58) and (5.59).] Hence, the group

parameter k of Zs
2 and the corresponding solar angle θs via Eq. (5.21) are fully fixed by the elements of the µ−τ

symmetric mD , and is independent of the soft µ−τ breaking in MR (which is the Zs
2 singlet). This is a general

proof based on group theory, without relying on making any expansion of the µ−τ breaking terms in MR . As can
be explicitly solved from Eq. (5.58) above, we have [1],

tan θs = |k| =

√
2|a|

|b+ c| . (5.60)
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As another nontrivial check, we inspect the consistency condition (5.36). With the form of Mν in Ref. [1], we
explicitly verify that (5.36) indeed holds,

tan 2θs =
2
√
2 Bs

A− (Cs+D)
= − 2

√
2 δBaδCa

δC2
a − 2δB2

a

=
2
√
2 a(b+ c)

2a2 − (b+ c)2
, (5.61)

where both the µ−τ symmetric mass-matrix M
(s)
ν and the anti-symmetric part δM

(a)
ν determine the same solar angle

θs . The last equality in (5.61) can be derived also from the solution (5.60) above, they are all consistent. Hence, the
Zs
2 is a full symmetry of the seesaw sector and the light neutrino mass-matrix Mν in this soft µ−τ breaking model.
We note that this Zs

2 symmetry has a nice geometric interpretation. The two vectors, u1 = (a, b, c)T and
u2 = (a, c, b)T , in the Dirac mass-matrix mD = (u1, u2) , determine a plane S, obeying the plane-equation,

x− k√
2
(y + z) = 0 , (5.62)

where the parameter k is given in (5.21). As shown in Ref. [1], the 3-dimensional representation Gs is just the
reflection transformation respect to the plane S. For the case of three-neutrino-seesaw, the µ−τ symmetric Dirac
mass is extended to a 3×3 matrix,

m′
D =




a′ a a

b′ b c

b′ c b


 = (u0, u1, u2) . (5.63)

Thus, to hold m′
D invariant under the Zs

2 symmetry, we just need to require its first column u0 = (a′, b′, b′)T to lie
in the S plane, i.e.,

a′√
2 b′

=

√
2 a

b+ c
= k , (5.64)

where k = tan θs as in (5.21). This means that the Dirac mass matrix (5.63) only contains one more independent
parameter than that of the minimal seesaw; furthermore, m′

D is rank-2 and thus detMν = (detm′
D)2(detMR)

−1 = 0
always holds, as in the minimal seesaw.

2. µ−τ Blind Seesaw with Common µ−τ and CP Breaking

As constructed in Sec. II, the µ−τ blind seesaw defines the right-handed neutrinos N as singlet of Zµτ
2 symmetry.

This means that we must have the Z
µτ
2 transformation matrix GR

µτ = I2 and dµτR = d
(2)
R = I2 . Consider the general

Dirac and Majorana mass-matrices in the minimal seesaw,

m̃D =




ã ã′

b̃1 c̃1

b̃2 c̃2


, M̃R =

(
M11 M12

M12 M22

)
. (5.65)

The Majorana mass-matrix M̃R can be diagonalized by the unitary rotation UR ,

UT
RM̃RUR = MR ≡ diag(M1, M2) , (5.66)

Then we can derive the seesaw mass-matrix for light neutrinos,

Mν ≃ m̃DM̃−1
R m̃T

D = mDM−1
R mT

D , (5.67)

where mD = m̃DUR takes the form as in (2.17). For the µ− τ blind seesaw with N being Z
µτ
2 singlet, we can

always start with the mass-eigenbasis of N with MR = diag(M1, M2) , which means that the rotation UR becomes
automatically diagonal and real, UR = I2 . Then, the extra symmetry Z

′
2 of MR must be independent of the Z

µτ
2

of light neutrinos, i.e., Z′
2 6= Z

µτ
2 . So the natural choice is Z′

2 = Zs
2 . The Z′

2 can have a nontrivial dsR = d
(1)
R =

diag(−1, 1) as in (5.55a). Thus, the corresponding symmetry transformation for M̃R is

GR
s = UR dsRU

†
R = d

(1)
R = diag(−1, 1) . (5.68)
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There is also a singlet representation of Z′
2, corresponding to dR = I2 .

Then, let us inspect the possible Zs
2 symmetry for the Dirac mass-matrix by including the µ−τ breaking effects

[cf. (2.17) and (2.18) in Sec. II. B]. This means to hold the invariance equations in (5.51),

GT
s m̃DGR

s = m̃D , GR
s

T
M̃RG

R
s = M̃R , (5.69)

which will become, in the mass-eigenbasis of right-handed neutrinos,

GT
s mDdsR = mD, ds TR MRd

s
R = MR . (5.70)

Since MR and dR are both diagonal, the invariance equation for MR always holds. So we can rewrite the above
invariance equation for mD as,

GT
s mDdsR = mD , (5.71)

where mD ≡ mD(m̂0MR)
− 1

2 . [The µ−τ symmetric form of mD was given in Eq. (2.8).] Using the notation mD, we
can reexpress the seesaw mass-matrix, Mν = m̂0

(
mDmT

D

)
. So we can further deduce the invariance equations under

Gs and dsR, respectively,

GT
s mDmT

DGs = mDmT
D , ds TR mT

DmDdsR = mT
DmD . (5.72)

Next, we inspect the two equations in (5.72) to check the validity of the Zs
2 symmetry after embedding the µ−τ

breaking into mD [such as those constructed in (2.18) for instance]. From (5.72), we will explicitly prove that the Gs

is a symmetry only for the µ−τ symmetric part of Mν ∝
(
mDmT

D

)
; while dsR is violated by the µ−τ breaking terms

in mT
DmD . Hence, the Zs

2 symmetry is only a partial symmetry of the light neutrinos, valid for the µ−τ symmetric

part M
(s)
ν .

We can write down the mass-matrix mD with the most general µ−τ breaking,

mD =



a a′

b1 c1

b2 c2


 =



a a′

b c

b c


+




0 0

− δb
1
+δb

2

2 − δc
1
+δc

2

2

− δb
1
+δb

2

2 − δc
1
+δc

2

2


+




0 0

− δb
1
−δb

2

2 − δc
1
−δc

2

2

+
δb

1
−δb

2

2 +
δc

1
−δc

2

2




= m
(0)
D + δm

(s)
D + δm

(a)
D = m

(s)
D + δm

(a)
D (5.73)

where b1 ≡ b − δb1 , b2 ≡ b− δb2 , c1 ≡ c− δc1 , and c2 ≡ c− δc2 .
For the symmetric mass-matrix product, mDmT

D = Mν/m̂0 ≡ Mν , we compute, up to the NLO,

mDmT
D =



1 0 0

1
2

1
2

1
2


− (δb1+ δb2)



0 a

2
a
2

b b

b


− (δc1+ δc2)




0 a′

2
a′

2

c c

c




−(δb1− δb2)



0 a

2 −a
2

b 0

−b


− (δc1− δc2)




0 a′

2 −a′

2

c 0

−c




≡ M
(0)

ν + δM
(s)

ν + δM
(a)

ν = M
(s)

ν + δM
(a)

ν . (5.74)

where the M
(s)

ν denotes the sum of the first three matrices and δM
(a)

ν equals the sum of the last two matrices. For

deriving the LO matrix M
(0)

ν in (5.74) we have used the relations (2.14) for the IMO scheme. There exist two basic
realizations for the common breaking of µ−τ and CP symmetries in mD or mD : one is for δb1 = δb2 = 0 and
(δc1, δc2) = c(ζ′, ζeiω) , which corresponds to mD in (2.18); and another is for δc1 = δc2 = 0 and (δb1, δb2) =
b(ζ′, ζeiω) , which corresponds to mD in (2.23). As we pointed out earlier, the invariance of the product (5.74) under
Gs ∈ Z

s
2 [cf. (5.72)] would be justified so long as our general consistency condition (5.36) could hold. So, with (5.74)

we can explicitly compute tan 2θs from the two expressions in (5.36) including the µ−τ symmetric and anti-symmetric
mass-matrix elements, respectively. We thus arrive at

tan 2θ(s)s =
2
√
2Bs

A− (Cs+D)
= − a′√

2 c
, (5.75a)
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tan 2θ(a)s = −2
√
2 δBaδCa

δC2
a − 2δB2

a

=
2
√
2 a′c

a′2−2c2
= tan 4θ(s)s , (5.75b)

for δb1 = δb2 = 0, and

tan 2θ(s)s =
2
√
2Bs

A− (Cs+D)
= − a√

2 b
, (5.76a)

tan 2θ(a)s = −2
√
2 δBaδCa

δC2
a − 2δB2

a

=
2
√
2 ab

a2−2b2
= tan 4θ(s)s , (5.76b)

for δc1 = δc2 = 0. The above explicitly demonstrates the inequality θ
(a)
s 6= θ

(s)
s , and thus proves the violation of

the consistency condition (5.36). This is because the µ−τ anti-symmetric mass-matrix δM
(a)
ν = m̂0δM

(a)

ν in (5.74)
breaks the Zs

2 symmetry. Hence, Zs
2 is not a full symmetry of the mass-matrix Mν . Nevertheless, we find that the

µ−τ symmetric part M
(s)
ν = m̂0M

(s)

ν in (5.74) does respect the Zs
2 symmetry, and its invariance equation (5.31a)

leads to the correct solution (5.33) and thus (5.75a) for the solar angle θs . Substituting (5.21) into (5.75a) or (5.76a),

we derive the equation, k2 +
2

r0
k − 1 = 0 , with r0 ≡ a′√

2c
corresponding to (5.75a), or r0 ≡ a√

2b
corresponding

to (5.76a). So we can fix the Zs
2 group parameter k in terms of the ratio of seesaw mass-parameters in mD ,

k = −1±
√
1 + r20 . (5.77)

Finally, we compute the other symmetric product mT
DmD , up to the NLO,

mT
DmD =

(
1 0

0 1

)
− (δb1+ δb2)

(
2b c

c 0

)
− (δc1 + δc2)

(
0 b

b 2c

)
. (5.78)

The last two matrices of (5.78) arise from the µ−τ breaking, which make mT
DmD non-diagonal at the NLO, and thus

explicitly violate the second invariance equation of (5.72). This violation of Zs
2 does not directly lead to observable

effect at low energies since the seesaw mass-matrix Mν for light neutrinos is given by the first product mDmT
D in

Eq. (5.74). Also, we could choose to assign the right-handed neutrinos to be singlet under the Zs
2 from the light

neutrinos, i.e., dR = I2, then the invariance equation for mDmT
D becomes trivial. But the first invariance equation

in (5.72) under Gs ∈ Zs
2 is still broken by the µ−τ anti-symmetric mass-matrix δM

(a)
ν = m̂0δM

(a)

ν in (5.74) for light
neutrinos, as shown by Eq. (5.75) or (5.76) above.

From the analyses above, we conclude that the hidden symmetry Zs
2 is a partial symmetry of the present model,

respected by the µ−τ symmetric part M
(s)
ν of the light neutrino mass-matrix, and thus determines the solar angle

θs as in Eqs. (5.75a) and (5.77). This also agrees to the result (2.15) [Sec. II. A] or (4.5) [Sec. IV.A] which we derived
earlier. As a final remark, we stress that the violation of the hidden Zs

2 symmetry by the µ−τ anti-symmetric mass-

matrix δM
(a)
ν = m̂0δM

(a)

ν in (5.74) has an important physical impact: it predicts a modified new correlation (4.13),
and can be experimentally distinguished from Eq. (5.25) as predicted before by our soft µ−τ breaking of neutrino
seesaw [1].

VI.Conclusion

In this work, we have studied the common origin of µ−τ breaking and CP violations in the neutrino seesaw with
right-handed Majorana neutrinos being µ−τ blind. The oscillation data strongly support µ−τ symmetry as a good
approximate symmetry in the light neutrino sector, leading to the zeroth order pattern, (θ23, θ13) = (45◦, 0◦) . Hence
the µ−τ breakings, together with the associated CP violations, are generically small. For the µ−τ blind seesaw,
we have convincingly formulated their common origin into Dirac mass matrix mD (Sec. II. B), leading to the unique
inverted mass-ordering (IMO) of light neutrinos and distinct neutrino phenomenology. This is parallel to our previous
work [1] where the common origin of µ−τ and CP breaking arises from the Majorana mass matrix of the singlet
right-handed neutrinos and uniquely leads to the normal mass-ordering (NMO) of light neutrinos.
In Sec. III, we gave the model-independent reconstruction of low energy µ− τ and CP breakings with inverted

neutrino mass-spectrum. With this we derived various predictions of the µ−τ blind neutrino seesaw in Sec. IV. In
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particular, we deduced a modified new correlation (4.13) between the two small µ−τ breaking observables θ23 − 45◦

and θ13 − 0◦ , as depicted in Fig. 2 and is very different from that in Ref. [1]. Eq. (4.13) is shown to also hold for
the general three-neutrino seesaw in Sec. IV.C. This correlation can be experimentally tested against Eq. (4.15a) as
deduced from our soft µ−τ breaking seesaw mechanism [1]. As shown in Fig. 2 and Fig. 6, our predicted range of
θ13 can saturate its present experimental upper bound. Imposing the current upper limit on θ13, we derived a
restrictive range of the deviation, −4◦ 6 θ23 6 4◦ at 90%C.L., in Eq. (4.22). In Sec. IV.B, we have further generated
the observed matter-antimatter asymmetry (the baryon asymmetry) from thermal leptogenesis in the µ− τ blind
seesaw. Under the successful leptogenesis, we derived the constrained correlation between θ23− 45◦ and θ13 − 0◦ , as
presented in Fig. 6. This figure predicts a lower bound on the key mixing angle, θ13 & 1◦ , which will be explored soon
by the on-going reactor neutrino experiments at Daya Bay [10], Double-Chooz [12] and RENO [13]. Fig. 7(a) further
constrains the Jarlskog invariant J into the negative range, −0.037 . J . −0.0035 , while Fig. 7(b) predicts the range
of neutrinoless ββ-decay observable, 45.5meV . Mee . 50.7meV, which can be probed by the on-going neutrinoless
ββ-decay experiments [3]. A lower bound on the leptogenesis scale M1 is inferred from Fig. 4, M1 > 3.5× 1013GeV,
and is given in Eq. (4.40). The correlations of the leptogenesis scale M1 with the reactor angle θ13 and the Jarlskog
invariant J are analyzed in Fig. 9(a)-(b).
Finally, we have studied the determination of solar mixing angle θ12 and its connection to a hidden flavor symmetry

Zs
2 and its possible breaking in Sec.V. The general model-independent Z2⊗Z2 symmetry structure of light neutrino

sector was analyzed in Sec. V.B. 1. We first reconstructed the 3-dimensional representation G0
s for Z

s
2 group in the

µ−τ symmetric limit as in Eq. (5.19). We proved that hidden symmetry Zs
2 holds for any µ−τ symmetric mass-matrix

Mν of light neutrinos and determines the solar angle θ12 via its group parameter, k = − tan θ12 , as in Eq. (5.21).
Then we derived the consistency condition (5.24) for the validity of Gs = G0

s + δGs ∈ Zs
2 in the presence of general

µ−τ breaking, leading to the generic solution Gs = G0
s in (5.27) and the unique correlation equation (5.25) which

strikingly coincides with Eq. (4.15a) as predicted by our soft µ−τ breaking seesaw [1]. In Sec. V.B. 2, we further
analyzed the validity of Zs

2 symmetry from general model-independent reconstructions of light neutrino mass-matrix
Mν . We derived the general consistency condition (5.36) for the validity of Zs

2 symmetry in the presence of all
possible µ−τ breakings. Under this condition, we derived the nontrivial correlation (5.42a) or (5.49a) between the
two µ−τ breaking observables θ23 − 45◦ and θ13 − 0◦ , which agrees to Eq. (5.25) as derived earlier from pure group
theory approach. We stress that the agreement between (5.25) [or (5.42a)] with the prediction (4.15a) from our soft
µ−τ breaking seesaw is not a coincidence. As we explained in Sec. V.C. 1, the true reason lies in the fact that the
soft µ−τ breaking is uniquely embedded in the right-handed Majorana mass-matrix MR which is a singlet of the Zs

2

group and thus does not violate Zs
2 . On the other hand, for the µ−τ blind seesaw, the µ−τ breaking is solely confined

in the Dirac mass-matrix mD which would have nontrivial transformation (5.70) or (5.72) if Zs
2 could actually hold.

As we have verified in Sec.V. C. 2, the invariance equation (5.72) hold only for the µ−τ symmetric part of the light
neutrino mass-matrix Mν , and is partially violated by its µ−τ anti-symmetric part [cf. Eq. (5.74)]. In consequence,
we found: (i) the solar mixing angle θ12 is dictated by the group parameter k of the hidden symmetry Z

s
2 acting

on the µ−τ symmetric mass-matrix M
(s)
ν [cf. Eqs. (5.75a) and (5.77)]; (ii) the consistency condition (5.36) no longer

holds, and we predicted a modified new correlation (4.13), which can be experimentally distinguished from Eq. (4.15a)
as predicted by our soft µ−τ breaking seesaw [1]. In contrast to our previous prediction (4.15a), Fig. 6 points to an
important feature of the new correlation (4.13) by showing a more rapid increase of θ13 as a function of θ23 − 45◦ ;
this allows θ13 to saturate the current experimental upper limit, and confines the deviation θ23 − 45◦ into a more
restrictive range, −4◦ 6 θ23 6 4◦ at 90%C.L., as in Eq. (4.22). These distinctive predictions of the present µ−τ blind
seesaw can be systematically tested against those of our previous soft µ−τ breaking seesaw [1], by the on-going and
upcoming neutrino experiments.

Note Added:

After the submission of this paper to arXiv:1104.2654 on April 14, 2011, a new publication by T2K Collaboration
appeared on June 14, 2011 [59]. T2K experiment observed the νµ → νe appearance which indicates a nonzero θ13 at

2.5σ level. The resultant confidence interval yields, 0.03 (0.04) < sin2 2θ13 < 0.28 (0.34) at 90%C.L. for NMO (IMO)
with δD = 0; and the best-fit value is sin2 2θ13 = 0.11 (0.14) for NMO (IMO). This favors a relatively large θ13
mixing angle,

5.0◦ < θ13(9.7
◦) < 16.0◦ , (for NMO),

5.8◦ <θ13(11.0
◦)< 17.8◦ , (for IMO),

at 90%C.L., where the central values θ13 = 9.7◦ (11.0◦) are shown in the parentheses for NMO(IMO). We would
like to point out that the new T2K data further support the theory predictions of our present model which gives the
unique inverted mass-ordering (IMO) and favors a naturally larger θ13 even for a rather small deviation of θ23− 45◦ ,
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as shown in Eq. (4.20a) and our Fig. 2 (Sec. IV.A) or Fig. 6 (Sec. IV.B).
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