
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Thin walls and junctions: Vacuum decay in
multidimensional field landscapes

Vijay Balasubramanian, Bartłomiej Czech, Klaus Larjo, and Thomas S. Levi
Phys. Rev. D 84, 025019 — Published 26 July 2011

DOI: 10.1103/PhysRevD.84.025019

http://dx.doi.org/10.1103/PhysRevD.84.025019


UPR-1222-T

Thin walls and junctions: Vacuum decay

in multi-dimensional field landscapes

Vijay Balasubramaniana,1, Bart lomiej Czech, Klaus Larjo, Thomas S. Levib,2

aDepartment of Physics and Astronomy

David Rittenhouse Laboratories

University of Pennsylvania

209 S 33rd Street, Philadelphia, PA 19104, USA

bDepartment of Physics and Astronomy

University of British Columbia

6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada

Abstract

We study tunneling between vacua in multi-dimensional field spaces in the thin wall
approximation. The thin wall action generically gives rise to two types of saddle points.
The first type corresponds to the well-known spherical instantons, but when the field
space is multi-dimensional we find that it is necessary to include codimension two
“junctions” to regulate and compute the fluctuation determinant and the tunneling
rate. The second type of saddle point is novel and is present only when the field space
is more than one-dimensional. These saddle points have two or more negative modes,
which confirms that in the presence of additional field directions spherical instantons
continue to dominate vacuum decay. We identify regimes in parameter space in which
additional field directions may quench certain channels of vacuum decay.
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1 Introduction

In classic papers Callan and Coleman [1, 2, 3] explained how to compute the rate of tunnelling
between vacua in field space using the method of instantons. The final answer takes the form

Γ ≈ e−S0
∣∣det δ2S

∣∣−1/2 , (1.1)

where S0 is the Euclidean action of the instanton mediating the transition. An important
ingredient in obtaining an analytic expression is the thin wall approximation, which repre-
sents the instanton as a thin, spherical, tensionful wall, whose interior is filled with the true
vacuum. The spherical form of the minimal action instanton was rigorously established in
[4].

This paper extends the above analyses to the case where the field space is at least two-
dimensional and contains at least three minima. We construct all critical points of the
thin wall action and find that the action generically has two critical points. One of these
represents the usual spherical instanton of a single bubble nucleating in the vacuum. In the
näıve thin wall limit, the fluctuation determinant around this saddle point has a vanishing
eigenvalue, but this is regulated by the contributions of codimension two “junctions” where
bubbles of three vacua meet. The second class of critical points is novel. We show that these
critical points have at least two negative modes and, consequently, do not mediate decays.
Thus, our analysis confirms that the standard thin wall analysis is robust to the addition of
extra field directions in the first approximation and the thin wall limit. These computations
comprise Sec. 2. In Sec. 3 we discuss the validity of our calculations and identify regimes in
parameter space in which additional field directions may destabilize the spherical instantons.

2 Bubbles in multi-dimensional field spaces

Consider a two-dimensional potential landscape with three vacua as depicted in Fig. 1. A
universe filled with the false vacuum A is subject to tunneling events, which spontaneously
produce non-trivial field profiles. Let us assume that all relevant tunneling events can be
analyzed in the thin wall approximation. Two necessary conditions for this are that the
vacua of the scalar potential are nearly degenerate, and that the walls of the potential are
high compared to the difference in vacuum energies. We implement these conditions by
starting with a potential V0(~φ), for which the three vacua are degenerate, and then add a

small degeneracy breaking term ~ε · ~φ:

V (~φ) = V0(~φ) + a−1~ε · ~φ, with V0(~φA) = V0(~φB) = V0(~φC) ≡ V0, and (2.1)

V0(~φ)− V0 � |ε|, when ~φ is not near any of the vacua A, B or C. (2.2)

Here a is a length scale in field space. To leading order in ~ε the locations of the vacua are
unaffected by the degeneracy breaking term. We denote the energy density differences of the
three vacua by

V (~φA)− V (~φB) ≡ εAB, V (~φA)− V (~φC) ≡ εAC , V (~φB)− V (~φC) ≡ εBC (2.3)
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Figure 1: Left: A generic potential in the landscape with three vacua. Right: A contour
plot of the same potential. Dashed lines are minimal interpolating paths, which determine
the tensions of the walls that in the thin wall approximation demarcate regions filled with
the different vacua.

with all ε’s positive. Without loss of generality we have chosen A to be the false vacuum, B
the intermediate vacuum, and C the true vacuum. In this approximation a tunneling event
produces regions of vacua B and/or C, separated from the ambient vacuum A and from one
another by thin walls, whose tensions are given by [5]

σAB = min
l

∫ B

A

dl

√
2(V0(~φl)− V0), (2.4)

σAC = min
l

∫ C

A

dl

√
2(V0(~φl)− V0), (2.5)

σBC = min
l

∫ C

B

dl

√
2(V0(~φl)− (V0 − εAB) ≈ min

l

∫ C

B

dl

√
2(V0(~φl)− V0), (2.6)

where l ranges over paths in field space that interpolate between the respective pairs of
vacua. The definitions imply triangle inequalities:

σAC < σAB + σBC

σAB < σAC + σBC (2.7)

σBC < σAB + σAC

2.1 Thin wall configurations

Fig. 2 illustrates a general configuration that may be assembled from the ingredients available
in the thin wall approximation. However, it is sufficient to consider connected configurations,
because each component of a disconnected configuration nucleates independently of the oth-
ers. Further, it suffices to study connected configurations that consist of a single B-region
and a single C-region, screened by a single σBC-interface. If we could find such a solution, we
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Figure 2: A general configuration that can be assembled from thin wall ingredients.

could then glue together fragments of it to arrive at more complicated configurations with
many B- and C-regions separated by many interfaces. The current section concentrates on
configurations built up of one B-region and one C-region, separated by a single interface.

A configuration of this type contains a preferred spacelike axis, which joins the centers of
mass of regions B and C. This special axis breaks down the symmetry of the problem from
SO(3, 1) down to SO(2, 1). The lowest action instanton is expected to obey the symmetry.
Hence, we will assume that the locus where regions A, B, C coalesce is a two-hyperboloid.
We shall refer to this locus as the junction. On the time slice of nucleation, which we pick
to be t = 0, the junction forms a circle; we shall denote its radius r. The walls separating
the different regions are now subject to a boundary condition: each of them has a boundary
given by a circle of radius r (at t = 0) or a two-hyperboloid (including the time direction).
Without this new boundary condition, the instanton minimizing the action would describe a
wall that is a two-sphere at t = 0 [4]. A sliced sphere will thus also minimize the action while
obeying the desired boundary condition of having a circular boundary. In the end, we see
that the walls of our bubbles must be sliced two-spheres (at time t = 0) or three-hyperboloids
(including the time direction).

Based on this argument, we may restrict attention to configurations that at time t = 0
resemble Fig. 3. The walls trace two-spheres, which meet on a circle of radius r. We denote
the radii of the spheres by RAB, RAC , RBC , where RAB (RAC) screens the region filled with
vacuum B (C) from the ambient vacuum A while RBC is the radius of the spherical surface
separating bubbles B and C. We will refer to these (partial) spheres as AB, AC and BC.
Note that since C has a lower vacuum energy than B, the spherical surface defined by
RBC will always bend into bubble B. Because the three spheres meet on a common circle,
their centers are colinear. The axis joining their centers, which breaks the initial SO(3, 1)
symmetry down to SO(2, 1), will be denoted z. We set z = 0 to mark the plane containing
the r-circle common to the three spheres. The centers of the three spherical surfaces are
then marked zAB, zAC , zBC . Although Fig. 3 shows a particular choice of zAB, zAC , zBC , the
analysis below is general and makes no assumptions about their signs.
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Figure 3: Our ansatz for the initial (t = 0) configuration that nucleates. The coordinate z
increases to the right.

Junctions: The above discussion assumed that we are free to join different types of bub-
ble walls on junctions. This requires the existence of an appropriate solution to the field
equations of motion in the interior of the junction. To consider what such a solution should
look like, consult Fig. 4. The boundary conditions for ~φ on the junction are that the sides of
the junction-triangle in Euclidean space map to the minimal paths defining σAB, σAC , σBC
in field space. We believe that the requisite solution exists, though we have no formal proof.

2.2 The action

To find the Euclidean action of an instanton, we integrate the Euclidean Lagrangian eval-
uated on Wick-rotated solutions to the equations of motion, subtracting the action of the
ambient vacuum [3]. In the case of the spherical instanton, the Wick rotation turns SO(3, 1)-
invariant hyperboloids into SO(4)-invariant spheres. Thus, the imaginary part of the Eu-
clidean action for a spherical bubble of radius R takes the form

S=−εR4Vol(B4) + σR3Vol(S3). (2.8)

In the language of [3], this is the action of a full bounce, not a half-bounce, as is preferred by
some authors, e.g. [6]. Thus, the nucleation rate depends on S according to Γ ∝ exp (−S).

We would like to write down an analogue of equation (2.8) for the configuration presented
in Fig. 3. It respects SO(2, 1) symmetry, which is SO(3) in the Euclidean section. Thus,
after we restore the dependence on Euclidean time, the slices of two-spheres on each side
of the plane z = 0 become slices of S3’s. As a consequence of the SO(3) symmetry of the
Euclidean solution, after the Wick rotation all the three-spheres comprising the solution
continue to meet on the same two-sphere. In the end, the correct action consists of three
contributions from the slices of spheres AB, AC and BC, each of which is of the form (2.8),
except that the volumes of B4 and S3 are replaced by the volumes of their respective slices.
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Figure 4: The field profile over the junction. It is the image of a map from the cross section of
the junction (a triangle in space at any fixed time) to the region in field space lying between
the three vacua.

To write down this action, we need the volumes of slices of B4 and S3. Consider the
unit ball B4, surrounded by a unit S3, centered at the origin and intersected by a plane
z = s. This plane splits the sphere into two parts, the ‘left’ part whose points satisfy
−1 ≤ z ≤ s, and the ‘right’ part whose coordinates satisfy s ≤ z ≤ 1. The volume of B4

and the three-dimensional area of S3 of the left part are given by

a(s) ≡
∫ 2π

0

dφ

∫ π

0

dθ sin θ

∫ π

cos−1s

dψ sin2 ψ = π
(
π + 2 sin−1 s+ 2s

√
1− s2

)
, (2.9)

v(s) ≡
∫ s

−1
dz

4π

3

(
1− z2

)3/2
=
π2

4
+
π

6

(
s(5− 2s2)

√
1− s2 + 3 sin−1 s

)
, (2.10)

where we have chosen the branch sin−1 s ∈ [−π/2, π/2]. Note that due to the reflection sym-
metry (z → −z), the area and volume of the right part are given by a(−s) and v(−s). Using
these definitions, contributions of each sliced sphere contain factors of the form a(±zX/RX)
and v(±zX/RX). Further, from the geometry (see Fig. 3) we find

r2 + z2X = R2
X , with X = AB, AC, BC. (2.11)

Using these identities, we may write the contribution SX of sphere X to the total action S
in terms of r and the radii RX as

SX = −εXR4
X v

(
±

√
1− r2

R2
X

)
+ σXR

3
X a

(
±

√
1− r2

R2
X

)
, (2.12)

where the upper sign is chosen if the larger slice of the sphere is retained, and the lower
sign is chosen if the smaller slice is kept. The easiest way to see this is that a(s) and v(s)
are monotonically increasing functions, and the larger the retained part of the sphere, the
larger the contribution to the action must to be. The action for the full configuration is then
simply

S = SAB + SAC + SBC . (2.13)
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Note that the volume of the slice of sphere BC is counted twice, with prefactors εAB and
εBC . However, the vacuum inside this sphere is C, and hence the prefactor has to be εAC .
Using (2.3) we find εAB + εBC = εAC , so the prefactor works out just right. Equation (2.13)
generalizes action (2.8) for intersecting bubbles. The four parameters r, RAB, RAC , RBC are
found by extremizing (2.13).

Junctions: The Euclidean action receives an additional contribution from the junction
locus. This term is only present when there are two or more dimensions in field space. To
estimate the magnitude of this contribution, think of the three bubble walls meeting at the
junction as shells of thickness µ, which are (slices of) three-dimensional spheres. Fig. 4
shows that the junction can be roughly thought of as an intersection of such shells. Thus,
the junction is itself a shell of cross section µ2 and the topology of a two-sphere. The radius
of the S2 is r+µ, as can be seen from Figs. 3 and 4. Overall, the junction contributes to the
action a term of the form 4πµ2(r+ µ)2κ ≈ 4πκµ2r2, where κ is some quantity that depends
on the scalar potential in the interior of the triangle ABC in field space (compare with the
right panel in Fig. 4).

We work in the thin wall approximation, which requires µ� RX for X = AB,AC,BC.
We further asssume that κ is not large enough to compensate for the smallness of µ. Under
these approximations, we can consistently ignore the junction term for finding the locations
of the critical points. However, we will see that junctions can play an important role in
regulating the second variation of the action around the saddle point and thus are important
for correctly computing the tunneling rate.

2.3 Saddle points

We now extremize action (2.13). We limit our attention to variations parameterized by r,
RAB, RAC , RBC , because as mentioned on p. 4, all other variations increase the action. We
shall see in the next section that using r, RAB, RAC , RBC to parameterize variations is the
most judicious choice, because it diagonalizes the Hessian of (2.13) at all critical points.

It is easy to extremize with respect to RX . Because SAC and SBC are independent of
RAB, the extremization condition is simply

∂SAB

∂RAB

= 0 =⇒ R∗AB =
3σAB
εAB

, (2.14)

and likewise for RAC and RBC , independently of r. The extremal value R∗AB agrees with the
critical radius of the spherical bubble [1, 3]. In consequence, any extremum of (2.13) must
have bubble radii set by (2.14).

To extremize with respect to r, substitute (2.14) into eqs. (2.12-2.13). Defining k(s) as
the difference of eq. (2.9) and three times eq. (2.10),

k(s) =
π

4

(
π + 2s(2s2 − 1)

√
1− s2 + 2 sin−1 s

)
, (2.15)
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we obtain for SX

SX(r) =
εXR

∗
X

4

3
k

(
±

√
1− r2

R∗X
2

)
, (2.16)

with the upper (lower) sign corresponding to cases where more (less) than half of bubble X
is retained. These two cases are distinguished by the signs of the variables zX , which affords
a general expression for S(r):

S(r) =
εABR

∗
AB

4

3
k

(
−sign(zAB)

√
1− r2

R∗AB
2

)
+
εACR

∗
AC

4

3
k

(
+sign(zAC)

√
1− r2

R∗AC
2

)

+
εBCR

∗
BC

4

3
k

(
−sign(zBC)

√
1− r2

R∗BC
2

)
(2.17)

Using dk(s)/ds = 4πs2
√

1− s2 and eq. (2.11) we obtain:

3

4π

dS(r)

dr
=

r2
(
εAB sign(zAB)

√
R∗AB

2 − r2 − εAC sign(zAC)
√
R∗AC

2 − r2 + εBC sign(zBC)
√
R∗BC

2 − r2
)

= r2 (εABzAB − εACzAC + εBCzBC) (2.18)

There is one extremum at r = 0 and one possible additional extremum that sets the quantity
in parenthesis to zero. Different choices of signs of zX pick different branches of S(r) and
represent distinct configurations. We discuss them in detail below. For each choice of signs
of zX , the extremum at r = 0 corresponds to a familiar, spherical bubble or a combination
thereof. The other extremum, if it exists, combines regions filled with vacua B and C.

The quantity r at a non-trivial extremum is therefore found by solving

εAB sign(zAB)
√
R∗AB

2 − r2 − εAC sign(zAC)
√
R∗AC

2 − r2 + εBC sign(zBC)
√
R∗BC

2 − r2 = 0.

(2.19)
One may temporarily drop the information about the signs of zX by squaring twice. Using
eq. (2.14), this leads to:

2r2
(
σ2
AB(ε2AC + ε2BC − ε2AB) + σ2

AC(ε2BC + ε2AB − ε2AC) + σ2
BC(ε2AB + ε2AC − ε2BC)

)
=

9(σAB + σAC + σBC)(σAB + σAC − σBC)(σAB + σBC − σAC)(σAC + σBC − σAB) = 144A2
4

(2.20)

By Heron’s formula, A4 is the area of the triangle whose sides are σAB, σAC , σAF , which
exists by virtue of (2.7). This yields at most one positive solution, call it r∗.

The following argument shows that once r∗ is found, it picks a unique choice of signs
for zX . A priori, there are 23 = 8 such choices, but two are outright excluded, because
zAC < 0 < zAB would prevent the BC-interface from “fitting inside” bubble B. Two others
are excluded by conservation of energy. The choice zAC < 0 < zAB, zBC corresponds to taking
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“less than half” of the spheres AB, AC and BC, but such a configuration could not have a
large enough interior to counter the energy present in the walls. Likewise, zAB, zBC < 0 < zAC
corresponds to taking “more than half” of the three spheres, in which case the wall tension
cannot balance the negative energy in the interior. Thus, one is left with four possible cases:

zAB, zAC , zBC < 0 0 < zAB, zAC , zBC
zAB, zAC < 0 < zBC zAB < 0 < zAC , zBC

(2.21)

Because r∗ is selected by solving

εABzAB − εACzAC + εBCzBC = 0, (2.22)

we see that the only pair of cases (2.21) which could potentially simultaneously solve (2.22)
is the pair in the upper line. However, zAB, zAC , zBC < 0 requires RAB > RBC while
zAB, zAC , zBC > 0 demands RAB < RBC , or else the BC wall will not fit inside the B-bubble.
Thus, the landscape parameters {εAB, εAC , εBC , σAB, σAC , σBC} uniquely set the locations of
the three centers zX .

In summary, action (2.13) contains two types of saddle points. Both have R∗X = 3σX/εX ,
but they differ in their values of r. The saddle points at r = 0 are (combinations of)
spherical bubbles. For any given set of landscape parameters there may also exist at most one
additional saddle point. It is characterized by r = r∗, the solution to (2.20), supplemented
by a choice of signs of zX , which is uniquely selected by eq. (2.22).

2.4 Eigenvalues

We now compute the Hessian matrix of (2.13) in order to extract the eigenvalues of the
second variation of the action at the critical points. We begin with the off-diagonal terms.
Because action (2.13) is a sum of terms that depend on RAB, RAC and RBC separately,

SXY = 0, with X 6= Y, X, Y ∈ {AB,AC,BC}. (2.23)

The remaining off-diagonal terms take the form

SrX = ∓ 4πεXr
4

3(R2
X − r2)3/2

(
RX −

3σX
εX

)
(2.24)

(the signs correspond to eq. 2.16) and vanish at all extrema by virtue of eq. (2.14). This means
that when we are at a critical point, the Hessian is a diagonal matrix and its eigenvalues
are Srr and SXX . This reduces the counting of negative eigenvalues to four separate one-
dimensional problems.

There is a simple criterion for the signs of SXX . At the extremal value R∗X we find

SXX ≡
∂2SX

∂R2
X

∣∣∣
R∗

X

{
< 0 if more than half of bubble X is retained
> 0 if less than half of bubble X is retained.

(2.25)

Thus, each “greater-than-half” bubble slice entering a critical configuration comes with one
negative eigenvalue, corresponding to the variation of its radius.
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To determine the sign of Srr, recall that in addition to the critical point at r = 0, there
is at most one other critical point. Thus, if one of them is a minimum of S(r), the other
must be a maximum and vice versa. Consequently, it is sufficient to expand eq. (2.17) as a
power series around r = 0. The linear and quadratic terms vanish while the cubic coefficient
is a positive multiple of (2.22). Since in the limit r → 0 we have zX → 3 sign(zX)σX/εX , we
obtain:

S(r)− S(0) =
4π

3

(
sign(zAB)σAB − sign(zAC)σAC + sign(zBC)σBC

)
r3 +O(r4) (2.26)

Thus, the eigenvalue Srr vanishes at the r = 0 critical points, although restoring the juction
term 4πκµ2r2 lifts this zero mode. If we continue to neglect junctions, the cubic term
determines whether S(r) is an increasing or decreasing function of r between 0 and r∗.
Consequently, its sign allows us to identify r∗ as a minimum or maximum of S(r), which
fixes the sign of the eigenvalue Srr(r∗):

sign(zAB)σAB − sign(zAC)σAC + sign(zBC)σBC > 0 ⇐⇒ Srr(r∗) < 0 (2.27)

This rule, supplemented by the triangle inequality (2.7), determines the sign of Srr(r∗) in all
cases (2.21). The critical points of action (2.13) are summarized in Table 1.

3 Discussion

For a tunneling event we want precisely one negative eigenvalue [5, 7]. The present work
shows that in the thin wall approximation a multi-dimensional field landscape does not pro-
duce additional saddle points with one negative eigenvalue. Although our analysis neglected
the junction term 4πκµ2r2, its inclusion does not affect this finding.

To confirm this, consider the junction-deformed action

S = SAB + SAC + SBC + 4πκµ2r2 . (3.1)

It contains at most four critical points. The first one, at r = 0, is always present and has
Srr = 8πκµ2 > 0. The second one arises when the leading cubic term in the expansion
(2.26) of (2.13) is negative: pitted against the positive quadratic term in (3.1), it leads to
an additional critical point with Srr < 0 and r roughly of order κµ2/σ. In addition to these,
there may be one or at most two other critical points, which reduce to r = r∗ as κ → 0.
Generically, a non-zero κ affects the r = r∗ saddle point merely by a shift of r∗, without
inducing any qualitative changes. Under some circumstances, however, the junction term
can split the non-spherical saddle point into a pair (one with positive and one with negative
Srr) and / or change the signs of zAB, zAC , zBC , which affects the SXX eigenvalues. We have
verified that all critical points with r 6= 0 have two or more negative eigenvalues.

The fact that in the thin wall approximation Srr at the dominant critical point is small
(of order κµ2) highlights an interesting possibility. As one varies the landscape parameters
{εAB, εAC , εBC , σAB, σAC , σBC}, one may bring the location of the non-trivial saddle point r∗
arbitrarily close to 0. From eq. (2.20) it is clear that this happens when the triangle with
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(1) (2) (3) (4) (5)
(zX) r = 0 r = r∗ eigenvalues at r∗ limit r∗ → 0

(+,−,+) empty A-vacuum ×

does not exist

excluded by energy
conservation

(+,+,+) (−,+,−,+)

σAC → σAB + σBC

σAB εBC < σBC εAB

(−,−,−) (+,−,+,−)

σAC → σAB + σBC

σAB εBC > σBC εAB

(−,−,+) (−,−,+,+) σAB → σAC + σBC

(−,+,+) (+,−,−,+) σBC → σAB + σAC

(−,+,−) ×

does not exist

excluded by energy
conservation

Table 1: A catalogue of critical points of action (2.13). The columns contain: (1) the
signs of (zAB, zAC , zBC); (2) cartoons of the r = 0 saddle points; (3) cartoons of the r = r∗
saddle points; (4) the signs of the eigenvalues (Srr, SXX) at r = r∗ for X = AB,AC,BC;
and (5) the regime in parameter space that enacts the limit r∗ → 0. This limit takes
configurations from column (3) to those of column (2). The signs of the eigenvalues
at the r = 0 saddle points are the same as those listed in column (4) except Srr = 0,
up to a positive junction correction. In all pictures, regions filled with the true vacuum
C are drawn in white while regions filled with the intermediate vacuum B are filled with black.
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sides σAB, σAC , σBC becomes degenerate. Physically, we recognize that in the strict triangle
degeneration limits one may replace the heavier wall with the pair of lighter walls at no
energetic cost. When this happens, the spherical bubbles (rows (+,+,+) and (−,−,+) in
Table 1) are destabilized: the maximum at r = r∗ merges with the extremum at r = 0, which
subsequently becomes a maximum of S(r) so that the spherical instanton ceases to mediate
vacuum decay. An example of this phenomenon was described in [8].
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