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Using data corresponding to 6.0 fb−1 of pp̄ collisions at
√
s = 1.96 TeV collected by the CDF II

detector, we present a cross section measurement of top-quark pair production with an additional
radiated photon, tt̄γ. The events are selected by looking for a lepton (ℓ), a photon (γ), significant
transverse momentum imbalance ( 6ET ), large total transverse energy, and three or more jets, with at
least one identified as containing a b quark (b). The tt̄γ sample requires the photon to have 10 GeV
or more of transverse energy, and to be in the central region. Using an event selection optimized
for the tt̄γ candidate sample we measure the production cross section of tt̄ (σtt̄), and the ratio of
cross sections of the two samples. Control samples in the dilepton+photon and lepton+photon+ 6ET ,
channels are constructed to aid in decay product identification and background measurements. We
observe 30 tt̄γ candidate events compared to the standard model expectation of 26.9 ± 3.4 events.
We measure the tt̄γ cross section (σtt̄γ) to be 0.18 ± 0.08 pb, and the ratio of σtt̄γ to σtt̄ to be
0.024 ± 0.009. Assuming no tt̄γ production, we observe a probability of 0.0015 of the background
events alone producing 30 events or more, corresponding to 3.0 standard deviations.
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The standard model (SM) [1] of particle physics makes
successful predictions of the production rates of physics
processes that span many orders of magnitude. Data
from pp̄ collisions collected at the Tevatron have been
used to verify many of these predictions [2]. As a test
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of the SM, we measure the ratio of production cross sec-
tions of tt̄γ to tt̄. The ratio allows for the cancellation of
systematic effects, and is a more sensitive test of the SM
than the measurement of the production cross section of
tt̄γ alone. While current data is not sufficient to study
them in detail, the tt̄γ coupling parameters are sensitive
to some new physics models [3], and will be better mea-
sured in the future.

Top quarks are dominantly produced in pairs, with
both top quarks decaying to a W boson and a b quark
nearly 100% of the time. Their decays are classified as
dileptonic if both W bosons decay to leptons, semilep-
tonic if only oneW boson decays to leptons, and hadronic
if neither W boson decays to leptons. Selection for the
tt̄γ events in a semileptonic channel (including τ leptonic
decays) was performed using 6.0 fb−1 of integrated lumi-
nosity from pp̄ collisions at

√
s = 1.96 TeV collected using

the CDF II detector [4]. In order to isolate non-hadronic
tt̄γ production, we require: a high-transverse-momentum
(pT ) [5] lepton (ℓ) identifed as either an electron (e) or a
muon (µ), a photon (γ), a b-tagged jet (b), missing trans-
verse energy (6ET ), large total transverse energy (HT ),
and three or more jets. With these selection criteria, tt̄γ
dominates SM predictions [6]. The total transverse en-
ergy, HT , is the scalar sum of the transverse energy of
electrons, muons, jets, photons, and 6ET identified in the
event. Furthermore, we select top-quark pair production
(tt̄) events by using nearly the same selection as tt̄γ, but
without the photon requirement. Using similar event se-
lection ensures that many systematic uncertainties cancel
when we measure the cross section ratio of tt̄γ to tt̄.

The semileptonic cross section of tt̄γ has been mea-
sured to be 0.15 ± 0.08 pb using data corresponding
to an integrated luminosity of 1.9 fb−1 [6]. Using the
branching ratio of W decays to leptons (0.324) [7], this
corresponds to a production cross section of 0.34 ± 0.18
pb. The cross section of tt̄ production is well-measured
at 7.70 ± 0.52 pb [8]. However a measurement of both
tt̄ and tt̄γ cross sections with similar event selection has
not been performed.

The CDF II detector is a cylindrically symmetric mag-
netic spectrometer designed to study pp̄ collisions at the
Fermilab Tevatron. Here we briefly describe the com-
ponents relevant for this analysis. Tracking systems are
used to measure the momenta of charged particles and
to assist lepton identification. A multi-layer system of
silicon strip detectors [9] which identifies tracks in the
r - φ and r - z views [5], and the central outer tracker
(COT) [10], are contained in a superconducting solenoid
that generates a 1.4 T magnetic field. The COT is a 3.1
m long open-cell drift chamber capable of making up to
96 measurements of each charged particle in the pseudo-
rapidity region |η| < 1 [5]. Sense wires are arranged in
8 alternating axial and ± 2◦ stereo superlayers with 12
wires each. For high-momentum tracks, the COT trans-
verse momentum resolution is σpT /p

2
T ≃ 0.0015 GeV−1.

Segmented calorimeters with towers arranged in a pro-
jective geometry, each tower consisting of an electromag-

netic and a hadronic compartment [11], cover the region
|η| < 3.6. In this analysis we select photons and elec-
trons from the central region, |η| <∼ 1.0, where the central
electromagnetic shower system (CES) makes profile mea-
surements at shower maximum with finer spatial resolu-
tion than the calorimeter. Electrons are reconstructed in
the central electromagnetic calorimeter (CEM) with an

ET [5] resolution of σ(ET )/ET ≃ 13.5%/
√

ET /GeV ⊕
1.7%. Jets are identified using the hadronic and electro-
magnetic calorimeter using a cone in η−φ space of radius
R =

√

(∆φ)2 + (∆η)2 = 0.4. The jet energy resolution
is approximately σ ≃ 0.1 × ET (GeV) + 1 GeV [12] (i.e.
2.5 GeV for a 15 GeV jet).
Jets containing a hadron with a b quark (b hadrons)

are identified by exploiting the long b-hadron lifetime
(cτb ≈450 µm). The tracks originating from the resulting
displaced vertex are used by the SecVtx [13] algorithm
to identify the b hadron. The algorithm works in the re-
gion |η| < 2, defined by the silicon system coverage. Jets
that are identified as coming from b hadrons are said to
be b-tagged.
Muons (µ) are identified using the central muon

(CMU), the central muon upgrade (CMP), and the cen-
tral muon extension (CMX) systems [14], which cover
the detector region |η| < 1.

Luminosity is measured using C̆erenkov luminosity
counters in the range 3.7 < |η| < 4.7. The uncertainty in
the luminosity has been estimated to be 6%, where 4.4%
comes from the acceptance and operation of the luminos-
ity monitor, and 4% comes from the uncertainty on the
inelastic cross section of pp̄ [15].
A three-level online event selection system (trigger) [4]

selects events with a high-pT lepton in the central region.
The trigger system selects electron candidates from clus-
ters of energy in the central electromagnetic calorimeter.
Electrons are distinguished from photons by requiring a
COT track associated with the clusters. The muon trig-
ger requires a COT track that extrapolates to a track
segment (“stub”) in the muon detectors.
A muon candidate passing our selection criteria must

have: a well-measured track in the COT, energy de-
posited in the calorimeter consistent with minimum-
ionization expectations, a muon stub in both the CMU
and CMP, or in the CMX, consistent with the extrap-
olated COT track, and COT timing consistent with a
track from a pp̄ collision.
An electron candidate passing our selection criteria

must have: a high-quality track with pT > 0.5 ET , unless
ET > 100 GeV, in which case the pT threshold is set to
25 GeV, a good transverse shower profile that matches
the extrapolated track position, a lateral sharing of en-
ergy in the two calorimeter towers containing the electron
shower consistent with that expected for an electromag-
netic (EM) shower, and minimal leakage into the hadron
calorimeter [16].
Photon candidates are required to have Eγ

T >10 GeV,
no track with pT > 1 GeV and at most one track with
pT < 1 GeV, pointing at the EM cluster, good profiles



5

in both transverse dimensions at shower maximum, and
minimal leakage into the hadron calorimeter [16]. The
detected tracks have a minimum pT of 0.35 GeV due to
the magnetic field curling up lower pT particles. The
photons are only reconstructed in the CEM and have
|η| < 1.0.

To reduce background from photons or leptons that
originate from decays of hadrons produced in jets, both
the photon and the lepton in each event are required
to be “isolated”. The ET deposited in the calorimeter
towers in a cone in η−ϕ space [5] of R = 0.4 around the
photon or lepton position is summed, and the ET due
to the photon or lepton is subtracted. The remaining
ET is required to be less than 2.0 GeV + 0.02 × (ET -
20 GeV) for a photon, or less than 10% of the ET for
electrons or pT for muons. In addition, for photons, the
sum of the pT of all tracks in the cone must be less than
2.0 GeV + 0.005×ET .

Missing transverse energy, 6ET , is calculated from the
observed calorimeter-tower energies in the region |η| <
3.6 [17]. Corrections are then made to the 6ET for
non-uniform calorimeter response [18] for jets with un-
corrected ET > 15 GeV and η < 2, and for muons with
pT > 20 GeV.

Events for the analysis are selected by requiring a cen-
tral e or µ with Eℓ

T > 20 GeV originating less than 60 cm
along the beam-line from the detector center and pass-
ing the criteria listed above. We further require events
to have at least one of the following objects: a jet with
Ejet

T > 15 GeV, 6ET > 20 GeV, an additional lepton, or
a central γ with ET > 10 GeV.

The first measurement we perform is in the tt̄ sig-
nal sample, which requires an event to contain: 6ET >
20 GeV, a lepton, a b-tagged jet, HT > 200 GeV, Njets ≥
3 [19] (including the b-tagged jet) , and transverse mass
of the lepton and 6ET to be greater than 20 GeV for
the electron channel, and 10 GeV for the muon channel.
Transverse mass for the 6ET and lepton is defined as:
√

2(Eℓ,T × 6ET − Eℓ,x × 6ET x − Eℓ,y × 6ET y). The selec-

tion criteria is inclusive, so if an event contains an addi-
tional lepton or a photon it is also accepted as a signal
event. The highest-pT lepton determines if the event is
an electron or muon event.

Events in the tt̄γ signal sample are selected by re-
quiring 6ET > 20 GeV, a lepton, a b-tagged jet, HT >
200 GeV, Njets ≥ 3 (including the b-tagged jet.), and a
photon with ET > 10 GeV. For all photons we require
the χ2 of the CES shower profile be less than 20. To
further suppress backgrounds, photons with ET between
10 and 25 GeV must have a χ2 of the CES shower pro-
file less than 6; we discuss how χ2 is calculated below.
Similar to the tt̄ analysis, the selection is inclusive. The
selection criteria are identical to the previous tt̄γ cross
section measurement [6], with the exception of the low-
ET photon χ2 requirements.

The primary difference between the tt̄ and tt̄γ selec-
tion, other than the photon selection, is the requirement

of a transverse mass selection for tt̄. In the tt̄ selection,
the low-transverse-mass region is not well-modeled with
background estimation methods. The tt̄γ sample does
not suffer from this deficiency, and we do not use the
transverse mass selection criterion to keep acceptance of
signal events high, this behavior is also seen in the ℓγ 6ET

control sample described below.

Control samples are identified by selecting events with
a lepton, a photon, and 6ET > 20 GeV (ℓγ 6ET ), or two
oppositely charged same-flavor central leptons, a photon,
and a three-body mass consistent with the Z boson (ℓℓγ).
These control samples are used to define the above CES
χ2 selection for photons.

The χ2 value of photons is based on the lateral shower
shapes observed in the CES compared to that predicted
from a sample of test-beam electrons. Using the con-
trol samples we identify an additional selection criterion
on photons [20].It should be noted that the tt̄γ sample
contains 30 events and is a subset of the 8276 events in
the ℓγ 6ET sample. The ℓℓγ sample contains 1344 events.
While the samples are not independent, optimizing pho-
ton identification selection criteria using the ℓγ 6ET sam-
ple should be minimally affected by the presence of tt̄γ
events.

The dominant SM sources of events with a lepton, pho-
ton, and significant 6ET , not including particle misidenti-
fications, are tt̄γ production and Wγ+heavy flavor (HF),
in which a W boson decays leptonically (ℓν) and a pho-
ton is radiated from an initial-state or final-state quark,
the W boson, or a charged final-state lepton [21]. In this
paper, HF includes: cc̄, bb̄, and c. Similarly, for events in
the tt̄ selection, the dominant source of events is due to
tt̄ production and W+HF production.

The production of tt̄γ events with semileptonic and
dileptonic decays, as well as the SM background of
single-top events and associated production of a Wγ+HF
is estimated from leading-order (LO) matrix-element
Monte Carlo simulations (MC) event generator Mad-

Graph [22]. Events for all production and decays
of tt̄, WW,WZ, and ZZ signals are generated with
pythia [23]. The production ofW+HF, as well as Z+bb̄,
and Z → ττ decays are generated with alpgen [24].
Then the events are processed with the same reconstruc-
tion and analysis codes used for the data. Backgrounds
from ZZ are estimated to be negligible to the tt̄γ signa-
ture.

Initial state radiation is simulated by the pythia

shower Monte Carlo simulation code tuned so as to re-
produce the underlying event [25]. All of the generated
samples are then passed through a full simulation of the
detector, then reconstructed with the same reconstruc-
tion code used for the data.

The expected contributions from tt̄, W +HF , single-
top, Z + bb̄, and Z → ττ production to the tt̄ search are
given in Table I, and the expected contributions from tt̄γ
and Wγ +HF production to the tt̄γ search are given in
Table II. Additional contributions from misidentification
backgrounds, described below, are also shown in the Ta-
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TABLE I: Summary for predicted and observed events in the
tt̄ (ℓ 6ET b + HT > 200 GeV + Njets ≥ 3) signal sample.

Predicted and Observed tt̄ Events
SM Source eb 6ET µb 6ET (e+ µ)b 6ET

tt̄ 1420 ± 180 1080± 140 2500 ± 330
WW 29± 4 22± 3 51± 7
WZ 8.6± 1.1 6.5± 0.9 15.1± 2.0
ZZ 1.3± 0.2 1.0± 0.1 2.3± 0.3
Wbb 203 ± 34 146± 24 348± 58
Wcc 127 ± 23 94± 17 221± 40
Wc 85± 13 61± 9 147± 23
Single top (s-ch.) 76± 10 59± 8 135± 18
Single top (t-ch.) 66± 9 50± 7 116± 16
(Z → ℓℓ)bb̄ 31± 3 22± 2 53± 5
Z → ττ 6± 8 9± 8 14± 11
Mistags 358 ± 29 214± 17 572± 46
QCD 222 ± 38 20± 3 240± 40
Total Predicted 2630 ± 196 1790± 146 4420 ± 340

Observed 2720 1709 4429

bles. Figure 1 shows kinematic distributions for the tt̄
sample, and Figs. 2 and 3 show distributions for events
in the tt̄γ sample. There is good agreement between data
and standard-model predictions. We show the data and
background predictions combined for both electron and
muon events; there is good agreement in both channels
individually, as shown in [20].

High pT photons are copiously produced in hadron jets
initiated by a scattered quark or gluon. In the tt̄γ sam-
ple, the number of events in which a jet is misidentified
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FIG. 1: The distributions for events in the tt̄ sample (points)
of a) the ET of the lepton; b) the missing transverse energy
6ET ; c) the ET of the highest ET jet; and d) the total trans-
verse energy HT . The histograms show the expected SM con-
tributions from top production (tt̄), and miscellaneous back-
grounds (Misc), which include: diboson production, single
top, W+HF and Z+HF production as well as jets misidenti-
fied as leptons (QCD), and misidentified b tags.

as a photon (jet faking photon) is estimated by removing
the isolation requirements on the photon. We fit the re-
sulting isolation distribution using signal and background
templates obtained from data. The signal template is
constructed using electrons from Z0/γ∗ → ee events, and
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FIG. 2: The distributions for events in the tt̄γ sample (points)
in a) the ET of the lepton; b) the missing transverse energy,
6ET ; c) the ET of the b jet; and d) the ET of the photon. The
histograms show the expected SM contributions from radia-
tive top production (tt̄γ), Wγ production with heavy flavor
(HF), and miscellaneous backgrounds (Misc), which include:
WW and WZ production as well as jets, τ leptons, electrons,
and jets misidentified as photons, jets misidentified as leptons
(QCD), and misidentified b tags.

TABLE II: Summary for tt̄γ (ℓγ 6ET b + HT > 200 GeV +
Njets ≥ 3). Monte Carlo samples listed in the table are given
as they were generated (e.g., WW was not generated with an
associated photon.) Backgrounds from ZZ are found to be
negligible.

Predicted and Observed tt̄γ Candidate Events
SM Source eγb 6ET µγb 6ET (e+ µ)γb 6ET

tt̄γ(semilep) 5.98± 1.10 5.21 ± 0.97 11.19 ± 2.04
tt̄γ(dilep.) 1.47± 0.27 1.27 ± 0.24 2.74± 0.50

Wcγ 0+0.07
–0 0+0.07

–0 0+0.09
–0

Wccγ 0+0.05
–0 0.05 ± 0.05 0.05± 0.07

Wbbγ 0.15± 0.07 0.06 ± 0.05 0.21± 0.08
WZ 0.05± 0.05 0.05 ± 0.05 0.09± 0.06
WW 0.06± 0.03 0.06 ± 0.03 0.11± 0.03
Single Top (s-chan) 0.09± 0.10 0± 0.10 0.09± 0.13
Single Top (t-chan) 0.14± 0.14 0.13 ± 0.14 0.27± 0.19
τ → γ fake 0.20± 0.08 0.10 ± 0.05 0.29± 0.09
Jet faking γ 5.75± 1.76 1.79 ± 1.56 7.54± 2.53
Mistags 1.47± 0.37 1.02 ± 0.32 2.50± 0.51
QCD 0.38± 0.38 0.02 ± 0.02 0.40± 0.38
ee 6ET b, e→γ 0.94± 0.19 – 0.94± 0.19
µe 6ET b, e→γ – 0.49 ± 0.11 0.49± 0.11
Total Predicted 16.7 ± 2.2 10.3 ± 1.9 26.9 ± 3.4

Observed 17 13 30
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FIG. 3: The distributions for events in the tt̄γ sample (points)
of a) the total transverse energy HT , the sum of the trans-
verse energies of the lepton, photon, jets and 6ET , for the tt̄γ
events; b) the total number of jets . The histograms show the
expected SM contributions from radiative top-quark pair pro-
duction (tt̄γ), Wγ production with heavy flavor (Wγ+HF),
and miscellaneous backgrounds (Misc), which include: SM
WW and WZ production as well as jets, τ leptons, electrons,
and jets misidentified as photons, jets misidentified as leptons
(QCD), and misidentified b tags.

a background template is made from a QCD enriched
sample [20, 26].

The expected number of events in which an electron
is misidentified as a photon in the tt̄γ signature is de-
termined by measuring the electron ET spectrum in the
ℓ 6ET b+e+large HT , and ≥ 3 jets sample (events of this
type are created from dileptonic, ee or eµ, tt̄ and di-
boson decays), and then multiplying by the probability
that an electron is misidentified as a photon. The latter
is measured in data using Z0/γ∗ → ee events that are
misreconstructed as Z0/γ∗ → eγ.

To estimate the number of b-tagged jets that are in
reality mistagged light-quark jets (mistags), each jet in
the ℓγ 6ET+ ≥ 3 jets and high-HT sample is weighted
by a mistag rate. The mistag rate per jet is measured
using a large inclusive-jet sample. For the tt̄ sample, a
similar procedure is used. Each jet in the signal sam-
ples has a corresponding probability to be identified as a
b-tagged jet. In all cases, however, the resulting predic-
tion is overestimated because we count as mistags, events
which have true heavy flavor jets (i.e. events due to tt̄
events may be mistagged, but they will be accounted for
in the MC). The fraction’s denominator is computed by
finding the total number of ℓγ 6ET ≥ 3 jets (or tt̄ ana-
logue) events. Its numerator is the difference between
the denominator and the number of events in the sam-
ple with b-tagged jets predicted by MC simulations. The
fraction is the amount of events that have no true heavy
flavor content relative to the size of ℓγ 6ET ≥ 3 jets (or tt̄
analogue) sample; it is used to scale our mistag estimate.
This scaled background estimate removes events which
contain actual heavy flavor content from the mistag to-
tal; the scale factor is nearly 60%.

The background due to events in which a jet is
misidentified as a lepton (QCD) is estimated using “non-
electrons”. “Non-electrons” are jets which are kinemat-
ically similar to electrons, but which fail a pair of se-
lection criteria normally passed by electrons (regardless
of energy) such as: EM shower-shape, energy over mo-

mentum, or isolation. “Non-electrons” play the role of
leptons in our model of the QCD background. The re-
maining object selection is unchanged. In each signature,
a template of signal events in data with 6ET < 20 GeV
are fit to the sum of MC backgrounds and a scaled “non-
electron” signal. The QCD background is the sum of the
scaled “non-electron” events in the 6ET > 20 GeV region
expected from the fit.
To avoid double counting, the total background yields

are corrected by removing the predicted number of events
with two objects misidentified. Each of the aforemen-
tioned data-driven background estimates accounts for
a background process where one object in the event
is misidentified. Events with two misidentified objects
would be counted in a pair of background estimates. In
the tt̄ sample, double counting is accounted for by re-
moving the QCD background from the mistagging back-
ground, and vice versa.
The background from tau leptons, which decay

to hadrons, which decay to photons is a back-
ground estimated from the tt̄ MC sample by selecting
τ → hadrons → γ events using MC information.
The tt̄ event detection efficiency and acceptance are

calculated using the MC simulation which has all decays
of tt̄. The uncertainty on the tt̄ cross section is dominated
by systematic uncertainties. The tt̄γ event detection effi-
ciency and acceptance are calculated using both semilep-
tonic, and dileptonic decays of the pair of top quarks
in the decay. The total tt̄γ cross section is then calcu-
lated assuming that tt̄γ has the same branching ratio to
semileptonic and dileptonic decays as tt̄ pair production.
The uncertainty in the tt̄γ cross section measurement is
dominated by statistics.
Systematic uncertainties have been calculated by vary-

ing detector efficiencies and resolutions within known un-
certainties and evaluating the change in our measure-
ments. These uncertainties are added in quadrature
when independent, and summed when positively (or neg-
atively) correlated. The largest uncertainties, given in
descending order, are due to luminosity, b-hadron tagging
efficiencies and, for the tt̄γ sample, photon identification.
We observe 30 tt̄γ candidate events compared to

an expectation of 26.9 ± 3.4. We observe 4429 tt̄
events, with an expectation of 4420 ± 340. Assum-
ing the difference between the non-tt̄ background esti-
mate and the number of observed events is due to SM
tt̄ production, we measure the tt̄ cross section to be
7.62 ± 0.20 (stat) ± 0.68 (sys) ± 0.46 (lum) pb. The
theoretical production cross section of tt̄ at the Tevatron

is 7.08+0.00
–0.32

+0.36
–0.27 pb [27]. The first uncertainty comes

from scale uncertainty around µ = mtop, and the second
is due to parton distribution function uncertainties.
If one assumes that tt̄γ is not allowed in the SM, and

there are no new physics processes contributing to this
sample, the probability that the background events alone
will produce 30 or more events is 0.0015 (3.0 standard de-
viations). This is the first experimental evidence for tt̄γ
production. Assuming the difference between the back-
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ground estimate and the number of observed events is
due to SM tt̄γ production, we measure the tt̄γ cross sec-
tion to be 0.18±0.07 (stat) ±0.04 (sys) ±0.01 (lum) pb.
The tt̄γ event detection efficiency and acceptance are cal-
culated using the MC sample requiring at least one W
boson decaying leptonically. The acceptance times ef-
ficiency, using both semileptonic and dileptonic modes,
for this tt̄γ signal is 0.015 ± 0.002. The uncertainty on
the measured cross section is dominated by the statistical
uncertainties associated with the small number of events
observed. A theoretical value for the non-hadronic de-
cays of tt̄γ (sum of all three lepton flavors) cross sec-
tion σtt̄γ = 0.071 ± 0.011 pb is obtained from lead-
ing order (LO) MadGraph semileptonic cross section
σtt̄γ = 0.0726 pb multiplied by a K-factor to find the next
to leading order (NLO); K-factor = σNLO/σLO = 0.977
[28]. The next to leading order theoretical total cross
section for tt̄γ is thus σtotal

tt̄γ
= 0.17 ± 0.03 pb.

The ratio between the production cross sections of tt̄γ
and tt̄ is measured to be ℜ = 0.024± 0.009 which agrees
with the SM prediction of ℜ = 0.024 ±0.005, obtained
from theoretical predictions of the cross sections of tt̄γ
and tt̄. When measuring ℜ many of the systematic un-
certainties nearly cancel, such as those due to: lepton
identification, b hadron identification, jet energy scale,
and luminosity uncertainties. However, other system-
atic uncertainties do not cancel out completely such as:
QCD systematic uncertainties, and photon identification
and acceptance uncertainties. The total systematic un-
certainties combine to less than 10% however the statisti-
cal uncertainty is the dominant contribution to the total
uncertainty.
In conclusion, we have performed a search for tt̄γ,

which is the dominant standard model process that pro-
duces the event signature of lepton + photon + 6ET +
b-jets with large total transverse energy and Njets ≥ 3.
We find that the numbers of events observed are consis-
tent with SM predictions. We obtain a tt̄γ cross section
σtt̄γ = 0.18 ± 0.08 pb, and the ratio of production cross
sections of tt̄γ to tt̄ = 0.024± 0.009.

Acknowledgments

We thank the Fermilab staff and the technical staffs of
the participating institutions for their vital contributions.
Uli Baur, Frank Petriello, Alexander Belyaev, Edward
Boos, Lev Dudko, Tim Stelzer, and Steve Mrenna were
extraordinarily helpful with the SM predictions. This
work was supported by the U.S. Department of Energy
and National Science Foundation; the Italian Istituto
Nazionale di Fisica Nucleare; the Ministry of Education,
Culture, Sports, Science and Technology of Japan; the
Natural Sciences and Engineering Research Council of
Canada; the National Science Council of the Republic of
China; the Swiss National Science Foundation; the A.P.
Sloan Foundation; the Bundesministerium für Bildung
und Forschung, Germany; the Korean World Class Uni-
versity Program, the National Research Foundation of
Korea; the Science and Technology Facilities Council and
the Royal Society, UK; the Institut National de Physique
Nucleaire et Physique des Particules/CNRS; the Russian
Foundation for Basic Research; the Ministerio de Cien-
cia e Innovación, and Programa Consolider-Ingenio 2010,
Spain; the Slovak R&D Agency; the Academy of Finland;
and the Australian Research Council (ARC).

[1] S.L. Glashow, Nucl. Phys. 22 588, (1961); S. Weinberg,
Phys. Rev. Lett. 19 1264, (1967); A. Salam, Proc. 8th
Nobel Symposium, Stockholm, (1979).

[2] S. Rolli, Proceeding of the HCP 2010 conference,
Toronto, Canada, (2010).

[3] U. Baur, M. Buice, and L. H. Orr, Phys. Rev. D. 64,
094019, (2001).

[4] D. Acosta et al. (CDF Collaboration), Phys. Rev. D 71,
032001 (2005).

[5] The CDF coordinate system of r, ϕ, and z is cylindrical,
with the z-axis along the proton beam. The pseudora-
pidity is η = − ln(tan(θ/2)). Transverse momentum and
energy are defined as pT = p sin θ and ET = E sin θ,
respectively. We use the convention that “momentum”
refers to pc and “mass” to mc2. The coordinate y points
up and down, and x completes the right-handed system.

[6] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D
80, 011102(R) (2009).

[7] K. Nakamura et al. (Particle Data Group), J. Phys. G
37, 075021 (2010).

[8] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett
105, 012001 (2010).

[9] A. Sill et al., Nucl. Instrum. Methods A 447, 1 (2000); A.

Affolder et al., Nucl. Instrum. Methods A 453, 84 (2000);
C.S. Hill, Nucl. Instrum. Methods A 530, 1 (2000).

[10] A. Affolder et al., Nucl. Instrum. Methods A 526, 249
(2004).

[11] S. Kuhlmann et al., Nucl. Instrum. Methods A 518, 39,
(2004);
S. Bertolucci et al., Nucl. Instrum. Methods A 267, 301
(1988).

[12] F. Abe et al., (CDF Collaboration) Phys. Rev. Lett. 68,
1004 (1992).

[13] D. Acosta et al. (CDF Collaboration) Phys. Rev. D, 71,
052003 (2005).

[14] The CMU consists of a central barrel of gas proportional
wire chambers in the region |η| < 0.6; the CMP system
consists of chambers after an additional meter of steel,
also for |η| < 0.6. The CMX chambers cover 0.6 < |η| <
1.0.

[15] D. Acosta et al. (CDF Collaboration), Nucl. Instrum.
Methods Phys. Res., Sect. A 494, 57 (2002).

[16] The fraction of electromagnetic energy allowed to leak
into the hadron compartment Ehad/Eem must be less
than 0.055+0.00045 × Eem(GeV) for central electrons,
less than 0.05 for electrons in the end-plug calorimeters,



9

less than max[0.125, 0.055+0.00045×Eem (GeV)] for pho-
tons.

[17] Missing ET ( 6~ET ) is defined by 6~ET = −∑
i
Ei

T n̂i, where i
is the calorimeter tower number for |η| < 3.6, and n̂i is a
unit vector perpendicular to the beam axis and pointing
at the ith tower. We correct 6~ET for jets and muons. We
define the magnitude 6ET = |6~ET |.

[18] A. Bhatti et al., Nucl. Instrum. Methods Phys. Res., Sect.
A 566, 375 (2006).

[19] A. Abulencia et al. (CDF Collaboration), Phys. Rev. D.,
73 112006 (2006).

[20] B. Auerbach, Ph. D Thesis, Yale University,
FERMILAB-THESIS-2011-04, 2011.

[21] D. Acosta et al. (CDF Collaboration), Phys. Rev. Lett.
94, 041803 (2005).

[22] T. Stelzer and W. F. Long, Comput. Phys. Commun. 81,
357 (1994); F. Maltoni and T. Stelzer, J. High Energy
Phys. 302, 27 (2003).
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