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We show that the generalized slow-roll approach for calculating the power spectrum where the
inflationary slow roll parameters are neither small nor slowly varying can be readily extended to
models with non-canonical kinetic terms in the inflaton action. For example, rapid sound speed
variations can arise in DBI models with features in the warp factor leading to features in the power
spectrum. Nonetheless there remains a single source function for deviations that is simply related
to the power spectrum. Empirical constraints on this source function can be readily interpreted in
the context of features in the inflaton potential or sound speed.

I. INTRODUCTION

Inflation with non-canonical kinetic terms in the scalar
field action can arise in braneworld inflation (e.g. [1]).
Here the sound speed for fluctuations in the inflaton field
can deviate from unity. The power spectrum and higher
order N point functions are usually computed under the
slow roll or slow variation approximation developed in [2–
4] where the sound speed is assumed to be adiabatically
varying.

As in the case of inflation with canonical kinetic terms,
slow variation in the parameters is not a requirement,
neither for sufficient inflation nor for acceptable power
spectra with current constraints. Rapid variation that is
either localized in time or that has little cumulative effect
on the expansion history is allowed and can lead to in-
teresting observational signatures in the power spectrum
and non-Gaussianity. For example, these can arise from
features in the potential (e.g. [5, 6]) or the warp factor of
Dirac-Born-Infeld (DBI) inflation [7].

While such cases can always be solved on a model by
model basis, the generalized slow roll (GSR) approach [8]
provides an efficient computational tool that also clar-
ifies the relationship between cosmological observables
and the model for the inverse problem. In this Brief Re-
port, we show that the technique can be readily extended
to the case of non-canonical kinetic terms. With this ex-
tension, all of the results of the GSR formalism apply to
non-canonical terms as well [9–13]. In particular, there
remains a single source function of the background evolu-
tion that describes even relatively large deviations from
the slow variation assumption in the power spectrum.

We briefly review how the background expansion his-
tory relates to the general inflaton action and the usual
slow variation parameters in §II. In §III, we describe the
GSR formalism for calculating the power spectrum when
the slow variation parameters are neither small nor slowly
varying. We discuss applications of the GSR formalism
in §IV.

II. BACKGROUND EVOLUTION

The action

Sφ =

∫

d4x
√−g p(X,φ), (1)

for the inflaton φ provides a generalization of the canoni-
cal p = X−V (φ) case to arbitrary functions of the kinetic
term [2]

X = −1

2
∇µφ∇µφ. (2)

The scalar field behaves as a perfect fluid with pressure
p and energy density

ρ = 2Xp,X − p. (3)

The equations of motion for the background value of the
field are given by the fluid equation of motion

d ln ρ

d ln a
= −3(1 + p/ρ), (4)

or equivalently by the field equations [14]

dφ

d ln a
=

χ

H
,

dχ

d ln a
= −3c2sχ− 1

H

ρ,φ
ρ,X

, (5)

with X = χ2/2. Here the sound speed is

c2s =
p,X
ρ,X

=
ρ+ p

2Xρ,X
=

p,X
p,X + 2Xp,XX

, (6)

and the Hubble parameter obeys the usual Friedmann
equations where we now assume that the scalar field dom-
inates the energy density during inflation

H2 =
ρ

3
,

d lnH

d ln a
= −3

2
(1 + p/ρ) ≡ −ǫH . (7)

Throughout we take units where Mpl = 1/
√
8πG = 1.

Inflation occurs when the slow roll parameter ǫH <
1. Sufficient inflation requires ǫH to remain small for
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many e-folds leading to conditions on the second slow
roll parameter

ηH = −δ1 ≡ ǫH − 1

2

d ln ǫH
d ln a

. (8)

In the ordinary slow roll case, ηH is also slowly varying
and hence sufficient inflation requires ǫH ≪ 1 and |ηH | ≪
1 around the e-folds when large scale structure left the
horizon.
The GSR approach relaxes this condition by allowing

the third slow roll parameter

δ2 ≡ ǫHηH + η2H − dηH
d ln a

(9)

to become large and cause evolution in ηH .
By employing the equations of motion (5), these slow

roll parameters can be related to the evolution of the
field φ(ln a) through the functional form of p(X,φ). For
a canonical kinetic term the result is

(

V,φ

V

)2

= 2ǫH
(1− ηH/3)2

(1− ǫH/3)2
,

(

V,φφ

V

)

=
ǫH + ηH − δ2/3

1− ǫH/3
, (10)

and returns the familiar relationship between ǫH , ηH and
the potential in the ordinary slow roll limit.
For non-canonical kinetic terms the general procedure

of obtaining the evolution of the slow roll parameters
from the equations of motion still holds but involves other
partial derivatives of p(X,φ) beyond p,φ and p,φφ. In
particular, the sound speed enters and so it is convenient
to introduce an additional slow variation parameter [4]

σ1 ≡ d ln cs
d ln a

. (11)

The ordinary slow variation approximation would require
ǫH , |ηH | and |σ1| ≪ 1 as well as constant to leading
order. In the GSR approach we also allow σ1 to evolve
as monitored by a final parameter

σ2 ≡ dσ1

d ln a
=

d2 ln cs
d ln a2

, (12)

bringing the number of slow variation parameters derived
from the background solution to five.
As a concrete example, consider DBI inflation [1] where

p(X,φ) = − 1

F (φ)

√

1− 2F (φ)X − V (φ) (13)

and hence

ǫH(X,φ) =
3XF (φ)

1 + cs(X,φ)V (φ)F (φ)
,

c2s(X,φ) = 1− 2F (φ)X,

ρ = 3H2 =
1

F (φ)cs(X,φ)
+ V (φ) . (14)

Here F (φ) is related to the warp factor in brane inflation.
Taking the derivative of ǫH and employing the field

equation (5), we obtain

d ln ǫH
d ln a

=
cs

χF 2H(1 + csFV )

{

2csF,φ + 2FF,φV

−2F 2(3csχH + χ2V F,φ + V,φ)

+χ2F 4V (3χH + csV,φ)

+F 3[−6χHV + (χ2 − 2csV )V,φ]
}

, (15)

which can be taken to define ηH(ln a). Likewise the
derivative of Eq. (15) can be used to define δ2(ln a) which
in turn involves the derivative of the sound speed or

σ1 =
χ

FH

[

− F,φ + F 2(3χH + csV,φ)
]

. (16)

Note that the sound speed can change suddenly if there is
a feature in either F (φ) or V (φ) and σ2 contains second
derivatives of these functions. For example F (φ) might
contain steps [7] from duality cascade [15].

III. GENERALIZED SLOW ROLL

Fluctuations in the inflaton field δφ in spatially flat
slicing are related to the curvature fluctuations on co-
moving (or constant field) slicing R as u = zR =
−z(dφ/d lna)−1δφ, where

z ≡ a(ρ+ p)1/2

csH
. (17)

For any background evolution, regardless of values or evo-
lution of the five slow variation parameters, the field fluc-
tuations obey [3]

ü+ c2sk
2u− z̈

z
u = 0, (18)

where overdots are derivatives with respect to the con-
formal time η to the end of inflation, which we define as
positive and decreasing.
Given that field oscillation will freeze out at sound

horizon crossing rather than horizon crossing, it is useful
to transform variables to

s ≡
∫

csdη =

∫ aend

a

da

a

cs
aH

(19)

and rescale the field variable y =
√
2kcsu to remove adia-

batic effects from evolution in the sound speed. Eq. (18)
then becomes

d2y

ds2
+

(

k2 − 2

s2

)

y =
g(ln s)

s2
y, (20)

where

g ≡ f ′′ − 3f ′

f
, (21)
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with ′ ≡ d/d ln s and

f = 2πzc1/2s s =

√

8π2
ǫHcs
H2

aHs

cs
. (22)

Thus the field equation contains up to second derivatives
in both ǫH and cs and hence involves the slow variation
parameters up to δ2 and σ2.
In these variables, the equation of motion for the field

fluctuations are identical for canonical and non-canonical
kinetic terms. For ks ≫ 1 or deep inside the sound hori-
zon, the g term is suppressed by (ks)−2 and the solutions
are just free plane waves exp(±iks). The exp(+iks) solu-
tion is the positive energy, Bunch-Davies vacuum, initial
condition and is valid for any non-divergent evolution of
the slow variation parameters.
For ks ≪ 1 the curvature fluctuations freeze out and

the curvature power spectrum is given by

∆2
R

≡ k3PR

2π2
= lim

ks→0

∣

∣

∣

∣

ksy

f

∣

∣

∣

∣

2

. (23)

Note that in the lowest order slow variation approxima-
tion f remains constant with aHs/cs → 1 and ksy → 1
so that [3]

∆2
R ≈ f−2 ≈ H2

8π2ǫHcs
. (24)

Non-canonical kinetic terms require three simple gen-
eralizations of the GSR approach. The first is that fea-
tures in field space are mapped onto features in k space
through the sound horizon s rather than the particle hori-
zon η. The second is that the source function g of de-
viations from slow variation contains derivatives of the
sound speed. Finally, the derivatives of f are taken with
respect to the sound horizon rather than conformal time.
With these generalizations in mind, all of the results
proven for GSR with canonical kinetic terms apply to
non canonical kinetic terms as well [8, 9, 12].
Briefly, the GSR approach to solving the field equation

(20) is to consider the RHS as an external source with an
iterative correction to the field value y. To lowest order,
we replace y → y0 where

y0 =

(

1 +
i

ks

)

eiks, (25)

is the solution to equations with g → 0 corresponding to
the initial conditions above and solve for the field fluctu-
ation y through the Green function technique. Thus the
GSR approximation has extended validity in that it al-
lows features in p(X,φ) to cause relatively large changes
in X and the field dynamics through cs as long as the
field position remains slowly varying.
To first order, the curvature power spectrum is given

by

ln∆
2 (1)
R

= G(ln smin) +

∫

∞

smin

ds

s
W (ks)G′(ln s). (26)

where

G = −2 ln f +
2

3
(ln f)′. (27)

and thus

G′ = −2(ln f)′ +
2

3
(ln f)′′ =

2

3
g − 2

3
[(ln f)′]2, (28)

with the window function

W (u) =
3 sin(2u)

2u3
− 3 cos(2u)

u2
− 3 sin(2u)

2u
. (29)

The addition of the term quadratic in (ln f)′ to g in
Eq. (28) guarantees that the power spectrum is inde-
pendent of the arbitrary epoch smin after sound horizon
crossing, ensuring that the curvature remains constant
thereafter [12]. Note that the local slope [11]

ns − 1 ≡ d ln∆2
R

d ln k
≈

∫

ds

s
W ′(ks)G′(ln s). (30)

Since
∫

d lnuW ′ = −1, ns − 1 = −G′ for slowly varying
G′.
To second order,

∆
2 (2)
R

= ∆
2 (1)
R

{

[1 +
1

4
I21 (k) +

1

2
I2(k)]

2 +
1

2
I21 (k)

}

(31)
where

I1(k) =
1√
2

∫

∞

0

ds

s
G′(ln s)X(ks),

I2(k) = −4

∫

∞

0

du

u
[X +

1

3
X ′]

f ′

f
F2(u), (32)

with

F2(u) =

∫

∞

u

dũ

ũ2

f ′

f
, (33)

and

X(u) =
3

u3
(sinu− u cosu)2. (34)

For cases where f ′′/f controls the large deviations in G′,
the dominant second order term is I1 and hence the power
spectrum depends only on a single source function G′

through two simple quadratures [12].
It is useful to relate the source function G′ to the five

slow roll parameters. Taking derivatives of ln f , we ob-
tain

G′ =
2

3
(2ǫH − 2ηH − σ1) +

2

3
(
aHs

cs
− 1)2 (35)

+
2

3
(
aHs

cs
− 1)(4 + 2ǫH − 2ηH − σ1)

+
1

3

(

aHs

cs

)2
[

2δ2 + 2ǫ2H − 2ηH − 2η2H

−3σ1 + 2ηHσ1 + σ2
1 − ǫH(4ηH + σ1)− σ2

]

.
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In the ordinary slow roll approximation one assumes
ǫH ≪ 1, |ηH | ≪ 1, |σ1| ≪ 1 and negligible δ2, σ2. Thus

aHs

cs
≈ 1 + σ1 + ǫH , (36)

and so

G′ ≈ 4ǫH − 2ηH + σ1 = 1− ns, (37)

which returns the usual slow roll approximation for tilt
generalized to non-canonical kinetic terms [4]. Note that
this derivation makes it clear that the slow variation of
the sound speed during the many e-folds before sound
horizon crossing does not have any observable impact on
the power spectrum.
Another interesting limit is where we still require ǫH ≪

1 and |σ1| ≪ 1 but allow ηH , δ2 and σ2 to become large.
In this case

G′ ≈ −2ηH − 2

3
η2H +

2

3
δ2 −

σ2

3
. (38)

In particular δ2 and σ2 can become large for a small num-
ber of e-folds if there is a large second derivative term in
the potential of a canonical field or in the sound speed
of a non-canonical field. For example, in DBI inflation,
steps in the warp factor F (φ) produce very similar phe-
nomenology to steps in V (φ) in the canonical case as
noted by [7].

IV. DISCUSSION

We have shown that the generalized slow roll (GSR)
approximation can be extended straightforwardly to the

case of non-canonical kinetic terms for the inflaton. The
extension involves only the remapping of epochs during
inflation to wavenumber k through the sound horizon
rather than the particle horizon and a generalization of
the source function g (or G′) of deviations from slow vari-
ation to account for evolution in the sound speed.
The GSR formalism can be used to streamline the cal-

culation of brane inflation models where the sound speed
varies significantly across the observable e-folds. An ex-
ample is a DBI model with steps in the warp factor [7].
We intend to examine these and other models in a future
work. Our treatment can also be used to derive second
order corrections in the case where the slow variation
parameters are both small and slowly varying [16].
The single source function G′ contains nearly all of

the information from the power spectrum on single field
inflation with canonical or non-canonical terms even for
strong evolution in the slow variation parameters [12].
Empirical constraints on G′ such as the percent level lim-
its from the CMB acoustic peaks [13] and weaker limits
on large scale features [17] can be directly reinterpreted
in context of braneworld models as constraints on vari-
ations in the sound speed rather than features in the
inflaton potential. Extensions of the GSR approach to
the bispectrum [18] may also be useful for non-canonical
models where the non-Gaussianity can become large.
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