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We provide a thorough exposition, including technical and numerical details, of previously

published results on the quantum stabilization of cosmic strings. Stabilization occurs through

the coupling to a heavy fermion doublet in a reduced version of the standard model. We

combine the vacuum polarization energy of fermion zero–point fluctuations and the binding

energy of occupied energy levels, which are of the same order in a semi–classical expansion.

Populating these bound states assigns a charge to the string. We show that strings carrying

fermion charge become stable if the electro–weak bosons are coupled to a fermion that is less

than twice as heavy as the top quark. The vacuum remains stable in our model, because

neutral strings are not energetically favored. These findings suggests that extraordinarily

large fermion masses or unrealistic couplings are not required to bind a cosmic string in the

standard model.

I. INTRODUCTION

It is well–known that the electroweak standard model and many of its extensions have the

potential to support string–like configurations that are the particle physics analogs of vortices or

magnetic flux tubes in condensed matter physics. Such objects are usually called cosmic strings

to distinguish them from the fundamental variables in string theory, and also to indicate that they

typically stretch over cosmic length scales.

The topology of string–like configurations is described by the first homotopy group Π1(M ),

where M is the manifold of vacuum field configurations far away from the string. In typical

electroweak–like models, a Higgs condensate breaks an initial gauge group G down to some sub-

group H, so that M ≃ G/H. Topologically stable strings are therefore ruled out in the electroweak

standard model SU(2)× U(1) → U(1) because G/H is simply connected. Nevertheless, one could

envision a GUT and/or supersymmetric extension in which a simply connected group G breaks

down to the electroweak SU(2) × U(1) at a much higher scale, so that Π1(G/(SU(2) × U(1)))

is nontrivial. Since such GUT strings would have enormous energy densities, they could be seen

by direct observation using gravitational lensing [1, 2] or by signatures in the cosmic microwave

background [3]. Moreover, a network of such strings is a candidate for the dark energy required to
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explain the recently observed cosmic acceleration [4, 5].

The absence of topological stability does not imply that electroweak strings (or Z–strings [6–8])

are unstable or irrelevant for particle physics. While their direct gravitational effects are negligible,

Z–strings can still be relevant for cosmology at a sub–dominant level [9, 10]. Their most interesting

consequences originate, however, from their coupling to the standard model fields. Z–strings

provide a source for primordial magnetic fields [8] and they also offer a scenario for baryogenesis

with a second order phase transition [11, 12]. In contrast, a strong first order transition as required

by the usual bubble nucleation scenario is unlikely in the electroweak standard model [13], without

non-standard additions such as supersymmetry or higher–dimensional operators [14]. Because the

core of the Z–string is characterized by a suppressed Higgs condensate, it allows for both the

copious baryon number violation and the out–of equilibrium regions required by the Sakharov

conditions, without relying on a first order phase transition.

However, these interesting effects are only viable if Z–strings are energetically stabilized by their

coupling to the remaining quantum fields. The most important contributions are expected to come

from (heavy) fermions, since their quantum energy dominates in the limit NC → ∞, where NC is

the number of QCD colors or other internal degrees of freedom. The Dirac spectrum in typical

string backgrounds is deformed to contain either an exact or near zero mode, so that fermions

can substantially lower their energy by binding to the string. This binding effect can overcome

the classical energy required to form the string background. However, the remaining spectrum of

modes is also deformed and for consistency its contribution (the vacuum polarization energy) must

be taken into account as well. Heavier fermions are expected to provide more binding since the

energy gain per fermion charge is higher; a similar conclusion can also be obtained from decoupling

arguments [15, 16]. Dynamical stability of Z–strings in the full standard model also would suggest

that they are presently observable.

A number of previous studies have investigated quantum properties of string configurations.

Naculich [17] has shown that in the limit of weak coupling, fermion fluctuations destabilize the

string. The quantum properties of Z–strings have also been connected to non–perturbative anoma-

lies [18]. The emergence or absence of exact neutrino zero modes in a Z–string background and

the possible consequences for the string topology were investigated in [19]. A first attempt at a

full calculation of the fermionic quantum corrections to the Z–string energy was carried out in

ref. [20]. Those authors were only able to compare the energies of two string configurations, rather

than comparing a single string configuration to the vacuum because of limitations arising from the

non–trivial behavior at spatial infinity which we discuss below. The fermionic vacuum polarization
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energy of the Abelian Nielsen–Olesen vortex [21] has been estimated in ref. [22] with regularization

limited to the subtraction of the divergences in the heat–kernel expansion. Quantum energies of

bosonic fluctuations in string backgrounds were calculated in ref. [23]. Finally, the dynamical fields

coupled to the string can also result in (Abelian or non–Abelian) currents running along the string’s

core. The time evolution of such structured strings was studied in ref. [24], where the current was

induced by the coupling to an extra scalar field.

We have previously pursued the idea of stabilizing cosmic strings by populating fermionic bound

states in a 2 + 1 dimensional model [25]. Many such bound states emerge including, in some

configurations, an exact zero–mode [17]. Nonetheless, stable configurations were only obtained

for extreme values of the model parameters. In 3 + 1 dimensions, stability is potentially easier to

achieve because quantization of the momentum parallel to the symmetry axis supplies an additional

multiplicity of bound states.

In this paper, we will employ the phase–shift approach, or spectral method, to compute the

complete O(~) fermionic contribution to the string energy from first principles. This is not a simple

task, since the string has a vortex structure that introduces non–trivial field winding at spatial

infinity. The standard spectral methods are thus not directly applicable since scattering theory off

the string is ill–defined. More precisely, the Born expansion to the vacuum polarization energy,

which in the phase shift approach is identified with the Feynman series, does not exist for the string

background in its standard formulation. Recently we have shown how to overcome these problems

by choosing a particular set of gauges [26, 27]. Numerical results of the full calculation of the

string’s quantum energy were first reported in ref. [28]. Here we will present the technical details

of our calculation along with improved numerical data and a discussion of possible consequences

of our finding.

This paper is organized as follows: In the next section we describe our model and the string

configuration. We then discuss the fermion Hamiltonian of our model and, in particular, how a

local gauge transformation can be used to solve the technical problem of long–ranged gauge po-

tentials in the string background. We also present the grand spin decomposition of the scattering

problem. Section IV gives a detailed account of our method for computing the fermion quantum

energy, which is based on the spectral approach [29] and the interface formalism [30]. The indi-

vidual contributions to the string’s quantum energy are described in separate subsections, while

some (lengthy) numerical details are deferred to appendices A, B, and C. The omission of boson

fluctuations causes the model not to be asymptotically free which then introduces an unphysical

Landau pole. In appendix D we verify that our results for the vacuum polarization energy are
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not affected by this artifact. In section V, we explain our variational search for a stable string

configuration. To occupy fermion levels in the string background, we introduce a quantity similar

to the chemical potential in statistical mechanics, which allows us to compute the total binding

energy of the string as a function of the prescribed fermion charge of the string.

Our numerical results are presented in detail within section VI. We show the parameter de-

pendence of the individual contributions to the string’s quantum energy. The stable configuration

is discussed in more detail and it is shown that for the most stable configuration the gauge field

contribution is negligible compared to the deformation of the Higgs field. Stabilization occurs for

otherwise realistic parameters if the Yukawa coupling is increased by about 70% from the value

for the top quark. Since we keep all other parameters as suggested by the standard model, this

corresponds to a fermion mass of about 300GeV. We close in section VII with a brief summary of

our results, a discussion of its implication for the electroweak standard model and an outlook on

possible directions for future work.

We have published some of the results earlier [28] and therefore focus on the technical aspects

of the calculation here.

II. THE MODEL

We consider a left–handed SU(2) gauge theory in which a fermion doublet Ψ =


Ψt

Ψb


 is

coupled to a triplet gauge field Wµ = 1
2




W 0
µ

√
2W+

µ

√
2W−

µ −W 0
µ


 and a Higgs doublet φ =


φ+

φ0


.

Both components, Ψt and Ψb, are Dirac four–spinors. This model is intended to represent the

electroweak interactions, where we introduce some technical modifications to simplify the analysis:

1. we set the Weinberg angle to zero so that electromagnetism decouples and the gauge bosons

become degenerate in mass;

2. we neglect QCD interactions, although the color degeneracy, NC = 3, is included in the

quantum energy arising from the fermions;

3. we only consider a single fermion doublet and neglect inter–species (CKM) mixing and mass

splitting within the doublet.



5

With these adjustments, the bosonic part of our model is described by the Lagrangian

Lφ,W = −1

2
tr (GµνGµν) +

1

2
tr (DµΦ)†DµΦ− λ

2
tr
(
Φ†Φ− v2

)2
, (1)

where the Higgs doublet is written using the usual matrix representation

Φ =


 φ∗

0 φ+

−φ∗
+ φ0


 .

The gauge coupling constant g enters through the covariant derivative Dµ = ∂µ − i gWµ, and the

SU(2) field strength tensor is

Gµν = ∂µWν − ∂νWµ − i g [Wµ , Wν ] . (2)

We treat the bosonic fields as a classical background, ignoring the effects of bosonic fluctuations.

This approach can be justified formally by the limit of a large number of colors NC → ∞, even

though no QCD interactions are included: Since the quarks carry a color quantum number in the

fundamental representation of the color group SU(NC), their contribution to the quantum energy

is enhanced by a factor NC as compared to the bosonic quantum contribution. Hence we compute

the leading quantum corrections to the classical background energy from the fermion Lagrangian

LΨ = iΨ(PLD/+ PR∂/)Ψ− f Ψ
(
ΦPR +Φ†PL

)
Ψ . (3)

Here, PR,L = 1
2 (1± γ5) are projection operators on left/right–handed components, respectively,

and the strength of the Higgs-fermion interaction is parameterized by the Yukawa coupling f ,

which gives rise to the fermion mass, m = fv, once the Higgs acquires a vacuum expectation

value (vev) v, where 〈det(Φ)〉 = v2 6= 0. All other masses in this model are also a result of the

symmetry breaking Higgs condensate, viz. the gauge boson mass MW = gv/
√
2 and the Higgs

mass mH = 2v
√
λ. This similarity with the standard model of particle physics suggests the model

parameters

g = 0.72 , v = 177GeV , mH = 140GeV , f = 0.99 , (4)

by taking the fermion doublet to have the mass of the top quark. Finally, the counterterm La-

grangian necessary to renormalize the quantum energy will be listed with the computational details

in eq. (43) below.

As mentioned earlier, we are particularly interested in the Z–string background configuration.

If we consider a single straight (infinitely extended) string along the z–axis, the corresponding
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boson fields depend only on the planar polar coordinates, i.e. the distance ρ from the symmetry

axis and the corresponding azimuthal angle ϕ. In Weyl gauge W0 = 0, we have

W = n sin(ξ1)
fG(ρ)

ρ
ϕ̂




sin(ξ1) i cos(ξ1) e
−inϕ

−i cos(ξ1) e
inϕ −sin(ξ1)


 (5)

Φ = vfH(ρ)



sin(ξ1) e

−inϕ −i cos(ξ1)

−i cos(ξ1) sin(ξ1) e
inϕ


 . (6)

The Z–boson component Zµ ≡ W 3
µ of this configuration has the familiar shape of an Abelian

Nielsen–Olesen string of winding number n, although the entire non–Abelian configuration is

smoothly deformable into the vacuum and thus not stable for any topological reason. We have left

the analog of winding number n general, although we will only consider n = 1 in our numerical

treatment below. The additional variational parameter ξ1 ∈ [0, π/2] was introduced to include a

non–trivial gauge field in the string background; the same parameter also determines the orienta-

tion of the Higgs field on the chiral circle. Then the classical energy per unit length of the string

is a functional of the profile functions fG(ρ) and fH(ρ),

Ecl

m2
= 2π

∫ ∞

0
ρ dρ

{
n2 sin2 ξ1

[
2

g2

(
f ′
G

ρ

)2

+
f2
H

f2ρ2
(1− fG)

2

]
+

f ′2
H

f2
+

µ2
h

4f2

(
1− f2

H

)2
}

, (7)

where the radial integration variable is related to the physical radius by ρphys = ρ/m and µH ≡
mH/m. The radial functions fG(ρ) and fH(ρ) in the string configuration, eqs. (5) and (6) approach

unity at large distances and vanish at the string core ρ = 0. Typically, they will have similar

shapes to the familiar Nielsen–Olesen string, with both W and Φ going as O(ρ) at ρ → 0 to avoid

ambiguities from an undefined azimuthal angle ϕ. We choose a convenient form,

fH(ρ) = 1− exp

[
− ρ

wH

]
and fG(ρ) = 1− exp

[
−
(

ρ

wG

)2
]

(8)

with two width parameters, wH and wG, which we also measure in inverse multiples of the fermion

mass m. Together with the angle ξ1 describing the gauge field admixture in the string, we thus have

three variational ansatz parameters, (wH , wG, ξ1), in addition to the model parameters v (which

sets the overall scale) and the three couplings f, g and λ, that are discussed above.

To assess the quality of the variational ansatz, eq. (8) we see how well it is capable of fitting

the Nielsen–Olesen profiles which minimize the classical energy, eq. (7) for ξ1 = π/2. As seen from

figure 1 there is a minor discrepancy at large distances for the gauge field profile fG due to the

Gaußian decaying faster than any exponential function. This discrepancy affects the result for the
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FIG. 1: (Color online) Comparison between the Nielsen–Olesen profiles (full lines) and a fit using the

variational ansatz of eq. (8) (dashed lines). The variational parameters are wH = 1.64f and wG = 3.85f .

classical energy in a negligible manner. For fixed ξ1 = π/2 the true minimum is at 7.56v2 while the

variational profiles yield 7.72v2.

III. DIRAC HAMILTONIAN

The fermionic quantum corrections to the string background are computed in several steps.

First, we extract the Dirac Hamiltonian associated with the Lagrangian eq. (3) and observe that

the ansätze, eqs. (5) and (6), do not depend on the z–coordinate (along the string symmetry axis).

Hence this coordinate does not appear explicitly in the Hamiltonian and the z–dependence of the

corresponding wave functions is simply e−ipzz. To compute the vacuum energy with such a trivial

coordinate, we use the interface formalism [30], which gives the quantum energy per unit length in

terms of the two–dimensional spectrum in the plane perpendicular to the string. This formulation

accounts for the integration over the longitudinal momentum pz using sum rules for the scattering

data [31, 32] to cope with the associated ultra–violet divergences. It then remains to solve the

scattering problem for the Hamiltonian in the plane perpendicular to the string.

Although we are thus left with a seemingly well–defined two–dimensional Dirac problem, the

spectral method cannot be readily applied to compute the vacuum energy, because the long range

of the string gauge field prevents us from setting up a well–defined scattering problem. There are

two ways to circumvent this problem: As motivated by the study of quantum effects for QED flux

tubes [33], a return string was introduced in ref. [27] to unwind the gauge field at a large distance

from the string core. The assumption was that the energy of the return string is small when the

unwinding is done smoothly enough and, in particular, that the associated energy density can be

well separated from the proper string core contribution. Although these assumptions could be
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verified, the necessity to repeat the (expensive) calculation of the vacuum energy with varying

return string positions to identify the core contribution made the return string method inefficient

for actual calculations.

An easier method was devised in ref. [26]. It is based on the simple observation that the Dirac

spectrum is gauge invariant, i.e. a local isospin rotation can be used to unwind the string gauge

field at spatial infinity at the price of strong singularities in the origin (singular gauge), or to make

the gauge field regular at the origin at the price of long–ranged fields at spatial infinity (regular

gauge). The solution is to combine the good features of both gauges by means of a local gauge

rotation that looks singular for large distances and regular for small distances. Thus, we make a

local gauge rotation on the Dirac Hamiltonian H → U †H U with

U = PLexp
(
i ξ(ρ)n · τ

)
+ PR with n =




cos(nϕ)

−sin(nϕ)

0


 . (9)

Here ξ(ρ) is an arbitrary radial function that defines a set of gauge transformations. Note that

ξ = 0 gives back the original regular Hamiltonian, while ξ = ξ1 together with fH ≡ fG ≡ 1 at

large distances yields the return string configuration considered in ref. [27]. Thus the interpolation

between regular and singular behavior is accomplished by the boundary conditions ξ(0) = 0 and

ξ(∞) = ξ1. The transformed Dirac Hamiltonian becomes

H = −i


 0 σ · ρ̂
σ · ρ̂ 0


 ∂ρ −

i

ρ


 0 σ · ϕ̂
σ · ϕ̂ 0


 ∂ϕ +Hint ,

Hint = mfH


cos(∆)


1 0

0 −1


+ i sin(∆)


 0 1

−1 0


n · τ


+

1

2

∂ξ

∂ρ


−σ · ρ̂ σ · ρ̂

σ · ρ̂ −σ · ρ̂


n · τ

+
n

2ρ


−σ · ϕ̂ σ · ϕ̂

σ · ϕ̂ −σ · ϕ̂




[
fG sin(∆)IG(∆) + (fG − 1) sin(ξ)IG(−ξ)

]
. (10)

The new gauge function ξ(ρ) is hidden in the difference ∆(ρ) ≡ ξ1 − ξ(ρ) which appears both

explicitly and as the argument of the space–dependent weak isospin matrix

IG(x) =




−sin(x) −i cos(x) einϕ

i cos(x) e−inϕ sin(x)


 . (11)

All explicit matrices in eq. (10) act in spinor space. Together with the boundary conditions for the

string profiles fG and fH , eq. (10) defines a well–behaved scattering problem for which a scattering
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matrix and, more generally, a Jost function can be straightforwardly computed. Moreover, the

Born series to these scattering data can be constructed simply by iterating Hint.

We will renormalize the calculation by subtracting orders of the Born series and adding these

contributions back as the corresponding Feynman diagrams. It should be mentioned that although

the Jost function is gauge invariant, neither the Born series nor the individual Feynman diagrams

associated with eq. (10) is gauge invariant, and so the Born subtracted phase shifts or Jost func-

tions will also depend on the gauge. That is, these quantities are functionals of ξ(ρ). However,

the gauge–dependent terms subtracted from the phase shifts correspond exactly to the gauge–

dependent finite parts in the Feynman diagrams, while the counterterms, which parameterize the

ultraviolet singularities, are gauge–independent. The net effect is that individual pieces of the

spectral approach to the vacuum energy will be gauge–dependent, but the combined expression is

not.

The formulation in eq. (10) describes the physical string without the need to introduce artificial

return strings to unwind the topology. In particular, the (tedious) separation of the return string

contribution from the bound state spectrum of the physical string is no longer required. Moreover,

the gauge function ξ(ρ) can be taken to have support at a moderate distance, so that there is no

need for non–trivial fields at very large radii and, as a consequence, the need for extremely large

angular momenta is avoided.

To solve the scattering problem for the Hamiltonian, eq. (10), in two space dimensions, we first

introduce grand–spin states to take care of the angular dependence. For a fixed angular momentum

ℓ, there are four grand–spin states, characterized by the quantum numbers ±1/2 for spin S and

isospin I,

〈ϕ;SI|ℓ++〉 = ei(ℓ+n)ϕ


1

0




S

⊗


1

0




I

〈ϕ;SI|ℓ +−〉 = −i eiℓϕ


1

0




S

⊗


0

1




I

〈ϕ;SI|ℓ−+〉 = i ei(ℓ+n+1)ϕ


0

1




S

⊗


1

0




I

〈ϕ;SI|ℓ −−〉 = ei(ℓ+1)ϕ


0

1




S

⊗


0

1




I

.

(12)

The angular dependence is thus separated from the radial dependence by the ansatz

Ψℓ(ρ, ϕ) =
∑

s,j=±1/2

(
〈ρ | 〈ϕ ; S I |

)
|ǫ ℓ s j 〉 . (13)

For each value of the angular momentum ℓ, this decomposition turns the Dirac equation

HΨ = ǫΨ , (14)
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with the Hamiltonian given in eq. (10), into a 8 × 8 system of ordinary first order differential

equation for the radial functions in the spinor states

〈ρ|ǫ ℓ++〉 =


f1(ρ)|ℓ++〉
g1(ρ)|ℓ−+〉


 〈ρ|ǫ ℓ+−〉 =


f2(ρ)|ℓ+−〉
g2(ρ)|ℓ−−〉




〈ρ|ǫ ℓ−+〉 =


f3(ρ)|ℓ−+〉
g3(ρ)|ℓ++〉


 〈ρ|ǫ ℓ−−〉 =


f4(ρ)|ℓ−−〉
g4(ρ)|ℓ+−〉


 ,

(15)

where we have suppressed the energy label (ǫ) on the radial functions. It is convenient to combine

these eight functions in a vector notation

~f =




f1(ρ)

f2(ρ)

f3(ρ)

f4(ρ)




and ~g =




g1(ρ)

g2(ρ)

g3(ρ)

g4(ρ)




. (16)

In terms of these vectors, the static Dirac equation in each angular momentum channel takes the

form of two coupled real 4× 4 systems,

(ǫ−m) ~f = Vuu
~f + (−CDu + Vud) ~g

(ǫ+m)~g = (CDd + Vdu) ~f + Vdd ~g . (17)

The 4 × 4 matrix C = diag(−1,−1,+1,+1) is constant while Du and Dd contain the radial

derivative operator as well as the angular barrier terms. The coupling to the background profiles

of the boson fields emerges via the matrices Vij . Detailed expressions for Du, Dd and Vij are

listed in appendix B. The ODE system eq. (17) is the basis of the spectral approach to the string

problem.

For the gauge profile ξ(ρ), any smooth function with ξ(0) = 0 and ξ(∞) = ξ1 will do. For

simplicity and to avoid possible singularities at ρ → 0, we choose again a Gaußian profile

ξ(ρ) = ξ1

[
1− exp

(
−ρ2/w2

ξ

) ]
(18)

with a new width parameter wξ. As explained earlier, the scattering matrix without Born sub-

tractions and the complete quantum energy should be independent of the choice of gauge and

thus independent of the width parameter wξ. This has been verified numerically to a fairly high

precision [26].
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IV. SPECTRAL METHOD

In this section, we present the details of our approach to compute the fermion contribution to the

vacuum energy of the string. To make the exposition clearer, we have moved overly complicated

expressions and all technical derivations to the appendices. However, the complete method is still

quite involved due to the many contributions that enter. We will continue the discussion of the

variational approach for charged strings in section V and present numerical results in section VI.

The calculation of the fermion quantum energy is based on the Dirac equation (14). From the

solutions to this equation we infer a number of distinct contributions to the energy of the string,

Ef = Eδ + EFD + Eb (19)

In physical terms, these three contributions are

Eδ: the non–perturbative vacuum polarization due to the string background, with the divergent

low–order Feynman diagrams taken out by subtracting leading terms in the Born expansion.

This piece also includes the bound state contribution to the fermion determinant;

EFD: the perturbative contribution of the low–order Feynman diagrams to the vacuum polarization

energy, combined with the counterterms for proper renormalization. This compensates for

the part that has been taken out of Eδ by means of the corresponding Born expansion;

Eb: the binding energy due to the single particle bound states that are explicitly occupied to give

the string a fermion charge Q. More precisely, Eb =
[ ∑
occ bs

ǫi

]
− Qm measures the energy

of the populated levels relative to the same number of free fermions. We will describe this

contribution in the next section.

Each of these pieces is separately finite; the first two terms are not gauge invariant, but their sum

is, and so is Eb.

In this section we focus on the renormalized vacuum polarization energy

Eq = Eδ + EFD . (20)

Potential ambiguities in Eq that could originate from the ultra–violet divergences are fully removed

by the identification of terms in the Born series with Feynman diagrams. The most important

feature of Eq is the possibility to impose renormalization conditions from the perturbative sector

(MS or on–shell), although the calculation is completely non–perturbative, including all orders
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in Hint. We then combine Eq with the classical energy Ecl required to form the bosonic string

background. Quite generally, we expect Ecl + Eq > 0 once quantum fluctuations are included,

since otherwise we would have an instability of the true vacuum to cosmic string condensation,

which should obviously not happen.

In the following subsections, we will give brief accounts for each contribution to eq. (20). More

details can be found in the appendices.

A. Jost function and Born subtractions

The Born–subtracted vacuum polarization energy Eq has contributions from bound and scat-

tering states. These two contributions are combined in the Jost function for imaginary mo-

menta [29, 34]. To compute Eq it is therefore sufficient to solve the scattering problem as in

ref. [27]: For every energy |ǫ| > m, the fermion system eq. (17) has eight real linear independent

solutions (~f,~g). In the case without a string background, these solutions are Bessel functions

of integer order with the argument z = kρ, where k =
√
ǫ2 −m2 ≥ 0. Instead of taking the

(real) regular and singular Bessel functions Jν(z) and Yν(z), respectively, we can formally let (~f ,~g)

have complex coefficients and take Hankel function solutions instead. In this case, both the real

and imaginary parts of (~f,~g) are (linearly independent) solutions, or equivalently (~f ,~g) and their

complex conjugates are independent solutions.

To describe the coupled channel scattering problem, it is convenient to put the four free linearly

independent complex solutions for ~f and ~g onto the diagonal of two 4× 4 matrices

Hu = diag
(
H

(1)
ℓ+n(kρ),H

(1)
ℓ (kρ),H

(1)
ℓ+n+1(kρ),H

(1)
ℓ+1(kρ)

)
(21)

Hd = diag
(
H

(1)
ℓ+n+1(kρ),H

(1)
ℓ+1(kρ),H

(1)
ℓ+n(kρ),H

(1)
ℓ (kρ)

)
, (22)

which describe out–going asymptotic fields since

H(1)
ν (z) = Jν(z) + iYν(z) −→

√
2

πz
ei(z−

ν
2
π− 1

2
π) , (23)

as z → ∞. With this notation, the jth linear independent solution is

(~f)j = [Hu]j , (~g)j = κ · [Hd]j

where [H]j denotes the jth row of the matrix H. For convenience we omit the orbital angular

momentum index ℓ. By construction, the complex conjugate matrices, H∗
u,d describe incoming
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spherical waves. Furthermore, we have defined the relative weight of upper and lower Dirac com-

ponents as

κ ≡ k

ǫ+m
=

ǫ−m

k
. (24)

For later analytic continuation we must ensure that the phase of the Jost function is odd for real

momenta under k → −k, which requires the branch cut structure of the square root be defined

using either of the two expressions listed above.

To describe the coupling of the four channels in the actual scattering problem, it is convenient

to put the linearly independent solutions for ~f and ~g again in the rows of a 4×4 matrix, and factor

out the free part to get simple Jost boundary conditions,

(~f)j −→ [F · Hu]j and [F∗ · H∗
u]j

(~g)j −→ κ [G · Hd]j and κ [G∗ · H∗
d]j .

(25)

We substitute these ansätze into the Dirac equation, eq. (17), and find first order differential

equations for the matrices F and G. This is explicitly carried out in appendix B 1. The solutions

to eq. (B6) with the Jost boundary conditions

lim
ρ→∞

F(ρ) = lim
ρ→∞

G(ρ) = 1 (26)

define Jost solutions to the initial Dirac problem via the representation in eq. (25). The physical

scattering solution is the linear combination which at large distances is the superposition of incom-

ing and outgoing free spherical waves and obeys the regularity condition at the origin. The relative

weight of the incoming and outgoing waves defines the scattering matrix S. Hence the physical

scattering solution for the F–type (upper) components reads

Ψ = F∗ · H∗
u + (F · Hu) · S. (27)

The corresponding G–type (lower) components are obtained by replacing F → G and Hu → κHd.

The physical scattering solution must be regular at the origin ρ = 0. From this condition we

extract the scattering matrix in one of two equivalent ways

S = − lim
ρ→0

H−1
u · F−1 · F∗ · H∗

u (28)

S = − lim
ρ→0

H−1
d · G−1 · G∗ · H∗

d . (29)

The phase convention in eq. (27) is chosen to reproduce S = 1 for the non–interacting case which

has F (0) = G(0) = 1. The equality of the two representations from the system of coupled differential

equations is a good check on our numerics, as is the requirement that S be unitary.
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It should finally be noted that all the interaction matrices eq. (B9) are linear in the background

profiles eq. (B4), so that the ODE system for the Born approximation can simply be obtained by

iteration with the ansatz

FBorn(ρ) =
∞∑

i=0

F (i)(ρ) and GBorn(ρ) =
∞∑

i=0

G(i)(ρ) , (30)

where the superscript denotes the order of the interaction Hamiltonian Hint in eq. (10). The zeroth

order solutions are F (0)(ρ) = G(0)(ρ) = 1 and all subsequent contributions are subject to the

boundary conditions

lim
ρ→∞

F (i)(ρ) = lim
ρ→∞

G(i)(ρ) = 0 , i = 1, 2, 3 . . .

The explicit form of the iterated system of differential equations for the Born approximations of

order i = 1 and i = 2 can be found in appendix B. Though the i = 3 and i = 4 orders also yield

divergences, we do not discuss them explicitly because we employ a numerically less costly method

to handle these logarithmic divergences, as described below.

B. Interface formalism

The 4 × 4 scattering matrix S derived in the last subsection yields the four eigenphase shifts and

thus the shift in the two–dimensional density of states [35]

ρℓ(k)− ρ
(0)
ℓ (k) =

1

π

4∑

c=1

dδℓ,c
dk

=
i

2π

d

dk
ln detSℓ(k) , (31)

where the sum runs over the four scattering channels for a given grand spin channel, which we

label by the associated orbital angular momentum ℓ. To turn this two–dimensional density into a

three–dimensional energy (or energy per unit length of the string), we have to deal with the trivial

dynamics along the string symmetry axis of the string. This is a typical application of the interface

formalism developed in ref. [30]. The modifications of the usual spectral method are simple:

1. The integration over the momentum conjugate to the coordinate of translational invariance

remains finite due to sum rules for scattering data [31, 32] that are generalizations of Levin-

son’s theorem.

2. When integrating over momentum k, the density, eq. (31), must be multiplied by a kinematic

factor that differs from the usual one–particle energy ǫ =
√
m2 + k2.
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3. More Born subtractions are required to make the momentum integral and angular momentum

sum convergent. This corresponds to the larger number of divergent Feynman diagrams in

three dimensions.

Then the interface formula for the vacuum polarization energy per unit length of the string is

E
(N)
δ =

1

4π

∞∑

ℓ=−n

{
Dℓ

∫ ∞

0

dk

π

[
(k2 +m2)ln

(
k2 +m2

µ2

)
− k2

]
d

dk
[δℓ(k)]N

+
∑

j

[
(ǫj,ℓ)

2 ln
(ǫj,ℓ)

2

µ2
− (ǫj,ℓ)

2 +m2

]}
, (32)

where the notation [· · · ]N refers to the quantity in the brackets with its first N terms of the

Born series subtracted. For the string problem in three space dimensions, we need N ≥ 4 to

ensure convergence of the momentum integral although, as described below, we will use a different

subtraction in place of the N = 3 and N = 4 cases. Here, ǫj,ℓ gives the energy of the jth bound

state in the angular momentum channel ℓ, and Dℓ is the degeneracy in that channel. For the string

background, we have

Dℓ =




1 , ℓ = −n

2 , ℓ > −n ,

(33)

where n = 1 is the Higgs winding number introduced in the string configuration of eqs. (5) and (6).

The renormalization scale µ emerged from the integration under item 1. It cancels due to the

same sum rules. For convenience we usually set µ = m. The phase shifts can be extracted from

the scattering matrix or, equivalently, from the Jost–like matrices F and G introduced in the last

subsection,

δℓ(k) =
1

i
ln det lim

ρ→0
Fℓ(ρ, k)

−1F∗
ℓ (ρ, k) =

1

i
ln det lim

ρ→0
Gℓ(ρ, k)

−1G∗
ℓ (ρ, k) , (34)

where we have restored all the arguments. In deriving eq. (34) from eq. (29) we have used the

cyclic property of the trace and the fact that as ρ → 0 the Hankel functions are dominated by their

imaginary parts.

As indicated in the previous subsection, it is convenient to evaluate the expression (32) in the

complex k–plane because after rotating to the imaginary axis the explicit bound state contribution

is automatically canceled by the pole contribution from Cauchy’s theorem, leaving only a single

integral along the cut on the positive imaginary axis [29, 34]. There is another important technical

reason to rotate to imaginary momentum. We need to sum over angular momentum ℓ and inte-

grate over radial momentum k after subtracting sufficiently many terms of the Born series. This
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procedure is numerically cumbersome because these functions oscillate in k, which can make it

impossible to exchange the sum and integral [36] because they are not absolutely convergent. This

obstacle is also avoided by analytically continuing to imaginary momenta t = ik and performing

the integrals in the complex plane along the branch cut t > m [36].

The analytic continuation for the Dirac equation is conceptually different from the well–studied

Schrödinger case because ǫ = ±
√
k2 +m2 causes the complex momentum plane to have two sheets.

So on the real axis we have to pick one sign, continue to complex momenta and compute the Jost

function on the imaginary axis. This procedure must then be repeated for the other sign and

then all discontinuities must be collected at the end. In the present problem we are fortunate

because the solutions to the Dirac equation exhibit charge conjugation symmetry along the real

axis. Therefore det(S) does not change under ǫ → −ǫ and there is no additional discontinuity

in the Jost function choosing either sign. Moreover, the Jost function is real on the imaginary

axis, as in the Schrödinger problem. However, the way this comes about in the string problem

requires us to be careful when constructing the Jost function for complex momenta. This procedure

is described in appendix B and results in the replacement of the phase shift δ(k) (and its Born

expansion) by ν(t), the (modified) logarithmic Jost function for imaginary momentum. For this

to work it is essential to have κ odd under sign reflection of real k. The resulting Jost function

itself is a continuous function in the upper complex momentum plane and the branch cuts in the

Dirac equation do not carry over to ν(t). The only discontinuity arises from the logarithm under

the integral in eq. (32), which is 2π. Finally an integration by parts yields a simple expression for

the Born subtracted vacuum polarization energy,

E
(N)
δ = − 1

2π

∞∫

m

dt t
∞∑

ℓ=−n

Dℓ [νℓ(t)]N . (35)

Here we have interchanged the integral with the angular momentum sum, which is possible on the

imaginary axis [36]. After a final change of variables t → τ =
√
t2 −m2, we obtain eventually

E
(N)
δ = − 1

2π

∫ ∞

0
dτ τ

∞∑

ℓ=−n

Dℓ

[
νℓ(

√
τ2 +m2)

]
N

. (36)

Eq. (36) is our master formula for the phase shift contribution to the vacuum polarization energy

per unit length of the string.
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C. Feynman diagrams

The Born subtractions in the integrand of eq. (36) must be added back in as Feynman diagrams.

The latter are most easily derived by expanding the fermion determinant representation of the

(unrenormalized) vacuum polarization energy,

A ≡ −TLEq = −i ln det
[
i∂/−m+HI

]
. (37)

Both the time interval T and the length L of the string factorize as T → ∞ and L → ∞ because

the string background is static and translationally invariant. The interaction part of the Dirac

operator can be separated in various spin structures,

HI = Lµγ
µPL + h+ ipγ5 (38)

where the fields Lµ, h and p are isospin 2× 2 matrices,

L0 = 0 , L(ρ) = 2αr(ρ) IP (ϕ) ρ̂ + 2
[
αG(ρ) IG(ξ1 − ξ(ρ)) + αξ(ρ) IG(−ξ(ρ))

]
ϕ̂ ,

h(ρ) = −αH(ρ) 1 , p(ρ) = −αP (ρ) IP (ϕ) .

(39)

The isospin matrices IG, defined in eq. (11), and

IP (ϕ) = n · τ =


 0 einϕ

e−inϕ 0


 (40)

contain the entire dependence on the azimuthal angle ϕ. The profile functions fH(ρ), fG(ρ) and

ξ(ρ), cf. eqs. (8) and (18), determine the radial behavior of the coefficient functions αr(ρ), αP (ρ)

and αξ(ρ). They are explicitly listed in eq. (B4) of the appendix. The Feynman series for the

effective fermion action (determinant) is now

A ≡ −TLEq = −i ln det (i∂/−m) +

∞∑

N=1

(−1)N

N
Tr

[
(i∂/−m)−1 HI

]N
(41)

where the first term corresponds to the free vacuum energy without a string background. It is

automatically removed in the spectral method by the difference in eq. (31). For fermions in three

dimension, all diagrams up through N = 4 are divergent and thus subject to renormalization.

While the calculation of the corresponding Born subtractions up to fourth order is not particularly

hard, the evaluation of the higher order Feynman diagrams with up to four nested Feynman

parameter integrals and an equal number of Fourier transformations of the string background is

very cumbersome. A better approach is the so–called fake boson method introduced in ref. [37],

which we will describe next.
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D. Fake boson approach and renormalization

The first and second order fermion Feynman diagrams contain both quadratic and subleading

linear and logarithmic ultra–violet divergences, so that a precise identification of the terms in the

Born expansion with the Feynman diagrams must be made separately for each term in the angular

momentum sum. On the other hand, the third and fourth order fermion Feynman diagrams only

cause logarithmic divergences, which are much easier to cope with, because the sum

s(t) ≡
∑

ℓ

Dℓ [νℓ(t)]2 (42)

is finite. However, after multiplication by t, the integral in eq. (35) is logarithmicly divergent. So

instead of subtracting the complete third and fourth order terms in HI from the sum in eq. (42), it

is sufficient to just subtract any function ∆s(t) of momentum with the same ultra-violet behavior,

provided that the following conditions are met:

1. the subtraction ∆s(t) should have the same analytic properties with respect to complex

momentum arguments;

2. formally its contribution to the vacuum polarization should be identifiable as a Feynman

diagram that can be combined with the available counterterms

Lct = c1 tr
(
Gµν Gµν

)
+ c2 tr

[ (
DµΦ

)†
DµΦ

]
+ c3

[
tr
(
Φ†Φ

)
− 2v2

]
+ c4

[
tr
(
Φ†Φ

)
− 2v2

]2
(43)

to cancel all ultra–violet divergences. The perfect candidate is the second order contribution from

a boson scattering off a radially symmetric potential V (ρ). From the properties of the (bosonic)

scattering problem [35], we know that its Jost function has the required analytical properties and

its contribution to the vacuum polarization energy can be expressed as a (very simple) Feynman

diagram. It only remains to adjust its strength to accomplish the required subtraction. This

fake boson scattering problem also has a partial wave decomposition and we subtract the sum of

the logarithm of the second order fake boson Jost function from the sum in eq. (42). Since the

subtraction is not carried out channel by channel, the exchange of ℓ–sum and t–integral is crucial

for this approach to work.

To describe the method in detail we define An to be the contribution of order (HI)
n in the sum

in eq. (41).

1. The first order diagram N = 1 is linear in the interaction HI and local, including all fi-

nite parts. Thus the entire diagram is proportional to the spacetime integral of the c3–

counterterm in eq. (43). We fix the corresponding counterterm by the no–tadpole condition
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A1
!
= 0, which ensures that the vev of the Higgs field is kept at its classical value v. This

condition completely fixes both the divergence and the finite part in the c3–counterterm, cf.

eq. (C16).

2. The second order diagrams N = 2 give contributions to the various propagators whose con-

tributions to the vacuum polarization energy are quadratically divergent at large momenta,

for which a careful regularization is required. Due to gauge invariance, the coefficients c1, c2

and c4 in the counterterms in eq. (43) can unambiguously be determined by the two–point

functions that emerge at order N = 2. Hence we do not need to compute the full Feynman

diagrams at orders N = 3 and N = 4.

3. Although we do not need the full diagrams, we do need to precisely subtract the divergences

from A3 and A4. In dimensional regularization (D → 4), these logarithmicly divergent pieces

read

A∞
3,4 = πcF TL

[
i
( µ

m

)4−D
∫

dDk

(2π)D
(
k2 − 1 + iǫ

)−2
]
, (44)

where T and L are the (infinite) lengths of the time and z–axis intervals, respectively, and cF

is a complicated integral over the radial profile functions, cf. eq. (C10). The key observation

for the implementation of the fake boson approach is that the divergence in eq. (44) is also

contained in the two–point function of a simple scalar field that fluctuates in a (fictitious)

background potential V (ρ). In fact, the divergence in the second order boson diagram has

the form of eq. (44) with cF replaced by

cB =
1

4

∫ ∞

0
dρ ρV (ρ)2 . (45)

By properly scaling V (ρ) with
√

cF /cB , we can match the divergences from eq. (44). The

equivalence of the Feynman and Born expansions implies that the combination of s(t) with

∆s(t) =
cF
cB

∑

ℓ

Dℓν
(2)
ℓ (t) (46)

is finite when integrated according to equation (35). Here ν
(2)
ℓ (t) is the second order Born

approximation for logarithm of the Jost function on the imaginary axis in the fake boson

problem and the associated degeneracy factor in the partial wave decomposition is Dℓ =

2− δ0,ℓ.

4. The subtraction in eq. (46) must be compensated by adding the corresponding second order

fake boson diagram. Since the divergences of the fake boson and the fermion problem have
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been carefully matched, the fermion counterterms from eq. (43) are sufficient to render the

relevant fake boson diagram finite. As a consequence, only the renormalized fake boson

diagram must be added back in, cf. appendix C 2. We are then fully prepared to compute

the vacuum polarization energy in any renormalization scheme. We first consider the MS

scheme, which is defined by setting cs = 0 in the counterterm coefficients

cs = −i
( µ

m

)4−D
∫

dDk

(2π)D
(
k2 − 1 + iǫ

)−2
+ cs , s = 1, 2, 4 . (47)

In this scheme the dependence on the model parameters is simple. The computational

advantages of first considering the MS scheme will be discussed thoroughly in section VI.

Let us summarize the result in the MS scheme and carefully describe the angular momentum sums.

First we construct the subtracted logarithmic Jost function for imaginary momenta

ν(t) = lim
ℓmax→∞

ℓmax∑

ℓ=−n

Dℓ [νℓ(t)]2 +
cF
cB

lim
ℓmax→∞

ℓmax∑

ℓ=0

Dℓ ν
(2)
ℓ (t) . (48)

From eq. (48), we can compute the phase shift contribution to the vacuum polarization energy,

Eδ = − 1

2π

∫ ∞

0
dτ τ ν(

√
τ2 +m2) . (49)

The complete vacuum polarization energy in the MS scheme is then the sum

EMS = Eδ +∆EFD , (50)

where ∆EFD = ∆E
(2)
FD + ∆EB is the sum of the renormalized values (finite parts in MS) of the

second order fermion and fake boson diagram. Explicit expressions for these contributions can be

found in eqs. (C8) and (C13). As a further test of the approach we verify numerically that EMS

remains unchanged when the boson potential V (ρ) is modified.

To make contact with the electroweak theory, it is convenient to re–adjust the finite pieces in

the counterterms such that they match the so–called on-shell scheme. In addition to the already

implemented no–tadpole condition that fixes c3, we thus require

• The pole of the Higgs propagator remains at the tree level mass, mh = m
(0)
h , with unit residue.

This fixes the coefficients c2 and c4 and ensures the usual one–particle interpretation of the

states created by the asymptotic Higgs field.

• The residue of the gauge field propagator (in unitary gauge) is unity, so that asymptotic

W–fields create one–particle W–boson states. This condition determines c1.
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The position of the pole in the gauge boson propagator is then a prediction, i.e. the physical

W -boson mass receives radiative corrections. These corrections are determined by the implicit

solution to eq. (C17) presented in appendix C 3.

The on–shell and MS schemes are related by finite changes of the counterterm coefficients,

so that ci 6= 0 in the on–shell scheme; explicit expressions can again be found in appendix C 3.

The modification to the vacuum polarization energy eq. (50) due to the change in renormalization

scheme is then simply the energy from the counterterm Lagrangian eq. (43), with the coefficients

ci replaced by their finite pieces ci listed in eq. (C16). Since the counterterms are local, this modi-

fication amounts to a radial integral similar to the classical energy in eq. (7), which is numerically

inexpensive. Hence the vacuum polarization energy in the on–shell scheme is

Eq = EMS + ECT = Eδ +∆E
(2)
FD +∆EB + ECT . (51)

The explicit expression for the counterterm contribution reads

ECT = 2π

∫ ∞

0
ρdρ

{
sin2ξ1

n2

ρ2

[
c2 v

2f2
H (1− fG)

2 − 4c1
g2

f ′2
G

]

+c2 v
2f ′2

H − 2c4 v
4
(
1− f2

H

)2
}

(52)

The counterterm coefficient c3 does not appear explicitly because this counterterm receives no

correction in passing between the MS and on–shell schemes.

V. CHARGED STRING

As already discussed in refs. [26, 27], the fermion vacuum energy is negative for narrow strings

and thus provides some binding. However, for physically relevant model parameters, eq. (4),

it is insufficient to overcome the large classical energy. The central mechanism for overcoming

the classical energy cost is to populate the numerous fermion bound states that emerge in the

background of the string, which as a result assigns charge Q to the string. If the energy of

equally many free fermions Qm is larger than the total energy of the string (the classical, vacuum

polarization and contribution from populated levels combined), we have succeeded in constructing

a stable charged string. Quantitatively, this requirement corresponds to Ecl + Ef ≤ 0, cf. eqs. (7)

and (19). It prevents the direct decay into fermions and only leaves charge non–conserving decay

channels, where the decay rate is heavily suppressed due to the sphaleron barrier. The direct decay

into lighter fermion doublets is also suppressed, since we do not have flavor mixing in our model.

To carry out this procedure, we first need to find the bound state energies in the string background.
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A. Bound states and box diagonalization

Since our system is translation invariant in the z direction, we begin by finding Dirac bound states,

ǫi, of the two–dimensional problem, eq. (14). Each bound state we find will then correspond to a

family of bound states in the three–dimensional problem, indexed by the transverse momentum pz.

We carry out the two–dimensional bound state calculation by putting the string in a large cylin-

drical box of radius R ≫ m−1 and imposing the boundary condition that no net flux runs through

the surface of the cylinder. This boundary condition discretizes the possible radial momenta in

each angular momentum channel through the roots of certain Bessel functions, cf. eq. (A2) for the

case of unit winding, n = 1. We can thus take a countable set of grand spin solutions, eq. (12), to

the free Dirac equation and express the fully interacting string Hamiltonian as an infinite matrix

in this basis. The relevant matrix elements are again presented in appendix A. Upon truncating

the set of free solutions by including an effective UV cutoff Λ on the discrete momenta, we are

thus left with a large matrix diagonalization in each grand spin channel to determine the fermion

eigenstates in the string background. Typical matrix sizes are (1600×1600) including Dirac indices

We then find the energy eigenvalues numerically by diagonalization. In the finite box, of course,

all energy levels are discrete and there are no continuum states. In the limit R → ∞ and Λ → ∞,

the highest energy levels in the quasi–continuum will still fluctuate considerably, but the low–lying

bound state spectrum of states with energy smaller than m, which become bound states in the

R → ∞ limit, should remain stable. This was indeed observed for moderate values, Λ ≈ 8m and

R ≈ 75/m.

It should be noted that bound states occur predominantly in the lower angular momentum

channels, as we would expect since the higher channels contain an increasingly large centrifugal

barrier. Depending on the width of the background profile, we see bound states in as many as 10

channels, or only in the single channel ℓ = −n = −1, which is the channel that contains an exact

zero mode for ξ1 = π/2.

A good numerical test on our diagonalization procedure is the gauge invariance of the Dirac

Hamiltonian and thus of the bound state spectrum. In our specific case, this means that the

low–lying bound state energies must remain constant when the gauge transformation profile ξ(ρ)

is modified. We have confirmed this behavior for simple scale and width changes in ξ(ρ).
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B. Populating the Bound States

Having determined the set of bound state energies in the two–dimensional problem, we now

integrate these results into the full three–dimensional calculation. Let 0 ≤ ǫi < m represent the

energy of one of these two–dimensional bound states. In the full three–dimensional problem, we

will then have a family of bound states with energies
[
ǫ2i + p2z

]1/2
.

For a given charge Q, each of these families of bound states will be filled up to a common

chemical potential1 µ(Q) ≤ m, to minimize their contribution to the energy. If the towers of states

built upon two different ǫi had different upper limits, the energy would be lowered by moving a

state from the tower with the larger limit to that with the lower one, without changing the charge.

Since states with [ǫ2i + p2z]
1/2 < µ are filled while states with [ǫ2i + p2z]

1/2 > µ remain empty, we have

a Fermi momentum Pi(µ) = [µ2 − ǫ2i ]
1/2 for each bound state. By the Pauli exclusion principle we

can occupy each state only once, and so we find the charge density per unit length of the string

Q(µ) =
1

π

∑

ǫi≤µ

Pi(µ) , (53)

where the sum runs over all bound states available for a given chemical potential,2 ǫi < µ. Of

course, this sum involves different partial waves, so we have to include the corresponding degeneracy

factors.

Eq. (53) can be inverted to give µ = µ(Q). In numerical computations we prescribe the left–

hand–side of eq. (53) and increase µ from min{|ǫi|} until the right–hand–side matches. From this

value µ = µ(Q), the binding energy per unit length

Eb(Q) =
1

π

∑

ǫi≤µ

∫ Pi(µ)

0
dpz

[√
ǫ2i + p2z −m

]

=
1

2π

∑

ǫi≤µ

[
Pi(µ)(µ − 2m) + ǫ2i ln

Pi(µ) + µ

ǫi

]
(54)

can be computed as a function of the prescribed charge. In this manner the total energy becomes

a function of the charge density of the string. In our search for a stable string, then, we specify

the charge Q, and, among background configurations with sufficient binding to accommodate this

charge, we vary the ansatz parameters to minimize the total energy to see if we find a bound

configuration.

1 In what follows the chemical potential µ should not be confused with the redundant scale introduced in eq. (32).
2 Ambiguities in this relation due to different boundary conditions at the end of the string show up at subleading
order in 1/L, where L is the length of the string, and can thus be safely ignored.
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VI. NUMERICAL RESULTS

In this section we present the numerical results combining all the contributions to the string

energy in our variational ansatz. We measure the variational parameters wH and wG in inverse

fermion masses. The dimensionless vacuum polarization energy per unit length Eq/m
2 then does

not explicitly depend on the coupling constants f and g in the MS scheme, and depends only

weakly on these constants in the physical on–shell scheme through the logarithmic dependence

introduced by the renormalization conditions. This property simplifies the numerical analysis

because then their variation solely affects the classical and counterterm energies, both of which are

local functionals of the profile functions and hence easy to compute.

We have already presented first results for the vacuum polarization energy, eq. (51) in ref. [26].

In particular, we have verified our results numerically by checking that they are independent of the

shape of the gauge function ξ(ρ). This result is a consequence of gauge invariance, but it is nontrivial

because the individual Born terms and Feynman diagrams are not explicitly gauge invariant —

only the combination of all of them is. As a result, this invariance verifies the equivalence between

the Feynman diagram contribution and the Born subtractions (including the fake boson part) in

eq. (51), which is central to the application of spectral methods in quantum field theory [29].

The computation of Eδ is numerically most costly. The main reason is that we have to go to very

high angular momenta in the sum in eq. (48). Typical values are ℓmax = 500, . . . , 800 depending

on the width of the background field. To capture the behavior of the integrand in eq. (49) we

consider about 40 points in the interval 0 ≤ τ ≤ 8. Since the integrand of Eδ does not oscillate

when computed from imaginary momenta, we can accurately estimate the contribution from τ > 8

from an inverse power–law behavior.

In figure 2 we show the result of this numerical computation. The wider the background

fields, the weaker the dependence on the angle ξ1 that parameterizes the gauge boson contribution.

Surprisingly, we see that the vacuum polarization per unit length is quite small. Even for large

widths it does not exceed a fraction of the fermion mass squared. With the exception of very small

widths, the vacuum polarization turns out to be positive. Hence there is no indication that the

vacuum polarization energy from the fermions can stabilize cosmic strings since the classical energy

is larger by orders of magnitude, unless the coupling constants are f, g ∼ O(10). For example,

see figure 3, which shows the classical energy for the standard model parameters, which are O(1).

The derivative terms of the classical energy decrease quadratically with f and g while the Higgs

potential decreases like 1/f4 for fixed Higgs mass. As a result, increasing the coupling constants
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FIG. 2: Vacuum polarization energy as function of the angle ξ1 for different values of the width parameters

wH and wG in the on–shell renormalization scheme. The physically motivated model parameters, eq. (4), are

used. The dots refer to actual computations, while the lines stem from a cubic spline. We also show the results

obtained for the fit to the Nielsen–Olesen profiles, cf. figure 1. These results do not include the combinatoric

color factor NC .
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FIG. 3: Classical energy for the standard model parameters as function of the ansatz parameters wH , wG and

ξ1, including the fit to the Nielsen–Olesen profiles. The model parameters are again from eq. (4).

could lead to binding for thin strings, but such configurations contain large Fourier components,

which for f, g ∼ O(10) reach the vicinity of the Landau ghost pole. Hence any such binding is

obscured by the existence of the Landau ghost, cf. appendix C.4, which arises when including

quantum corrections in a manner that does not reflect asymptotic freedom. Here it is due to

the omission of quantum corrections from fluctuating gauge boson fields. The estimate for the

Landau ghost contribution discussed in the appendix suggests that the issue can be safely ignored

for f, g . 5.

Gradient expansions [38] for quantum mechanical expectation values suggest that the energy

gain from populating bound states can be estimated from a spatial integral over some fractional
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power of the potential in the wave–equation. Scaling arguments show that the energy from the

populated bound states increases quadratically with the width parameters wH and/or wG, regard-

less of the specific power in the expansion3. Since also the dominating classical energy increases

quadratically with wH (from the Higgs potential), populating the bound states might balance the

large classical energy already at small coupling constants and moderate widths, because the Higgs

potential scales like 1/f4 when the Higgs mass is fixed while the fermion contribution is not sen-

sitive to any change in f when we scale our definitions of physical quantities with the fermion

mass m = vf . Hence our strategy to construct a stable string type configuration is to balance

the classical boson energy with the fermion quantum correction by considering wide strings and

increasing the Yukawa coupling. Simultaneously we must keep fixed the charge associated with

populating the fermion bound states.

Before we will consider the total energy we would like to discuss the fermion part, Eq +Eb. In

figure 4 we show the total fermion energy of eq. (19), as a function of the charge density per unit

length of the string. As described in the previous section, we can compute the binding energy as a

function of the charge for a given background configuration. After adding the vacuum polarization

energy computed for that background, we get the parabolic curves in figure 4. These lines terminate

at the point where all available bound states are populated. We then search for the configuration

that minimizes the energy. For small charges, we obtain thin strings, while larger charges lead to

wide strings, as shown in figure 4. Surprisingly, the resulting envelope that describes the minimal

fermion energy as a function of the charge density is a straight line with (approximately) vanishing

y–intercept. This straight line stems from a delicate balance between the vacuum polarization

and binding energies. Because this extrapolation yields a vanishing y–intercept, we deduce that

very narrow strings have vanishing vacuum polarization energy. This interpolation overcomes the

Landau ghost problem of the direct calculation.

From several hundred configurations for which we have computed both the vacuum polarization

energy and constructed the bound states, we identify the one that minimizes the total binding

energy

Etot = Ecl + Eq + Eb (55)

for a prescribed charge. The corresponding result for the minimal binding energy is displayed in

figure 5. We can see that the optimal binding grows linearly with Q. The steep slope at very

3 More precisely, the energy gain involves both the summed energy eigenvalues and the charge. Both can be expressed
by such integrals with different powers, though.
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FIG. 4: (Color online) Total bound state and vacuum energy per unit length as a function of charge density

per unit length, in units of the fermion mass, for ξ1 = 0.4π. The dotted line indicates the minimal fermionic

contribution to the energy.
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FIG. 5: (Color online) Total energy as a function of the charge for various values of the Yukawa coupling constant.

The color degeneracy NC = 3 is included.

small charges is an artifact of restricting our ansatz to configurations with wH , wG ≥ 2 to avoid

unphysical effects from the Landau ghost.

As mentioned above, we increase the Yukawa coupling from its top–quark motivated value

f = 0.99, while all other model parameters are taken from eq. (4). Increasing the charge also

increases the width of the optimal string. For f ≈ 1.6 the classical and quantum contributions

balance and the total energy is essentially independent of the width. Increasing the coupling further

yields a negative energy (in comparison to equally many free fermions) and stable configurations

exist. Not surprisingly, the minimal charge for which there are stable configurations decreases

quickly as f increases. For f = 1.7 it is Qmin ∼ 10m = 17v, while for f = 1.9 stable configurations

exist already at Qmin ∼ 3m = 5.7v.
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FIG. 7: (Color online) The chemical potential that minimizes the binding energy for a prescribed charge in units

of the fermion mass.

We next discuss the structure of the stabilizing configuration. We find that the fermionic part of

the binding energy is insensitive to the angle ξ1, as shown in figure 6. As a result, the dependence

of the total binding energy on ξ1 stems entirely from the classical part, which is clearly minimized

for ξ1 ∼ 0, since in that case the the gauge fields vanish and we have only a charged Higgs field,

with only the non–diagonal elements in eq. (6) differing from zero.

In figure 7 we display the chemical potential that minimizes the binding energy for a prescribed

charge. Its construction is discussed in section V. The cusps arise because our sample configurations

are not continuous in the variational parameters. As we increase the charge, the minimizing

configuration jumps among these possibilities.

The strong deviation from µ = m at low charges (where the various graphs overlap) is again an

artifact of not considering very narrow string configurations. We see that at the limit of binding
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f

∖
Q 2 4 6 8

1.6 2.3 3.2 4.0 4.5

1.7 2.5 3.5 4.3 5.0

1.8 2.7 3.8 4.6 5.5

1.9 2.8 4.2 5.1 5.8

TABLE I: The width, wH , of the minimizing Higgs profile at a prescribed charge, Q for different values of the

Yukawa coupling constant f .

(f = 1.6) almost all bound states are populated. As the binding increases, the chemical potential

decreases, leaving the states below threshold un–occupied.

We have seen above that binding increases with the Yukawa coupling. Table I indicates that at

the same time the profile functions get wider, while the critical charge at which binding sets in (i.e.

Etot(Qmin) = 0) decreases with the Yukawa coupling. As a result, the width of the critical profile

actually decreases. We find these widths to be 5.5/m = 3.2/v, 4.0/m = 2.2/v and 3.5/m = 1.8/v

for f = 1.7, 1.8 and 1.9, respectively, and the typical extension of a bound charged string is about

0.003fm.

Finally let us estimate the total mass of the bound string. In the regime where it is only

slightly bound, we have Etot . Qm. Typically we observe binding for Q ≈ 5m. Hence a reasonable

estimate for the mass of the string is M ≈ 5m2L. Taking m = 300GeV and the length of the

string to be the radius of the sun, L = R⊙ ≈ 7 × 108m we find M ≈ 2.3 × 109kg = 10−20M⊙, i.e.

only a very tiny fraction of the mass of the sun. On the microscopic scale, a string as short as

the Compton wave–length of the heavy fermion would carry about 30 bound fermions and have an

energy of slightly less than 9TeV.

VII. CONCLUSIONS

We have extended our previous spectral approach to find the leading quantum corrections to

the energy of a cosmic string in a slightly simplified version of the electroweak theory. In the

limit of many internal degrees of freedom, NC → ∞, these leading corrections come from fermions

coupling to the string background. In this scenario NC merely appears a combinatoric factor, which

is justified by the asymptotic freedom of QCD. We have shown how to compute the distortion of the

Dirac spectrum in the string background, and how to extract the full non–perturbative renormalized

vacuum polarization using perturbative counterterms and conventional renormalization schemes.
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Substantial refinements of our previous techniques were necessary to make this calculation feasible,

and we have presented a complete account including technical details in the appendices. Though

we have focused on the computational method underlying previously published results, we have

also discussed some novel results concerning the structure of the stable configuration.

The basic idea of the quantum stabilization of cosmic strings is that the appearance of (near) zero

modes in the distorted Dirac spectrum could help to produce negative contributions to the energy

that overcomes the classical energy necessary to form the string. We have shown, however, that

the contribution from the distortion of the remaining parts of the spectrum, i.e. the scattering

states, neutralizes the binding effect of the low–lying modes, resulting in a very small vacuum

polarization energy. In particular, the vacuum is stable against spontaneous formation of weak

strings for parameters that are physically sensible. The situation is more favorable for charged

strings with explicitly occupied bound states, since such configuration need only be lighter than

the same number of free fermions, to be stable on time scales over which we may neglect fermion

number nonconservation. This approximation is valid if the inter–generation quark mixing is tiny

(we have assumed it to be zero), and if the quark masses in the heavy fermion doublet are nearly

degenerate (we have assumed exact degeneracy).

For otherwise realistic parameters, we have shown that this binding mechanism sets in at sur-

prisingly low fermion masses of around 300GeV. This corresponds to values of the Yukawa coupling

that are still small enough for our calculations based on the Standard Model to be reliable. A stable

charged string can thus be formed when enough charge density of a heavy fermion doublet with

about twice the top quark mass is available.

If taken at face value, our findings suggest that a weakly coupled fourth generation of heavy

quarks would make its footprint through the electroweak string phenomenology mentioned in the

introduction — or conversely, that the non–observation of electroweak strings would put severe

bounds on the masses of possible heavy quarks. However, such conclusions must be qualified by a

number of simplifications that were necessary to make the calculation feasible. Most notably, the

restriction to fermionic quantum fluctuations, although justified by the large NC–argument, leads

to a quantum theory that is not asymptotically free, and in turn to the Landau pole problem at

small string widths. We have presented a crude way of estimating this contribution in order to

ensure that our findings are not affected by it. This treatment should obviously be improved by

a full quantum calculation of the bosonic contribution to the vacuum polarization energy. Recent

studies [23] in models related to ours indicate that the bosonic contribution can give interesting

and non–trivial effects. We are currently investigating such an extension of our model.
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Other shortcomings of our model are the mass degeneracy of the fermion doublet, the lack of

inter–generation quark couplings and, in particular, the decoupling of U(1) hypercharge. While the

stable configuration that we have constructed can be embedded in a full SU(2)×U(1) model with

multiple generations (since additional degrees of freedom would only serve to lower the energy

in our variational approach), it is unclear if the new couplings provide new decay channels, in

particular when bosonic fluctuations are taken into account. We also plan to investigate such a

scenario.

The charges along the string may carry currents [39–41], which in turn can have interesting

consequences for baryogenesis and cosmology [24, 42]. This situation is similar to the Witten

model [43, 44] and its generalizations, where the currents are induced by the coupling of extra

scalar fields to the vortex. In this scenario, the Brownian network of vortices produced in an

earlier (GUT-scale) phase transition contracts as the universe cools down. This process could

eventually be stopped by the currents becoming superconducting, with the irregular vortex shapes

being smoothed out by the surrounding thermal background to form circular rings. The final

evolution stage would then be a universe filled with microscopic superconducting, charged vortex

loops. Such a vorton [45, 46] universe has recently attracted much attention because it provides a

viable candidate for dark matter with rather accurately computable properties that put stringent

restrictions on cosmological models. It would be very interesting to study such a possibility in

the electroweak standard model, with currents produced directly from fermions (as they are in

our calculation), rather than from extra scalar fields. Although our present investigation does not

directly address this question, it seems conceivable that a stable vorton could be created without

requiring exceedingly large couplings or unrealistic masses. Combining this scenario to our picture

could be another avenue for future research.

Finally, it would of course also be interesting to study the Brownian network of strings as it is

formed in the phase transition if enough fermion charge is available. Due to their complexity, such

configurations must presumably be studied in an effective (lattice) model. The necessary string

interactions could potentially be addressed through further extensions of the spectral method.
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states |++〉 |+−〉 | −+〉 | − −〉
〈++ | 0 0 -1 0

〈+− | 0 0 0 -1

〈−+ | 1 0 0 0

〈− − | 0 1 0 0

TABLE II: Matrix elements of iσ · ρ̂. The

table should be read as 〈−+ | iσ · ρ̂ |++ 〉 =
1, for instance. The matrix is hermitian in

combination with the derivative ∂ρ.

states |++〉 |+−〉 | −+〉 | − −〉
〈++ | 0 0 −(ℓ+ n+ 1) 0

〈+− | 0 0 0 −(ℓ+ 1)

〈−+ | −(ℓ+ n) 0 0 0

〈− − | 0 −ℓ 0 0

TABLE III: Matrix elements of i (σ · ϕ̂) ∂ϕ.

states |++〉 |+−〉 | −+〉 | − −〉
〈++ | 0 0 0 1

〈+− | 0 0 −1 0

〈−+ | 0 −1 0 0

〈− − | 1 0 0 0

TABLE IV: Matrix elements of (σ · ρ̂) IP .

states |++〉 |+−〉 | −+〉 | − −〉
〈++ | 0 0 −s∆ −c∆

〈+− | 0 0 −c∆ s∆

〈−+ | −s∆ −c∆ 0 0

〈− − | −c∆ s∆ 0 0

TABLE V: Matrix elements of (σ ·ϕ̂) IG(∆).

The subscript denotes the argument of the

trigonometric functions.

Appendix A: Eigenvalue Problem

To find the bound state spectrum, states with energy eigenvalues |ǫ| < m, we first diagonalize the

Hamiltonian matrix in the absence of a background potential, and then use these free eigenstates

(with the proper boundary conditions built in) as a basis in which to compute the matrix elements

of the background potential induced by the string. The diagonalization of this full Hamiltonian

matrix in turn yields the fully interacting bound state spectrum. Note that in this procedure all

states appear as “bound” states, since the volume of the coordinate space is finite. In general the

energy eigenvalues of such “bound” states depend on the volume. However, the true bound states

with |ǫ| < m do not show finite size effects if the volume is chosen large enough because their

wave–functions are located in a small sub–volume.

The single particle Dirac Hamiltonian couples spin (S) and weak isospin (I) degrees of freedom.

We can combine these degrees of freedom by introducing the grand spin states given in eq. (12).

The matrix elements of the (two–component) operators entering the Hamiltonians in eqs. (10) and

(38) are listed in tables II to VII. In all of these tables, we use the abbreviation sx = sin(x) and

cx = cos(x), where the arguments of these trigonometric functions appear as subscripts.
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states |++〉 |+−〉 | −+〉 | − −〉
〈++ | 0 0 sξ −cξ

〈+− | 0 0 −cξ −sξ

〈−+ | sξ −cξ 0 0

〈− − | −cξ −sξ 0 0

TABLE VI: Matrix elements of (σ · ϕ̂) IG(−ξ).

The subscript denotes the argument of the trigono-

metric functions.

states |++〉 |+−〉 | −+〉 | − −〉
〈++ | 0 1 0 0

〈+− | −1 0 0 0

〈−+ | 0 0 0 1

〈− − | 0 0 −1 0

TABLE VII: Matrix elements of iIP . The

extra factor i leads to anti–hermitian matrix

elements, compensating the same property of

its spinor coefficient βγ5.

Next, radial functions are introduced via the four–component spinors, cf. eq. (15),

〈ρ|ǫ ℓ++〉 =

(
Jℓ+n(kρ)|ℓ++〉

κJℓ+n+1(kρ)|ℓ −+〉

)
−→

(
f1(ρ)|ℓ++〉
g1(ρ)|ℓ−+〉

)

〈ρ|ǫ ℓ+−〉 =

(
Jℓ(kρ)|ℓ +−〉

κJℓ+1(kρ)|ℓ−−〉

)
−→

(
f2(ρ)|ℓ+−〉
g2(ρ)|ℓ−−〉

)

〈ρ|ǫ ℓ−+〉 =

(
Jℓ+n+1(kρ)|ℓ−+〉
κJℓ+n(kρ)|ℓ++〉

)
−→

(
f3(ρ)|ℓ−+〉
g3(ρ)|ℓ++〉

)

〈ρ|ǫ ℓ−−〉 =

(
Jℓ+1(kρ)|ℓ −−〉
κJℓ(kρ)|ℓ +−〉

)
−→

(
f4(ρ)|ℓ−−〉
g4(ρ)|ℓ+−〉

)
. (A1)

We note that κ = sgn(ǫ)
√

ǫ−m
ǫ+m is well defined for either sign of the energy eigenvalue since |ǫ| > m.

Using the dispersion relation for real momenta ǫ2 = k2 +m2, we may also write κ = k
ǫ+m = ǫ−m

k .

These two expressions are odd in k and thus suitable for analytic continuation k → it. The spinors

to the left of the arrows in eq. (A1) involve ordinary Bessel functions which solve the free Dirac

equation. They will be used to construct the basis states for the Hamiltonian matrix.

In the free case, the four spinors in eq. (A1) each solve the Dirac equation individually, i.e.

they do not couple. Once the background potential from the string is included, however, the radial

functions fi and gi become distorted and mix under the dynamics.

We now construct a discrete basis built from solutions of the free Dirac equation. To this

end we must first impose the boundary condition that no flux runs from the center of the string

through a circle at a large distance R. Since the flux is bilinear in the spinors with all products

involving both an upper and a lower component, the no–flux boundary condition is equivalent to

the requirement that either component vanishes. For the string winding n = 1, this amounts to

the simple statement

Jℓ+1(k
(ℓ)
r R) = 0 . (A2)
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This conditions selects discrete momenta k
(ℓ)
r in each angular momentum channel ℓ, where r =

1, 2, . . . enumerates the momenta and thus the free basis states. We note in passing that a string

winding n ≥ 2 would require two separate sets of discrete momenta.

The normalization of the spinors can be worked out using the Bessel function identity

∫ 1

0
tdtJν(λ

(ν)
r t)Jν(λ

(ν)
s t) =

1

2

[
J ′
ν(λ

(ν)
r t)

]2
δrs (A3)

where λ
(ν)
r are the roots of the Bessel function Jν . Using furthermore the recursion relations for

Bessel functions and their derivatives, we arrive at the following explicit expressions for the (free)

radial functions in equation (15),

f
(r)
1 (ρ) = N

(r)
f Jℓ+1(krρ) g

(r)
1 (ρ) = N

(r)
g Jℓ+2(krρ)

f
(r)
2 (ρ) = N

(r)
f Jℓ(krρ) g

(r)
2 (ρ) = N

(r)
g Jℓ+1(krρ)

f
(r)
3 (ρ) = N

(r)
f Jℓ+2(krρ) g

(r)
3 (ρ) = N

(r)
g Jℓ+1(krρ)

f
(r)
4 (ρ) = N

(r)
f Jℓ+1(krρ) g

(r)
4 (ρ) = N

(r)
g Jℓ(krρ)

(A4)

where the superscripts on the momenta are omitted. The normalization factors are given explicitly

by

N
(r)
f =

1

R

1

|Jℓ+2(krR)|

√
ǫr +m

ǫr
, N (r)

g =
1

R

sgn(ǫr)

|Jℓ+2(krR)|

√
ǫr −m

ǫr
. (A5)

To limit the number of basis states, we introduce a cutoff Λ and only include momenta with kr < Λ.

This defines rmax, the maximal number of discrete momenta, which depends on R for fixed Λ. Due

to the energy degeneracy this cutoff truncates the label r on the energy eigenvalues to run from

1 . . . 2rmax,

ǫr =





−
√
k2rmax+1−r +m2 r = 1, . . . , rmax

√
k2r−rnmax

+m2 r = rmax + 1, . . . , 2rmax .

(A6)

Putting all the pieces together, we can now present the full Hamiltonian matrix i.e. the operator

in eq. (10) sandwiched between the spinors constructed above. The equations become simpler if

we set

C± = c∆αG + cξαξ ± αr and S = s∆αG − sξαξ , (A7)

with the right hand sides containing the elements of Vi in eq. (17). They are specified in terms

of the string profile functions in eq. (B4) of the following appendix. The interaction Hamiltonian
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matrix elements read

〈1r|Hint|1s〉 = αH

(
f
(r)
1 f

(s)
1 − g

(r)
1 g

(s)
1

)
− S

(
f
(r)
1 g

(s)
1 + g

(r)
1 f

(s)
1

)

〈2r|Hint|1s〉 = −C+f
(r)
2 g

(s)
1 − C−g

(r)
2 f

(s)
1

〈3r|Hint|1s〉 = S
(
f
(r)
3 f

(s)
1 + g

(r)
3 g

(s)
1

)

〈4r|Hint|1s〉 = C−f
(r)
4 f

(s)
1 + C+g

(r)
4 g

(s)
1 − αP

(
f
(r)
4 g

(s)
1 − g

(r)
4 f

(s)
1

)

〈1r|Hint|2s〉 = −C−f
(r)
1 g

(s)
2 − C+g

(r)
1 f

(s)
2

〈2r|Hint|2s〉 = αH

(
f
(r)
2 f

(s)
2 − g

(r)
2 g

(s)
2

)
+ S

(
f
(r)
2 g

(s)
2 + g

(r)
2 f

(s)
2

)

〈3r|Hint|2s〉 = C+f
(r)
3 f

(s)
2 + C−g

(r)
3 g

(s)
2 + αP

(
f
(r)
3 g

(s)
2 − g

(r)
3 f

(s)
2

)

〈4r|Hint|2s〉 = −S
(
f
(r)
4 f

(s)
2 + g

(r)
4 g

(s)
2

)

〈1r|Hint|3s〉 = S
(
f
(r)
1 f

(s)
3 + g

(r)
1 g

(s)
3

)

〈2r|Hint|3s〉 = C+f
(r)
2 f

(s)
3 + C−g

(r)
2 g

(s)
3 − αP

(
f
(r)
2 g

(s)
3 − g

(r)
2 f

(s)
3

)

〈3r|Hint|3s〉 = αH

(
f
(r)
3 f

(s)
3 − g

(r)
3 g

(s)
3

)
− S

(
f
(r)
3 g

(s)
3 + g

(r)
3 f

(s)
3

)

〈4r|Hint|3s〉 = −C−f
(r)
4 g

(s)
3 − C+g

(r)
4 f

(s)
3

〈1r|Hint|4s〉 = C−f
(r)
1 f

(s)
4 + C+g

(r)
1 g

(s)
4 + αP

(
f
(r)
1 g

(s)
4 − g

(r)
1 f

(s)
4

)

〈2r|Hint|4s〉 = −S
(
f
(r)
2 f

(s)
4 + g

(r)
2 g

(s)
4

)

〈3r|Hint|4s〉 = −C+f
(r)
3 g

(s)
4 − C−g

(r)
3 f

(s)
4

〈4r|Hint|4s〉 = αH

(
f
(r)
4 f

(s)
4 − g

(r)
4 g

(s)
4

)
+ S

(
f
(r)
4 g

(s)
4 + g

(r)
4 f

(s)
4

)
. (A8)

To keep the presentation simple we have omitted the radial integrals on the right hand sides, i.e.

they are understood to be integrated with
∫ R
0 ρ dρ (. . .). In total this defines 8rmax × 8rmax matrix

elements of the interaction Hamiltonian. To populate the full Hamiltonian matrix, we set

H
(I)
r+2rmax,s

= 〈2r|Hint|1s〉 (A9)

for r, s = 1, . . . , 2rmax, and ǫr+2qrmax = ǫr for q = 1, 2, 3. This yields the 8rmax × 8rmax matrix

Hr,s = ǫrδrs +H(I)
r,s r, s = 1, . . . , 8rmax , (A10)

which is diagonalized numerically by means of a Jacobi routine.

Once the radius R and the momentum cutoff Λ are large enough the true bound state spectrum

should become stable against further increase of these parameters. Typical values are Λ ≈ 8m

and R = 75/m, so that our free basis comprises about 400 energy eigenvalues, each with fourfold
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degeneracy and the Hamiltonian matrix has 1600×1600 entries for the lowest angular momentum.

For wider string profiles, bound states occur in higher and higher angular momentum channels. For

instance, bound states appear for up to ℓ = 5 when wH ≈ 6/m, while narrow widths wH ≤ 1/m

only induce bound states in the channel ℓ = −n = −1, i.e. the effective S–wave channel.

We have verified the gauge independence of the bound state energies by checking that they

are insensitive to variations in the shape of the gauge transformation profile ξ(ρ). Also the zero

mode in the ℓ = −n = −1 channel is observed for ξ1 = π/2 regardless of the values of the width

parameters.

Appendix B: Scattering problem

In this appendix we describe the scattering solutions to the Dirac equation (17). To this end we

write the Dirac Hamiltonian, eq. (10) in terms of 4×4 matrices and derive the differential equation

for the Jost function.

1. Differential equation for Jost function

The derivative operators as well as the angular barriers are contained in the diagonal 4 × 4

matrices

Du ≡ ∂ρ 1−
1

ρ
diag

(
− (ℓ+ n+ 1) , −(ℓ+ 1) , ℓ+ n , ℓ

)

Dd ≡ ∂ρ 1−
1

ρ
diag

(
ℓ+ n , ℓ , −(ℓ+ n+ 1) , −(ℓ+ 1)

)
(B1)

where C = diag(−1,−1, 1, 1). For the interactions, we must compute the matrix elements of the

various pieces in eq. (10) within the grand spin basis eq. (12). The explicit expressions for the

emerging radial functions are listed in eqs. (15) and (16), cf. eq. (A1). After some lengthy algebra,

the interaction matrices in the system (17) can written in terms of simpler sub–matrices,

Vuu =


 H G+

G− H


 Vdd =


−H G−

G+ −H




Vud = −


G+ P

P G−


 Vdu = −


G− −P

−P G+


 ,

(B2)
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where the 2× 2 submatrices are

H = αH


1 0

0 1


 , P = αp


0 −1

1 0


 ,

G± = αG


sin∆ cos∆

cos∆ − sin∆


+ αξ


− sin ξ cos ξ

cos ξ sin ξ


± αr


0 −1

1 0


 . (B3)

The coefficients αH , αp, αG, αξ and αr are radial functions determined by the background profiles

fG, fH and the gauge function ξ,

αr(ρ) =
1

2

∂ξ(ρ)

∂ρ

αG(ρ) =
n

2ρ
fG(ρ) sin∆(ρ)

αξ(ρ) =
n

2ρ

(
fG(ρ)− 1

)
sin ξ(ρ)

αH(ρ) = m
(
fH(ρ) cos∆(ρ)− 1

)

αP (ρ) = mfH(ρ) sin∆(ρ) . (B4)

Note that the new gauge function also enters via ∆(ρ) ≡ ξ1 − ξ(ρ). We now write the Dirac

equation for the matrix fields defined in eq. (25) as

∂ρF =
[
Mff +Od

]
· F + F ·M(r)

ff +
[
Mfg + kC

]
· G · Zd (B5)

∂ρG =
[
Mgg +Ou

]
· G + G ·M(r)

gg +
[
Mgf − kC

]
· F · Zu , (B6)

where the 4× 4 matrices without an overline are purely kinematic,

Zu = diag

(
Hℓ+n(kρ)

Hℓ+n+1(kρ)
,

Hℓ(kρ)

Hℓ+1(kρ)
,
Hℓ+n+1(kρ)

Hℓ+n(kρ)
,
Hℓ+1(kρ)

Hℓ(kρ)

)

Zd = diag

(
Hℓ+n+1(kρ)

Hℓ+n(kρ)
,
Hℓ+1(kρ)

Hℓ(kρ)
,

Hℓ+n(kρ)

Hℓ+n+1(kρ)
,

Hℓ(kρ)

Hℓ+1(kρ)

)
= (Zu)

−1

Ou =
1

ρ
diag (−(ℓ+ n+ 1),−(ℓ+ 1), ℓ + n, ℓ)

Od =
1

ρ
diag (ℓ+ n, ℓ,−(ℓ+ n+ 1),−(ℓ + 1))

C = diag(−1,−1, 1, 1) . (B7)

The matrices multiplying F and G from the right are also independent of the background potential,

M(r)
ff = −kC · Zd −Od and M(r)

gg = kC · Zu −Ou . (B8)
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Genuine interactions from the string background are solely contained in the overlined matrices in

eq. (B6). Using the same 2× 2 matrix notation as above, we have explicitly

Mgg = CVud =


G+ P

−P −G−


 Mff = −CVdu =


−G− P

−P G+




Mgf = 1
κCVuu = 1

κ


−H −G+

G− H


 Mfg = −κCVdd = κ


 −H G−

−G+ H


 .

(B9)

The solutions to the differential equations (B6) subject to the boundary conditions F → 1 and

G → 1 at ρ → ∞ define the scattering solution, eq. (27), from which we extract the scattering

matrix as described in eq. (29).

2. Born series

To set up the Born series defined in eq. (30), we simply expand the system of differential

equations from the last section in powers of the background potential, which only enters the

overlined matrices. At first order, we obtain

∂ρF (1) = Od · F (1) + F (1) ·M(r)
ff + kC · G(1) · Zd +Mff +Mfg · Zd (B10)

∂ρG(1) = Ou · G(1) + G(1) ·M(r)
gg − kC · F (1) · Zu +Mgg +Mgf · Zu . (B11)

The matrices M(r)
... do not contain the interactions and are thus of order zero. In the same way we

obtain the second order equations,

∂ρF (2) = Od · F (2) + F (2) · M(r)
ff + kC · G(2) · Zd +Mff · F (1) +Mfg · G(1) · Zd (B12)

∂ρG(2) = Ou · G(2) + G(2) ·M(r)
gg − kC · F (2) · Zu +Mgg · G(1) +Mgf · F (1) · Zu . (B13)

With these Jost–like matrices, the Born series for the S–matrix is S = 1+ S(1) + S(2) + . . . with

S(1) = lim
ρ→0

{
H−1

u ·
[
F (1)∗ −F (1)

]
· H∗

u

}

S(2) = lim
ρ→0

{
H−1

u ·
[
F (1) ·

(
F (1) −F (1)∗

)
+ F (2)∗ −F (2)

]
· H∗

u

}
(B14)

and similarly for Gi with Hu → Hd. The Born expanded eigenphase shifts are now simply given,

to first and second order, by

δ
(1)
ℓ = −1

2
tr
[
Im

(
S(1)
1

)]
and δ

(2)
ℓ = −1

4
tr
[
Im

(
S(1) · S(1) + 2S(2)

)]
. (B15)
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The third and fourth order pieces will be treated as part of the fake boson formalism discussed

below in section C 2.

3. Analytic continuation

We describe the continuation to imaginary momenta for the case where ǫ =
√
k2 +m2; the

second Riemann sheet (ǫ = −
√
k2 +m2) works analogously. The analytic continuation concerns

the Hankel functions, which turn into modified Bessel functions, Zu → Yu and Zd → Yd, with

Yu = diag

(
Kℓ+n(tρ)

Kℓ+n+1(tρ)
,

Kℓ(tρ)

Kℓ+1(tρ)
,−Kℓ+n+1(tρ)

Kℓ+n(tρ)
,−Kℓ+1(tρ)

Kℓ(tρ)

)
= − (Yd)

−1 . (B16)

Furthermore, the kinematic coefficient turns into a pure phase

κ → zκ =
m+ i

√
t2 −m2

t
. (B17)

The system of differential equations for imaginary momentum then becomes

∂ρF =
[
Mff +Od

]
· F + F ·M(r)

ff +
[
Mfg − tC

]
· G · Yd (B18)

∂ρG =
[
Mgg +Ou

]
· G + G ·M(r)

gg +
[
Mgf + tC

]
· F · Yu . (B19)

with the boundary conditions that F and G both approach unity at ρ → ∞. For simplicity, we

have omitted the momentum arguments in the radial wave–functions F and G and also used the

same symbol as in the case of real momenta, eqs. (B6). The coefficient matrices in the differential

equations are slightly modified:

M(r)
gg = −t C · Yu −Ou M(r)

ff = t C · Yd −Od

Mgf = zκ


−H −G+

G− H


 Mfg = −z∗κ


 −H G−

−G+ H


 ,

(B20)

while Mgg and Mff are the same as on the real axis.

Unlike the Schrödinger problem, the differential equations in the present case do not become

real on the imaginary axis. Rather, charge conjugation ǫ → −ǫ induces complex conjugation. It

is therefore not surprising that the näıve extrapolation limρ→0 det(F) does not give a real result.

Instead, we find numerically that F = G∗ with the imaginary part being independent of angular

momentum for a given value of t. The origin for this imaginary part lies in the subtle definition of

the Jost function via the Wronskian between the Jost solution, i.e. F or G, and the regular solu-

tion, which satisfies momentum independent boundary conditions at the origin. The momentum
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independence of these boundary conditions ensures that the regular solution is an analytic function

of complex momentum. Analyticity of the Jost solution, on the other hand, is guaranteed by the

non–singular behavior of the interaction potentials, which is in turn a consequence of the bound-

ary conditions on the profile function ξ(ρ). At the origin, the Higgs field differs from its vacuum

expectation value (it actually vanishes), which modifies the relative weight of the upper and lower

Dirac components. More precisely, the non–diagonal elements of the matrices in eq. (B20) vanish

at the origin and the eight differential equations decouple with respect to the spin and weak isospin

index on the radial functions in eq. (16). For real momenta k, a typical solution in the vicinity of

ρ = 0 then looks like [22]


f4

g4


 ∼

(
k

q

)l




√
E +mc∆fH(0) Jl(qρ)

√
E −mc∆fH(0) Jl+1(qρ)


 (B21)

with q =
√

E2 − (mc∆fH(0))2 and similar dependencies for the other six radial functions. The

square–root coefficients cause the proper definition of the logarithmic Jost function, ν(t), to be

exp [ν(t)] =

(
τ − im

τ − imc∆fH(0)

)2

lim
ρ→0

det(F) =

(
τ + im

τ + imc∆fH(0)

)2

lim
ρ→0

det(G) (B22)

with τ =
√
t2 −m2. The power of two occurs because we compute the determinant of a 4 × 4

matrix. Notice that this redefinition not only cancels the imaginary parts, but also modifies the

real part. Furthermore it avoids the logarithmic singularity in ln [limρ→0 det(F)] otherwise observed

numerically at t ∼ m. Since fH is part of the interaction, the correction prefactor in eq. (B22) also

contributes to the Born series. To make this explicit, we write

ln

(
τ − im

τ − imc∆fH(0)

)
= ln

(
τ − im

τ − i(αH(0) +m)

)
(B23)

=
iαH(0)

τ − im
− 1

2

(
αH(0)

τ − im

)2

+ . . . , (B24)

and subsequently set αH(0) = −m. The Born expansion of the remaining determinant in eq. (B22)

is constructed as for real momenta by iterating the differential equation (B19) in the interaction

Mi.

Numerically, we integrate the differential equations (B6), (B19), their Born expansions and the

fake boson analog4

∂2
ρνℓ(t, ρ) = 2tLℓ(tρ)∂ρνℓ(t, ρ)− ν2ℓ (t, ρ) + V (ρ) with Lℓ(z) =

Kℓ+1(z)

Kℓ(z)
− ℓ+ 1

2

z
(B25)

4 The boundary condition is νℓ(t,∞) = ∂ρνℓ(t,∞) = 0. The second order contribution required in eq. (48) is

obtained from the expansion νℓ = ν
(1)
ℓ + ν

(2)
ℓ + . . ., where the superscript labels the order in V (ρ).
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from some large radius ρmax ∼ 4ρ0 to ρmin ∼ 0 with the boundary condition F(ρmax, k) = 1,

and identify limρ→0 F(ρ, k) = F(ρmin, k). Alternatively, this identification can also be obtained

from the derivative of the wave–function. Furthermore, a differential equation is formulated for

ln detF(ρ, k)−1F(ρ, k)∗ to avoid 2π ambiguities in the computation of the phase shift, δℓ(k), cf.

eq. (34).

The computations for real momenta have been performed mainly for use in the consistency tests

on the unitarity of the scattering matrix and the spectral sum rules [31]. There is one more merit of

considering real momenta: Channels that include Hankel functions with zero index (ℓ = −2,−1, 0)

are particularly cumbersome because regular and irregular solutions are difficult to separate in

such cases, because they go as a constant and ln(ρ), respectively, at ρmin ≪ 1, cf. eq. (29). As a

consequence, ρmin must be taken tiny in the problematic channels to obtain the correct scattering

matrix in eq. (29). On the real axis, the result can be checked against extracting the S–matrix

from the derivative of the scattering wave–function because Y ′
0(ρ) ∼ Y1(ρ) diverges like a power.

For calculations on the imaginary axis, we assume ρmin ∼ 10−60 and successively carry out an

extrapolation

ν(ρmin) = ν0 +
a1

ln(ρmin)
+

a2

ln2(ρmin)
. . . , (B26)

for the Jost function in these channels. We test the final result, i.e. ν0, for stability against

further changes of ρmin and also check the condition Im(ν0) = 0. In the non–problematic channels

ℓ /∈ {−2,−1, 0}, it is sufficient to set ρmin ∼ 10−12 in order to represent the origin.

We have also successfully tested our numerical results of the scattering data against the reflection

symmetry ℓ → −(ℓ+ 2n).

Appendix C: Feynman diagrams

In this appendix we describe the details of the computation of the Feynman diagrams. We start

from the series in equation (41). This computation involves three parts:

1. The contribution linear in HI . This term vanishes identically with the no–tadpole condition.

2. The piece quadratic in HI . This term is quadratically divergent at high momenta and must

be carefully regularized to handle the leading and subleading logarithmic divergences.

3. The contribution from terms cubic and quartic in HI . They are only logarithmicly divergent

which makes the separation of the finite parts simpler. Since the corresponding Feynman
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diagrams are complicated to evaluate we employ the fake boson methods to compute this

part of the vacuum polarization energy.

We first consider the MS scheme in which only the bare divergences proportional to

−i
( µ

m

)4−D
∫

dDl

(2π)D
(
l2 − 1 + iǫ

)−2
,

are subtracted, and then determine the finite counterterm coefficients suitable to implement the

on–shell renormalization scheme.

1. Second order contribution

After imposing the no–tadpole condition5 we find the contribution to the action functional up

to second order in HI within the MS scheme as

∆A = − 1

8π2

∫
d4k

(2π)4

∫ 1

0
dx ln

[
1− x(1− x)

k2

m2

]

×trI

{[
m2 − x(1− x)k2

] [1
2
L(k) · L(−k)− 3 (h(k)h(−k) + p(k)p(−k))

]

+x(1− x)

[
k · L(k) k · L(−k)− 1

2
k2L(k) · L(−k)

]

+2m2p(k)p(−k) + imk · L(k)p(−k)
}

+
1

8π2

∫
d4k

(2π)4
k2

6
trI [h(k)h(−k) + p(k)p(−k)] . (C1)

Here the fields with momentum arguments are the Fourier transforms of the corresponding spatial

fields in eq. (39). Specifically, we introduce the notation k := kµ = (k0, k⊥k̂⊥ + k3ẑ)
µ and L :=

Lµ = (L0,L⊥ + L3ẑ)
µ with L0 = L3 = 0. As a result, we have

h(k) = h(−k) = −(2π)3δ(k0)δ(k3)h0(k⊥) (C2)

p(k) = p†(−k) = −(2π)3δ(k0)δ(k3)(−i)n pn(k⊥) IP (ϕk)

L(k) = −(2π)3δ(k0)δ(k3)

3∑

i=1

[
l
(i)
⊥ (k⊥, ϕk)k̂+ l(i)ϕ (k⊥, ϕk)ϕ̂k

]
, (C3)

5 The c3 type counterterm in eq. (43) contains a term quadratic in the fluctuations about the Higgs vev. Its finite
contribution is essential to keep the pseudo–scalar part of the Higgs field massless, i.e. the expansion of the
coefficient of p(k)p(−k) starts at O(k2).
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where ϕk is the azimuthal angle in momentum space. The coefficients are isospin matrices,

l
(1)
⊥ = (−i)n−1α

(−)
r (k⊥)IP (ϕk) l

(1)
ϕ = (−i)nα

(+)
r (k⊥)IP (ϕk)


−1 0

0 1




l
(2)
⊥ = 0 l

(2)
ϕ = iαs(k⊥)


−1 0

0 1




l
(3)
⊥ = (−i)n−1α

(+)
c (k⊥)IP (ϕk) l

(3)
ϕ = (−i)nα

(−)
c (k⊥)IP (ϕk)


−1 0

0 1


 . (C4)

The matrix IP is defined in eq. (40), here to be taken as a function of the azimuthal angle in

momentum space. The functions h0, pn, α
(−)
r , . . . are the Fourier transforms

h0(k) =

∫ ∞

0
ρdραH(ρ)J0(kρ)

pn(k) =

∫ ∞

0
ρdραP (ρ)Jn(kρ)

α(±)
r (k) =

∫ ∞

0
ρdραr(ρ) [Jn+1(kρ)± Jn−1(kρ)]

αs(k) = 2

∫ ∞

0
ρdρ [αG(ρ)s∆(ρ)− αξ(ρ)sξ(ρ)] J1(kρ)

α(±)
c (k) =

∫ ∞

0
ρdρ [αG(ρ)c∆(ρ) + αξ(ρ)cξ(ρ)] [Jn+1(kρ)± Jn−1(kρ)] . (C5)

Some of these terms can be conveniently combined,

3∑

i=1

l
(i)
⊥ = (−i)n−1

[
α(−)
r + α(+)

c

]
IP (ϕk) (C6)

3∑

i=1

l(i)ϕ = iαs


−1 0

0 1


+ (−i)n

[
α(+)
r + α(−)

c

]
IP (ϕk)


−1 0

0 1


 . (C7)

Then we find the second order contribution to the energy

∆E
(2)
FD =

∫ ∞

0

kdk

4π

{
k2

3

(
h20 + p2n

)
+ 4m2I1p

2
n + 2mkI1

(
α(+)
c + α(−)

r

)
pn

+k2I2

[(
α(+)
c + α(−)

r

)2
−

(
α(−)
c + α(+)

r

)2
− (αs)

2

]

−
(
m2I1 + k2I2

) [
6h20 + 6p2n +

(
α(+)
c + α(−)

r

)2
+

(
α(−)
c + α(+)

r

)2
+ (αs)

2

]}
, (C8)

with the Feynman–parameter integrals (η = k/m)

I1 =

∫ 1

0
dx ln

[
1 + x(1− x)η2

]
=

2

η

√
4 + η2 arsinh (η/2)− 2 ,

I2 =

∫ 1

0
dxx(1− x) ln

[
1 + x(1− x)η2

]
=

√
4 + η2

3η3
[
η2 − 2

]
arsinh (η/2) +

2

3η2
− 5

18
. (C9)
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2. Fake boson method

We have already discussed the spectral part of the fake boson approach in eq. (B25). Here we

focus on the Feynman diagram part. First we need to determine the logarithmicly divergent con-

tribution to action from the third and fourth order Feynman diagrams. They can be parameterized

by a radial integral,

cF =

∫ ∞

0
ρ dρ

{ (
α2
H + α2

P

) (
α2
H + α2

P + 4mαH

)
+ 4αr

(
αHα′

P − αPα
′
H

)

+4
(
α2
r + α2

G + α2
ξ + 2αξαGcξ1

) (
α2
H + α2

P + 2mαH

)

−64

3
α2
r

(
α2
G + α2

ξ + 2αξαGcξ1
)
− 8

3

n2

ρ2
αrf

′
Gsξ1sξs∆

−4
n

ρ
αP [αH (αGc∆ + αξcξ) + αP (αGs∆ − αξsξ)]

}
, (C10)

where primes denote derivatives with respect to the radial coordinate. With this radial integral

the divergence reads, in dimensional regularization,

A(div)
3,4 = πcF TL

[
i
( µ

m

)4−D
∫

dDl

(2π)D
(
l2 − 1 + iǫ

)−2
]
. (C11)

Here T and L are the (infinite) lengths of the time and z–axis intervals, respectively.

A boson field that fluctuates about a background potential V (ρ) = m2 ρ
ρ0

e−2ρ/ρ0 causes a

similar logarithmic divergence for its vacuum polarization energy at quadratic order. In fact, the

only replacement in eq. (C11) is cF → cB with

cB =
1

4

∫ ∞

0
ρ dρV 2(ρ) =

3m4ρ20
512

. (C12)

As for the spectral part, eq. (48), we rescale the fake boson potential with the strength of the

fermionic divergence cF so that we are only left with the finite part of the second order (boson)

Feynman diagram,

∆EB = −cF
cB

∫ ∞

0

kdk

16π
I1V

2
0 . (C13)

In this equation, the Fourier transform of the fake boson background is

V0(k) =

∫ ∞

0
ρ dρV (ρ)J0(kρ) = m2ρ20

8− k2ρ20[
4 + k2ρ20

] 5
2

. (C14)

For the numerical test mentioned after eq. (50) we vary ρ0 and verify that the vacuum polarization

energy does not change.
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3. On–shell renormalization

We parameterize the counterterm coefficients in dimensional regularization

cs = −i
( µ

m

)4−D
∫

dDl

(2π)D
(
l2 − 1 + iǫ

)−2
+ cs , (C15)

for s = 1, . . . , 4. In the MS scheme, c1 = c2 = c4 = 0, while the on–shell conditions discussed in

the main text yield

c1 = − 1

12

g2

(4π)2

{
1 + 6

∫ 1

0
dxx (1− x)

[
2ln

[
1− x(1− x)µ2

W

]
− x(1− x)µ2

W

1− x(1− x)µ2
W

]}

c2 =
2f2

(4π)2

{
2

3
+ 6

∫ 1

0
dxx (1− x) ln

[
1− x(1− x)µ2

H

]}

c4 = − f4

2 (4π)2

{
µ2
H + 6

∫ 1

0
dx ln

[
1− x(1− x)µ2

H

]}
. (C16)

We recall that the no–tadpole condition implies c3 = m4/(4π2 v2) = f2m2/(4π2). In this scheme,

the pole position of the gauge boson field is not prescribed but rather becomes a prediction. We

find an implicit equation for the gauge boson mass µW = mW /m:

µ2
W =

g2

2f2
+

g2

16π2

{
2

3
− µ2

W

[
1

6
− µ2

W

∫ 1

0
dx

x2(1− x)2

1− x(1− x)µ2
W

]

+6

∫ 1

0
dxx(1 − x)ln

[
1− x(1− x)µ2

W

]
−

∫ 1

0
dx ln

[
1− x(1− x)µ2

W

]
}
. (C17)

Appendix D: Landau ghost estimate

In the present treatment (without gauge boson loops) our model is not asymptotically free. This

results in unphysical poles of the renormalized propagators at large space–like momenta. These

so-called Landau poles are not real singularities but rather indicate the breakdown of our treatment

in certain momentum or parameter regimes. In the present model the problem has a notable effect

only for narrow background profiles and/or large coupling constants. We have implemented a

procedure similar to that of ref. [47] to verify a posteriori that the interesting configurations do

not suffer from this unphysical effect.

Specifically, we write the renormalized quadratic contribution to the energy per unit length

coming from the pseudoscalar component of the Higgs as

v2

2

∫
d2q

(2π)2
tr
[
p(q) p(−q)

]
G−1

p (q2)
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which involves the corresponding (inverse) propagator for space–like momenta,

G−1
p (q2) = q2 +

f2NC

8π2

{
q2 − 6q2

∫ 1

0
dxx(1 − x) ln

m2 + x(1− x)q2

m2 − x(1− x)m2
H

−2m2

∫ 1

0
dxx(1− x) ln

[
1 + x(1− x)

q2

m2

]}
. (D1)

In the vicinity of the Landau pole (q2 ∼ m2
G) this propagator has the expansion

G−1
p (q2) ∼ 1

ZG

(
q2 −m2

G

)
, (D2)

where

ZG =


∂G−1

p (q2)

∂q2

∣∣∣∣∣
q2=m2

G




−1

(D3)

is the residue of the pole. This allows us to remove the Landau pole explicitly by introducing

∆−1
p (q2) =

[
1

G−1
p (q2)

− ZG

q2 −m2
G

]−1

. (D4)

We eliminate the artificial ghost contribution associated with the Higgs field from the energy in

chirally symmetric way

E
(H)
G =

∫
d2q

(2π)2

[
1

q2
∆−1

p (q2)

]
(Dµφ)

T (−q) (Dµφ) (q) . (D5)

To study the effect of the Landau ghost, this quantity should be compared to the same contribution

without the Landau ghost removal in eq. (D4), which we call E(H).

In the same way, we can treat the gauge boson contribution to the renormalized energy per unit

length,

E(W ) =
1

2

∫
d2q

(2π)2
tr
[
Wµν(q)W

µν(−q)
]
G−1

W (q2) (D6)

where Wµν(q) denotes the Fourier transform of the field strength tensor for the static background,

eqs. (5) and (8), while

G−1
W (q2) = 1 +

NCg
2

16π2

∫ 1

0
dxx(1 − x) ln

m2 + x(1− x)q2

m2 − x(1− x)m2
W

(D7)

describes the inverse gauge field propagator for space–like momenta. Again, this propagator has a

pole at q2 = m̄2
G with residue Z̄G which we remove by defining the subtracted inverse propagator

∆−1
W (q2) =

[
1

G−1
W (q2)

− Z̄G

q2 − m̄2
G

q2

m̄2
G

]−1

. (D8)
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wG = wH E(H) + E(W ) E
(H)
G + E

(W )
G

0.1 -15.597 3.220

0.5 -0.168 0.209

2.0 0.041 0.082

4.0 0.061 0.077

6.0 0.068 0.077

8.0 0.070 0.077

TABLE VIII: Landau ghost removal for g = f = 10. As an example we have chosen ξ1 = 0.3π.

The Landau ghost eliminated gauge field energy then becomes

E
(W )
G =

1

2

∫
d2q

(2π)2
tr
[
Wµν(q)W

µν(−q)
]
∆−1

W (q2) . (D9)

Asymptotic freedom implies that the Landau poles at large spacelike momentum in the various

propagators should disappear at any order in perturbation theory, and also in the full theory. We

therefore expect that the difference between E(H) +E(W ) and E
(H)
G +E

(W )
G is small whenever the

effect of the unphysical Landau ghost in our model can be safely ignored. For the model parameters

that we found interesting, g = 0.72 and f ≈ 2, this condition is indeed satisfied since the relative

difference between E(H) + E(W ) and E
(H)
G + E

(W )
G is only a fraction of a percent even for narrow

configurations with wG = wH = 0.1.

To see that there are indeed background potentials where the Landau ghost contribution is

sizeable, we present the same comparison between E(H) + E(W ) and E
(H)
G + E

(W )
G for g = f = 10

in table VIII. We observe that the Landau ghost causes the well–known instability for narrow

configurations and large couplings [48]. However, for wider configurations its effect is moderate

even when the coupling is large. It should be emphasized that the present approach to the Landau

ghost problem is only qualitative since the energy expressions (D2) and (D6) are not rigorous.

However, the present method convinces us that the configurations discussed in the main body of

this article do not suffer from this problem.

[1] M.B. Hindmarsh and T.W.B. Kibble, Rept. Prog. Phys. 58 (1994) 477.

[2] T.W.B. Kibble, J. Phys. A 9 (1976) 1387.

[3] A. Vilenkin and E.P.S. Shellard, Cosmic Strings and other Topological Defects, Cambridge University

Press, Cambridge (UK), 1994.

[4] S. Perlmutter et al. [Supernova Cosmology Project Collaboration], Astrophys. J. 517 (1999) 565.



48

[5] A. G. Riess et al. [Supernova Search Team Collaboration], Astron. J. 116 (1998) 1009.

[6] T. Vachaspati, Phys. Rev. Lett. 68 (1992) 1977 [Erratum-ibid. 69 (1992) 216].

[7] A. Achucarro and T. Vachaspati, Phys. Rept. 327 (2000) 347.

[8] Y. Nambu, Nucl. Phys. B 130 (1977) 505.

[9] A. Achucarro and C. J. A. Martins, arXiv:0811.1277 [astro-ph].

[10] E. J. Copeland and T. W. B. Kibble, Proc. Roy. Soc. Lond. A 466 (2010) 623.

[11] R.H. Brandenberger and A. Davis, Phys. Lett. B 308 (1993) 79.

[12] R.H. Brandenberger, A. Davis and M. Trodden, Phys. Lett. B 335 (1994) 123.

[13] K. Kajantie, M. Laine, K. Rummukainen, and M. E. Shaposhnikov, Phys. Rev. Lett. 77 (1996) 2887.

K. Rummukainen, M. Tsypin, K. Kajantie, M. Laine, and M. E. Shaposhnikov, Nucl. Phys. B 532

(1998) 283.

F. Csikor, Z. Fodor, and J. Heitger, Phys. Rev. Lett. 82 (1999) 21.

[14] C. Grojean, G. Servant, and J. D. Wells, Phys. Rev. D 71 (2005) 036001.

A. Menon, D. E. Morrissey, and C. E. M. Wagner, Phys. Rev. D 70 (2004) 035005.

[15] E. D’Hoker and E. Farhi, Nucl. Phys. B 248 (1984) 59.

[16] E. D’Hoker and E. Farhi, Nucl. Phys. B 248 (1984) 77.

[17] S. G. Naculich, Phys. Rev. Lett. 75 (1995) 998.

[18] F. R. Klinkhamer and C. Rupp, J. Math. Phys. 44 (2003) 3619.

[19] G. Starkman, D. Stojkovic, and T. Vachaspati, Phys. Rev. D 65 (2002) 065003.

G. Starkman, D. Stojkovic, and T. Vachaspati, Phys. Rev. D 63 (2001) 085011.

D. Stojkovic, Int. J. Mod. Phys. A 16S1C (2001) 1034.

[20] M. Groves and W. B. Perkins, Nucl. Phys. B 573 (2000) 449.

[21] H. B. Nielsen and P. Olesen, Nucl. Phys. B 61 (1973) 45.

[22] M. Bordag and I. Drozdov, Phys. Rev. D 68 (2003) 065026.

[23] J. Baacke and N. Kevlishvili, Phys. Rev. D 78 (2008) 085008.

[24] M. Lilley, F. Di Marco, J. Martin, and P. Peter, Phys. Rev. D 82 (2010) 023510.
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