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This paper discusses the quantum mechanics of closed timelike curves (CTCs) and of other po-
tential methods for time travel. We analyze a specific proposal for such quantum time travel, the
quantum description of CTCs based on post-selected teleportation (P-CTCs). We compare the the-
ory of P-CTCs to previously proposed quantum theories of time travel: the theory is inequivalent
to Deutsch’s theory of CTCs, but it is consistent with path-integral approaches (which are the best
suited for analyzing quantum field theory in curved spacetime). We derive the dynamical equations
that a chronology-respecting system interacting with a CTC will experience. We discuss the possi-
bility of time travel in the absence of general relativistic closed timelike curves, and investigate the
implications of P-CTCs for enhancing the power of computation.
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Einstein’s theory of general relativity allows the exis-
tence of closed timelike curves, paths through spacetime
that, if followed, allow a time traveler – whether human
being or elementary particle – to interact with her for-
mer self. The possibility of such closed timelike curves
(CTCs) was pointed out by Kurt Gödel [1], and a variety
of spacetimes containing closed timelike curves have been
proposed [2, 3]. As in all versions of time travel, closed
timelike curves embody apparent paradoxes, such as the
grandfather paradox, in which the time traveller inad-
vertently or on purpose performs an action that causes
her future self not to exist. Einstein (a good friend of
Gödel) was himself seriously disturbed by the discovery
of CTCs [4].

Reconciling closed timelike curves with quantum me-
chanics is a difficult problem that has been addressed re-
peatedly, for example, using path integral techniques [5–
10]. This paper explores a particular version of closed
timelike curves based on combining quantum telepor-
tation with post-selection. The resulting post-selected
closed timelike curves (P-CTCs) provide a self-consistent
picture of the quantum mechanics of time-travel. P-
CTCs offer a theory of closed timelike curves that is
inequivalent to other Hilbert-space based theories, e.g.,
that of Deutsch [11]. Because the theory of P-CTCs rely
on post-selection, they provide self-consistent resolutions
to such paradoxes: anything that happens in a P-CTC
can also happen in conventional quantum mechanics with
some probability. Similarly, the post-selected nature of
P-CTCs allows the predictions and retrodictions of the
theory to be tested experimentally, even in the absence
of an actual general-relativistic closed timelike curve.

To provide our unifying description of closed timelike
curves in quantum mechanics, we start from the pre-
scription that time travel effectively represents a com-

munication channel from the future to the past. Quan-
tum time travel, then, should be described by a quan-
tum communication channel to the past. A well-known
quantum communication channel is given by quantum
teleportation, in which shared entanglement combined
with quantum measurement and classical communica-
tion allows quantum states to be transported between
sender and receiver. We show that if quantum teleporta-
tion is combined with post-selection, then the result is a
quantum channel to the past. The entanglement occurs
between the forward- and backward- going parts of the
curve, and post-selection replaces the quantum measure-
ment and obviates the need for classical communication,
allowing time travel to take place. The resulting theory
allows a possible description of the quantum mechanics
of general relativistic closed timelike curves.

The two basic types of paradoxes that arise in time
travel to the past are the grandfather paradox, in which
the time traveller, accidentally or on purpose, kills her
grandfather as young man before he as had any children.
So she does not exist; so she can’t go to the past and
kill her grandfather, etc. Phrased in physical terms, the
grandfather paradox is essentially an issue of the self-
consistency of dynamics in the presence of closed time-
like curves. The second type of paradox is based on the
unproved theorem paradox, in which the time traveller
reads an elegant proof of a theorem in a book. Going
back in time, she shows the proof to a mathematician,
who decides to include the proof in his book. The book,
of course, is the same book in which she read the theorem
in the first place. Phrased in terms of physical law, the
unproved theorem paradox raises issues of indeterminacy.
Spacetimes that possess closed timelike curves typically
do not possess Cauchy surfaces: the behavior of particles
and fields cannot be obtained simply by specifying initial
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conditions and integrating the equations of motion over
time. Both the grandfather paradox and the unproved
theorem paradox give rise to physical issues which must
be resolved in a quantum theory of CTCs.

Although Einstein’s theory of general relativity implic-
itly allows travel to the past, it took several decades be-
fore Gödel proposed an explicit space-time geometry con-
taining closed timelike curves (CTCs). The Gödel uni-
verse consists of a cloud of swirling dust, of sufficient
gravitational power to support closed timelike curves.
Later, it was realized that closed timelike curves are a
generic feature of highly curved, rotating spacetimes: the
Kerr solution for a rotating black hole contains closed
timelike curves within the black hole horizon; and mas-
sive rapidly rotating cylinders typically are associated
with closed timelike curves [2, 9, 12]. The topic of closed
timelike curves in general relativity continues to inspire
debate: Hawking’s chronology protection postulate, for
example, suggests that the conditions needed to create
closed timelike curves cannot arise in any physically re-
alizable spacetime [13]. For example, while Gott showed
that cosmic string geometries can contain closed time-
like curves [3], Deser et al. showed that physical cosmic
strings cannot create CTCs from scratch [14, 15].

At bottom, the behavior of matter is governed by the
laws of quantum mechanics. Considerable effort has gone
into constructing quantum mechanical theories for closed
timelike curves. The initial efforts to construct such the-
ories involved path integral formulations of quantum me-
chanics. Hartle and Politzer pointed out that in the pres-
ence of closed timelike curves, the ordinary correspon-
dence between the path-integral formulation of quantum
mechanics and the formulation in terms of unitary evolu-
tion of states in Hilbert space breaks down [6, 8]. Morris
et al. explored the quantum prescriptions needed to con-
struct closed timelike curves in the presence of worm-
holes, bits of spacetime geometry that, like the han-
dle of a coffee cup, ‘break off’ from the main body of
the universe and rejoin it in the the past [5]. Mean-
while, Deutsch formulated a theory of closed timelike
curves in the context of Hilbert space, by postulating
self-consistency conditions for the states that enter and
exit the closed timelike curve [11].

General relativistic closed timelike curves provide one
potential mechanism for time travel, but they need not
provide the only one. For example, even in the context
of special relativity, faster-than-light-communication is
known to generate temporal paradoxes and causal loops
(e.g. see [16] for a recent review). Nonetheless, quan-
tum mechanics supports a variety of counter-intuitive
phenomena which might allow time travel even in the
absence of a closed timelike curve in the geometry of
spacetime. One of the best-known versions of non-general
relativistic quantum versions of time travel comes from
Wheeler, as described by Feynman in his Nobel Prize
lecture [17]. As we will see, post-selected closed timelike
curves make up a precise physical theory which instanti-
ates Wheeler’s whimsical idea.

As described in previous work [18], the notion that
entanglement and projection can give rise to closed time-
like curves to has arisen independently in a variety of
contexts. This combination lies at the heart of the
Horowitz-Maldacena model for information escape from
black holes [19–22], and Gottesman and Preskill note
in passing that this mechanism might be used for time
travel [21]. Pegg explored the use of a related mecha-
nism for ‘probabilistic time machines’ [23]. Bennett and
Schumacher have explored similar notions in unpublished
work [24]. Laforest, Baugh, and Laflamme analyzed their
proposal, its consistency with the tensor product struc-
ture, and a proof-of-principle experiment that tests the
symmetry of information flow and of apparent causal-
ity breaking [25]. Coecke [26] studies the symmetry of
information flow using entanglement as mediation, and
interpreting entanglement as sending information back
in time in such a way that the information sent back in
time is altered depending on the outcome of a (future)
Bell measurement. Ralph suggests using teleportation
for time traveling, although in a different setting, namely,
displacing the entangled resource in time [27]. Svetlichny
describes experimental techniques for investigating quan-
tum travel based on entanglement and projection [28].
Chiribella et al. consider this mechanism while analyz-
ing extensions to the quantum computational model [29].
Brukner et al. have analyzed probabilistic teleportation
(where only the cases in which the Bell measurement
yields the desired result are retained) as a computational
resource in [30]. Greenberger and Svozil [31] show how
the grandfather paradox can be solved using quantum in-
terference when feedback backward-in-time is allowed us-
ing unitary couplings similar to beam-splitters: one can
set up the quantum interference in this interferometer-
analogue such that self-contradictory events cannot hap-
pen. In [32] it is shown that the existence of time travel
paradoxes would lead to violations in the probability
rules in a simple finite-state model.

The outline of the paper follows. In Sec. I we describe
P-CTCs and Deutsch’s mechanism in detail, emphasiz-
ing the differences between the two approaches. Then,
in Sec. II we relate P-CTCs to the path-integral for-
mulation of quantum mechanics. This formulation is
particularly suited for the description of quantum field
theory in curved spacetime [33], and has been used be-
fore to provide quantum descriptions of closed timelike
curves [6–8, 10, 34–37]. Our proposal is consistent with
these path-integral approaches. In particular, the path-
integral description of fermions using Grassmann fields
given by Politzer [6] yields a dynamical description which
coincides with ours for systems of quantum bits. Other
descriptions, such as Hartle’s [8], are more difficult to
compare as they do not provide an explicit prescription
to calculate the details of the dynamics of the interaction
with systems inside closed timelike curves. In any case,
their general framework is consistent with our deriva-
tions. By contrast, Deutsch’s CTCs are not compatible
with the Politzer path-integral approach, and are ana-
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lyzed by him on a different footing [6]. Indeed, suppose
that the path integral is performed over classical paths
which agree both at the entrance to– and at the exit
from– the CTC, so that x-in, p-in are the same as x-
out, p-out. Similarly, in the Grassmann case, suppose
that spin-up along the z axis at the entrance emerges as
spin-up along the z axis at the exit. Then, the quan-
tum version of the CTC must exhibit the same perfect
correlation between input and output. But, as the grand-
father paradox experiment [18] shows, Deutsch’s CTCs
need not exhibit such correlations: spin-up in is mapped
to spin-down out (although the overall quantum state
remains the same). By contrast, P-CTCs exhibit per-
fect correlation between in- and out- versions of all vari-
ables. Note that a quantum-field theoretical justification
of Deutsch’s solution is proposed in [38, 39] and is based
on introducing additional Hilbert subspaces for particles
and fields along the geodesic: observables at different
points along the geodesic commute because they act on
different Hilbert spaces.
The path-integral formulation also shows that using P-

CTCs it is impossible to assign a well defined state to the
system in the CTC. This is a natural requirement (or, at
least, a desirable property), given the cyclicity of time
there. In contrast, Deutsch’s consistency condition (2)
is explicitly built to provide a prescription for a definite
quantum state ρCTC of the system in the CTC.
In Sec. III we go beyond the path-integral formula-

tion and provide the dynamical evolution formulas in the
context of generic quantum mechanics (the Hilbert-space
formulation). Namely, we treat the CTC as a generic
quantum transformation, where the transformed system
emerges at a previous time “after” eventually interacting
with some chronology-respecting systems that are exter-
nal to the CTC. In this framework we obtain the explicit
prescription of how to calculate the nonlinear evolution
of the state of the system in the chronology-respecting
part of the spacetime. This nonlinearity is exactly of the
form that previous investigations (e.g. Hartle’s [8]) have
predicted.
In Sec. IV we consider time travel situations that are

independent from general-relativistic CTCs. We then
conclude in Sec. V with considerations on the compu-
tational power of the different models of CTCs.

I. P-CTCS AND DEUTSCH’S CTCS

Any quantum theory of gravity will have to propose
a prescription to deal with the unavoidable [8] nonlin-
earities that plague CTCs. This requires some sort of
modification of the dynamical equations of motions of
quantum mechanics that are always linear. Deutsch
in his seminal paper [11] proposed one such prescrip-
tion, based on a self-consistency condition referred to
the state of the systems inside the CTC. Deutsch’s the-
ory has recently been critiqued by several authors as
exhibiting self-contradictory features [38–41]. By con-

trast, although any quantum theory of time travel quan-
tum mechanics is likely to yield strange and counter-
intuitive results, P-CTCs appear to be less pathologi-
cal [18]. They are based on a different self-consistent
condition that states that self-contradictory events do
not happen (Novikov principle [34]). Pegg points out
that this can arise because of destructive interference of
self-contradictory histories [23]. Here we further com-
pare Deutsch’s and post-selected closed timelike curves,
and give an in-depth analysis of the latter, showing how
they can be naturally obtained in the path-integral for-
mulation of quantum theory and deriving the equations
of motions that describe the interactions with CTCs. As
noted, in addition to general-relativistic CTCs, our pro-
posed theory can also be seen as a theoretical elaboration
of Wheeler’s assertion to Feynman that ‘an electron is a
positron moving backward in time’ [17]. In particular,
any quantum theory which allows the nonlinear process
of post-selection supports time travel even in the absence
of general-relativistic closed timelike curves.
The mechanism of P-CTCs [18] can be summarized by

saying that they behave exactly as if the initial state of
the system in the P-CTC were in a maximal entangled
state (entangled with an external purification space) and
the final state were post-selected to be in the same entan-
gled state. When the probability amplitude for the tran-
sition between these two states is null, we postulate that
the related event does not happen (so that the Novikov
principle [34] is enforced). As we will show in the follow-
ing, this is equivalent to requiring that the time evolution
of the system external to the CTC is given by

N [ρ] ∝ CA ρ CA
† , (1)

where CA = TrE[UAE ] is the partial trace, over the
Hilbert space E of the system in the CTC, of the unitary
evolution UAE that couples it to the external system. To
enforce the Novikov principle, we also have to suppose
that the evolution described in (1) will not take place if
the right hand side is null [63]. A formulation equivalent
to Eq. (1) consists in requesting that a pure state |ψ〉
evolves to |ψ′〉 ∝ CA|ψ〉 (when this in not a null vector).
This will be derived below also using the path integral
formulation of quantum theory, by showing that the tran-
sition amplitude from an initial state |ψ〉 to an arbitrary
final state |F 〉 is proportional to 〈F |TrE [UAE ]|ψ〉.
By contrast, Deutsch’s CTCs are based on imposing

the consistency condition

ρCTC = TrA[U(ρA ⊗ ρCTC)U
†], (2)

where ρCTC is the state of the system inside the closed
timelike curve, ρA is the state of the system outside
(i.e. of the chronology-respecting part of spacetime), U is
the unitary transformation that is responsible for even-
tual interactions among the two systems, and where the
trace is performed over the chronology-respecting system.
The existence of a state ρ that satisfies (2) is ensured by
the fact that any completely-positive map of the form
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L[ρ] = TrA[U(ρA ⊗ ρ)U †] always has at least one fixed
point ρ (or, equivalently, one eigenvector ρ with eigen-
value one). If more than one state ρCTC satisfies the
consistency condition (2), Deutsch separately postulates
a “maximum entropy rule”, requesting that the maxi-
mum entropy one must be chosen. Note that Deutsch’s
formulation assumes that the state exiting the CTC in
the past is factorized with the chronology-preserving vari-
ables (the properties pertaining to systems that are exter-
nal to all CTCs) at that time: the time-traveler’s ‘mem-
ories’ of events in the future are no longer valid.
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FIG. 1: Description of closed timelike curves through telepor-
tation. a) Conventional teleportation: Alice and Bob start
from a maximally entangled state shared among them rep-
resented by “

⋃
”. Alice performs a Bell measurement M on

her half of the shared state and on the unknown state |ψ〉 she
wants to transmit. This measurement tells her which entan-
gled state the two systems are in. She then communicates
(dotted line) the measurement result to Bob who performs a
unitary V on his half of the entangled state, obtaining the ini-
tial unknown state |ψ〉. The numbers refer to the systems as
indicated by the subscripts in Eq. (3). b) Post-selected tele-
portation: the system in state |ψ〉 and half of the Bell state
“
⋃
” are projected onto the same Bell state “

⋂
”. This means

that the other half of the Bell state is projected into the initial
state of the system |ψ〉 even before this state is available.

The primary conceptual difference between Deutsch’s
CTCs and P-CTCs lies in the self-consistency condition
imposed. Consider a measurement that can be made ei-
ther on the state of the system as it enters the CTC,
or on the state as it emerges from the CTC. Deutsch
demands that these two measurements yield the same
statistics for the CTC state alone: that is, the density
matrix of the system as it enters the CTC is the same as
the density matrix of the system as it exits the CTC. By
contrast, we demand that these two measurements yield
the same statistics for the CTC state together with its

correlations with any chronology preserving variables. It
is this demand that closed timelike curves respect both
statistics for the time-traveling state together with its
correlations with other variables that distinguishes P-
CTCs from Deutsch’s CTCs. The fact that P-CTCs re-
spect correlations effectively enforces the Novikov prin-
ciple [34], and, as will be seen below, makes P-CTCs
consistent with path-integral approaches to CTCs.
The connection between P-CTCs and teleporta-

tion [42] is illustrated (see Fig. 1) with the following sim-
ple example that employs qubits (extensions to higher

dimensional systems are straightforward). Suppose that

the initial Bell state is |Ψ(−)〉 = (|01〉−|10〉)/
√
2 (but any

maximally entangled Bell state will equivalently work),
and suppose that the initial state of the system enter-
ing the CTC is |ψ〉. Then the joint state of the three
systems (system 1 entering the CTC, system 2 emerging
from the CTC, and system 3, its purification) is given
by |ψ〉1|Ψ(−)〉23. These three systems are denoted by the
three vertical lines of Fig. 1b. It is immediate to see that
this state can be also written as

(−|Ψ(−)〉13|ψ〉2 − |Ψ(+)〉13σz |ψ〉2 +
|Φ(−)〉13σx|ψ〉2 + i|Φ(+)〉13σy|ψ〉2)/2 , (3)

where |Ψ(±)〉 = (|01〉 ± |10〉)/
√
2 and |Φ(±)〉 = (|00〉 ±

|11〉)/
√
2 are the four states in a Bell basis for qubit sys-

tems and σαs are the three Pauli matrices. Eq. (3) is
equivalent to Eq. (5) of Ref. [42], where the extension to
higher dimensional systems is presented (the extension
to infinite dimensional systems is presented in [43]). It is
immediate to see that, if the system 1 entering the CTC
together with the purification system 3 are post-selected
to be in the same Bell state |Ψ(−)〉13 as the initial one,
then only the first term of Eq. (3) survives. Apart from
an inconsequential minus sign, this implies that the sys-
tem 2 emerging from the CTC is in the state |ψ〉2, which
is exactly the same state of the system that has entered
(rather, will enter) the CTC.

It seems that, based on what is currently known on
these two approaches, we cannot conclusively choose P-
CTCs over Deutsch’s, or vice versa. Both arise from
reasonable physical assumptions and both are consistent
with different approaches to reconciling quantum me-
chanics with closed timelike curves in general relativity.
A final decision on which of the two is “actually the case”
may have to be postponed to when a full quantum the-
ory of gravity is derived (which would allow to calculate
from first principles what happens in a CTC) or when
a CTC is discovered that can be tested experimentally.
However, because of the huge recent interest on CTCs
in physics and in computer science (e.g. see [40, 41, 44–
48]), it is important to point out that there are reason-
able alternatives to the leading theory in the field. We
also point out that our post-selection based description of
CTCs seems to be less pathological than Deutsch’s: for
example P-CTCs have less computational power and do
not require to separately postulate a “maximum entropy
rule” [18]. Therefore, they are in some sense preferable,
at least from an Occam’s razor perspective. Independent
of such questions of aesthetic preference, as we will now
show, P-CTCs are consistent with previous path integral
formulations of closed timelike curves, whereas Deutsch’s
CTCs are not.
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II. P-CTCS AND PATH INTEGRALS

Path integrals [49, 50] allow one to calculate the tran-
sition amplitude for going from an initial state |I〉 to a

final state |F 〉 as an integral over paths of the action, i.e.

〈F | exp(− i
~
Hτ)|I〉 =

∫ +∞

−∞

dx dy I(x) F ∗(y)

∫ y

x

Dx(t) exp[ i
~
S], where S =

∫ τ

0

dtL(x, ẋ) , (4)

and where L is the Lagrangian, H the Hamiltonian, S is the action, I(x) and F (x) are the position representations of
|I〉 and |F 〉 respectively (i.e. |I〉 =

∫

dx I(x)|x〉), and the paths in the integration over paths— indicated by
∫

Dx(t)–
all start in x and end in y. Of course in this form it is suited only to describing the dynamics of a particle in space
(or a collection of particles). It will be extended to other systems in the next section.
In order to add a CTC, we first divide the spacetime into two parts,

〈F |C〈F ′| exp(− i
~
Hτ)|I〉|I ′〉C =

∫ +∞

−∞

dx dxCdy dyC I(x) I ′(xC) F
∗(y) F ′∗(yC)

∫ y,yC

x,xC

Dx(t) exp[ i
~
S] , (5)

where the first part will represent the chronology-respecting system outside the CTC, and the second part (indi-
cated with the subscript C) will represent the system in the CTC, once appropriate conditions are enforced. The
“conventional” strategy to deal with CTCs using path integrals is to send the system C to a prior time unchanged
(i.e. with the same values of x, ẋ), while the other system (the chronology-respecting one) evolves normally. This is
enforced by imposing periodic boundary conditions on the CTC boundaries. Namely, the probability amplitude for
the chronology-respecting system is

〈F | exp(− i
~
Hτ)|I〉 ∝

∫ +∞

−∞

dx dxCdy dyC I(x) F ∗(y) δ(xC − yC)

∫ y,yC

x,xC

Dx(t) exp[ i
~
S] , (6)

where the δ-function ensures that the initial and final boundary conditions in the CTC system are the same. Note that
we have removed I ′(xC) and F ′(yC), but we are coherently adding all possible initial and final conditions (through
the xC and yC integrals). This implies that it is not possible to assign a definite state to the system inside a CTC: one
could consistently assign to the system any possible state that is compatible with the (periodic) boundary conditions.
Note also that the boundary conditions of Eq. (6) have previously appeared in the literature (e.g. see [10] and, in the
classical context, in the seminal paper [51]).

To show that Eq. (6) is the same formula that one obtains using post-selected teleportation, we have to calculate
〈F |〈Ψ| exp(− i

~
Hτ) ⊗ 11|I〉|Ψ〉, where |Ψ〉 is a maximally entangled state in position and where the Hamiltonian acts

only on the system and on the first of the two Hilbert spaces of |Ψ〉. As a maximally entangled state in position we use
the EPR [52] state |Ψ〉 ∝

∫

dx|xx〉. Since this state is non-normalizable, a rigorous treatment requires a regularization
and will be given in the Appendix. Here we employ the non-normalizable EPR state |Ψ〉 just to provide the idea
behind the proof. Use Eq. (5) for the system and for the first Hilbert space of |Ψ〉 to obtain

〈F |〈Ψ| exp(− i
~
Hτ) ⊗ 11|I〉|Ψ〉 ∝

∫ +∞

−∞

dx dx′dy dy′dz dz′ I(x) F ∗(y) δ(x′ − z) δ(y′ − z′)〈z|11|z′〉

×
∫ y,y′

x,x′

Dx(t) exp[ i
~
S] =

∫ ∞

−∞

dxdx′dydy′I(x)F ∗(y) δ(x′ − y′)

∫ y,y′

x,x′

Dx(t) exp
[

i
~
S
]

, (7)

where we have used the position representation

〈Ψ| ∝
∫

dx′ dz δ(x′ − z)〈x′|〈z| and

|Ψ〉 ∝
∫

dy′ dz′ δ(y′ − z′)|y′〉|z′〉 ,

with 〈z|z′〉 = δ(z − z′). Note that this result is indepen-
dent of the particular form of the EPR state |Ψ〉 as long
as it is maximally entangled in position (and hence in
momentum).

All the above discussion holds for initial and final pure
states. However, the extension to mixed states in the
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path-integral formulation is straightforward: one only
needs to employ appropriate purification spaces [53, 54].
The formulas then reduce to the previous ones.
Here we briefly comment on the two-state vector for-

malism of quantum mechanics [55, 56]. It is based on
post-selection of the final state and on renormalizing the
resulting transition amplitudes: it is a time-symmetrical
formulation of quantum mechanics in which not only the
initial state, but also the final state is specified. As such,
it shares many properties with our post-selection based
treatment of CTCs. In particular, in both theories it
is impossible to assign a definite quantum state at each
time: in the two-state formalism the unitary evolution
forward in time from the initial state might give a dif-
ferent mid-time state with respect to the unitary evolu-
tion backward in time from the final state. Analogously,
in a P-CTC, it is impossible to assign a definite state
to the CTC system at any time, given the cyclicity of
time there. This is evident, for example, from Eq. (6):
in the CTC system no state is assigned, only periodic
boundary conditions. Another aspect that the two-state
formalism and P-CTCs share is the nonlinear renormal-
ization of the states and probabilities. In both cases this
arises because of the post-selection. In addition to the
two-state formalism, our approach can also be related to
weak values [55, 57], since we might be performing mea-
surements between when the system emerges from the
CTC and when it re-enters it. Considerations analogous
to the ones presented above apply. It would be a mistake,

however, to think that the theory of post-selected closed
timelike curves in some sense requires or even singles out
the weak value theory. Although the two are compati-
ble with each other, the theory of P-CTCs is essentially
a ‘free-standing’ theory that does not give preference to
one interpretation of quantum mechanics over another.

III. GENERAL SYSTEMS

The formula (6) was derived in the path-integral for-
mulation of quantum mechanics, but it can be easily ex-
tended to generic quantum evolution.
We start by recalling the usual Kraus decomposition

of a generic quantum evolution (that can describe the
evolution of both isolated and open systems). It is given
by

L[ρ] = TrE [U(ρ⊗ |e〉〈e|)U †] =
∑

i

BiρB
†
i , (8)

where |e〉 is the initial state of the environment (or,
equivalently, of a putative abstract purification space),
U is the unitary operator governing the interaction be-
tween system initially in the state ρ and environment,
and Bi ≡ 〈i|U |e〉 is the Kraus operator ({|i〉} being an
arbitrary basis for the Hilbert space of the environment).
In contrast, the evolution of our post-selected teleporta-
tion scheme is given by

ρA → TrEE′

[(

UAE ⊗ 11E′

)(

ρA ⊗ |Ψ〉EE′〈Ψ|
)(

U †
AE ⊗ 11E′

)(

11A ⊗ |Ψ〉EE′〈Ψ|
)]

=
∑

lE ,l′
E

〈lE |UAE |lE〉 ρA 〈l′E |U †
AE |l′E〉 = CA ρA CA

†, (9)

where CA ≡TrE[UAE ], {|lE〉} is a set of basis states, and
|Ψ〉EE′ ∝ ∑

l |l〉E|l〉E′ (or any other maximally entan-
gled state, which would give the same result). In Eq. (9)
the subscript A refers to the Hilbert space of the exter-
nal system, and E and E′ to the Hilbert spaces of the
forward- and backward- propagating parts of the CTC.
Note that CA is equal to one of the Kraus operators Bi of
the system, as can be immediately seen by choosing a ba-
sis {|i〉} of the EE′ Hilbert space that contains the state
|Ψ〉 as one of its elements. The evolution in (9) does not
preserve the state’s normalization because of the post-
selection entailed by the projection onto the final state
|Ψ〉EE′ . Then, we need to renormalize the final state,
introducing a nonlinearity: according to our approach, a
chronology-respecting system in a state ρ that interacts
with a CTC using a unitary U will undergo the nonlinear
transformation

N [ρ] = CA ρ CA
†/Tr[CA ρ CA

†] , (10)

where we suppose that this evolution is impossible when-
ever TrA[CA ρ CA

†] = 0. More specifically, all evolutions
that would lead to a vanishing denominator in Eq. (10)
are forbidden: they cannot happen (e.g. see also [23]).
An equivalent condition is to request that the evolution

is possible if and only if C†
ACA is a strictly positive op-

erator.

The comparison with (8) is instructive: there the non-
unitarity comes from the inaccessibility of the environ-
ment. Analogously, in (10) the non-unitarity comes from
the fact that, after the CTC is closed, for the chronology-
respecting system it will be forever inaccessible. The
nonlinearity of (10) is more difficult to interpret, but is
connected with the periodic boundary conditions in the
CTC. Note that this general evolution equation (10) is
consistent with previous derivations based on path inte-
grals. For example, it is equivalent to Eq. (4.6) of Ref. [8]
by Hartle. However, in contrast to here, the actual form
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of the evolution operators C is not provided there. As
a further example, consider Ref. [6], where Politzer de-
rives a path integral approach of CTCs for qubits, using
Grassmann fields. His Eq. (5) is compatible with Eq. (9).
He also derives a nonunitary evolution that is consistent
with Eq. (10) in the case in which the initial state is pure.
In particular, this implies that, also in the general qudit
case, our post-selected teleportation approach gives the
same result one would obtain from a specific path-integral
formulation. In addition, it has been pointed out many
times before (e.g. see [35, 58]) that when quantum fields
inside a CTC interact with external fields, linearity and
unitarity is lost. It is also worth to notice that there have
been various proposals to restore unitarity by modifying
the structure of quantum mechanics itself or by postu-
lating an inaccessible purification space that is added to
uphold unitarity [59, 60].
The evolution (10) coming from our approach is to be

compared with Deutsch’s evolution,

D[ρ] = TrE [U(ρ⊗ ρCTC)U
†], (11)

where

ρCTC = TrA[U(ρ⊗ ρCTC)U
†] (12)

satisfies the consistency condition and where the trace in
(11) refers to the degrees of freedom inside the CTC. The
direct comparison of Eqs. (10) and (12) highlights the
differences in the general prescription for the dynamics
of CTCs of these two approaches.
Even though the results presented in this section

are directly applicable only to general finite-dimensional
systems, the extension to systems living in infinite-
dimensional separable Hilbert spaces seems conceptually
straightforward, although mathematically involved.
In his path-integral formulation of CTCs, Hartle notes

that CTCs might necessitate abandoning not only uni-
tarity and linearity, but even the familiar Hilbert space
formulation of quantum mechanics [8]. Indeed, the fact
that the state of a system at a given time can be writ-
ten as the tensor product states of subsystems relies cru-
cially on the fact that operators corresponding to space-
like separated regions of spacetime commute with each
other. When CTCs are introduced, the notion of ‘space-
like’ separation becomes muddied. The formulation of
closed timelike curves in terms of P-CTCs shows, how-
ever, that the Hilbert space structure of quantum me-
chanics can be retained.

IV. TIME TRAVEL IN THE ABSENCE OF

GENERAL-RELATIVISTIC CTCS

Although the theory of P-CTCs was developed to ad-
dress the question of quantum mechanics in general-
relativistic closed timelike curves, it also allows us to
address the possibility of time travel in other contexts.
Essentially, any quantum theory that allows the nonlin-
ear process of projection onto some particular state, such

as the entangled states of P-CTCs, allows time travel
even when no spacetime closed timelike curve exists. In-
deed, the mechanism for such time travel closely follows
Wheeler’s famous telephone call above. Non-general-
relativistic P-CTCs can be implemented by the creation
of and projection onto entangled particle-antiparticle
pairs. Such a mechanism is just what is used in our
experimental tests of P-CTCs [18]: although projection
is a non-linear process that cannot be implemented de-
terministically in ordinary quantum mechanics, it can
easily be implemented in a probabilistic fashion. Con-
sequently, the effect of P-CTCs can be tested simply by
performing quantum teleportation experiments, and by
post-selecting only the results that correspond to the de-
sired entangled-state output.
If it turns out that the linearity of quantum mechanics

is only approximate, and that projection onto particular
states does in fact occur – for example, at the singu-
larities of black holes [19–22] – then it might be possi-
ble to implement time travel even in the absence of a
general-relativistic closed timelike curve. The formalism
of P-CTCs shows that such quantum time travel can be
thought of as a kind of quantum tunneling backwards
in time, which can take place even in the absence of a
classical path from future to past.

V. COMPUTATIONAL POWER OF CTCS

It has been long known that nonlinear quantum me-
chanics potentially allows the rapid solution of hard prob-
lems such as NP-complete problems [61]. The nonlin-
earities in the quantum mechanics of closed timelike
curves is no exception [46–48]. Aaronson and Watrous
have shown quantum computation with Deutsch’s closed
timelike curves allows the solution of any problem in
PSPACE, the set of problems that can be solved using
polynomial space resources [46]. Similarly, Aaronson has
shown that quantum computation combined with post-
selection allows the solution of any problem in the com-
putational class PP, probabilistic polynomial time(where
a probabilistic polynomial Turing machine accepts with
probability 1

2 if and only if the answer is “yes.”). Quan-
tum computation with post-selection explicitly allows P-
CTCs, and P-CTCs in turn allow the performance of
any desired post-selected quantum computation. Ac-
cordingly, quantum computation with P-CTCs can solve
any problem in PP, including NP-complete problems.
Since the class PP is thought to be strictly contained in
PSPACE, quantum computation with P-CTCs is appar-
ently strictly less powerful than quantum computation
with Deutsch’s CTCs.
In the case of quantum computing with Deutschian

CTCs, Bennett et al. [40] have questioned whether the
notion of programming a quantum computer even makes
sense. Ref. [40] notes that in Deutsch’s closed timelike
curves, the nonlinearity introduces ambiguities in the def-
inition of state preparation: as is well-known in nonlin-
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FIG. 2: Closed timelike loops can collapse the time-depth
of any circuit to one, allowing to compute any problem not
merely efficiently, but instantaneously.

ear quantum theories, the result of sending either the
state |ψ〉 through a closed-timelike curve or the state
|φ〉 is no longer equivalent to sending the mixed state
(1/2)(|ψ〉〈ψ| + |φ〉〈φ|) through the curve. The prob-
lem with computation arises because, as is clear from
our grandfather-paradox circuit [18], Deutsch’s closed
timelike curves typically break the correlation between
chronology preserving variables and the components of a
mixed state that enters the curve: the component that
enters the CTC as |0〉 can exit the curve as |1〉, even if the
overall mixed state exiting the curve is the same as the
one that enters. Consequently, Bennett et al. argue, the
programmer who is using a Deutschian closed timelike
curve as part of her quantum computer typically finds
the output of the curve is completely decorrelated from
the problem she would like to solve: the curve emits ran-
dom states.
In contrast, because P-CTCs are formulated explicitly

to retain correlations with chronology preserving curves,
quantum computation using P-CTCs do not suffer from
state-preparation ambiguity. That is not so say that P-
CTCs are computationally innocuous: their nonlinear
nature typically renormalizes the probability of states in
an input superposition, yielding to strange and counter-
intuitive effects. For example, any CTC can be used
to compress any computation to depth one, as shown
in Fig. 2. Indeed, it is exactly the ability of nonlin-
ear quantum mechanics to renormalize probabilities from
their conventional values that gives rise to the amplifi-
cation of small components of quantum superpositions
that allows the solution of hard problems. Not least
of the counter-intuitive effects of P-CTCs is that they
could still solve hard computational problems with ease!
The ‘excessive’ computational power of P-CTCs is ef-
fectively an argument for why the types of nonlineari-
ties that give rise to P-CTCs, if they exist, should only
be found under highly exceptional circumstances such as
general-relativistic closed timelike curves or black-hole
singularities.

VI. CONCLUSIONS

This paper reviewed quantum mechanical theories for
time travel, focusing on the theory of P-CTCs [18]. Our
purpose in presenting this work is to make precise the
similarities and differences between varying quantum the-
ories of time travel. We summarize our findings here.

We have extensively argued that P-CTCs are inequiv-
alent to Deutsch’s CTCs. In Sec. II we showed that P-
CTCs are compatible with the path-integral formulation
of quantum mechanics. This formulation is at the basis
of most of the previous analysis of quantum descriptions
of closed time-like curves, since it is particularly suited
to calculations of quantum mechanics in curved space
time. P-CTCs are reminiscent of, and consistent with,
the two-state-vector and weak-value formulation of quan-
tum mechanics. It is important to note, however, that
P-CTCs do not in any sense require such a formulation.
Then, in Sec. III we extended our analysis to general
systems where the path-integral formulation may not al-
ways be possible and derived a simple prescription for the
calculation of the CTC dynamics, namely Eq. (10). In
this way we have performed a complete characterization
of P-CTC in the most commonly employed frameworks
for quantum mechanics, with the exception of algebraic
methods (e.g. see [62]).

In Sec. IV we have argued that, as Wheeler’s picture
of positrons as electrons moving backwards in time sug-
gests, P-CTCs might also allow time travel in spacetimes
without general-relativistic closed timelike curves. If na-
ture somehow provides the nonlinear dynamics afforded
by final-state projection, then it is possible for particles
(and, in principle, people) to tunnel from the future to
the past.

Finally, in Sec. V we have seen that P-CTCs are com-
putationally very powerful, though less powerful than the
Aaronson-Watrous theory of Deutsch’s CTCs.

Our hope in elaborating the theory of P-CTCs is that
this theory may prove useful in formulating a quantum
theory of gravity, by providing new insight on one of the
most perplexing consequences of general relativity, i.e.,
the possibility of time-travel.

Appendix A: Regularization of maximally entangled

states in position

In this section we prove the result presented in Eq. (7)
using two different normalizable states |Ψa〉 and |Ψγ〉
(the first allows simple calculations, whereas the second
is more physically-motivated). To avoid technicalities,
Eq. (7) was presented above using the un-normalizable
EPR state |Ψ〉 ∝

∫

dx|xx〉.

First regularization

Consider the normalized state

|Ψa〉 ≡
√

2
π

∫

dx dy e−a2x2

e−(x−y)2/a2 |x〉|y〉 . (A1)
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In the limit a ∼ 0 this state tends to the EPR state, as

|Ψa〉 =
√

2
π

∫

dx e−a2x2

∫

dy′e−y′2/a2 |x〉|x− y′〉

≃
√
2a

∫

dx

∫

dy′δ(y′)|x〉|x − y′〉 =
√
2a

∫

dx|x〉|x〉 ,

where we have used y′ ≡ x − y and the fact that

δ(y) = lima→0 e
−y2/a2

/(a
√
π). Replacing |Ψ〉 with |Ψa〉

in Eq. (7), and taking a ∼ 0, we reobtain the same result,
apart from the inconsequential proportionality factor 2a2

that, as we will now show, can be removed by calculating
the conditional probability amplitude.
The path integral is a transition amplitude between

an initial state |i〉 and a final state |f〉. As such, it can

always be written as [49],

〈f | exp(− i
~
Hτ |i〉 = 〈f |U |i〉 , (A2)

where H is the Hamiltonian and U the unitary evolution
of the system. To derive (7) we consider three systems:
the system A external to the CTC, which starts in the
system |I〉A and ends in the system |F 〉A; the system
E in the CTC and an ancillary system E′, which are
initially in a joint state |Ψa〉EE′ and are (post-selected)
in the same final state |Ψa〉EE′ . If UAE is the unitary
describing the interaction between the systems external
and internal to the CTC, the path integral for these three
systems is then

A〈F |EE′〈Ψa|UAE ⊗ 11E′ |I〉A|Ψa〉EE′ = 2
π

∫

dx dx′dy e−a2(x2+x′2)−(x−y)2/a2−(x′−y)2/a2

A〈F |E〈x|UAE |I〉A|x′〉E (A3)

=
√

2
πa

∫

dx dx′ e−a2(x2+x′2)−(x−x′)2/a2

A〈F |E〈x|UAE |I〉A|x′〉E . (A4)

The square modulus of this quantity gives the joint probability p(|F 〉, |Ψa〉) that final state of system A is |F 〉 and

that the final state of systems E and E′ is |Ψa〉. However, our proposal is based on post-selecting the cases in which
the latter event happens. To calculate the conditional probability p(|F 〉 | ps) that the final state of A is |F 〉 given
that the post-selection happened, we can use p(|F 〉 | ps) = p(|F 〉, |Ψa〉)/p(ps), where p(ps) is the probability that the
post-selection succeeds independently of the final state. It can be simply calculated as

p(ps) =

∫

dF
∣

∣

∣ A〈F |EE′〈Ψa|UAE ⊗ 11E′ |I〉A|Ψa〉EE′

∣

∣

∣

2

, (A5)

where the integral runs over a basis of possible final states |F 〉. (Note that one could also enforce a similar condition
on the initial state.)
Hence, we see that the quantity in Eq. (A3) [and also the quantities in Eq. (6) and (7)] are only proportional to

the conditional probability amplitude we are interested in, where the proportionality constant is given by 1/
√

p(ps).
From (A3) we see that the conditional probability amplitude is given by

A〈F |EE′〈Ψa|UAE ⊗ 11E′ |I〉A|Ψa〉EE′

√

p(ps)
=

∫

dx dx′ e−a2(x2+x′2)−(x−x′)2/a2

A〈F |E〈x|UAE |I〉A|x′〉E
(
∫

dF |
∫

dx dx′ e−a2(x2+x′2)−(x−x′)2/a2

A〈F |E〈x|UAE |I〉A|x′〉E |2)1/2
. (A6)

We can now take the limit a → 0, using again the prop-

erty δ(y) = lima→0 e
−y2/a2

/(a
√
π). The quantity in (A6)

then becomes
∫

dx A〈F |E〈x|UAE |I〉A|x〉E
(
∫

dF |A〈F |E〈x|UAE |I〉A|x〉E |2)1/2
(A7)

=
A〈F |CA|I〉A

(Tr[CA|I〉A〈I|CA
†])1/2

, (A8)

where CA ≡ TrE [UAE]. Note that the proportionality
factor 2a2 that appears in the numerator when taking
the limit a → 0 is canceled by the same constant in the
denominator. Recalling that the path integral can be
written in the form (A2), it is simple to see that the

numerator of Eq. (A7) written in the position represen-
tation will coincide with the last term of Eq. (7) (but was
here obtained from a careful regularization):

∫

dx A〈F |E〈x|UAE |I〉A|x〉E (A9)

=

∫ ∞

−∞

dx dy dy′ I(y)F ∗(y′)

∫ y′,x

y,x

Dx(t) exp
[

i
~
S
]

,

where we used the position representation |I〉 =
∫

dxI(x)|x〉 and |F 〉 =
∫

dxF (x)|x〉, and where the path
integral is used to relate the initial |xAi 〉, |xEi 〉 and final
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|xEf 〉, |xEf 〉 position states of the systems A and E as

〈xAf |〈xEf |UAE |xAi 〉|xEi 〉 =
∫ xA

f ,xE
f

xA
i ,xE

i

Dx(t) e
i
~
S . (A10)

Second regularization

As a more physically-motivated alternative to the state
in Eq. (A1), consider the two-mode squeezed state of two
optical modes

|Ψγ〉 ≡ (1− γ2)

∞
∑

n=0

γn|n〉|n〉 . (A11)

We can write this state in the “position representation”
using an eigenbasis |x〉 of the quadrature operator as

|Ψγ〉 = (1 − γ2)

∞
∑

n=0

γn
∫

dx dy|x〉〈x|n〉 |y〉〈y|n〉

= (1 − γ2)

∫

dx dy

[ ∞
∑

n=0

γn
√

2
π

1

2nn!

×Hn(
√
2x)Hn(

√
2y) e−x2−y2

]

|x〉|y〉, (A12)

where we have used the relation

〈x|n〉 =
(

2
π

)1/4 1√
2nn!

Hn(
√
2x) e−x2

, (A13)

with Hn the Hermite polynomial. Use the δ-function
normalization of the quadrature basis to see that |Ψγ〉
tends to the state

∫

dx|x〉|x〉 in the limit γ → 1:

δ(x− y) = 〈y|x〉 =
∞
∑

n=0

〈y|n〉〈n|x〉

=

∞
∑

n=0

√

2
π

1

2nn!
Hn(

√
2x)Hn(

√
2y) e−x2−y2

,(A14)

whence it is clear that the term in square parentheses
in Eq. (A12) tends to δ(x − y) for γ → 1. Again, re-
placing |Ψ〉 with |Ψγ〉 in Eq. (7), and taking γ ∼ 1, we
reobtain the same result apart from an inconsequential
multiplication factor (1 − γ2)2.
Since the parameter γ is connected to the average en-

ergy of the state (A11), it is clear that the maximally en-
tangled state

∫

dx|x〉|x〉 obtained from |Ψγ〉 with γ → 1
requires infinite energy, and is unphysical. However, it is
possible to approach it arbitrarily closely devoting suffi-
cient energy to the task.
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[37] P.F. González-Dı́az, Phys. Rev. D 58, 124011 (1998).
[38] T.C. Ralph, Phys. Rev. A 76, 012336 (2007).
[39] T.C. Ralph, G.J. Milburn, and T. Downes, Phys. Rev. A

79, 022121 (2009).
[40] C.H. Bennett, D. Leung, G. Smith, J.A. Smolin, Phys.

Rev. Lett. 103, 170502 (2009).
[41] T.C. Ralph, C.R. Myers, arXiv:1003.1987 (2010).
[42] C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A.
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