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I. MOTIVATION

One of the motivations for studying high temperature gauge theories at strong coupling is the striking results from
the Relativistic Heavy Ion Collider and the Large Hadron Collider [1, 2]. Results on collective flow and the energy loss
of energetic probes (in particular heavy quarks [3]) indicate that the nuclear size is sufficiently large that macroscopic
quantities such as temperature, pressure and flow velocity, are useful concepts when characterizing heavy ion events.
A back of the envelope calculation [4] shows that this would not be possible unless the typical relaxation time is
of order a thermal wavelength τR ∼ ~/T , placing the QCD plasma in a strong coupling regime. The AdS/CFT
correspondence has led to many important insights into the nature of strongly coupled plasmas and energy loss [5].
Of particular relevance to this work is the computation of the heavy quark drag and diffusion coefficient in N = 4
Super Yang Mills (SYM) at large Nc and strong coupling [6–8]. Indeed heavy quarks in heavy ion collisions exhibit
a strong energy loss and a larger than expected elliptic flow, which is qualitatively consistent with a small diffusion
coefficient [3]. The actual interpretation of the RHIC results is more complicated, since radiative energy loss plays a
significant (perhaps dominant) role at high momentum where the measurements exist [9]. The current results from
the Relativistic Heavy Ion Collider on heavy quarks are confusing and not generally understood.

The diffusion of heavy quarks in AdS/CFT is also interesting from the perspective of black hole physics. Indeed,
the primary goal of this paper is to better understand the thermal properties of black holes using the diffusion of
heavy quarks in N = 4 SYM as a constrained theoretical laboratory.

On the field theory side of the correspondence, the diffusion of heavy quarks is the result of a competition between
the drag and the noise, which must be precisely balanced if the quark is to reach equilibrium. In particular, over a
time scale which is long compared to medium correlations, but short compared to the equilibration time of a heavy
quark, the heavy quark is expected to obey a Langevin equation

dpi

dt
= −ηvi + ξi , (1.1)

where the drag coefficient η and the random noise ξ are balanced by the fluctuation-dissipation relation〈
ξi(t)ξj(t′)

〉
= 2Tηδijδ(t− t′) . (1.2)

Previously it was shown how this Brownian equation of motion is reproduced by the correspondence [10, 11]. In
AdS/CFT a heavy quark is dual to a long straight string which stretches from the boundary to the horizon. At a
classical level the straight string is a solution to the EOM and doesn’t move. This is not the dual of a heavy quark in
plasma. Fig. 1(a) shows the geometry of black hole AdS together with a long straight string. In our AdS conventions
the horizon is at r = 1 while the boundary of AdS is at r = ∞. The stretched horizon (see below) is at rh = 1 + ε.
Hawking radiation from the horizon causes the string to flip-flop back and forth stochastically as exhibited in Fig. 1(b).
The random tugs from this flip-flopping string give rise to a random force on the boundary quark which is related to
the dissipation by the Einstein relation, Eq. (1.2).

The derivation of this result left much to be desired. In Ref. [10] it was simply assumed that the modes are in
equilibrium at the Hawking temperature. With this assumption it is not difficult to show that the commutator and
anti-commutator of string correlations are related via a bulk version of the Fluctuation Dissipation Theorem (FDT).
When this bulk FDT is translated to the boundary theory, the bulk FDT leads to Eq. (1.2). While this derivation
is physically reasonable, the calculation provides little guidance to out of equilibrium geometries. In Ref. [11], the
bulk FDT was derived following a rather complicated and un-intuitive formalism [12, 13]. This formalism involves
analytically continuing modes as is typical in many derivations of Hawking radiation [14–16]. The primary goal of this
paper is to provide a much more physical derivation of the bulk FDT based upon propagating near-horizon quantum
fluctuations from the distant past up to the bulk.

In Ref. [11] the effects of Hawking radiation were packaged into a horizon effective action. This effective action
dictates the dynamics of the fields at r = 1 + ε, and provides a quantum generalization of membrane paradigm.
Although the derivation of the membrane effective action involved a complicated analytic continuation, the final form
of the effective action is very natural. The classical part of the effective action can be determined using the classical
membrane paradigm, while the quantum part of the effective action is dictated by the classical dissipation, and the
fluctuation dissipation relation. Once the horizon effective action is written down, a short exercise shows how the
horizon fluctuation dissipation relation leads to the FDT in the bulk and boundary theories. Since the FDT is a
direct consequence of the fact that the density matrix is exp(−βH), the extent to which this relation holds provides
an unequivocal measure of equilibrium in the bulk geometry.

In this paper we will determine the horizon effective action by solving equations of motion with appropriate initial
conditions rather than analytically continuing modes. Since Fourier transforms and analytic continuations are never
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FIG. 1. Two figures from Ref. [11] which motivate this work. (a) A schematic of a classical string in AdS5 corresponding to a
heavy quark. The horizon is at r = 1 in the coordinates of this work. The stretched horizon is at rh = 1+ ε and the endpoint of
the string is at the boundary rm with rm � 1. Gravity pulls downward in this figure. (b) Hawking radiation from the horizon
induces stochastic motion of the string in the bulk which we show for three subsequent time steps, t1, t2, t3. The random string
configurations give rise to a random force in the boundary theory. The Hawking radiation is encoded in an effective action on
the stretched horizon rh = 1 + ε. The string fluctuations are small, xobs ∼ 1/λ1/4T .

introduced, it is possible to apply these same techniques to non-equilibrium geometries. We also study the thermal-
ization of a string in a non-equilibrium geometry. Furthermore, while we focus on string fluctuations in this paper,
our analysis easily generalizes to other fields such as the graviton.

II. PRELIMINARIES

In this subsection we will give a brief summary of some of the results of Ref. [11] in order to establish notation.
The metric of the black hole AdS space is

ds2 = (πT )2L2
[
−r2f(r)dt2 + r2dx2

]
+
L2dr2

f(r)r2
, (2.1)

where the horizon is at r = 1 and the boundary is at r = ∞. L is the AdS radius, f(r) = 1 − 1/r4, and T is the
Hawking temperature. r is a dimensionless coordinate which measures energy in units of temperature. We will also
use Eddington-Finkelstein (EF) coordinates to describe the near horizon dynamics. In this coordinate system the
metric is

ds2 = (πT )2L2

[
−A(r)dv2 +

2

πT
drdv + r2dx2

]
, (2.2)

where A = r2f(r) and v is the EF time

v ≡ t+
1

πT

∫
dr

fr2
. (2.3)

Ingoing lightlike radial geodesics have v = const, while outgoing lightlike radial geodesics satisfy dr/dv = πTA/2.
From now on we will set the AdS radius to one, L = 1.

For simplicity, consider fluctuations along an infinitely long straight string (i.e. an infinitely massive quark) stretch-
ing from the horizon to the boundary. The stationary boundary endpoint is at x = 0, and small fluctuations around
the straight string solution are parameterized by x(t, r), where x denotes displacement of the string in the x direction.
Either t and r or v and r are taken to be the world sheet parameters, t = σ0 and r = σ1. The action of these world
sheet fluctuations is derived by linearizing the Nambu-Goto action:

S =

√
λ

2π

∫
dtdr gxx

[
−1

2

√
hhµν∂µx∂νx

]
, (2.4)
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where µ, ν run over t, r or v, r depending on the coordinate system. For example, the world sheet metric in EF
coordinates is

hµνdσµdσν = (πT )2

[
−A(r)dv2 +

2

πT
drdv

]
. (2.5)

We note that the drag coefficient of the heavy quark (see Eq. (1.1)) is related to the coupling between the metric and
world sheet fluctuations [6–8]

η ≡
√
λ

2π
gxx(rh) =

√
λ

2π
(πT )2 . (2.6)

The analyses in the following sections make this physical interpretation of η clear.

The goal of this paper is to show by solving equations of motion that in equilibrium the retarded propagator,

iGra(t1r1|t2r2) ≡ θ(t− t′) 〈[x̂(t1, r1), x̂(t2, r2)]〉 , (2.7)

and the symmetrized propagator,

Grr(t1r1|t2r2) ≡ 1

2
〈{x̂(t1, r1), x̂(t2, r2)}〉 , (2.8)

are related by the fluctuation dissipation theorem

Grr(ω, r, r̄) = −(1 + 2n(ω)) ImGra(ω, r, r̄) . (2.9)

Here n(ω) = 1/(exp(ω/T )− 1) is the Bose-Einstein distribution function. This relation is a direct consequence of the
fact that the density matrix is exp(−H/T ) and signifies that the fluctuations are in equilibrium with the black hole
at temperature T .

The advanced propagator is related to the retarded propagator by time reversal,

iGar(t1r1|t2r2) ≡ iGra(t2r2|t1r1) , (2.10)

while the spectral density is the full commutator

iGra−ar(t1r1|t2r2) ≡ 〈[x̂(t1, r1), x̂(t2, r2)]〉 . (2.11)

Simple manipulations show that

−2ImGra(ω, r, r̄) = iGra−ar(ω, r, r̄) , (2.12)

and thus the fluctuation dissipation theorem is a relation between the commutator and anti-commutator which signifies
equilibrium. Both the commutator and the anti-commutator will be determined by solving equations of motion with
appropriate initial conditions.

III. EQUILIBRIUM STRING FLUCTUATIONS IN AdS5 FROM EQUATIONS OF MOTION

A. Equations of motion and boundary conditions

Let us analyze the equations of motion in more detail. Recall that the retarded correlator is a Green function of
the equations of motion

√
λ

2π

[
∂µ gxx

√
hhµν∂ν

]
Gra(t1r1|t2r2) = δ(t1 − t2)δ(r1 − r2) , (3.1)

and is required to vanish when t1r1 is outside the future light cone of t2r2. By contrast, the full commutator (i.e. the
spectral density) is not a Green function but satisfies the homogeneous equations of motion

√
λ

2π

[
∂µ gxx

√
hhµν∂ν

]
Gra−ra(t1r1|t2r2) = 0 , (3.2)
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where the initial conditions are determined by the canonical commutation relations. Similarly, the symmetrized
correlation function also satisfies the homogeneous equations of motion

√
λ

2π

[
∂µ gxx

√
hhµν∂ν

]
Grr(t1r1|t2r2) = 0 , (3.3)

but the initial conditions are determined by the density matrix of the quantum system far in the past. The appropriate
initial conditions for Grr and Gra−ar are discussed more fully in Section III C. Finally all bulk to bulk correlation
functions (Gra, Gra−ar, Grr) satisfy Dirichlet, or normalizable, boundary conditions for asymptotically large radius,
i.e. G→ 0 for r1, r2 →∞.

Since the supergravity equations of motion are essentially coupled oscillators, it is useful to recognize that the
retarded propagator for the simple harmonic oscillator is independent of the density matrix. Only symmetrized
correlations depend on the density matrix and reveal a thermal state. Since the simple harmonic oscillator clearly
illustrates the role of the density matrix, we show how to compute commutator and anti-commutator oscillator
correlations using the Keldysh formalism in Appendix A.

B. Horizon Correlators

The equations of motion propagate initial data in the past to the future. This can be made manifest for the
symmetrized correlator by writing down a formal solution to Eq. (3.3) in terms of retarded correlators. Specifically,
given Grr and its time derivatives on some time slice t1 = t2 = t0, the solution to Eq. (3.3) at later times is given by

Grr(1|2) =

[√
λ

2π

∫
dr′1 gxx

√
hhtt(r′1)Gra(1|1′)←→∂t′1

]

×
[√

λ

2π

∫
dr′2 gxx

√
hhtt(r′2)Gra(2|2′)←→∂t′2

]
Grr(1

′|2′) , (3.4)

where t′1 and t′2 are set equal to t0 after differentiating, and
←→
∂ =

−→
∂ −←−∂ . This formula expresses the uniqueness of

the correlator given its value and time derivatives on a Cauchy surface.1 The physical interpretation of this solution
is easy to understand. The two retarded Green functions appearing in the integrals are convoluted with the separate
arguments of the initial data. These retarded Green functions causally propagate the initial data forward in time.

To gain qualitative insight into how initial data is propagated by the retarded Green functions, Figure 2 shows
a congruence of outgoing radial null geodesics starting at time t = t0. A generic geodesic reaches the boundary in
a time ∆t ∼ 1/T . The information which is propagated along such trajectories reflects off the boundary and falls
into the black hole with an infall time also of order 1/T . Thus, at times ∆t � 1/T , the only outgoing geodesics
which populate the geometry above the stretched horizon are those which started exponentially close to the horizon
at t = t0. Moreover, the initial data propagated from this exponentially narrow strip to the above-horizon geometry
will be dramatically redshifted. Because of the redshift, the only finite wavelength contributions to the symmetrized
correlator will come from the UV part of the initial data near the horizon. This UV part simply comes from coincident
point singularities in Grr, which encode quantum fluctuations in the exponentially narrow strip near the event horizon,
r = 1.

This discussion suggests a strategy for computing the symmetrized correlator at times long after t0. First, all
initial data above the stretched horizon at rh ≡ 1 + ε can be neglected as it gets absorbed by the black hole at times
t ∼ t0 + 1/T . Initial data which lies in the strip between the event horizon and the stretched horizon can be evolved
until it reaches the stretched horizon, where it determines an effective horizon correlator. This correlator encodes
quantum fluctuations in the past and sources radiation on the stretched horizon that subsequently propagates up to
the boundary. This is depicted graphically below in Figure 3. Given the discussion of the preceding paragraph, we
expect that the form of the horizon correlator will be independent of details of the initial data specified in the distant
past.

1 The formula manifestly satisfies the equations of motion (3.3) for t1, t2 > t0. To see that it satisfies the boundary conditions in the limit
t1 → t0, one must know the time derivatives of Gra(1|1′) for t1 → t′1. This derivative can be obtained by using the fact that Gra(1|1′)
vanishes for t1 < t′1, and by integrating t1 across t′1 with the equations of motion (3.1) to yield the canonical commutation relations

lim
t1→t′1

√
λ

2π
gxx
√
hhtt∂t1G(1|1′) = δ(r1 − r′1) .

An analogous formula holds for the derivative with respect to t′1.
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FIG. 2. A congruence of outgoing null radial geodesics starting at time t0. Qualitative insight on the propagation of initial
data specified on the slice at t = t0 can be understood from the congruence. Generic geodesics reach the boundary in a time
∆t ∼ 1/T . Initial data propagated on such trajectories reflects from the boundary and falls into the horizon with an infall time
of order 1/T . Geodesics originating exponentially close to the horizon take much longer to escape. Consequently, at late times
the above-horizon geometry is filled with geodesics emanating exponentially close to the horizon at t = t0. Because of this, the
only initial data relevant at late times consists of the initial data exponentially close to the horizon at t = t0.

The effective horizon correlation function can be found by exploiting the composition law obeyed by retarded
propagators. Let gra(t1r2|t2r2) denote the retarded propagator in the region 1 ≤ r ≤ 1 + ε subject to the reflective
Dirichlet condition2 at r = 1 + ε

gra(t1r1 = rh|t2r2) = 0 , gra(t1r1|t2r2 = rh) = 0 . (3.5)

Appendix B analyzes the Wronskian of the retarded propagators Gra and gra, and determines the following compo-
sition rule

Gra(1|1′) =

∫
dt2Gra(1|2)

[
η
√
hhrr(r2)∂r2

]
r2=rh

gra(2|1′) , (3.6)

where t1r1 is outside the stretched horizon, while t′1r
′
1 is inside the stretched horizon. This identity, schematically

depicted in Fig. 3, is the mathematical statement of how information is propagated up from near the horizon to the
stretched horizon, and then up from the stretched horizon towards the boundary. Substituting this composition law
into the solution (3.4) and neglecting contributions to the integrals from r ≥ 1 + ε, we find that above the stretched
horizon Grr takes the form

Grr(t1r1|t2r2) =

∫
dt′1dt′2 [−Gra(t1r1|t′1rh)] [−Gra(t2r2|t′2rh)] Ghrr(t

′
1|t′2) , (3.7)

where the “horizon correlator” Ghrr is determined only by the dynamics between the horizon and the stretched horizon:

Ghrr(t1|t2) =
[
−η
√
hhrr(r1)∂r1

] [
−η
√
hhrr(r2)∂r2

]
grr(t1r1|t2r2)

∣∣∣
r1,r2=rh

. (3.8)

Here grr(t1r2|t2r2) is the solution to the homogeneous equations of motion (3.3) with reflective Dirichlet boundary
conditions at the stretched horizon, together with the prescribed initial conditions close to the horizon at t = t0.3 We
will always denote bulk correlation functions inside the strip with lower case letters.4

2 We note that it is not necessary that gra satisfy reflective Dirichlet condition at r = rh. This choice is simply a matter of latter
convenience.

3 In particular, grr(1|2) is given by the same expression in Eq. (3.4), but with the replacements Grr(1|2)→ grr(1|2), Gra(1|2)→ gra(1|2)
and with the limits of integration running from 1 ≤ r ≤ 1 + ε.

4 This correlator will always be written with its arguments grr(v1r1|v2r2), and can not be confused with the metric coefficient grr(r, v).
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FIG. 3. The composition law for retarded Green functions. The stretched horizon separates the two steps of the evolution.
From the perspective of an observer in the exterior, the strip between the horizon at r = 1 and the stretched horizon at r = 1+ε
produces a simple horizon effective correlator, which acts like a source of radiation from the stretched horizon.

While the symmetrized correlator measures the degree of occupation of microstates, the spectral density iGra−ar(ω)
measures the density of available states. Since the spectral density is also a solution to the homogeneous equations of
motion, the discussion of the previous paragraph can be repeated mutatis, mutandis yielding

iGra−ar(t1r1|t2r2) =

∫
dt′1dt′2 [−Gra(t1r1|t′1rh)] [−Gra(t2r2|t′2rh)] iGhra−ar(t

′
1|t′2) , (3.9)

where the horizon spectral density Ghra−ar is related to the spectral density inside strip gra−ar as in Eq. (3.8)

Ghra−ar(t1|t2) =
[
−η
√
hhrr(r1)∂r1

] [
−η
√
hhrr(r2)∂r2

]
gra−ar(t1r1|t2r2)

∣∣∣
r1,r2=rh

. (3.10)

In this equation gra−ar is subject to the same reflective Dirichlet boundary conditions at r = 1 + ε. We will see that
the horizon correlators, Ghra−ar and Ghrr, form the components of a horizon effective action, which we will study more
completely in Section IV.

Eq. (3.7) and Eq. (3.9) are the key equations in our study of thermalization. Together they show that emission
and absorption of fluctuations in the bulk can be encapsulated into a horizon fluctuation and a horizon resistance.
These equations show that we can focus our attention on the dynamics inside a small strip between the horizon and
stretched horizon. Thermalization inside the strip will be simple to understand analytically.

C. Propagating correlations to the stretched horizon

1. The horizon symmetrized correlation

As is evident from Eqs. (3.7) and (3.8), to determine the symmetrized correlator we must first determine
grr(t1r1|t2r2) in the strip between the horizon and the stretched horizon. For describing the evolution inside
the strip it is useful to use Eddington-Finkelstein coordinates. In these coordinates the equations of motion for r < rh
are

∂

∂r1

[
2hvr

∂

∂v1
+ hrr(r1)

∂

∂r1

]
grr(v1r1|v2r2) = 0 , (3.11)

and

∂

∂r2

[
2hvr

∂

∂v2
+ hrr(r2)

∂

∂r2

]
grr(v1r1|v2r2) = 0 , (3.12)
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where the metric coefficients are given in Eq. (2.5). Since we are interested in the ultra-violet irregular solution to
Eq. (3.11) and Eq. (3.12), we have neglected the radial derivatives of gxx, which are small compared to the radial
derivatives of grr(v1r1|v2r2).5 With this short-distance approximation, the linear operator in Eq. (3.11) becomes a
product of two operators, ∂r and ∂v + πT

2 A∂r. Recall that in Eddington-Finkelstein coordinates, outgoing null radial

geodesics satisfy dr
dv = πT

2 A, whereas infalling null geodesics satisfy v = const. Thus, the derivatives act along these

geodesics, implying that functions of e−2πTv(r − 1) and v satisfy the equations of motion in the near horizon limit.
The general solution is therefore

grr(v1r1|v2r2) = f1(e−2πTv1(r1 − 1), e−2πTv2(r2 − 1)) + f2(e−2πTv1(r1 − 1), v2) (3.13)

+ f3(v1, e
−2πTv2(r2 − 1)) + f4(v1, v2),

where the fn(x1, x2) are arbitrary functions. Requiring that the boundary conditions

grr(v1, r1 = rh|v2r2) = 0 , and grr(v1r1|v2, r2 = rh) = 0 ,

are satisfied at all times, we find that

grr(v1r1|v2r2) = + f(e−2πTv1(r1 − 1), e−2πTv2(r2 − 1))

− f(e−2πTv1(r1 − 1), e−2πTv2(rh − 1))

− f(e−2πTv1(rh − 1), e−2πTv2(r2 − 1))

+ f(e−2πTv1(rh − 1), e−2πTv2(rh − 1)) , (3.14)

where f(x1, x2) is determined by initial conditions.

The above solution is a linear combination of modes which are outgoing from the horizon and modes which are
infalling towards the horizon. The infalling modes are in fact a consequence of the outgoing modes, as the reflective
Dirichlet boundary conditions at the stretched horizon turn outgoing modes into infalling modes, which are subse-
quently absorbed by the black hole. Inspection of Eq. (3.14) shows that if f(x1, x2) is analytic, this reflection and
absorption would always lead to grr(v1r1|v2r2) → 0 at late times. Furthermore, all outgoing modes originate expo-
nentially close to the horizon. This follows from the fact that as e−2πTv(r− 1) is constant on outgoing null geodesics,
in the limit v → −∞ we must have r → 1. Therefore, for evolution near v = 0, relevant initial data specified in the
distant past will come from an exponentially narrow strip which is exponentially close to the horizon at r = 1. In this
exponentially narrow strip grr(v1r1|v2r2) is not analytic and contains a logarithmic coincident point singularity

grr(v1r1|v2r2) = − 1

4πη
log |µ(v1 − v2)(r1 − r2)|+ exponentially small terms, (3.15)

where µ is a constant.6

By matching Eq. (3.14) on to Eq. (3.15) we conclude that we must have

f(x1, x2) = − 1

4πη
log |x1 − x2|+ exponentially small terms. (3.16)

Substituting Eq. (3.16) into Eq. (3.14), we find that long after initial conditions were specified and up to exponentially
small corrections, we have

grr(v1r1|v2r2) =− 1

4πη
log |e−2πT∆v(r1−1)− (r2−1)|+ 1

4πη
log |e−2πT∆v(r1−1)− (rh−1)|

+
1

4πη
log |e−2πT∆v(rh−1)− (r2−1)| − 1

4πη
log |e−2πT∆v(rh−1)− (rh−1)| . (3.17)

In writing Eq. (3.17) we have pulled out a common factor of e−2πTv2 which cancels between the different terms due
to the reflective boundary conditions.

5 A posteriori one can verify that the neglected derivatives, e.g. (∂rgxx) (∂vgrr(v1r1|v2r2)), are small compared to the terms which are
kept, e.g. gxx ∂rhvr∂vgrr(1|2).

6 The coincident point limit can be found be computing the anti-commutator for a free massless scalar field theory in 1+1d flat space

1

2
〈{φ(X), φ(0)}〉 = −

1

4π
log |µ ηµνXµXν | .

Eq. (3.15) is found by the principle of equivalence and by comparing the normalization of the string action (2.4) to the canonical
normalization.



9

The fact that grr(v1r1|v2r2) is time translationally invariant at late times is due to the competition between emission
and absorption. Quantum fluctuations give rise to the logarithmic coincident point singularity in grr(v1r1|v2r2), and
this singularity acts as a constant source of radiation. Thus, radiation is continually produced, redshifted, reflected
off the stretched horizon, and absorbed by the black hole. This dynamical process reaches a steady state which
determines grr(v1r1|v2r2) at late times. As we will discuss in Section III D, this steady state is in fact a thermal state.

With grr(v1r1|v2r2) known, we may compute the horizon correlator Ghrr(v1, v2) via Eq. (3.8). The result reads

Ghrr(v1, v2) =− η

π
∂v1∂v2 log |1− e−2πT (v1−v2)| . (3.18)

2. The horizon spectral density

As in the case of grr(t1r1|t2r2), it is convenient to use EF coordinates (v, r) to determine gra−ar(t1r1|t2r2) . The
spectral density gra−ar(v1r1|v2r2) obeys the same equation of motion as grr(v1r1|v2r2) and has the same reflective
boundary conditions at the stretched horizon. Thus, the general solution for gra−ar(v1r1|v2r2) is similar to the
corresponding solution for grr(v1r1|v2r2) in Eq. (3.14). Explicitly, we have

gra−ar(v1r1|v2, r2) = + fra−ar(e
−2πTv1(r1 − 1), e−2πTv2(r2 − 1))

− fra−ar(e−2πTv1(r1 − 1), e−2πTv2(rh − 1))

− fra−ar(e−2πTv1(rh − 1), e−2πTv2(r2 − 1))

+ fra−ar(e
−2πTv1(rh − 1), e−2πTv2(rh − 1)) , (3.19)

where fra−ar is determined by initial conditions.

In contrast to the symmetrized correlator, where the initial conditions are determined by the density matrix in
the past, the initial conditions for the spectral density are state independent and are determined by the canonical
commutation relations. Thus, it is not necessary to evolve for a long time before reaching a steady state solution.

For v1r1 close to v2r2 flat-space physics determines gra−ar 7

gra−ar(v1r1|v2r2)→ − 1

4η
(sign(v1 − v2)− sign(r1 − r2)) . (3.20)

Comparing Eq. (3.20) to Eq. (3.19), we conclude that for any v1 and v2 we must have

fra−ar(x1, x2) =
1

4η
sign(x1 − x2) . (3.21)

The infalling and outgoing modes cancel at spacelike separation due to the sign function. One can verify (with careful
algebra) that the gra−ar satisfies the canonical commutation relation

η
√
hhtt(r1) lim

t2→t1
∂t1gra−ar(t1r1|t2r2) = δ(r1 − r2) . (3.22)

Substituting gra−ar into Eq. (3.10), we determine the horizon spectral density

Ghra−ar(v1, v2) = 2η δ′(v1 − v2) . (3.23)

D. The Bulk Fluctuation Dissipation Theorem

The interpretation of the above results becomes clear in Fourier space. The Fourier transform of the horizon
symmetrized correlator is

Ghrr(ω) =
η

π

∫ ∞
−∞

dv eiωv ∂2
v log |1− e−2πTv| = ηω (1 + 2n(ω)) , (3.24)

7 The coincident point limit can be found by computing the commutator for a free massless scalar field theory in 1+1d flat space

−i 〈[φ(X), φ(0)]〉 = −
1

2
θ(−ηµνXµXν) sign(t) =

−1

4
(sign(t+ z)− sign(−t+ z)) .

The sign function is the only functional form which allows left-moving and right-moving modes to cancel at spacelike separations.
Eq. (3.20) is found by the principle of equivalence and by comparing the normalization of the string action (2.4) to the canonical
normalization.
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rh

ω

Gh
rr(ω)

rh

r2 r1

FIG. 4. Feynman graph used for computing the symmetrized correlation function Grr(ω, r1, r2), see Eq. (3.27).

where n(ω) = 1/(exp(ω/T ) − 1) is the Bose-Einstein distribution. The Fourier transform of the horizon spectral
density is

iGhra−ar(ω) = 2ηω . (3.25)

Thus, after the decays of transients in the initial data, the horizon correlation functions obey the fluctuation dissipation
relation

Ghrr(ω) = iGhar−ar(ω)

(
1

2
+ n(ω)

)
. (3.26)

Now we can see how the bulk will thermalize from these horizon correlations [11]. In Fourier space the expression
for Grr in terms of Ghrr in Eq. (3.7) becomes

Grr(ω, r1, r2) =Gra(ω, r1, rh)Gra(−ω, r2, rh)
[
Ghrr(ω)

]
, (3.27)

and the spectral density obeys a similar equation

iGra−ar(ω, r1, r2) = Gra(ω, r1, rh)Gra(−ω, r2, rh)
[
iGhra−ar(ω)

]
. (3.28)

Thus the horizon fluctuation dissipation relation trivially implies the relation in bulk

Grr(ω, r1, r2) = iGra−ar(ω, r1, r2)

(
1

2
+ n(ω)

)
. (3.29)

In Section IV we will show how the convolution in Eq. (3.27) is the result of coupling the horizon effective action to
the bulk. Anticipating these results, Fig. 4 shows the Feynman graph corresponding to Eq. (3.27).

Physically, the bulk fluctuation dissipation theorem follows from its horizon counterpart because any fluctuation
in the bulk must have crossed the stretched horizon at some point in the past. Previously the form of the horizon
correlators was derived either by assuming equilibrium, or by using a complex set of analytic continuations. We see
that it is the endpoint of a simple competitive dynamics inside the strip.

IV. THE HORIZON EFFECTIVE ACTION

It is enlightening and useful to package the above manipulations into a path integral formalism. The claim is that
these steps correspond to integrating out the fields inside the stretched horizon. The horizon correlation functions
defined above are the components of the resulting effective action.
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tmax

x2(t, r)

x1(t, r)

to

FIG. 5. The Keldysh contour from an initial time to to a final time tmax. xa(t, r) = x1(t, r) − x2(t, r) must be zero at tmax.
The initial density matrix ρ[x1(to, r), x2(to, r)] is specified at time to.

A. The Keldysh Formalism

In any quantum statistical system, correlations are computed by tracing the density matrix ρ over the Heisenberg
operators. This is the entire purpose of the Keldysh contour [17]. The generating function of string correlation
functions in bulk is

Z[F1,F2] = Tr

[
ρ

∫
x1(t0,r)

x2(t0,r)

[Dx1][Dx2] eiS1−iS2 ei
∫

dtdrF1(t,r) x1(t,r) e−i
∫

dt′dr′ F2(t′,r′) x2(t′,r′)

]
, (4.1)

where [Dx1] indicates a bulk path integral, i.e.

[Dx1] =
∏
t,r

dx1(t, r) . (4.2)

The path integral is defined along the Schwinger-Keldysh contour shown in Fig. 5, where the “1” type path integral
is the amplitude of the process, while the “2” type path integral is the conjugate amplitude of the process. The trace
is over the initial density matrix ρ[x1(t0, r), x2(t0, r)] which determines the initial values x1(t0, r) and x2(t0, r) for
the subsequent path integral. F1 and F2 are sources, which in this case are simply the external forces applied to
the string. Variation of generating function with respect to F1 and F2 yields time ordered, anti-time ordered, and
Wightman correlation functions [11].

Instead of using the 12 variables, we will rely on a rewritten version of the Keldysh formalism known as the ra
formalism which is dramatically simpler. We define retarded (r) and advanced (a) fields and sources

xr =
x1 + x2

2
, xa = x1 − x2 , Fr =

F1 + F2

2
, Fa = F1 −F2 , (4.3)

Since xa encodes the the differences between the amplitude and conjugate amplitudes, xa is a small parameter in the
classical limit [18]. In terms of r and a fields the action becomes

S1 − S2 =

√
λ

2π

∫
dtdr gxx

[
−
√
hhµν∂µxr∂νxa

]
. (4.4)

The two point functions in the “ra” formalism are familiar and explain the notation of Section II

iGra(t1r1|t2r2) = 〈xr(t1, r1)xa(t2, r2)〉 = θ(t1 − t2) 〈[x̂(t1, r1), x̂(t2, r2)]〉 , (4.5)

Grr(t1r1|t2r2) = 〈xr(t1, r1)xr(t2, r2)〉 =
1

2
〈{x̂(t1, r1), x̂(t2, r2)}〉 . (4.6)

The causal structure of quantum field theory is rendered transparent in ra formalism. Since at tmax along the
contour, x1(tmax) = x2(tmax), the path integral must be solved with the boundary condition, xa(t) → 0 for t → ∞.
Thus, whenever an “a” type field is evaluated at a later time than all other field insertions the correlator vanishes. For
example, Gaa(t, t′) = 0 since an a field is always evaluated last. Similarly the retarded correlator, Gra(t, t′), vanishes
whenever the a field is evaluated at a later time than the r field. Gra determines (minus) the retarded linear response
to a classical force. We will exhibit the retarded correlator with an arrow to indicate the direction of time recorded
by this propagator

= iGra(ω, r, r̄) .

While the retarded correlators reflect the response to a classical force, symmetrized correlators encode the fluctuations
in the system. Since the symmetrized correlation function does not represent causal response to a classical force, but
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rather a time dependent correlation which arose from a specified initial condition, we will notate this correlation (as
in Ref. [19]) with

= Grr(ω, r, r̄) . (4.7)

Higher point correlation functions involving r and a indices have a similarly simple interpretation [17].

B. The effective action from the path integral

To obtain the horizon effective action we integrate out all field fluctuations inside the stretched horizon at rh = 1+ε.
The path integral in Eq. (4.1) becomes

Z[F1,F2] =

∫
r>rh

[Dx1Dx2] Dxh eiS1−iS2+iSh
eff [x

h] ei
∫
F1 x1 e−i

∫
F2 x2 , (4.8)

where the horizon effective action is the path integral

eiSeff [x
h
s ] ≡ Tr

[
ρ

∫
r<rh

x1(t0,r), x2(t0,r)

Dxs δ
[
xhs (t)− xs(rh, t)

]
eiS1−iS2

]
, (4.9)

with fixed boundary values on the stretched horizon xhs (t). Here the “s” sub-label denotes the Schwinger-Keldysh
index. The fixed boundary values couple the field fluctuations with r > 1 + ε to field fluctuations with r < 1 + ε.
The density matrix in the distant past ρ[x1(t0, r), x2(t0, r)] is traced over, and this integration is dominated by initial
data extremely close to the event horizon. This trace determines how vacuum fluctuations in the past influence the
future dynamics. It should be understood that Eq. (4.8) (where the initial density matrix is retained only inside the
stretched horizon) is an approximation that is valid after most of the initial data has fallen into the hole as discussed
in Section III.

To quadratic order the effective action can be expanded as:

iSeff [xh] = −
∫

dtdt̄ xha(t) [iGra(t, t̄)]xhr (t̄)− 1

2

∫
dtdt̄ xha(t)

[
Ghrr(t, t̄)

]
xha(t̄) , (4.10)

where we can determine the horizon correlators via differentiation, e.g.

Ghrr(t, t̄) =
1

i2
i δSeff

δxha(t) δxha(t̄)

∣∣∣∣
xh
r ,x

h
a=0

, (4.11)

iGhra(t, t̄) =
1

i2
iδSeff

δxha(t) δxhr (t̄)

∣∣∣∣
xh
r ,x

h
a=0

. (4.12)

A short calculation8 shows that every derivative −iδ/δxa or −iδ/δxr brings down a factor of −η
√
hhrr∂rxr or

−η
√
hhrr∂rxa respectively. Thus

Ghrr(t, t̄) = lim
r,r̄→rh

[
−η
√
hhrr(r)∂r

] [
−η
√
hhrr(r̄)∂r̄

]
grr(t1r1|t2r2) , (4.13)

Ghra(t, t̄) = lim
r,r̄→rh

[
−η
√
hhrr(r)∂r

] [
−η
√
hhrr(r̄)∂r̄

]
gra(t1r1|t2r2) , (4.14)

where the lower case correlation functions are defined from the path integral for r < rh with vanishing boundary
conditions at r = rh

〈. . .〉h =
1

Z
Tr

[
ρ

∫
r<rh

x1(t0,r), x2(t0,r)

Dxs δ [xs(t, rh)] eiS1−iS2 . . .

]
. (4.15)

8 This is because the only dependence on xhs comes through the boundary terms of the kinetic term, e.g.

−
∫

dtdr η
√
hhrr∂rxr∂rxa = −η

√
hhrrxa∂rxr

∣∣∣
r=rh

+

∫
dtdr xa∂r

(
η
√
hhrr∂rxr

)
.
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These relations are familiar from the context of the AdS/CFT correspondence where one takes radial derivatives of
the fields as r → ∞ [20–22]. The functions grr(t1r1|t2r2) and gra(t1r1|t2r2) (or equivalently gra−ar = gra − gar) are
the same as in section III and their relation to Ghrr and Ghra−ar is identical to that derived in Eq. (3.8). Further
the reflective boundary conditions imposed on grr and gra appear naturally in the path integral formalism. We
conclude that the horizon correlators Ghrr and Ghra−ar defined and computed in the previous section are precisely the
components of a well-defined effective action. Given a procedure for regularizing ultraviolet divergences in gravity,
this effective action could be computed to any desired order in perturbation theory following the methods of Ref. [23].

C. Summary of the horizon effective action

The effective action in equilibrium was obtained previously by Son and Teaney [11] by analytically continuing modes
across the horizon. Its form is simple,

iSheff = −
∫

dω

2π
xha(−ω)

[
iGhra(ω)

]
xhr (ω)− 1

2

∫
dω

2π
xha(−ω)

[
Ghrr(ω)

]
xha(ω) , (4.16)

where the retarded horizon correlation function is simply

Ghra = −iωη , (4.17)

and the symmetrized part of the horizon action obeys a fluctuation dissipation relation

Ghrr = −(1 + 2n(ω)) ImGhra(ω) . (4.18)

Fourier transforming back to time, the horizon action reads

iSeff = −i
∫

dt xha(t) η∂tx
h
r (t)− 1

2

∫
dtdt′ xha(t)

[
− η
π
∂t∂t′ log |1− e−2πT (t−t′)|

]
xha(t′) . (4.19)

This action compactly summarizes all the correlations that appear through quadratic order in xa and agrees with the
results of Section III D.

The horizon effective action is useful. For instance, since the bulk action in Eq. (4.4) has no rr and no aa components,
the first Feynman graph which contributes to the correlation 〈xr(v1, r1)xr(v2, r2)〉h is shown in Fig. 4 and is written
in full in Eq. (3.27), with the lines explained in Section IV A. Thus, perturbation theory with the bulk and horizon
actions transparently produces the convolution formulas given in Eq. (3.7) and Eq. (3.9).

The retarded horizon propagator in the action, Ghra, reflects the resistance on the horizon, −ηẋ, and is valid at all
frequencies [11]. Indeed, the classical dissipation encoded by the ra part of the action can be derived simply from the
classical membrane paradigm. Variation of the effective action gives the horizon force

Fhr =
δSeff

δxa
= −η∂txr , (4.20)

where the force is Fhr = −η
√
hhrr∂rxr as required by the membrane paradigm [24]. In the zero frequency limit

the force Fr is independent of radius [6, 25], implying that horizon drag coefficient η is the same as boundary drag
coefficient in the Langevin equation [6].

V. NON-EQUILIBRIUM CORRELATORS

A. Setup

In this section we wish to show how to generalize the non-equilibrium horizon effective action. Interesting non-
equilibrium geometries to consider can be found in [26–28]. However, for definiteness we will consider the non-
equilibrium geometry discussed in Ref. [26]. In this work, an excited state in the boundary quantum field theory was
created by briefly turning on a time-dependent 4d gravitational field, which was taken to be translationally invariant.
The gravitational field did work on the quantum system, producing an excited state which subsequently thermalized.
In the dual 5d gravitational system, turning on a 4d gravitational field corresponds to deforming the 4d boundary of
the 5d geometry. Before the deformation was turned on, the 5d geometry was taken to be AdS5, which is dual to
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FIG. 6. Figure from Ref. [26]. The congruence of outgoing radial null geodesics. The surface coloring displays A(v, r)/r2 . The
excised region is beyond the apparent horizon, which is shown by the dashed green line. The geodesic shown as a solid black
line is the event horizon; it separates geodesics which escape to the boundary from those which cannot escape.

the vacuum state. The deformation in the boundary geometry produced gravitational radiation which fell into the
bulk. This infalling radiation resulted in the process of gravitational collapse, changing the initial AdS5 geometry to
one which had a black hole, and the relaxation of the black hole to equilibrium encoded the thermalization of the
expectation value of the stress tensor in the dual quantum theory.

Translation invariance allows the 5d metric to be written

ds2 = Adv2 + 2drdv + Σ2
(
eBdx2

⊥ + e−2Bdx2
‖

)
, (5.1)

where all coefficients A,Σ, B are functions of radius r and time v. The metric coefficient A(v, r) together with the
outgoing radial geodesics calculated in this geometry are shown in Fig. 6 and is reproduced from [26]. Outgoing
light like geodesics satisfy dr/dv = A/2. We will determine the non-equilibrium string correlators in this transient
geometry.

A salient feature of the outgoing geodesics is their ultimate bifurcation at the event horizon, ro(v), which is shown
by a thick black line in Fig. 6. This bifurcation is reminiscent of Fig. 2. It is convenient to switch coordinates to a
system of coordinates where this black line is flat

ρ =r − ro(v). (5.2)

Note ro(v) defines a light like outgoing radial geodesic, so that the metric is

ds2 = −(A−Ao)dv2 + 2 dρ dv + Σ2
(
eBdx2

⊥ + e−2Bdx‖
)
, (5.3)

where Ao(v) = A(ro(v), v). In the near horizon geometry, where r ' ro(v) we can approximate

A(r, v)−Ao(v) ' ∂A(r, v)

∂r

∣∣∣∣
r=rh(v)

ρ , (5.4)

where here and below we will define the stretched horizon at ρh ≡ ε, i.e. rh(v) ≡ ro(v) + ε. For future convenience
we define the “effective temperature”9

2πTeff(v) ≡ 1

2

∂A(r, v)

∂r

∣∣∣∣
r=rh(v)

. (5.5)

The action of the string fluctuations in the x direction is the same as Eq. (2.4), but the metric coefficients depend
on time and radius. With the goal of determining the horizon effective action it is useful to define a non-equilibrium
drag coefficient

η(v) ≡
√
λ

2π
gxx(rh(v), v) . (5.6)

9 We note that Teff should not be interpreted as a temperature at all times. In particular, due to the teleological nature of event horizons,
Teff is non-zero even before the boundary geometry has changed – i.e. when the dual boundary quantum theory is still in the vacuum
state. It is only at late times when the black hole starts to thermalize that Teff can be interpreted as a temperature.
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B. Calculation

The computational procedure for computing correlators in the non-equilibrium case is remarkably similar to the
equilibrium case discussed in Sections III and IV. For both Grr and Gra−ar one can write down a solution to the
equations of motion in terms of retarded Green functions convoluted with initial data, as in Eq. (3.4). Furthermore,
for initial data specified suitably far in the past, the relevant initial data for evolution near v = 0 (when the boundary
geometry is changing) will come from a narrow strip near the horizon.10 One can then repeat the analysis of Sec-
tion III B and conclude that Grr and Gra−ar are determined by horizon correlators Ghrr and Ghra−ar, as in Eqs. (3.7)
and (3.9).

In the non-equilibrium case Ghrr is given by

Ghrr(v1, v2) =
[
−η(v1)

√
hhρρ(ρ1)∂ρ1

] [
−η(v2)

√
hhρρ(ρ2)∂ρ2

]
grr(v1ρ1|v2ρ2) (5.7)

where grr(v1ρ1|v2ρ2) is a solution of the homogeneous equations, but is confined to the strip, 0 < ρ ≤ ε. Furthermore
grr(v1ρ1|v2ρ2) should satisfy the boundary conditions grr(v1, ρ1 = ε|v2, ρ2) = grr(v1ρ1|v2ρ2 = ε) = 0.

The equations of motion for grr(v1ρ1|v2ρ2) are[
∂

∂v1
gxx
√
hhρv

∂

∂ρ1
+

∂

∂ρ1
gxx
√
hhρv

∂

∂v1
+

∂

∂ρ1
gxx
√
hhρρ

∂

∂ρ1

]
grr(v1ρ1|v2ρ2) = 0 , (5.8)

where all the metric coefficients depend on v and r. Without approximation, we have

∂

∂ρ1

[
2gxx
√
hhρv

∂

∂v1
+
∂(gxx

√
hhρv)

∂v1
+ gxx

√
hhρρ

∂

∂ρ1

]
grr(v1ρ1|v2ρ2)

−
[
∂(gxx

√
hhρv)

∂ρ1

∂

∂v1
+
∂(gxx

√
hhρv)

∂ρ1∂v1

]
grr(v1ρ1|v2ρ2) = 0 . (5.9)

The above equation of motion contains both first and second derivatives. However, as we are interested in solutions
which are irregular near the horizon, all terms with single derivative operators acting on grr(v1ρ1|v2ρ2) can be
neglected. This approximation leads to

∂

∂ρ1

[
2η
√
hhρv

∂

∂v1
+
∂(η
√
hhρv)

∂v1
+ η
√
hhρρ

∂

∂ρ1

]
grr(v1ρ1|v2ρ2) = 0 , (5.10)

and an analogous equation for v2 and ρ2. Inspecting the above equation, we see that
√
η(v1)η(v2)grr(v1ρ1|v2ρ2)

is annihilated by the operator ∂ρ
[
∂v + 1

2A∂ρ
]
. As in Section III C 1, the consequence of this is that any function

which is constant on null radial geodesics satisfies the equations of motion. Near the horizon this translates to√
η(v1)η(v2)grr(v1ρ1|v2ρ2) being a function of v and

ρout(ρ, v) = ρ e−
∫ v
vo

2πTeff (v
′)dv′ . (5.11)

As in Eq. (3.14), the general solution to Eq. (5.10) which satisfies the requisite boundary conditions at the stretched
horizon reads √

η(v1)η(v2)grr(v1ρ1|v2ρ2) =f(ρout(ρ1, v1), ρout(ρ2, v2))− f(ρout(ρh, v1), ρout(ρ2, v2))

− f(ρout(ρ1, v1), ρout(ρh, v2)) + f(ρout(ρh, v1), ρout(ρh, v2)) , (5.12)

where as in the equilibrium case, f(x1, x2) is determined by the initial conditions specified in the distant past.

To determine f(x1, x2) we invoke a similar argument used in Section III C 1. In particular, assuming initial data
for grr(v1ρ1|v2ρ2) was specified in the distant past, the only relevant initial data for evolution near v = 0 comes from

10 To make this more precise, suppose instead of starting off with an initial geometry which was AdS5, the initial geometry consisted of
a static black hole geometry at temperature Tinitial = δ. Assuming initial data is specified at times v � −1/δ in the past, all relevant
initial data for future evolution around v = 0 will come from an exponentially narrow strip which is exponentially close to the horizon.
Of course, one can always consider the limit δ → 0 after all calculations are performed.
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a very narrow strip which is very close to the event horizon. In this strip the relevant initial data is given by the
coincident point limit of the symmetrized correlator as given in Eq. (3.15). Consequently f(x1, x2) must be given by

f(x1, x2) = − 1

4π
log |x1 − x2| . (5.13)

With grr(v1ρ1|v2ρ2) known, Eq. (5.7) yields the symmetrized horizon correlator

Ghrr(v1, v2) =−
√
η(v1)η(v2)

π
∂v1∂v2 log |1− e−

∫ v2
v1

2πTeff (v
′)dv′ | . (5.14)

We will discuss the physical implications of this result in the next section.

The horizon spectral density can be obtained along the same lines as the horizon symmetrized correlator with the
subscript replacement rr → ra−ar in Eq. (5.7). Because gra−ar(v1ρ1|v2ρ2) satisfies the same equations of motion and
boundary conditions as grr(v1ρ1|v2ρ2), the general solution for gra−ar(v1ρ1|v2ρ2) takes the same form as Eq. (5.12).
However, as in the equilibrium case discussed in Section III C 2, the initial conditions determining f(x1, x2) for the
spectral density come purely from the equal time canonical commutation relations and yield

f(x1, x2) =
1

4
sign(x1 − x2) . (5.15)

With gra−ar known, the horizon spectral correlator reads

Ghra−ar(v1, v2) = 2
√
η(v1)η(v2)δ′(v1 − v2) . (5.16)

VI. SUMMARY

Let us summarize our results. For definiteness we will describe how to compute string fluctuations in the non-
equilibrium geometry determined by Chesler and Yaffe [26]. We emphasize, however, that similar formulas can be
used for other fields such as gravitons and dilatons. Fig. 6 shows the event horizon ro(v) together with the associated
bifurcating outgoing geodesics of this geometry. The stretched horizon is located at rh(v) = ro(v) + ε

In contrast to a retarded Green function (which is a response to a source), a symmetrized correlation function,
or a fluctuation, is a time dependent correlation that arose from a definite initial condition. In the case of Hawking
radiation (see Fig. 2), this initial condition is the result of an ultra-violet vacuum fluctuation (or a symmetrized
correlation function) which originated close to the event horizon of the developing black hole. This UV fluctuation
skims the event horizon following outgoing lightlike geodesics until late times. Then the fluctuation, which is no
longer so ultra-violet, leaves the bifurcating horizon and induces stochastic motion in the string. We implemented
this picture of Hawking radiation directly.

We showed how the Hawking flux out of equilibrium can be packaged into an effective action on the stretched
horizon which can be used to determine the effect of the Hawking radiation on the exterior dynamics. The horizon
action through quadratic order is

iSeff [xh] = −1

2

∫
dv1dv2 x

h
a(v1)

[
iGhra−ar(v1, v2)

]
xhr (v2)

− 1

2

∫
dv1dv2 x

h
a(v1)

[
Ghrr(v1, v2)

]
xha(v2) , (6.1)

where the horizon correlation functions are the horizon spectral density,

Ghra−ar(v1, v2) = 2
√
η(v1)η(v2)δ′(v1 − v2) , (6.2)

and the horizon symmetrized correlator,

Ghrr(v1, v2) = −
√
η(v1)η(v2)

π
∂v1∂v2 log |1− e−

∫ v2
v1

2πTeff (v
′)dv′ | . (6.3)

Here xh(v) is the location of the string on the stretched horizon as a function of time. The coefficient η(v) =

(
√
λ/2π)gxx(v, rh(v)) determines the coupling between the world sheet fluctuations and the near horizon geometry,

and the effective horizon temperature records the Lyapunov exponent of diverging geodesics along the bifurcating



17

horizon (see Eq. (5.5) and Eq. (5.11)). More invariantly, it is related to the extrinsic curvature on the stretched
horizon. In equilibrium, η(v) is the drag of the heavy quark, and Teff is the Hawking temperature. The current
analysis can also be extended to a heavy quark moving with velocity v in a finite temperature background. In
this case Teff records how geodesics diverge on the string world sheet and differs from T by a factor of

√
γ, where

γ = 1/
√

1− v2 [29–33]. This extra factor of
√
γ influences the velocity dependence of the transverse and longitudinal

momentum broadening rates of heavy quarks in strongly coupled plasmas.

The horizon spectral density in Eq. (6.2) is proportional to ω and is determined by the canonical commutation
relations of the 1+1d effective theory which describes the near horizon dynamics. The horizon symmetrized correlator
is determined by the initial density matrix of the effective theory far in the past. When the horizon action is coupled
to the bulk, this action generates noise on the stretched horizon which induces the random motion of the quark in the
dual field theory [11]. For a stationary black hole, the effective action was determined previously using complicated
analytic continuations [11].

The importance of these horizon functions is that they determine the spectral density and symmetrized correlations
in the bulk and boundary theories. Indeed, the bulk spectral density (the commutator) and symmetrized correlator
(the anti-commutator) are determined by propagating their horizon counterparts away from the stretched horizon

iGra−ar(v1r1|v2r2) =

∫
dv′1dv′2Gra(v1r1|v′1rh(v′1))Gra(v2r2|v′2rh(v′2)) iGhra−ar(v

′
1|v′2) , (6.4)

Grr(v1r1|v2r2) =

∫
dv′1dv′2Gra(v1r1|v′1rh(v′1)) Gra(v2r2|v′2rh(v′2)) Ghrr(v

′
1|v′2) . (6.5)

Finally, these bulk correlation functions can be lifted to the boundary to determine the spectral density and sym-
metrized correlator in the field theory (see Appendix C). When the fluctuations are thermalized, the two correlation
functions satisfy the fluctuation dissipation theorem

Grr(ω, r1, r2) =

(
1

2
+ n(ω)

)
iGra−ar(ω, r1, r2) . (6.6)

Thus we can numerically determine the fluctuations and monitor their approach to equilibrium using the formalism
of this work. This numerical calculation will be presented in future work.

Even without a complete numerical computation, some preliminary remarks can be made about equilibration in
AdS5. The Wigner transforms of Ghrr(v1, v2) and Ghra−ar(v1, v2) obey the fluctuation dissipation theorem at high
frequency.11 Specifically, for a typical non-equilibrium time scale τ , we have

Ghrr(v̄, ω) '
(

1

2
+ n(ω)

)
iGhra−ar(v̄, ω) + O

(
1

τ2ω2

)
, (6.7)

where v̄ = (v1 + v2)/2. Thus the string is born into equilibrium at high frequency, and eventually frequencies of
order the temperature and below equilibrate. This conclusion seems squarely aligned with the results of Ref. [34]
which was limited to operators of high conformal dimension. However, it must be emphasized that the map between
the stretched horizon and the boundary is non-trivial, especially for five-dimensional fields where the 3-momentum
influences the coupling between the field and the near horizon geometry.

One popular picture of Hawking radiation is based on quantum tunneling (see, for instance, [35]). This picture
relates the thermal factor in the emission rate to the change in the black hole entropy, which appears by way of
the Euclidean action. It would be interesting to make contact with this picture using the effective action formalism.
This would help make the universality of the result fully manifest. It would also be interesting to see if the simple
non-equilibrium effective action presented in this paper finds a simple origin in the tunneling picture.

The current derivation of Hawking radiation and correlation functions is similar to the 2PI formalism of non-
equilibrium field theory [36], and we hope this will make black hole physics accessible to a wider audience. The
derivation uses the unstable nature of the bifurcating event horizon to expand ultraviolet vacuum fluctuations. This
exponential sensitivity to initial conditions has been called the transplanckian problem [37], and is characteristic of
classically chaotic systems [38]. By exploiting this analogy, we hope that new insight can be found into the trans-
planckian problem and the Bekenstein entropy. Understanding the Bekenstein-Hawking entropy will require coupling

11 The Wigner transform is the Fourier transform with respect to the difference v1 − v2, as a function of the average, v̄ = (v1 + v2)/2.
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the particle emission to the background metric, leading to a dynamical competition between quantum particles and
the classical background field. The particle-field problem has been extensively studied in thermal field theory and the
Color Glass Condensate [18, 39]. We hope to pursue these connections in future work.

Comparison with recent literature:

Recently several papers appeared which addressed aspects of this paper as this work was being finalized [40]. First,
a paper by Headrik and Ebrahim [40] used the equations of motion to solve for the symmetrized correlation function
in AdS3-Vaidya spacetimes. Headrik and Ebrahim reported on the “instantaneous thermalization” of AdS3. Second,
a paper by Balasubramanian et al [34] computed the thermalization of operators with high conformal dimension
by studying geodesics. Although the current paper is not limited to such operators, the basic conclusion that the
field theory thermalizes first at high frequency is consistent with our conclusion about horizon Wigner transforms.
However, as emphasized above the map between the stretched horizon and the boundary involves physically important
and non-trivial outgoing propagators.
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Appendix A: Symmetrized correlations and the Keldysh formalism – a lesson from the harmonic oscillator

It is instructive in many respects to compute the symmetrized correlation function of the harmonic oscillator using
the Keldysh formalism. The action of the oscillator is

iS1 − iS2 = i

∫
to

dt
[
mẋrẋa −mω2

oxrxa
]
, (A1)

and is similar to the string action written in Eq. (4.4). In both systems we see that there are no rr type propagators
in the action itself. This is because symmetrized correlations are the result of a correlation built into the initial state
wave functions, i.e. the initial density matrix.

In symmetrized type correlation functions the density matrix at an initial time to correlates the initial conditions
for subsequent evolution. The density matrix for the harmonic oscillator in the ground state is Ψo(x1)Ψ∗o(x2), and
the symmetrized correlator is

Grr(t, t̄) =

∫
dxordx

o
a Ψo(x

o
r + xoa/2)Ψ∗o(x

o
r − xoa/2)

∫
xo
r,x

o
a

DxrDxae
iS1−iS2xr(t)xr(t̄) . (A2)

This is simplified by (i) introducing the Wigner transform,

W (xor, p
o) =

∫
dxoa e

−ipoxo
a Ψo(x

o
r + xoa/2)Ψ∗o(x

o
r − xoa/2) ,

(ii) integrating by parts in the action (with the boundary condition xa → 0 for t→ +∞),

iS1 − iS2 = −imxoaẋr(to)− i
∫
to

dt xa
[
mẍ+mω2

ox
]
,

and finally (iii) integrating over all xa, yielding

Grr(t, t̄) =

∫
dxordp

o

2π
W (xor, p

o) δ(po −mẋr(to))
∫
xr(to)=xo

r

Dxr δt [Mẍr +mωoxr] xr(t)xr(t̄) . (A3)

Here δt[f(t)] denotes the functional delta function,
∏
t δ(f(t)). The meaning of this path integral is that Grr(t, t̄) is

found by solving the equation of motion for a specified initial condition,

xr(t) = xor cos(ωo(t− to)) +
po

mωo
sin(ωo(t− to)) , (A4)
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and then averaging the square of this solution over the initial conditions specified by the Wigner transform. Performing
this average for the ground state wave function of the oscillator reproduces the familiar result

Grr(t, t̄) =
1

2
〈0| {x̂(t), x̂(t̄)} |0〉 =

1

2mωo
cos(ωo(t− t̄)) . (A5)

The lesson from this analysis is that symmetrized correlation functions invariably arise from correlations in the initial
density matrix which are propagated forward by the equations of motion. This dependence on the initial density
matrix should be contrasted with retarded propagators which are independent of the wave function of the simple
harmonic oscillator, i.e.

θ(t− t̄) [x̂(t), x̂(t̄)] =
−iθ(t− t̄)
mωo

sin(ωo(t− t̄)) , (A6)

is a pure number.

Appendix B: The Green Function Composition Rule

In this appendix we detail the Green function composition rule stated in Eq. (3.6). In this section 1, 2, 3 denote the
space-time points, e.g. 1 = (v1, r1).

Suppose Gra(1|2) and Ĝra(1|3) are retarded Green functions. Then the Wronskian of the two Green functions is

Wµ(2) =

√
λ

2π
gxx
√
hhµν(2)

[
Gra(1|2)

←→
∂

∂2ν
Ĝra(2|3)

]
, (B1)

where
←→
∂ =

−→
∂ −←−∂ and is not intended to act outside of the square braces. Then, a short exercise shows that the

divergence is

∂µW
µ(2) = Gra(1|3)δ(2, 3)− Ĝra(3|1)δ(2, 1) . (B2)

Assuming that 3 is inside the strip and 1 is outside the strip (see Fig. 3) we can integrate over the strip to obtain the
retarded Green function:

Gra(1|3) =

∫
r<rh

∂

∂2µ
Wµ(2) =

∫
2

dΣµ

√
λ

2π
gxx
√
hhµν(2)

[
Gra(1|2)

←→
∂

∂2ν
Ĝra(2|3)

]
, (B3)

where dΣµ is a surface surrounding the strip with outward directed normal, and the integration is over space-time
point 2. We next use the near horizon approximation for the leading factors (Eq. (2.6)), and neglect all surface terms
except the integral over the stretched horizon. These surface integrals vanish because one of the Green functions
vanishes. For instance, on the past surface (where v = −∞) Ĝra(2|3) must vanish since it represents the causal
response at point 2 (past infinity) to a source at point 3. Since we have not specified the boundary conditions on the

retarded Green function Ĝra, we are free to specify reflective Dirichlet boundary conditions on the stretched horizon,
i.e. take Ĝra(2|3) = gra(2|3), as defined in the text. This specification does not interfere with the relevant initial data
extremely close to the real event horizon. With this choice Eq. (B3) results in Eq. (3.6) given in the text.

Appendix C: From bulk to bulk correlators, to boundary to bulk correlators, to CFT correlators

Given a retarded bulk to bulk correlator Gra(1|2) in the gravitational theory, we will show that the retarded
correlator in the CFT is

GCFTra (t1|t2) = lim
r1→bnd

lim
r2→bnd

[
−
√
λ

2π
gxx
√
hhrr(1)∂r1

][
−
√
λ

2π
gxx
√
hhrr(2)∂r2

]
Gra(1|2) . (C1)

In holography, the CFT correlation function is usually determined by setting the boundary conditions of five dimen-
sional fields as r → ∞. We claim that Eq. (C1) is an equivalent prescription. Indeed, Eq. (C1) arises if the path
integral discussion of the horizon effective action in Section IV B is applied to the boundary. Specifically, instead of
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integrating out the strip to find an effective action of the stretched horizon, one integrates out the entire bulk to find
an effective action of the CFT. Put differently, from the viewpoint of the bulk theory, any small change in a boundary
condition must be equivalent to inserting a suitable local operator close to that boundary, and for a Dirichlet condition
that operator turns out to be a derivative of the field as in Eq. (C1) (see, for instance, [23]).

To make direct contact with the pioneering work of Policastro, Son, and Starinets [41], we define the boundary to
bulk correlator f(t1r1|t2) as a retarded solution which satisfies

lim
r1→bnd

f(t1r1|t2) = δ(t1 − t2) . (C2)

For static geometries in Fourier space this is usually called fω(r1), and the retarded correlator in the CFT is usually

GCFTra (ω) = +

√
λ

2π
gxx
√
hhrr∂rfω(r1) . (C3)

Now we claim that the boundary to bulk propagator is simply related to the bulk to bulk propagator via

f(t1r1|t2) = lim
r2→bnd

√
λ

2π

√
hhrr(r2)∂r2Gra(t1r1|t2r2) . (C4)

To show this we take r1 fixed and large, and we integrate the equations of motions of the retarded Green function
(Eq. (3.1)) with respect to the second argument over the pill-box shown below. The radius of the lower surface is
small compared to r1 (but still large), while the radius of the upper surface is large compared to r1.

bnd

(t1r1)
(C5)

This yields

lim
r1→bnd

lim
r2→bnd

√
λ

2π
gxx
√
hhrr(r2)

∂

∂r2
G(r1t1|r2t2)

− lim
r2→bnd

lim
r1→bnd

√
λ

2π
gxx
√
hhrr(r2)

∂

∂r2
G(t1r1|t2r2) = δ(t1 − t2) . (C6)

The second term vanishes since Gra(t1r1|t2r2) obeys Dirichlet boundary conditions. Thus, the first term in Eq. (C6)
obeys the same boundary conditions as the bulk to boundary propagator f(t1r2|t2), Eq. (C2). Since both functions
are retarded and obey the same equations of motion and boundary conditions, they are the same and Eq. (C4) holds.
By extension, Eq. (C1) for the CFT correlators from bulk to bulk correlators is equivalent to the usual prescription.
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