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Abstract

The QCD evolution of the pion distribution amplitude (DA) φπ(x,Q2) is computed for several

commonly used models. Our analysis includes the nonperturbative form predicted by light-front

holographic QCD, thus combining the nonperturbative bound state dynamics of the pion with

the perturbative ERBL evolution of the pion DA. We calculate the meson-photon transition form

factors for the π0, η and η′ using the hard-scattering formalism. We point out that a widely-used

approximation of replacing φ (x, (1− x)Q) with φ(x,Q) in the calculations will unjustifiably reduce

the predictions for the meson-photon transition form factors. It is found that the four models of

the pion DA discussed give very different predictions for the Q2 dependence of the meson-photon

transition form factors in the region of Q2 > 30 GeV2. More accurate measurements of these

transition form factors at the large Q2 region will be able to distinguish different models of the pion

DA. The rapid growth of the large Q2 data for the pion-photon transition form factor reported by

the BABAR Collaboration is difficult to explain within the current framework of QCD. If the BABAR

data for the meson-photon transition form factor is confirmed, it could indicate physics beyond-

the-standard model, such as a weakly-coupled elementary C = + axial vector or pseudoscalar z0

in the few GeV domain, an elementary field which would provide the coupling γ∗γ → z0 → π0

at leading twist. Our analysis thus indicates the importance of additional measurements of the

pion-photon transition form factor at large Q2.

PACS numbers: 13.40.Gp, 12.38.Bx, 14.40.Be, 14.40.Df, 13.60.Le

∗On leave from Massey University, New Zealand.
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I. INTRODUCTION

The BABAR Collaboration has reported measurement of the photon to pseudoscalar-meson

transition form factors from the γ∗γ →M process for the π0 [1], ηc [2], η, and η′ [3, 4]. The

momentum transfer Q2 range covered by the BABAR experiments is much larger than the

range studied by the CELLO [5] and CLEO [6] collaborations. More significantly, the BABAR

data for the π0-γ transition form factor exhibit a rapid growth for Q2 > 15 GeV2 which is

unexpected from QCD calculations, whereas the data for the other transition form factors

agree well with previous measurements and theoretical calculations.

QCD computations for exclusive processes are considerably more subtle than inclusive

processes since one deals with hadron dynamics at the amplitude level. The foundation

for calculating exclusive processes at high momentum transfer in QCD was laid down al-

most 30 years ago [7–9]. It was shown in [7] that the pion electromagnetic form factor

and transition form factor (TFF), the simplest exclusive processes involving the strong in-

teraction, can be calculated as a convolution of a perturbatively-calculable hard scattering

amplitude (HSA), and the gauge-invariant meson distribution amplitude (DA) which incor-

porates the nonperturbative dynamics of the QCD bound-state. The distribution amplitude,

φ(x,Q) is the qq̄ light-front wavefunction (LFWF) ψ(x,k⊥), the eigenstate of the QCD light-

front Hamiltonian in light-cone gauge, integrated over transverse momenta k2
⊥ ≤ Q2. Here

x = k+/P+ = (k0 + kz)/(P 0 + P z) is the light-front momentum fraction of the quark. The

DA has the physical interpretation as the amplitude to find constituents with longitudinal

light-front momentum x and 1 − x in the pion which are non-collinear up to the scale Q.

The form of the DA can be confronted with the results of various processes sensitive to

the form of the DA and calculated using non-perturbative methods [10]. There are also

important constraints from the lowest moments of the pion DA obtained from lattice gauge

theory [11, 12].

The evolution of the pion DA is governed by the Efremov-Radyushkin-Brodsky-Lepage

(ERBL) equation [7–9]. The form of the pion DA: φasy(x) =
√

3fπx(1−x) and the resulting

predictions for elastic and transition form factors at the asymptotic limit Q2 → ∞ can

be predicted from first principles [7]. The results are independent of the input form of the

distribution amplitude at finite Q2. However, the prediction for the elastic form factors using

the ‘asymptotic’ form for the pion DA at finite Q2 range are not successful when compared
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with available experimental data. This has led to many theoretical investigations of the

shape of the pion DA at low Q2 which reflect the bound state dynamics. Some models

which are vastly different from the asymptotic form have been suggested; however, these

forms lack physical motivation and contradict the lattice constraints. This is manifested by

the suggestion of a ‘flat’ form [13–15] for the pion DA in order to explain the recent BABAR

measurements [1] for the pion TFF.

The effects associated with the transverse momentum degree of freedom have been ana-

lyzed in Refs. [16–18]. It was shown in [16] that the transverse momentum dependence in

both the HSA and the LFWF needs to be considered in order to make predictions for the

pion TFF for Q2 of the order of a few GeV2.

The pion form factor has been calculated using the asymptotic DA and Chernyak-

Zhitnitsky (CZ) form [19] at next-to-leading order (NLO) [20–23], using the standard hard-

scattering approach when the k⊥-dependence in the HSA is ignored. The next-to-next-to-

leading order corrections to the hard-scattering amplitude were calculated in [24] using the

conformal operator product expansion. The form factor has also been studied [17, 18] using

the modified hard scattering approach in which the k⊥-dependence is considered together

with gluon radiative corrections. In these calculations the evolution effects were often shown

together with high order corrections. However, due to the limitation on the form used for

the pion DA, the effects from evolution have not been fully explored. There are many other

theoretical studies of the pion-photon transition form factors (see for example [25–40]).

In this paper, we reexamine the relation between the light-front wavefunction and the

distribution amplitude and calculate the meson-photon transition form factors for the π0, η

and η′. Various forms of the meson distribution amplitude and their evolution are studied

in Section II. Our analysis integrates the nonperturbative bound state dynamics of the pion

predicted by light-front holographic QCD with the perturbative QCD ERBL evolution of the

pion distribution amplitude, thus extending the applicability of AdS/QCD results to large

Q2. The pion-photon transition form factors for the real and virtual photons are calculated

in Section III. The η-photon and η′-photon transition form factors are studied in Section IV.

Some conclusions are given in the last section.
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II. PION LIGHT-FRONT WAVEFUNCTION AND DISTRIBUTION AMPLI-

TUDE

The pion distribution amplitude in the light-front formalism [7] is the integral of the

valence qq̄ light-front wavefunction (LFWF) in light-cone gauge A+ = 0

φ(x,Q) =

∫ Q2

0

d2k⊥
16π3

ψqq̄/π(x,k⊥). (1)

The pion DA can also be defined in terms of the matrix element of the axial isospin current

between a physical pion and the vacuum state [41]

φ(x,Q) =

∫
dz−

2π
ei(2x−1)z−/2

〈
0

∣∣∣∣ψ̄(−z)
γ+γ5

2
√

2
Ωψ(z)

∣∣∣∣ π〉(Q)

z+=z⊥=0; p+π=0

, (2)

where

Ω = exp

{
ig

∫ 1

−1

dsA+(zs)z−/2

}
, (3)

is a path-ordered factor making φ(x,Q) gauge invariant. The pion DA satisfies the normal-

ization condition derived from considering the decay process π → µν (NC = 3)∫ 1

0

dxφ(x, µ) =
fπ

2
√

3
, (4)

where fπ = 92.4 MeV is the pion decay constant and µ is an arbitrary scale.

By definition the bound state LFWF ψqq̄/π(x,k⊥) has important support only when the

virtual states are near the energy shell, i.e.

ε2 =

∣∣∣∣m2
π −

k2
⊥ +m2

q

x(1− x)

∣∣∣∣ < µ2
F , (5)

where µF can be viewed as the factorization scale. Thus a ‘cut-off’ on the transverse mo-

mentum is implied in the definition for the soft component of the LFWF: ψsoft
qq̄/π(x,k⊥). A

natural way to implement this cut-off is to require the LFWF to decrease quickly for large

k2
⊥, for example, via an exponential function as first suggested in the model discussed in

[42]. One can write a parameterization form for the LFWF as in [43]

ψsoft
qq̄/π(x,k⊥) ≡ φ(x) Σ(x,k⊥)

= φ(x)
8π2

κ2

1

x(1− x)
exp

(
− k2

⊥
2κ2x(1− x)

)
, (6)
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where κ is the gap parameter, and

φ(x) =

∫ ∞
0

d2k⊥
16π3

ψsoft
qq̄/π(x,k⊥), (7)

and the function Σ satisfies1, ∫ ∞
0

d2k⊥
16π3

Σ(x,k⊥) = 1. (8)

A common practice used in the literature in determining the parameter κ is calculating the

non-perturbative properties of the pion and comparing with the experimental measurements

of these quantities. However, this process only allows one to constrain κ in a relative large

range due to the uncertainty of the experimental measurements. For example, the root of

the mean square transverse momentum of the valence quarks, defined as√
〈k2
⊥〉 =

(
1

Pqq̄

∫ 1

0

dx

∫ ∞
0

d2k⊥
16π3

k2
⊥
∣∣ψsoft

qq̄/π(x,k⊥)
∣∣2)1/2

, (9)

where Pqq̄ is the probability of the valence Fock state of the pion

Pqq̄ =

∫ 1

0

dx

∫ ∞
0

d2k⊥
16π3

∣∣ψsoft
qq̄/π(x,k⊥)

∣∣2 , (10)

is estimated to be in the range of 300 ∼ 500 MeV from experimental measurement on the

charge radius of the pion. Thus κ is not well determined by Eq. (9).

Brodsky, Huang, and Lepage [42] obtained a constraint for the soft LFWF at k⊥ = 0,

ψsoft
qq̄/π(x,k⊥ = 0), by studying the decay of π0 → γγ. However, we note that the decay

π0 → γγ is a long-distance process for which the higher Fock states should make substantial

contributions as well, since there are extra interactions with the quark propagator between

the two photons which vanish at high Q2 in the light-cone gauge. Therefore κ cannot be

well determined from the constraints imposed by the decay process.

From these considerations we will treat κ in Eq. (6) as a phenomenological parameter

which is allowed to change in a certain range. It is equivalent to treat the probability of the

valence Fock state, Pqq̄, or the root of the mean square transverse momentum of the valence

quarks,
√
〈k2
⊥〉, as a parameter.

1 Strictly speaking a cut-off of |k2
⊥|max ∼ x(1 − x)µ2

F is still in place for the soft wave function given by

Eq. (6). However, calculations are not sensitive to this cut-off due to the nature of rapid decreasing of

the wave function. Thus it is commonly expressed in the literature that |k2
⊥|max = µ2

F , or |k2
⊥|max =∞.
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The LFWF ψqq̄/π(x,k⊥) in Eq. (1) contains all the non-perturbative information of the

pion. There are also perturbative corrections that behave as αs(k
2
⊥)/k2

⊥ for large k2
⊥, coming

from the fall-off of the LFWF ψ(x,k⊥) due to hard gluon radiation [7, 42]. Both soft and

hard regimes are important to compute the pion transition form factor for all values of Q2.

A. Soft Evolution of the Pion Distribution Amplitude

Substituting Eq. (6) into Eq. (1) one obtains

φ(x,Q) = φ(x)

[
1− exp

(
− Q2

2κ2x(1− x)

)]
, (11)

where φ(x) is given by Eq. (7). Eq. (11) gives a factorization model for the Q2 dependence

of the distribution amplitude in the soft domain. The soft Q2 dependence in Eq. (11) can

be safely ignored for Q > 1 GeV for the typical values of κ ∼ 0.5− 1.0 GeV. In the regime

of Q > 1 GeV one needs to consider the hard gluon exchanges that provide additional

logarithmic Q2 dependence in φ(x,Q), as given by the ERBL evolution equation discussed

below.

Many efforts have been made in determining the pion DA at a low momentum transfer

scale µ0 ∼ 0.5−1 GeV. Most of these studies concentrate on the determination of the first few

terms in the solution of the evolution equation for the pion DA discussed in the next section.

However the pion DA at a low scale could differ significantly from its asymptotic form due

to the slow convergence of the evolved DA. Using only a few terms of the full solution will

put a strong limitation on the studies. The following forms have been suggested.

(a) The asymptotic form [7, 41, 44]

φasy(x) =
√

3fπx(1− x). (12)

(b) The AdS/QCD form [45, 46]

φAdS(x) =
4√
3π
fπ
√
x(1− x). (13)

(c) The Chernyak-Zhitnitsky [19] form

φCZ(x) = 5
√

3fπx(1− x)(1− 2x)2

=
√

3fπx(1− x)

[
1 +

2

3
C

(2/3)
2 (1− 2x)

]
. (14)
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(d) The ‘flat’ form [15]

φflat(x) =
fπ

2
√

3
[N + 6(1−N)x(1− x)] . (15)

The DA model (b) follows from the precise mapping of string amplitudes in Anti-de

Sitter (AdS) space to the light-front wavefunctions of hadrons in physical space-time using

holographic methods [45–48]. However, an extended AdS model with a Chern Simons action

maps to the asymptotic DA form x(1 − x) [49] rather than the AdS form
√
x(1− x). A

discussion of the pion form factor is discussed in the framework of light-front holographic

mapping in a forthcoming paper [50]. Model (c) was suggested on the basis of a calculation

using QCD sum rules and model (d) was advocated in explaining the recent BABAR data

for the pion TFF [1]. The end-point non-vanishing models, similar to model (d), were

also obtained [51–53] for the pion and photon DAs using chiral quark models and Regge

models before the BABAR results were reported. Normally one expects that the light-front

wavefunction of a composite hadron to vanish at the x = 0, 1 end-points to ensure a finite

expectation value of the kinetic energy operator. A set of pion DAs (termed the BMS models)

including only the first two terms in the general solution of the ERBL (see Eq. 16) below)

were proposed [25] by comparing the light-cone sum rules calculations for the pion TFF with

the CELLO and CLEO data. Theoretical calculations using transverse lattice gauge theory

with discrete light cone quantization [54] and chiral quark models [55] generally suggest that

that the pion DA is considerably broader than the asymptotic form.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

x

Φ
Hx

L�
f Π

FIG. 1: The four commonly used models for the pion distribution amplitude. The curves from

bottom to top at x = 0.5 are for the CZ, ‘flat’, AdS/QCD, and asymptotic forms, respectively.

The four models are shown in Fig. 1. Model (d) is not actually only flat over the whole
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TABLE I: Properties of the soft light-front wavefunction corresponding to various models of the

pion DA.

Pqq̄ DA κ (GeV)
√〈

k2
⊥
〉

(GeV)

0.25

φasy(x) 0.826 0.370

φAdS(x) 0.859 0.350

φCZ(x) 1.210 0.403

0.50

φasy(x) 0.584 0.261

φAdS(x) 0.607 0.248

φCZ(x) 0.855 0.285

0.80

φasy(x) 0.462 0.207

φAdS(x) 0.480 0.196

φCZ(x) 0.676 0.225

range of x – it is end-point enhanced. Models (c) and (d) have very different shape from

(a) and (b). The zero-value of the CZ form in the middle point (x = 0.5), where the pion

momentum is shared equally between the quark and the antiquark, and the enhancement of

the ‘flat’ form in the end-points (x = 0, 1), where the pion momentum is mostly carried by

the quark or the antiquark, are hard to understand in terms of the bound state dynamics

of the pion. The zero-value of the CZ form in the middle point also disagrees with the

estimation using the QCD sum rule method reported in [56], φ(x = 0.5) = (0.17± 0.03)fπ.

Using the models of the pion DA discussed above we can construct the corresponding

LFWF from Eq. (6). The LFWF constructed with the ‘flat’ form (model (c)) for the pion

DA is non-normalizable since the probability of finding the valence Fock state in the pion

(Eq. (10)) becomes infinity [33]. We list the values for the gap parameter κ and the root of

the mean square transverse momentum of the valence quarks
√
〈k2
⊥〉 for the three choices

of the probability Pqq̄ = 0.25, 0.50 and 0.80 in Table I. For the ‘flat’ model Eq. (10) is

divergent so we adopt κ2 = 0.530 GeV2 [14] and N = 1.3 [15], which were chosen to explain

the BABAR data.
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B. Hard Evolution of the Pion Distribution Amplitude

The evolution of the pion DA at large Q is governed by the ERBL equation. The solution

to the ERBL equation can be expressed [7, 8] in terms of Gegenbauer polynomials,

φ(x,Q) = x(1− x)
∞∑

n=0,2,4,···

an(Q)C3/2
n (2x− 1), (16)

where

an(Q) =

[
αs(µ

2
0)

αs(Q2)

]γn/β0
an(µ0), (17)

at leading order. The coefficients {an(µ0)} are the coefficients in the Gegenbauer expansion

of the DA at the initial scale µ0,

φ(x, µ0) = x(1− x)
∞∑

n=0,2,4,···

an(µ0)C3/2
n (2x− 1), (18)

and follow from the orthonormality of the Gegenbauer polynomials

an(µ0) =
4(2n+ 3)

(n+ 2)(n+ 1)

∫ 1

0

dxφ(x, µ0)C3/2
n (1− 2x). (19)

The QCD coupling constant αs(Q
2) is taken to have the leading-order form

αs(Q
2) =

4π

β0ln
(
Q2/Λ2

QCD

) , (20)

where ΛQCD is the QCD scale parameter and β0 is the QCD beta function one-loop coefficient

β0 = 11− 2
3
nf . The anomalous dimensions γn appearing in Eq. (17)

γn =
4

3

[
3 +

2

(n+ 1)(n+ 2)
− 4

n+1∑
j=1

1

j

]
, (21)

are the eigenvalues of the evolution kernel [7, 8]. The coefficient a0(µ0) =
√

3fπ for any

model of the pion DA, since the pion DA should satisfy the normalization condition Eq. (4)

with C
3/2
0 (z) = 1, and

∫ 1

0
dxx(1− x)C

3/2
n (1− 2x) = 0 for n ≥ 2.

The coefficients an(µ0) are computed at the initial scale µ0 = 1 GeV (where the effects of

hard gluons is negligible and the scale dependence of the soft evolution is not important).

Thus we choose the initial condition φ(x, µ0 ' 1 GeV) ' φ(x), with φ(x) given by Eq. (7).

At leading order the asymptotic form does not evolve since all the expansion coefficients
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TABLE II: The coefficients an(µ0) for the asymptotic, AdS and CZ models for the pion DA.

n 0 2 4 6 10 12 14 16 18 20

an(µ0)/a0(µ0)

AdS 1 0.1461 0.0573 0.0305 0.0189 0.0129 0.0094 0.0071 0.0056 0.0045

CZ 1 2/3 0 for n ≥ 4

asy 1 0 for n ≥ 2

{an(µ0)}, but a0(µ0) =
√

3fπ, vanish for model (a). The coefficients {an(µ0)} for model (c)

(the CZ form) are very simple since the model essentially includes only the first two terms

in the Gegenbauer polynomials, a0(µ0) =
√

3fπ and a2(µ0) = 2/
√

3 fπ. For model (b) (the

AdS form) we include the first 50 terms (i.e. up to n = 100) in Eqs. (16) and (18) in our

calculation. The first 10 values of an(µ0) for the AdS model and the nonzero coefficients for

the asymptotic and CZ models are listed in Table II. It was found that for the AdS model

the calculation with 51 terms only brings a few percent corrections to the calculation with

21 terms over a large range of x.

It is problematic to expand the ‘flat’ DA in term of the Gegenbauer polynomials at the

initial scale µ0, since the expansion Eq. (18) converges if, and only if, φ(x, µ0) vanishes at

end-points [7, 57]. We will not try to apply the ERBL equation to the ‘flat’ DA, but just

make the note that if one applied the ERBL equation to the ‘flat’ DA, one would enforce

the suppression at the end-points as soon as the evolution starts.

The first term in Eq. (16) represents the asymptotic form of the pion DA and the asymp-

totic form does not evolve with Q2. The other distribution amplitudes have Gegenbauer

polynomial components with nonzero anomalous dimensions which drive their contributions

to zero for large values of Q. One can start with any distribution amplitude φ(x, µ0) at any

finite scale and expand it as x(1−x) times Gegenbauer polynomials. Only its projection on

the lowest Gegenbauer polynomial with zero anomalous moment survives. This is illustrated

in Fig. 2 for the first few expansion coefficients an(Q2) for the AdS distribution amplitude.

The evolution effects of the DA at leading order are shown in Figs. 3 and 4 for the AdS model

and CZ model for the pion DA respectively. In our numerical calculations we used µ0 = 1

GeV and ΛQCD = 225 MeV. Performing evolution at NLO modifies the results slightly. It

can be seen that evolution effects change the shape of the CZ form significantly, while the

effect on the AdS form is not as dramatic. In the asymptotic Q2 →∞ limit the asymptotic
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FIG. 2: Evolution of the expansion coefficients an(Q2) for the AdS distribution amplitude. The

curves from top to bottom are for n = 2, 4, 6 and 8 respectively.

DA is recovered.
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FIG. 3: Evolution effects shown for the AdS model for the pion DA. The curves from bottom to

top at x = 0.5 are for Q2 = 1, 10, 100 and 1000 GeV2, and the asymptotic DA, respectively.

C. Moments of the Pion Distribution Amplitude

Important constraints for the form of the distribution amplitudes also follow from QCD

lattice computations. The latest results for the second moment of the pion DA,

〈ξ2〉µ2 =

∫ 1

−1
dξξ2φ(ξ, µ2)∫ 1

−1
dξφ(ξ, µ2)

, (22)

where ξ = 1 − 2x, are 〈ξ2〉µ2=4 GeV2 = 0.269 ± 0.039 [11] and 0.28 ± 0.03 [12]. The second

moments calculated at the initial scale µ0 for the four models of the pion DA described
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FIG. 4: Similar as in Fig. 3 but for the CZ model for the pion DA.

above are 0.20 (asymptotic), 0.25 (AdS/QCD), 0.43 (CZ) and 0.37 (‘flat’), respectively.

Using the ERBL evolution equations we can compute the second moments at the scale

µ2 = 4 GeV2. We find the values 0.20 (asymptotic), 0.24 (AdS/QCD) and 0.38 (CZ). The

agreement between the AdS model value and the lattice results is better than the result

found for the asymptotic model and CZ model. We also note that the measurement of the

pion DA in diffractive di-jet production reported by the E791 Collaboration [58] supports

a centrally-peaked DA such as the asymptotic and AdS/QCD models. The second moment

alone, while providing important information for the pion DA, will not put strong constraints

on the shape of the pion DA, since it is a quantity obtained by integrating the DA over the

whole range of x.

III. PION-PHOTON TRANSITION FORM FACTORS

The pion-photon transition form factor can be extracted from the two-photon process

γ∗(q1)γ∗(q2)→ π0. When both photons are off-shell with virtuality Q2
1 = −q2

1 and Q2
2 = −q2

2,

the form factor is denoted as Fπγ∗(Q
2
1, Q

2
2). In the case of one photon being on mass-shell

the form factor is denoted as Fπγ(Q
2).
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A. Leading order results

Brodsky and Lepage [7, 10] predicted the behavior of Fπγ(Q
2) at leading order of αs(Q

2)

and leading twist as

Q2Fπγ(Q
2) =

4√
3

∫ 1

0

dx
φ(x, x̄Q)

x̄

[
1 +O

(
αs,

m2

Q2

)]
, (23)

where x is the longitudinal momentum fraction of the quark struck by the virtual photon

in the hard scattering process and x̄ = 1− x is the longitudinal momentum fraction of the

spectator quark. It was argued [7] that the boundary condition of DAs vanishing at the

end-points faster than xε for some ε > 0 would enable one to replace φ(x, x̄Q) by φ(x,Q)

since the difference is non-leading2, and Eq. (23) becomes

Q2Fπγ(Q
2) =

4√
3

∫ 1

0

dx
φ(x,Q)

x̄

[
1 +O

(
αs,

m2

Q2

)]
. (24)

The replacement is sound when one is interested in the leading order behavior of the TFF

and particularly for the behavior at the asymptotic limit Q2 →∞, which is one of the main

purposes of Ref. [7]. However, this approximation is not justified for the calculation at finite

Q2 region where one needs to take into account the evolution effects and NLO corrections.

The dominant contributions to the integrals in Eqs. (23) and (24) come from small x region,

e.g., 3/4 of the contributions coming from x ≤ 0.5 for the asymptotic DA. At the same time

the evolution changes the shape of the DA more significantly in the small x region. Thus

the calculations with Eq. (23) involve a much less evolved DA than Eq. (24). The difference

between the calculations using Eqs. (23) and (24) could be sizable. Unfortunately, Eq. (24)

has been widely used in the literature as the starting point to calculate high-order corrections

to the pion TFF, see e.g., [20–24]. Similar replacement has been done in the study for other

exclusive processes.

It is essential to consider the transverse momentum dependence in both the hard-

scattering amplitude and the LFWF in order to describe the data at finite Q2 [16]. Taking

into account the k⊥-dependence, the pion-photon transition form factor is given by [7, 16]

Fπγ(Q
2) =

2√
3

∫ 1

0

dx

∫ ∞
0

d2k⊥
16π3

TH(x,Q2,k⊥)ψqq̄/π(x,k⊥), (25)

2 It was actually pointed out that the replacement x̄Q→ Q/2 is more appropriate.
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where

TH(x,Q2,k⊥) =
q⊥ · (x̄q⊥ + k⊥)

q2
⊥(x̄q⊥ + k⊥)2

+ [x↔ x̄] , (26)

is the hard scattering amplitude and q2
⊥ = Q2. Using Eq. (25) and a Gaussian type LFWF

one can reproduce the curve displayed by the experimental data at low Q2 [16]. With

Eqs. (23) and (24) the calculations will be near constant for all Q2.

Musatov and Radyushkin have shown [59] that if LFWF depends on the transverse mo-

mentum only through k2
⊥, Eq. (25) can be simplified as

Q2Fπγ(Q
2) =

4√
3

∫ 1

0

dx

x̄

∫ x̄Q

0

d2k⊥
16π3

ψqq̄/π(x,k2
⊥). (27)

For the model wavefunction Eq. (6) we can factor out the Q2 dependence of the DA at

low Q2, Eq. (11), and include the QCD evolution for higher momenta through the ERBL

solution of the DA. One obtains3 [59]

Q2Fπγ(Q
2) =

4√
3

∫ 1

0

dx
φ(x, x̄Q)

x̄

[
1− exp

(
− x̄Q

2

2κ2x

)]
. (28)

The pion TFF depends on Q2 through the exponential factor and the pion DA. Since we

have explicitly factored out the low Q2-dependence, the distribution amplitude in Eq. (28)

contains only the hard ERBL evolution. The exponential factor is important, especially for

small x̄ and small Q2, thus it controls the curvature of Q2Fπγ(Q
2) vs. Q2 at low Q2. The

behavior of the pion TFF at high Q2 is determined dominantly by the pion ‘hard’ DA which

should evolve in a logarithmic manner. The exponential factor also plays a role to regularize

the calculation with the ‘flat’ DA, which otherwise involves a divergent integral.

Inserting Eq. (16) into Eq. (28) we can write the transition form factor as

Q2Fπγ(Q
2) =

4√
3
fπ

∞∑
n=0,2,4···

an(µ0)

∫ 1

0

dx xC3/2
n (2x− 1)

[
αs(µ

2
0)

αs(x̄2Q2)

]γn/β0 [
1− exp

(
− x̄Q

2

2κ2x

)]
. (29)

3 Enforcing the cut-off k2
⊥ ≤ x(1 − x)Q2 for the soft LFWF discussed in Section I, Eq. (28) becomes

Q2Fπγ(Q2) = 4√
3

∫ 1

0
dxφ(x,Q̃)

x̄

[
1− exp

(
− Q̃2

2κ2xx̄

)]
where Q̃2 = xx̃Q2 with x̃ = min (x, x̄). The two

expressions coincide for x ≤ 0.5 and the differences are negligible unless Q2 < 1 GeV2. However, for other

exclusive processes that are sensitive to the large-x region the difference may be sizable.
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FIG. 5: The pion-photon transition form factor shown as Q2Fπγ(Q2) calculated using Eq. (28) with

different prescriptions for φ(x, µ): solid curve – φAdS(x, x̄Q), dashed curve – φAdS(x), thick-dashed

curves – φAdS(x,Q), and dash-dotted curve – φasy(x). Pqq̄ = 0.50. The data are taken from [1, 5, 6].

which displays the soft and hard dependence. We need to set x̄Q = µ0 for x̄Q < µ0, which

assures the convergence of Eq. (29). Equations (28) and (29) clearly show that the pion

TFF at any given Q2 is determined by φ(x, µ0) and all evolved DAs from µ0 to Q, with

the less-evolved DAs providing major contributions. For example, half of the contributions

at Q ' 3 µ0 come from φ(x, µ0) for the asymptotic DA, and this ratio is much higher for

broad models for the pion DA. The contributions from φ(x, µ0) remain significant even when

Q ∼ 5µ0. Thus the evolution effect hardly shows up until Q2 is very large. On the other

hand, if one uses the distribution φ(x,Q) in Eqs. (28) and (29) the evolution effect will be

overestimated.

We compare results calculated using φ(x, µ0), φ(x, x̄Q) and φ(x,Q) in Eq. (28). The

results for the AdS and CZ models for the pion DA are shown in Figs. 5 and 6, respectively.

The valence probability Pqq̄ = 0.50 has been adopted in these calculations. Using φ(x,Q)

will unjustifiably reduce the predictions substantially for Q2 > 10 GeV2. We conclude that

the evolution effect at leading order will not bring any large corrections to the calculation

for the pion transition form factors. It is a good approximation to use φ(x, µ0) in the

pQCD calculation for exclusive processes. This conclusion can be expected to hold when

the evolution is considered at NLO as well.
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FIG. 6: Similar as in Fig. 5 but for the CZ model for the pion DA.

Analytical expression exists for each term in the sum in Eq. (29), though the expression

becomes extraordinary long and tedious for large n. The first term corresponds to the results

with the asymptotic DA,

Q2FAS
πγ (Q2) = 2fπ

Q2

2κ2

(
1− Q2

2κ2
e
Q2

2κ2 Γ[0,
Q2

2κ2
]

)
, (30)

where Γ[0, x] is the incomplete gamma function. At the asymptotic limit Q2 →∞, Eq. (30)

gives Q2Fπγ(Q
2) → 2fπ as expected. A slightly more complicated expression exists for the

CZ model for the pion DA.

B. Next-to-leading Order Corrections

The next-to-leading order corrections have been studied [20–24] under the assumption of

φ(x, x̄Q) ' φ(x,Q), using the standard hard scattering approach when the k⊥-dependence

in the hard scattering amplitude is ignored. As illustrated in the last section, a properly

treatment of evolution is required. So it is necessary to revisit the NLO calculations with

φ(x, x̄Q). Assuming that the k⊥-dependence of the LFWF introduces the same exponential
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FIG. 7: Effect of NLO corrections on the pion to photon transition form factor Q2Fπγ(Q2). The

curves without markers are the results calculated using Eq. (28) with φ(x) for the four models of the

pion DA: solid curve – CZ model, dashed curve – ‘flat’ model, thick-solid curve – AdS model, and

dash-dotted curve – asymptotic model. The curves with markers are the NLO results calculated

using Eqs. (31) and (32). Pqq̄ = 0.50. The data are taken from [1, 5, 6].

factor for the small Q region4 the TFF can be expressed as

Q2FNLO
πγ (Q2) =

4√
3

∫ 1

0

dxTH(x,Q2)φ(x, x̄Q)

[
1− exp

(
− x̄Q

2

2κ2x

)]
, (31)

where [20–24]

TH(x,Q2) =
1

x̄
+
αs(µR)

4π
CF

1

x̄

[
−9− x̄

x
lnx̄+ ln2x̄

+ (3 + 2lnx̄) ln

(
Q2

µ2
R

)]
, (32)

and φ(x, x̄Q) is the ‘hard’ DA evolved at the next-to-leading order [60], except for the ‘flat’

DA which cannot be evolved as discussed in Section 2. The regularization scale is commonly

taken as µR = Q to eliminate otherwise large logarithm terms.

The numerical results for the pion TFF with the four DA models discussed in Section II

are shown in Fig. 7. The NLO corrections vary according to the models used for the pion

DA. The corrections at Q2 ∼ 5 GeV2 are about 20%, 17%, 11%, and 15% for the asymptotic,

4 Dropping this exponential factor will hardly affect the calculation at large Q2.
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AdS, CZ, and ‘flat’ models. The corrections at Q2 ∼ 40 GeV2 are still more than 7% for all

the DAs. Thus it is necessary to take into account these corrections for a large range of Q2.

C. Higher Order and Higher Fock State Contributions and Dependence on Pqq̄

The calculations for the transition form factors depend on the non-perturbative input,

i.e. the soft LFWF. Consequently, it has been long argued that the pion-photon transition

form factor is a particularly suitable process in determining the pion LFWF and DA. As

discussed in Section II, we have treated the only parameter κ in the model LFWF (Eq. (6)) as

a parameter which is constrained, though not very strictly, by the probability of finding the

valence Fock state and the mean square transverse momentum. In the above calculations we

have adopted Pqq̄ = 0.50. The next-to-leading order predictions with Pqq̄ = 0.50 for the pion-

photon transition form factor are smaller that the experimental data, particularly for the

Q2 < 10 GeV2 region. To improve the agreement between the calculations and experimental

data one could use a larger value for Pqq̄. For example, using Pqq̄ = 1.0 will give a much

better agreement for the calculations with the CZ model for the pion DA. However, a much

larger value of Pqq̄ than 0.5 will result in a much smaller value for the root of mean square

transverse momentum of the valence quarks compared to the value obtained from the charge

radius of the pion.

It is shown in [24] that the next-to-next-to-leading corrections are much smaller that

the next-to-leading corrections. However, the contributions from higher Fock states (e.g.,

|qq̄qq̄〉) are important at low Q2. Figure 8 (b) illustrates such a contribution where each

photon couples directly to a qq̄ pair. Such higher-twist contributions
∑

ei 6=ej eiej are nec-

essary to derive the low energy amplitude for Compton scattering γH → γH, which is

proportional to the total charge squared e2
H = (ei + ej)

2 of the target. These contributions

are suppressed by the factor (1/Q2)n at large Q2, where n can be understood as the number

of qq̄ pairs in the higher Fock states. An analysis of these contributions using the framework

of AdS/QCD is presented in [50]. To estimate these higher Fock state contributions we

adopted a phenomenological model as in [27]

Q2FHFS
πγ (Q2) =

Fπγ(0)/2

(1 +Q2/Λ2)2
, (33)

where Fπγ(0) = 1/(4π2fπ) is the PCAC result and Λ can be treated as a parameter. The
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FIG. 9: The π0 − γ transition form factor including contributions from the valence Fock state

(Eq. (31)) and higher Fock states (Eq. (33)) of the pion. The data are taken from [1, 5, 6].

contributions are less than 1% for Q2 > 10 GeV2 and thus can be safely ignored.

The total contribution from the valence Fock state and the higher Fock states is the sum

of Eqs. (31) and (33). The results calculated with the choice of Pqq̄ = 0.5 and Λ = 1.1 GeV in

Eq. (33) are compared with the data in Fig. 9. The agreement at the low Q2 region is vastly

improved due to the inclusion of higher Fock state contributions. However, the higher Fock

state contributions are negligible for Q2 > 10 GeV2 and it is in this large Q2 region that the

four models of the pion DA, discussed in Section II, give very different predictions for the Q2

dependence of the pion-photon transition form factor. The results with the asymptotic DA
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FIG. 10: The π0 − γ transition form factor calculated with Eq. (31) for Pqq̄ = 0.5 and Pqq̄ = 0.8.

The data are taken from [1, 5, 6].

are smaller than the BABAR data and, as expected, do not exhibit a strong Q2 dependence.

The results with the ‘flat’ DA show a substantial and continuous growth with Q2, which is

in disagreement with the QCD prediction that the pion TFF should approach its asymptotic

value of 2fπ at Q2 →∞. In fact, one cannot apply the ERBL evolution equation to the ‘flat’

DA since it does not satisfy the boundary condition of the pion DA vanishing at x = 0 and

x = 1. The results with the AdS model and CZ model for the pion DA lie in between the

predictions of the asymptotic DA and the ‘flat’ DA. The results with the CZ DA show a fast

growth with Q2 compared with the AdS DA over the range of 10 GeV2 < Q2 < 100 GeV2.

We note that the BABAR data for Q2 > 20 GeV2 suffer larger uncertainties as compared

with the low- and medium-Q2 regions. We also note that the ‘flat’ and CZ models of the

pion DA will produce much larger values for the η-photon and η′-photon transition form

factors than the results reported by the BABAR Collaboration for Q2 > 15 GeV2 [3, 4] and at

Q2 = 112 GeV2 [61]. Figure 9 also shows that the calculations approach the asymptotic limit

value Q2Fπγ(Q
2 → ∞) = 2fπ very slowly since the DA evolution introduces a logarithm

Q2-dependence via [ln (Q2/ΛQCD) /ln (µ2
0/ΛQCD)]

−γn .

We investigate the dependence of our calculations on Pqq̄ by allowing Pqq̄ to be in the

range of 0.5 ∼ 0.8. The valence Fock state contributions calculated with Eq. (31) are shown
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in Fig. 10. One can see that the calculations for Q2 > 30 GeV2 depend on Pqq̄ very weakly,

though the dependence at the lower Q2 region is much more significant. The four models of

the pion DA give very different predictions for the pion-photon transition for the region of

Q2 > 30 GeV2, regardless the value of the Pqq̄.

It is very difficult to accommodate the BABAR large-Q2 data with the QCD calculations

using the asymptotic, AdS, and CZ models for the pion DA. The calculations with the

‘flat’ model of the pion DA can produce a rapid growth for the pion TFF shown by the

BABAR data. However, the calculations with the same DA model underestimate significantly

the pion TFF at the low Q2, and the prediction for the pion TFF at the asymptotic limit

Q2 →∞ violates seriously the Brodsky-Lepage limit of Q2Fπγ(Q
2 →∞) = 2fπ.

It was pointed out in [38] that using a contact interaction for the quark-antiquark inter-

action in the Dyson-Schwinger equations (i.e. treating the pion as a point-like bound state)

produces a ‘flat’ DA and gives predictions for the pion electromagnetic form factors [62] and

transition form factor that are in striking disagreement with completed experiments. In Ref.

[31] the pion is treated as an elementary field in the triangle graph and the simple expression

obtained as Fπ0γ(Q
2) ∼ m2

Q2 (lnQ2

m2 )2 (with m = 132 MeV) is able to reproduce the BABAR data

for the pion TFF. We would like to emphasize that although the chiral field theory is a useful

approximation for some long-wavelength, soft processes, it is inapplicable to the hard scat-

tering regime of the BABAR data. In fact, the compositeness of the pion in terms of quarks

and gluons has been verified in high energy experiments both in inclusive reactions (such as

the Drell-Yan process for pion-nucleon collisions) and many hard exclusive reactions (such

as the pion form factor at large spacelike and timelike momentum transfers and large angle

scattering processes such as γγ → ππ and pion photoproduction). It is also not necessary

to treat the pion as elementary to prove chiral anomalies or the Gell-Mann-Oakes-Renner

(GMOR) relation. Such relations are standard consequences of QCD for a composite pion

[63]. Employing the BMS models [25] for the pion DA, which were determined utilizing the

CELLO and CLEO data for the pion TFF, will produce a Q2-dependence for the pion TFF

similar to that obtained with the AdS model for the pion DA. A recent analysis [39] of all

existing data (CELLO, CLEO and BABAR ) performed in a framework similar to [25] suggest

that it is not possible to accommodate the high-Q2 tail of the BABAR data with the same

accuracy as the analysis of the CELLO and CLEO data.

We note that there are several theoretical studies [27–36] trying to reproduce the BABAR
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data for the pion TFF, apart from those using the ‘flat’ form for the pion DA [13–15, 26].

It was claimed in [27, 28] that a much broader DA than the asymptotic form (but which

still vanishes at the end-points) would be able to explain the BABAR results. The Regge

approach was employed in [29, 30] to explain the BABAR data. On the other hand, there are

also theoretical calculations suggesting that the BABAR data are not compatible with QCD

calculations [37–40].

We would like to remark that more accurate measurements of the pion-photon transition

form factor at the large Q2 region will be able to distinguish the various models of the pion

DA under discussion.

D. The transition form factor for the pion-virtual-photon

The above analysis can be easily extended to the case in which the photons involved are

both off mass-shell, i.e., for the form factor Fπγ∗(Q
2
1, Q

2
2), by replacing the hard-scattering

amplitude TH with the corresponding expression. At leading order TH has the form

T γ
∗γ∗→π0

H (x,Q1, Q2) =
1

x̄Q2
1 + xQ2

2

, (34)

where x̄ = 1 − x. For the expression at next-to-leading order we refer the readers to

reference [22].

A significant difference from the case with a real and a virtual photons where TH =

1/(x̄Q2) is that Eq. (34) is not divergent at the end-points. Thus considering the k⊥-

dependence will not bring as large corrections as for Fπγ(Q
2), and the transition form factor

Fπγ∗ is much less sensitive to the end-point behavior of the pion DA than Fπγ.

We note that the kinematic region satisfying Q2
1 = Q2

2 is particularly interesting since

in this region the amplitude TH becomes independent of x and thereby the transition form

factor is largely described by the normalization of the pion DA, which is model and Q2

independent. Ignoring the weak Q2 dependence introduced by the consideration of k⊥ de-

pendence and the NLO corrections in αs, which are both expected to be small at large Q2,

we have

Q2
1Fπγ∗(Q

2
1, Q

2
2)→ 2

3
fπ for Q1 = Q2 > a few GeV. (35)

We make the remark that Eq. (35) is expected to work for the range Q2
1 = Q2

2 ∼ 10-20 GeV2
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FIG. 11: The doubly virtual transition form factor for Q2
2 = 2 GeV2, calculated with Eqs. (31)

and (34). The solid, dashed, thick-solid, and long-dashed curves are the results with the CZ, ‘flat’,

AdS, and asymptotic models for the pion DA.

which is accessible by the current experiments. So measurements of Fπγ∗(Q
2
1, Q

2
2) under

these conditions would provide another test of pQCD analysis of exclusive processes.

The numerical results for Fπγ∗(Q
2
1, Q

2
2) calculated at NLO are given in Fig. 11 for Q2

2 = 2

GeV2. The four models give similar predictions for Q2
1 up to 15 GeV2. At large Q2

1 the

results with the CZ model are much larger compared with the asymptotic and AdS models.

We found that the NLO corrections at this range of Q2 are less than 10% for the asymptotic

and AdS models while the corrections to the CZ and ‘flat’ models are negligible. The higher-

twist effects at this range of Q2 could be expected to be minimal. Thus the difference on

the prediction for this transition form factor is a direct reflection of different behavior of the

pion DA. Measurements of this form factor at the kinematic region Q2
1 ∼ 20 Q2

2 with Q2
2

being about a few GeV2 would provide a good laboratory to distinguish the middle-peak

DA, such as the asymptotic and AdS models, from the CZ model.

IV. THE η-PHOTON AND η′-PHOTON TRANSITION FORM FACTORS

According to the SU(3)F quark model, the three charge neutral states in the nonet of

pseudoscalar mesons are π0, η8 and η1. The latter two mix to give the physical particles η
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and η′. It can be expected that the states π0, η8 and η1 have the same form of distribution

amplitude (and the same k⊥-dependence in the light-front wavefunctions),

φP (x) = fPf(x), (36)

with P denoting π0, η8 and η1, and fP being the corresponding decay constant.

The transition from factors for the π0, η8 and η1 can be expressed as

Q2FPγ(Q
2) =

4√
3
cP

∫ 1

0

dxTH(x,Q2)φP (x, x̄Q)

[
1− exp

(
− x̄Q

2

2κ2x

)]
, (37)

where cP = 1, 1√
3
, and 2

√
2√
3

for π0, η8 and η1, respectively and TH(x,Q2) is given by Eq. (32)

at next-leading order of QCD running coupling constant.

The transition form factors for the η and η′ result from the mixing of Fη8γ and Fη1γ, Fηγ

Fη′γ

 =

 cos θ −sin θ

sin θ cos θ

 Fη8γ

Fη1γ

 , (38)

where θ is the mixing angle which has been the subject of extensive studies [64]. In this

work we adopt θ = −14.5o ± 2o, f8 = (0.94 ± 0.07)fπ, and f1 = (1.17±)fπ [65]. The same

value of κ has been used for the three charge neutral states and Λ = 1.1 GeV is adopted in

Eq. (33). The results for the η-photon and η′-photon transitions form factors are shown in

Figs. 12 and 13 respectively. The data favor the AdS and the asymptotic models for the

meson DA. One may fine-tune the parameters θ, f8, and f1 to make the calculations with

the asymptotic form and the AdS form to give better agreement with the data. However

it is almost impossible to make the calculations with the CZ form and the ‘flat’ form to

describe the data in both the low- and high-Q2 regions simultaneously for the two transition

form factors, although these two forms are favored to explain the rapid growth of the BABAR

data [1] for the pion-photon transition form factor at large Q2.

The DA models that could explain the BABAR measurements for the pion-photon transi-

tion form factors at large values of Q2 will fail in QCD calculations for the other processes,

including the η-photon and η′-photon transition form factors reported by the BABAR Collab-

oration. This may suggest that the BABAR measurements at large Q2 are not a true accurate

representation of the pion-photon transition form factor, a perspective that has been sug-

gested in [37, 38]. This may also indicate that there are some inconsistencies among the

results for the transition form factors of the π0, η and η′.
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FIG. 12: The η − γ transition form factor shown as Q2Fηγ(Q2). The thick-dashed, thick-solid,

thin-dashed, thin-solid curves are the results calculated with the asymptotic, AdS, CZ and ‘flat’

models for the meson DAs, respectively. Data are taken from [6] (CLEO) and [3, 4] (BABAR).
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FIG. 13: The η′ − γ transition form factor shown as Q2Fη′γ(Q2). The thick-dashed, thick-solid,

thin-dashed, thin-solid curves are the results calculated with the asymptotic, AdS, CZ and ‘flat’

models for the meson DAs, respectively. Data are taken from [6] (CLEO) and [3, 4] (BABAR).
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In a recent paper[40], Wu and Huang have studied the dependence of the photon-to-

meson transition form factors on the model parameters (including quark masses, mixing

angle, as well as an intrinsic charm component) in a light-front perturbative approach. It

is found that the agreement of the predictions of their model with the experimental data

can be somewhat improved by adjusting these parameters within their reasonable regimes,

but the data for the pion-photon transition form factor in the entire Q2 domain cannot be

explained consistently.

Recently Kroll [28] analyzed the π − γ, η − γ, and η′ − γ transition form factors using

the modified hard scattering approach in which the transverse-momentum-factorization is

combined with a Sudakov factor. The distribution amplitude of mesons is constrained

to contain the first three nontrivial terms in the Gegenbauer expansion for the DA, and

a Gaussian form is assumed for the k⊥-dependence in the wave function. By adjusting

the three parameters – the two coefficients, a2 and a4 in the Gegenbauer expansion, and

the transverse size parameter σP , reasonably good agreement with experimental data was

achieved. The best fit for the pion-photon transition form factor presented in Fig. 4 of [28]

is very similar to our results calculated with the AdS model for the pion DA (see Fig. 9). We

note that in order to describe the three transition form factors, very different values for the

three parameters are chosen in Ref. [28] for the π0, η8 and η1: aπ2 = 0.20, aπ4 = 0.01, σπ = 0.40

GeV−1; a8
2 = −0.06, a8

4 = 0, σ8 = 0.84 GeV−1; a1
2 = −0.07, a1

4 = 0, and σ1 = 0.74 GeV−1.

Such a choice of parameters suggests a very large SU(3)F symmetry breaking between the

DAs of the π0 and η8 and a very little SU(3)F symmetry breaking between the η8 and η1.

Our view is that this remains as a possibility, but it is unlikely since the π0 and η8 belong to

the octet and η1 belongs to the singlet of the pseudoscalar mesons. Furthermore, there is no

evidence supporting such a large SU(3)F breaking in other processes, e.g., decay processes

involving pseudoscalar mesons [64]. In fact, the CLEO’s measurements of the meson-photon

transition form factors [6] suggested that the π0 and η8 have very similar non-perturbative

dynamics and thereby similar light-front wavefunctions and distribution amplitudes.

V. SUMMARY

The photon-to-meson transition form factor measured in γ∗γ → M is the simplest

hadronic amplitude predicted by QCD. Measurements from electron-positron colliders pro-
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vide important constraints on the non-perturbative hadron distribution amplitude, a fun-

damental gauge-invariant measure of hadron structure. The meson distribution amplitude

φ(x,Q) evolves in pQCD according to the ERBL evolution equation, which is based on

first-principle properties of QCD. Important constraints on the distribution amplitude have

been obtained using lattice gauge theory. We have analyzed in detail four models for the

π0, η, and η′ distribution amplitudes that have been suggested in the literature, including

their QCD evolution with logQ2.

We have calculated the meson-photon transition form factors for the π0, η and η′, taking

into account effects which are important for the calculations at finite Q2. These effects

include the k⊥-dependence of the hard-scattering amplitude and light-front wavefunctions,

the evolution effects of the pion distribution amplitude, and NLO corrections in αs. We

have pointed out that a widely-used approximation of replacing φ(x, x̄Q) with φ(x,Q) in

the hard-scattering formalism will significantly, and unjustifiably, reduce the predictions for

the magnitude of hard exclusive amplitudes.

It is found that in order to explain the experimental data at Q2 < 10 GeV2 one needs

to take into account the contributions from higher Fock states of the mesons, although

these contribution are negligible for the larger Q2 region. The four models of the meson

DA discussed in this article give very different predictions for the Q2 dependence of the

meson-photon transition form factors in the large Q2 region. The predictions based on the

AdS/QCD and light-front holography for the pion distribution amplitude agree well with the

experimental data for the η- and η′-photon transition form factors, but they disagree with the

data for the pion-photon transition form factor reported by the BABAR Collaboration. The

calculations with the CZ model agree with the BABAR data for the pion-photon transition

form factor reasonably well, but the predictions are much larger than the data from the

CLEO and BABAR Collaborations for the η- and η′-photon transition form factors. The

calculations with the ‘flat’ distribution amplitude, which has been advocated in explaining

the BABAR large-Q2 data for the pion transition form factor, disagree strongly with the

CLEO and BABAR data for the η- and η′-photon transition form factors.

We investigated the dependence of the calculations on the probability of valence Fock

state of the pion Pqq̄. It was found that the four models of the meson DA give very different

predictions for the meson-photon transition form factor in the region of Q2 > 30 GeV2 for

Pqq̄ to be in the reasonable range of 0.5 ∼ 0.8. More accurate measurements of the meson-
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photon transition form factor in the large Q2 region will be able to distinguish the four

commonly used models of the pion DA.

The BABAR data for the pion-photon transition from factor exhibit a rapid growth at

high Q2, but this feature is missing for the η- and η′-photon transition form factors. The

rapid growth of the large-Q2 data for the pion-photon transition form factor reported by the

BABAR Collaboration is difficult to explain within the current framework of QCD. This is

a viewpoint first expressed by Roberts et al. [38] in their Bethe-Salpeter/Dyson-Schwinger

analysis of the pion-photon transition form factors. If the BABAR data for the meson-photon

transition form factor for the π0 is confirmed, it could indicate physics beyond-the-standard

model, such as a weakly-coupled elementary C = + axial vector or pseudoscalar z0 in the

few GeV domain, an elementary field which would provide the coupling γ∗γ → z0 → π0 at

leading twist. We would like to remark that a high-mass state of about 10 GeV has been

envisaged in [29] to explain the BABAR data for the pion TFF [66]. We thus emphasize the

importance of additional measurements of the meson-photon transition form factors.

Acknowledgments

F. G. Cao is grateful to X.-H. Guo at Beijing Normal University and H. Chen at Southwest

University, China for their hospitality where part of F. G. Cao’s work was done. We thank

C. D. Roberts, N. Stefanis, and V. Braun for helpful comments. This research was supported

by the Department of Energy contract DE–AC02–76SF00515.

[1] B. Aubert et al., (BABAR Collaboration), Phys. Rev. D 80, 052002 (2009).

[2] J. P. Lees et al., (BABAR Collaboration), Phys. Rev. D 81, 052010 (2010).

[3] P. A. Sanchez, (BABAR Collaboration), arXiv:1101.1142 [hep-ex].

[4] V. Druzhinin, arXiv:1011.6159 [hep-ph].

[5] H.-J. Behrend et al., (CELLO Collaboration), Z. Phys. C 49, 401 (1991).

[6] J. Gronberg et al., (CLEO Collaboration), Phys. Rev. D 57, 33 (1998).

[7] G. P. Lepage and S. J. Brodsky, Phys. Lett. B87, 359 (1979); Phys. Rev. D 22, 2157 (1980).

[8] A. V. Efremov and A. V. Radyushkin, Phys. Lett. B94, 245 (1980).

[9] A. Duncan and A. H. Mueller, Phys. Lett. B90, 245 (1980); Phys. Rev. D 21, 1626 (1980).

29



[10] S. J. Brodsky and G. P. Lepage, Phys. Rev. D 24, 1808 (1981).

[11] V. M. Braun et al., (QCDSF/UKQCD Collaboration), Phys. Rev. D 74, 074501 (2006).

[12] R. Arthur et al., (RBC and UKQCD Collaboration), arXiv:1011.5906 [hep-lat].

[13] A. E. Dorokhov, Phys. Part. Nucl. Lett. 7 229 (2010) (see also arXiv:0905.4577 [hep-ph]).

[14] A. V. Radyushkin, Phys. Rev. D 80, 094009 (2009) (see also arXiv:0906.0323 [hep-ph]).

[15] M. V. Polyakov, JETP Lett. 90, 228 (2009) (see also arXiv:0906.0538 [hep-ph]).

[16] F. G. Cao, T. Huang, and B.-Q. Ma, Phys. Rev. D 53, 6582 (1996).

[17] R. Jakob, P. Kroll, and M. Raulfs, J. Phys. G. 22, 45 (1996).

[18] P. Kroll and M. Raulfs, Phys. Lett. B387, 848 (1996).

[19] V. L. Chernyak and A. R. Zhitnitsky, Phys. Rep. 112, 173 (1984).

[20] B. Melic, B. Nizic, and K. Passek, Phys. Rev. D 65, 053020 (2002).

[21] F. del Aguila and M. K. Chase, Nucl. Phys. B193, 517 (1981).

[22] E. Braaten, Phys. Rev. D 28, 524 (1983).

[23] E. P. Kadantseva, S. V. Mikhailov, and A. V. Radyushkin, Sov. J. Nucl. Phys. 44, 326 (1986).

[24] B. Melic, D. Muller, and K. Passek-Kumericki, Phys. Rev. D 68, 014013 (2003).

[25] A.P. Bakulev, S.V. Mikhailov, and N.G. Stefanis, Phys. Lett. B508, 279 (2001), Erratum:

ibid. B590, 309 (2004); ibid. Phys. Rev. D 67, 074012 (2003); ibid. Phys. Lett. B578, 578

(2004).

[26] H.-N. Li and S. Mishima, Phys. Rev. D 80, 074024 (2009).

[27] X.-G. Wu and T. Huang, Phys. Rev. D 82, 034024 (2010).

[28] P. Kroll, arXiv:1012.3542 [hep-ph].

[29] W. Broniowski and E. R. Arriola, arXiv:1008.2317 [hep-ph]; E. R. Arriola and W. Broniowski,

Phys. Rev. D 81, 094021 (2010).

[30] M. Gorchtein, P. Guo, and A. P. Szczepaniak, arXiv:1102.5558 [nucl-th].

[31] T. N. Pham and Dr. X. Y. Pham, arXiv:1101.3177 [hep-ph]; ibid 1103.0452.

[32] A. E. Dorokhov, arXiv:1003.4693 [hep-ph]; A. E. Dorokhov, JETP Lett. 92 (2010) 707.

[33] S. S. Agaev, V. M. Braun, N. Offen, and F. A. Porkert, Phys. Rev. D 83, 054020 (2011) (see

also arXiv:1012.4671 [hep-ph]).

[34] F. Zuo, Y. Jia, and T. Huang, Eur. Phys. J. C 67, 253 (2010).

[35] A. Stoffers and I. Zahed, arXiv:1104.2081 [hep-ph].

[36] A. Bzdak and M. Praszalowicz, Phys. Rev. D 80, 074002 (2009).

30



[37] S. V. Mikhailov and N. G. Stefanis, Mod. Phys. Lett. A 24, 2858 (2009) (see also

arXiv:0910.3498 [hep-ph]).

[38] H. L. L. Roberts, C. D. Roberts, A. Bashir, L. X. Gutierrez-Guerrero, and P. C. Tandy, Phys.

Rev. C 82, 065202 (2010).

[39] A. P. Bakulev, S. V. Mikhailov, A. V. Pimikov, and N.G. Stefanis, arXiv:1105.2753 [hep-ph].

[40] X.-G. Wu and T. Huang, arXiv:1106.4365 [hep-ph].

[41] S. J. Brodsky, P. Damgaard, Y. Frishman, and G. P. Lepage, Phys. Rev. D 33, 1881 (1986).

[42] S. J. Brodsky, T.Huang, and G. P. Lepage, in Particles and Fields-2, Proceedings of the Banff

Summer Institute, Banff, Alberta, 1981, edited by A.Z. Capri and A.N. Kamal (Plenum, New

York, 1983), p. 143; G. P. Lepage, S. J. Brodsky, T. Huang, and P. B. Mackenize, ibid p. 83;

T. Huang, Proceedings of XX-th International Conference on High Energy Physics, Madison,

Wisconsin, 1980 (AIP Con. Proc. No 69), edited by L. Durand and L. G. Pondrom, (AIP,

New York, 1981), P. 1000.

[43] R. Jakob and P. Kroll, Phys. Lett. B 315, 463 (1993) [Erratum-ibid 319, 545 (1993)].

[44] A. V. Radyushkin, arXiv:hep-ph/0410276.

[45] S. J. Brodsky and G. F. de Teramond, Phys. Rev. Lett. 96, 201601 (2006).

[46] S. J. Brodsky and G. F. de Teramond, Phys. Rev. D 77, 056007 (2008).

[47] S. J. Brodsky and G. F. de Teramond, Phys. Rev. D 78, 025032 (2008).

[48] G. F. de Teramond and S. J. Brodsky, Phys. Rev. Lett. 102, 081601 (2009).

[49] H. R. Grigoryan and A. V. Radyushkin, Phys. Rev. D 77, 115024 (2008).

[50] S. J. Brodsky, F.-G. Cao, and G. F. de Teramond, arXiv:1105.3999 [hep-ph].

[51] E. R. Arriola and W. Broniowski, Phys. Rev. D 66, 094016 (2002); ibid. 67, 074021 (2003);

ibid. 75, 034008 (2006).

[52] A. Bzdak and M. Praszalowicz, Acta Phys. Polon. B 34, 3401 (2003) [see also hep-ph/0305217].

[53] A. Dorokhov, W. Broniowski, and E. R. Arriola, Phys. Rev. D 74, 054023 (2006).

[54] S. Dalley and B. de Sande, Phys. Rev. D 67, 114507 (2003).

[55] W. Broniowski, E. R. Arriola, and K. Golec-Biernat, Phys. Rev. D 77, 034023 (2008).

[56] V. M. Braun and I. E. Filyanov, Z. Phys. C 44, 157 (1989).

[57] A. Erdelyi et al., Higher Transcendental Functions (Bateman Manuscript Project), (McGraw-

Hill, New York, 1953) Vol. II, p. 156.

[58] E. M. Aitala et al., (E791 Collaboration), Phys. Rev. Lett. 86, 4768 (2001).

31



[59] I. V. Musatov and A. V. Radyushkin, Phys. Rev. D 56, 2713 (1997).

[60] D. Muller, Phys. Rev. D 51, 3855 (1995), ibid. 49 2525 (1994).

[61] B. Aubert et al., BABAR Collaboration, Phys. Rev. D 74, 012002 (2006).

[62] L. X. Gutierrez-Guerrero, A. Bashir, I. C. Cloet, and C. D. Roberts, Phys. Rev. C 81, 065202

(2010).

[63] S. J. Brodsky, C D. Roberts, R. Shrock, and P. C. Tandy, Phys. Rev. C 82, 022201 (2010).

[64] For a recent review, see e.g., C. E. Thomas, J. High Energy Phys. 0710, 026 (2007).

[65] F. G. Cao and A. I. Signal, Phys. Rev. D 60, 114012 (1999).

[66] We thank the referee for alerting us to Ref. [29] where a high-mass state MH ∼ 10 GeV was

postulated to explain the BABAR data for the pion TFF. We note that the elementary field

suggested in our study differs from that of Ref. [29] which is based on incomplete vector meson

dominance [67] and the results are interpreted as corresponding to a high-mass state.

[67] M. Knecht and A. Nyffeler, Eur. Phys. J. C 21, 659 (2001); A. Nyffeler, arXiv:0912.1441

[hep-ph].

32


