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We present a simple method to track the precession of a black-hole-binary system during the inspiral, using
only information from the gravitational-wave (GW) signal. Our method consists of locating the frame from
which the magnitudes of the (`= 2, |m|= 2) modes are maximized, which we denote the “quadrupole-aligned”
frame. We demonstrate the efficacy of this method when applied to waveforms from numerical simulations.
In the test case of an equal-mass nonspinning binary, our method locates the direction of the orbital angular
momentum to within (∆θ ,∆ϕ) = (0.05◦,0.2◦). We then apply the method to a q = M2/M1 = 3 binary that
exhibits significant precession. In general, a spinning binary’s orbital angular momentum L is not orthogonal to
the orbital plane. Evidence that our method locates the direction of L rather than the normal of the orbital plane
is provided by comparison with post-Newtonian (PN) results. Also, we observe that it accurately reproduces
similar higher-mode amplitudes to a comparable non-precessing binary, and that the frequency of the (` =
2, |m| = 2) modes is consistent with the “total frequency” of the binary’s motion. The simple form of the
quadrupole-aligned waveform may be useful in attempts to analytically model the inspiral-merger-ringdown
signal of precessing binaries, and in standardizing the representation of waveforms for studies of accuracy and
consistency of source modelling efforts, both numerical and analytical.

PACS numbers: 04.20.Ex, 04.25.Dm, 04.30.Db, 95.30.Sf

I. INTRODUCTION

Black-hole-binary mergers are expected to be key sources
for gravitational-wave (GW) astronomy [1]. Accurate the-
oretical models of the GW signal are necessary to both de-
tect these sources and to determine their physical parameters
and their location in the universe. The GW signal can be
calculated from the inspiral by analytic approximation tech-
niques [2, 3], and from the merger and ringdown by numerical
simulations in full General Relativity [4–7].

Numerical simulations produce waveforms for only dis-
crete points in the parameter space of binary configurations,
but significant progress has been made in synthesizing in-
formation from post-Newtonian (PN) and effective-one-body
(EOB) methods, numerical relativity (NR), and perturbation
theory, to produce analytic models of the complete inspiral-
merger-ringdown signal over some regions of the parameter
space. Most models to date treat nonspinning binaries [8–18],
or binaries in which the black-hole spins do not precess [19–
21] (although there has been one first attempt at a precession
model [22]).

Precession adds a number of complications. When the spins
are not parallel to the orbital angular momentum their orien-
tation varies with time, as does the orbital angular momentum
itself; the orbital plane precesses. Both the precession of the
spins and of the orbital plane each introduce modulations into
the GW amplitude, oscillations into the GW frequency, and
variations in the distribution of signal power across different
harmonics of the waveform. All of these complicate efforts to
produce an analytic model of precessing-binary waveforms.
In addition, they make it difficult to uniquely characterize the
wave signal. For example, the total phase of the dominant
mode of the signal depends on the initial orientation of the

orbital plane. This makes it difficult to determine whether
two waveforms were produced by the same binary configura-
tion, or to compare independent numerical simulations, a task
that is relatively simple for non-precessing non-eccentric bi-
naries [23–25].

We propose a method to put a precessing-binary waveform
into a particularly simple form. The method is based on find-
ing a preferred time dependent coordinate system for the GW
signal, which tracks the precession during the inspiral.

Gravitational-wave signals are most conveniently expressed
in terms of spherical harmonics of spin-weight s = −2,
Y s

lm(θ ,ϕ), where (θ ,ϕ) are the standard polar coordinates
on the unit sphere. The dominant modes are the quadrupole
modes, where (` = 2,m = ±2). If the system is rotated, the
modes of a particular ` mix among each other according to the
transformation law described in Appendix A.

As can be seen from the quadrupole formula, binary sys-
tems emit GWs predominantly in the direction orthogonal
to the orbital plane. Correspondingly, if our system is ori-
ented such that this direction is along the z-axis, then we ex-
pect that the dominant signal is given by the (` = 2, |m| = 2)
spherical harmonics of the wave. The modes |m| = 1 vanish
when the two black holes can be exchanged by symmetry, and
m = 0 is a non-oscillating mode related to memory effects,
see e.g., [26, 27]. If we choose different (rotated) coordinates
(θ ′,ϕ ′) to define a new basis Y s

lm(θ
′,ϕ ′), then mode mixing

will complicate the spherical harmonic description of the sig-
nal, and for example even an equal-mass nonspinning binary
will exhibit nonvanishing |m| = 1 modes. We illustrate this
effect in Sec. IV A.

Therefore, we can determine a preferred direction from the
wave signal alone by finding the orientation that maximizes
the (` = 2, |m| = 2) modes. This is the method that we will
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discuss in this paper, and we will refer to waveforms that are
given in terms of spherical harmonics that are aligned with
this direction as “quadrupole-aligned” waveforms.

In a precessing system there are two contributions to the
frequency of the binary motion: the frequency of the mo-
tion about the orbital-plane axis, ωorb, which increases dur-
ing a non-eccentric inspiral as a monotonic function, and the
frequency due to the precessional motion, which oscillates
as a function of time. The total frequency of the motion is
ω = ωorb− ϕ̇ cosθ , where θ is the inclination of the normal
to the orbital plane from the z-axis, and ϕ is the rotation of
the normal about the z-axis in the xy plane. (This corresponds
to the result in Eq. (3.10) in [28].) In a kinematical descrip-
tion of the binary, these two frequencies together prescribe the
bodies’ acceleration, which is the dominant source of gravita-
tional radiation. One of the properties we expect from our
quadrupole-aligned waveform is that during the inspiral the
frequency of the (` = 2, |m| = 2) modes will to a good ap-
proximation satisfy the relation

ω22 = 2(ωorb− ϕ̇ cosθ). (1.1)

Our main results are that (1) we can determine the
quadrupole-aligned direction from the GW signal to high ac-
curacy (within a fraction of a degree during most of the in-
spiral), and (2) the GW signal is indeed far simplified, see in
particular Fig. 10 of the GW frequency before and after our
(2,2)-maximization procedure, where the final frequency does
approximately satisfy Eq. (1.1). In addition, we show that the
GW signal is emitted in the direction of the orbital angular
momentum of the binary, which is not in general perpendic-
ular to the orbital plane. We illustrate this effect with an ex-
ample from PN theory, where it can be seen explicitly that the
effective orbital angular momentum is not parallel to the naive
Newtonian angular momentum.

In Sec. II we describe our numerical methods and numerical
simulations, and in Sec. III provide details of our algorithm
to find the orbital-angular-momentum direction from the GW
signal. The results of our method are presented in Sec. IV,
where we verify our method using a simple test case of an
equal-mass nonspinning binary, and then apply the method
to an unequal-mass spinning binary that undergoes significant
precession. We discuss these results and prospects for future
work in Sec. V.

II. NUMERICAL METHODS AND SIMULATIONS

We performed numerical simulations with the BAM code
[29, 30]. The code starts with black-hole-binary puncture
initial data [31, 32] generated using a pseudo-spectral ellip-
tic solver [33], and evolves them with the χ-variant of the
moving-puncture [5, 6, 34] version of the BSSN [35, 36]
formulation of the 3+1 Einstein evolution equations. Spa-
tial finite-difference derivatives are sixth-order accurate in the
bulk [30], Kreiss-Oliger dissipation terms converge at fifth or-
der, and a fourth-order Runge-Kutta algorithm is used for the
time evolution. The GWs emitted by the binary are calculated

from the Weyl scalar Ψ4, and the details of our implementa-
tion of this procedure are given in [29]. See e.g. [37] for a
recent extensive parameter study of non-precessing binaries
that uses the same numerical code and general setup.

In each simulation, the black-hole punctures are initially a
coordinate distance D apart, and are placed on the y-axis at
y1 = −qD/(1 + q) and y2 = D/(1 + q), where q = M2/M1
is the ratio of the black hole masses in the binary, and we
always choose M1 < M2. The masses Mi are estimated from
the Arnowitt-Deser-Misner (ADM) mass at each puncture, ac-
cording to the method described in [31]; see also the Appendix
of [37] and the discussion in [38]. The Bowen-York punctures
are given momenta px = ∓pt tangential to their separation
vector, and py = ±pr towards each other. The latter momen-
tum component accounts for the (initially small) radial motion
of the black holes as they spiral together. Initial parameters for
low-eccentricity inspiral were produced using integrations of
the PN equations of motion, as described in [37, 39].

The eccentricity is measured with respect to the frequency
of the orbital motion, as in all of our past work on eccentric-
ity removal [37, 39–41], and also discussed in [42, 43] and
references therein. The eccentricity is estimated as the ex-
trema of eω(t) = (ω(t)−ωQC(t))/(2ωQC(t)), where ω is the
frequency of the (` = 2,m = 2) mode of the waveform, and
ωQC(t) is an estimate of the frequency evolution for a non-
eccentric binary, calculated by a smooth curve fit through the
numerical data.

The grid setup is similar to that used in [29], although
in the precessing-binary simulation the number of points on
each refinement level is varied to achieve greater wave ex-
traction accuracy. The base configuration is of the form
χMη=2[l1 ×N : l2 × 2N : 6]. This indicates that the simula-
tion used the χ variant of the moving-puncture method, l1
moving nested mesh-refinement boxes with a base value of
N3 points surround each black hole, and l2 fixed nested boxes
with (2N)3 points surround the entire system, and there are six
mesh-refinement buffer points. The η parameter in the BSSN
system is Mη = 2.

The resolution around the puncture is denoted by M1/hmin,
which is the resolution with respect to the smaller black hole,
M1. The puncture of the second black hole will have the same
numerical resolution, but if the black hole is bigger, M2 >
M1, then it will effectively be better resolved. In unequal-
mass cases, different numbers of refinement levels can be used
around each black hole, so that the larger black hole need not
be unnecessarily well-resolved, which would slow down the
code. Far from the sources, the meaningful length scale is the
total mass of the binary, M = M1 +M2, and so the resolution
on the coarsest level is given by hmax/M.

We consider two configurations. The first is an equal-mass
nonspinning binary, using the same setup as first described
in [44]. The initial separation is D = 12M, and the binary
completes about nine orbits before merger. To test our orbital-
plane tracking algorithm (which we will describe in Sec. III),
we performed a new simulation of this case in which the or-
bital plane was first rotated by 10◦ about the y-axis (tilt), and
then around the z-axis by 25◦ (twist). For this simulation the
grid configuration was the same as the N = 64 simulation
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in [44] (although of course with a full grid, and no symme-
tries applied). For reference, this grid was characterized by
N = 64, l1 = l2 = 5, M1/hmin = 21.3, hmax = 12M, and the
extent of the grid was xi,max = 774M; the resolution on the
wave-extraction level was hex = 1.5.

The second configuration is a precessing binary with mass
ratio q = 3, where the larger black hole has spin S2/M2

2 =
0.75. In the calculation of the initial parameters, the spin is
directed perpendicular to the orbital angular momentum when
the binary is at a separation of D = 30M. The configura-
tion is evolved using the PN equations of motion until about
D = 10M, and the momenta read off from the PN evolution at
a point where the point particles pass through the xy plane.
A low-resolution simulation is performed with these initial
parameters, and then an additional iteration is performed to
further reduce the eccentricity; more details of a refined ver-
sion of this procedure will be presented in [45]. This leads to
the parameters given in Tab. I. For this simulation N = 112.
The number of moving levels is l1 = 4 around the large black
hole, and l1 = 5 around the small black hole. The num-
ber of fixed levels is l2 = 8, but the sizes of the fixed boxes
are of varying sizes, with 4483 points on the wave-extraction
level, and with hex = 0.46M. The resolution at the puncture
is M1/hmin = 35.7M, and the resolution is hmax = 29.26M on
the coarsest level that extends to xi,max = 1653M, and so the
outer boundary is causally disconnected from the source over
the course of the simulation.

Some key physical properties of the simulations are given
in the last three rows of Tab. I: the estimate of the eccentricity
of the binary, the time when the GW signal reaches its peak
amplitude, and the number of GW cycles up until that time
(excluding the initial pulse of junk radiation).

TABLE I: Parameters for the two configurations that we consider
in this paper: the equal-mass nonspinning case, and the q = 3
precessing-spin case. (For the rotated equal-mass nonspinning case,
the momenta are pi = ∓{0.07567,0.03588,0.01477}.) The lower
rows indicate some physical properties of the configuration: the ini-
tial eccentricity e, the time until the peak amplitude of the `= 2,m =
2 mode, and the number of GW cycles up to that time.

q 1 3
mi {0.488278,0.488278} {0.47790,1.02343}
S1 {0,0,0} {0,0,0}
S2 {0,0,0} {−1.048,1.197,0.560}
x1 {0,6,0} {0,15.0478,0}
x2 {0,−6,0} {0,−5.0159,0}

D/M 12.00 10.05
px ∓0.085035 ∓0.126292
py ±0.000537 ∓0.00139578
pz 0 ±0.0696932
e 0.0016 0.0015

tpeak/M 1940 1271
Ncycles 19 14
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FIG. 1: Profile of the magnitude of Ψ4,22 as the system is ro-
tated by the Euler angles β and γ , shown relative to the maximum
value. The example is taken from one time step (t = 562M) of
the rotated equal-mass nonspinning case discussed in Sec. IV A.
Note that the maximum is clearly defined, which in this case is at
(β ,γ) = (−10◦,−205◦).

III. MAXIMIZATION PROCEDURE ALGORITHM

The Weyl scalar Ψ4 as calculated from the numerical code
is decomposed into standard spin-weighted spherical harmon-
ics (see [29] for our implementation). We expect that if the
orbital angular momentum L of the binary is parallel to the
z-axis in the numerical simulation, then the GW signal will be
dominated by the (`= 2, |m|= 2) modes. We also expect that
the coefficient of the (`= 2, |m|= 2) modes will be maximal
in this case; for any other orientation of the orbital angular
momentum, the (`= 2, |m|= 2) modes will be weaker.

Given the `= 2 modes Ψ′4,2m from the numerical code, we
can rotate the frame to any other orientation using the transfor-
mation described in Appendix A, to produce the correspond-
ing Ψ4,2m in that frame. We locate the direction of the orbital
angular momentum by searching over a range of the Euler an-
gles (β ,γ) to find a global maximum in Ψ4,22 at each time
step.

The procedure in practice is as follows. We start our anal-
ysis after the passage of the pulse of junk radiation. Since
we extract the GW signal at either Rex = 90M or Rex = 94M,
we take the start time to be at about t = 150M respectively
t = 200M. We produce a first guess of the direction of L from
the locations and velocities of the black-hole punctures at that
time. This provides a guess (β0,γ0) of the Euler angles by
which to rotate the system. Given this initial guess, we then
search over a range of (β ,γ) = (β0±10◦,γ0±10◦) with an an-
gular resolution of 0.1◦, and find the angle for which the func-
tion

√
|Ψ4,22|2 + |Ψ4,2−2|2 has a maximum. In our test cases,

where the orientation is constant, this procedure is trivial, but
in general this first guess may not be very accurate. In particu-
lar, it does not take into account the time lag from the source to
the GW extraction sphere. However, we do not expect the sys-
tem to precess by as much as 10◦ over ∼ 100M of evolution.
We also know that the Newtonian orbital angular momentum
LN calculated from the puncture motion is not in general par-
allel to the direction that maximizes the (`= 2,m = 2) mode,
but we do not expect the deviation to be larger than a few de-
grees; we will discuss this point further at the end of Sec. IV.
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For subsequent times, we use the angles from the previous
time step as the first guess, and now search over the smaller
range of ±3◦ in each angle. We locate the maximum in√
|Ψ4,22|2 + |Ψ4,2−2|2 with a quadratic curve fit through the

data from the search.
At all times we find a clear maximum in the amplitude of

Ψ4,22 as a function of the rotation angles. An example is given
in Fig. 1, based on one time step of the rotated equal-mass
nonspinning case presented in Sec. IV A.

IV. NUMERICAL RESULTS

A. Test case: equal-mass nonspinning binary

In order to test our maximization procedure, we consider
two simulations of an equal-mass nonspinning binary. In one,
a reference case, the orbital angular momentum is oriented
parallel to the z-axis, and so the waveform is already in the
quadrupole-aligned frame. The simulation starts at D = 12M
and covers about nine orbits before merger.

For the second simulation we change the orientation of the
orbital plane. It is first rotated about the y-axis by 10◦, and
then around the z-axis by 25◦. The motion of the punctures in
both the reference and rotated cases is shown in Fig. 2. The
modes of Ψ4,`m are now mixed, and the power in the Ψ4,22
mode is distributed amongst the other (`= 2) modes. This can
be seen in Fig. 3. In the reference case (denoted by Ψ̃4,`m), the
(`= 2,m = 1) mode is zero by symmetry, and the (`= 2,m =
0) mode is dominated by numerical noise. In the rotated case,
however, both sub-dominant modes have become significant.
Note that oscillations are visible in the (` = 2,m = 0) mode
amplitude because it is a purely real function.

We now want to see if our maximization procedure be ap-
plied to the waveform from the rotated configuration, to re-
cover the waveform from the reference configuration. In our
procedure we search for a rotation of the system by the Euler
angles (β ,γ) such that the coefficients of the (` = 2, |m| = 2)
modes are maximized. If the method works, we will recover
the reverse angles (−10◦,−205◦). 1

Fig. 4 shows the error in the determination of the Eu-
ler angles. The maximization procedure was applied from
t = 150M, after the burst of junk radiation has passed, through
to t = 2000M, which is late in the ringdown phase. Up until
about t = 500M the waveform is rather noisy, and so the er-
ror in β can be as large as 1◦, and in γ the error is up to 4◦.
During most of the inspiral, however, when the wave signal
is clean, the error in β is below 0.05◦, and the error in γ is
below 0.2◦, and even during ringdown (when the waveform
amplitude is falling exponentially), the angles are determined
to within ±(0.5◦,2.0◦).

Note that during the merger and ringdown we do not ex-
pect the method to necessarily work. The dominance of the

1 The Euler angle to reverse the twist is −205◦ due to the freedom in per-
forming the rotation about the z-axis clockwise or counterclockwise.
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FIG. 2: Motion of one black-hole puncture for the reference and
rotated cases. The orbital planes are related by a rotation about the
y-axis of 10◦, and about the z-axis of 25◦.

(`= 2, |m|= 2) modes, which we expect during inspiral, may
not hold through merger. In addition, the signal during ring-
down is no longer a superposition of spin-weighted spherical
harmonics, but of spin-weighted spheroidal harmonics [46].
In this test case we find that our method continues to work
well through merger and ringdown, but this will not be true in
general, as we will see later.

The magnitudes of the ` = 2 modes in the quadrupole-
aligned waveform agree well with those in the reference case.
The (` = 2, |m| = 2) modes agreed within numerical error in
the raw data, and the (`= 2, |m|= 1) modes, which should be
zero by symmetry, were reduced by three orders of magnitude,
to a level that would generally be regarded as noise. During
the inspiral, for example, |Ψ4,21| was reduced from ∼ 10−4 to
∼ 10−7.

These results demonstrate that our method works, and give
us an indication of the error bounds. We expect that in gen-
eral the errors will depend on the orientation angles of the
binary, and will be worse when the angles are small. In these
cases the sub-dominant modes will be smallest, and therefore
will be resolved with less accuracy in the numerical code, and
will then contribute more noise to the waveform in the rotated
frame. However, we will take the errors from this example
as the basis for our error bounds in other applications of our
method.

B. Precessing binary

Having shown that the maximization procedure works for
the equal-mass nonspinning test case, where the orientation of
the orbital plane is known, we now apply the method to a pre-
cessing binary. The configuration we have chosen has a mass
ratio of q = M2/M1 = 3, the larger black hole has a spin of
S2/M2

2 = 0.75, and the spin initially lies in the orbital plane,
i.e., perpendicular to the Newtonian orbital angular momen-
tum. The small black hole is not spinning.

We expect this configuration to exhibit significant preces-
sion. The leading post-Newtonian contribution due to spin is
the spin-orbit interaction, which can be characterized by the
Hamiltonian [47] (see also, for example, Ref. [48])

HSO = 2
Seff ·L

r3 , (4.1)



5

500 1000 1500 2000
10-7

10-6

10-5

10-4

0.001

0.01

0.1

t @MD

 r
Y

4,
2

m
¤

Y
�

4,20

Y
�

4,22

500 1000 1500 2000
10-7

10-6

10-5

10-4

0.001

0.01

0.1

t @MD

 r
Y

4,
2

m
¤

Y'4,20

Y'4,21

Y'4,22

FIG. 3: The left panel shows the amplitude of the Ψ̃4,2m modes for the reference case. The (`= 2,m = 1) mode is zero by symmetry, and we
see that the (`= 2,m = 0) mode is much smaller than the dominant mode, and is essentially noise during most of the inspiral. The right panel
shows the corresponding amplitudes for the rotated case. We now see that both sub-dominant modes have become significant. The amplitude
of the (`= 2,m = 0) mode is oscillatory because it is a purely real function; see text for more details.
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where r is the coordinate separation of the black holes, and
the effective spin Seff is defined as

Seff =

(
1+

3
4

M2

M1

)
S1 +

(
1+

3
4

M1

M2

)
S2, (4.2)

where in our case one of the spins would be zero. From the
spin-orbit interaction one can derive a post-Newtonian evolu-

tion equation for the black-hole spin [47],

Ṡ =− 2
r3 Seff×L. (4.3)

This indicates that the maximum amount of spin precession
will be achieved when the spin is perpendicular to the orbital
angular momentum. If one of the black holes has a Kerr pa-
rameter Si/M2

i , then S will be largest if the larger black hole
is spinning. This is also convenient from a numerical point
of view, because the resolution requirements increase both as
the mass is decreased, and spin is added; it is computationally
cheaper to put the spin on the larger black hole.

We also know from PN theory that Ṡ = −L̇ in the absence
of gravitational radiation. If we increase the mass ratio, then
the orbital angular momentum L at a given separation will
decrease, but the magnitude of the spin will stay the same.
Therefore the relative change in L due to the precession of the
spins will increase. This means that we will get greater spin
precession for higher mass ratios. We have chosen q = 3 be-
cause this is reasonably large compared to typical simulations
we have performed in the past, but low enough that we still
expect to be able to achieve high accuracy.

Fig. 5 shows the orbital motion of the two punctures in the
simulation. The precession of the orbital plane is clearly visi-
ble in the figure.

Considering the leading order spin-orbit interaction
Eq. (4.1) also exhibits another subtle feature of spinning bi-
naries. The time evolution of the momentum vector p is given
by the Hamiltonian evolution equation

dp
dt

=−∂H
∂r

. (4.4)

If the Hamiltonian H depends on the spins, then consequently
the momentum also picks up a contribution from the spins,
and the velocity vector ṙ is in general not parallel to the mo-
mentum p. Consequently, the directions of the orbital fre-
quency vector Ω,

Ω =
r×v

r2 (4.5)
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FIG. 5: Motion of the black-hole punctures for the q = 3 precession
simulation. The motion of the small black hole is shown in red, and
the large black hole is shown in black. The precession of the orbital
plane is clearly visible through the inspiral.

is in general not aligned with the angular momentum L = r×
p. For the spin-orbit interaction defined by the Hamiltonian in
Eq. (4.1), this contribution to the angular momentum can be
computed as [47]

LSO =
µ

M

[
M
r

n×
(

n×
(

3S+
δm
M

∆

))
−1

2
v×
(

v×
(

S+
δm
M

∆

))]
, (4.6)

where

∆ = M
(

S1

M2
− S2

M1

)
, (4.7)

and v = ṙ, and n is the unit vector in the direction of r. The
total orbital angular momentum is then L = LNS + LSO, and
LNS is the nonspinning contribution to the angular momentum
(which is parallel to the vector r×v).

Note that the effect of the non-alignment of Ω and L is max-
imal when the spin S is in the orbital plane. This is indeed the
case for our initial conditions, and also during the evolution
the spin component out of the orbital plane is significantly
smaller than the components in the orbital plane. Note also
that since the spin typically varies on a timescale larger than
the orbital time scale, Eq. (4.6) will lead to oscillations in the
angle between Ω and L with roughly the orbital period.

Such oscillations are not present in the direction of L, as
illustrated in Fig. 6. We will see later that the quadrupole-
aligned frame moves consistently with L (i.e., as a smooth
function), suggesting that our maximization procedure tracks
the direction of the orbital angular momentum.

The left panel of Fig. 7 shows the amplitude of the (` =
2,m = 2) and (` = 2,m = 1) modes during the inspiral. We

clearly see that the “sub-dominant” (2,1) mode is of com-
parable magnitude to the (2,2) mode, and shows significant
modulation. (It is also instructive to compare with the re-
sults in [49], where a precessing binary is also considered
from a fixed frame of reference, and all of the ` = 2 modes
are of significant amplitude.) The right panel of Fig. 7 shows
the frequency of the (2,2) mode, ω22 = ϕ̇22, over the same
time interval. The frequency clearly exhibits large oscilla-
tions. Based on the discussion around Eq. (1.1) we expect
oscillations in ω22 of purely physical origin, but we also as-
sume that the physical oscillations will be exaggerated and
their frequency modified in the fixed frame of an inertial ob-
server.

We now apply the maximization procedure to the waveform
signal from t = 200M, when the junk radiation has passed,
through merger and ringdown (up to t = 1350M). At each
time step the system is rotated such that the (` = 2, |m| = 2)
mode amplitudes are maximized.

Having applied our maximization procedure to track the
precession, we first address the question of whether the GW
signal is emitted normal to the orbital plane, or parallel to the
orbital angular momentum. Although we cannot unambigu-
ously define the direction of orbital angular momentum, we
can certainly determine whether the GW signal is emitted nor-
mal to the orbital plane.

Fig. 8 shows the Euler angles (β ,γ) that were found in the
maximization procedure, time shifted by 103M to approxi-
mately compensate for the time lag to the extraction spheres.
It also shows the angles (θ ,ϕ) of the direction orthogonal to
the orbital plane as computed from the NR simulation, and
for the orbital angular momentum L as computed from a PN
simulation (as in Fig. 6). The PN angles are approximately
aligned with (β ,γ) at early times. If the GW signal were emit-
ted normal to the orbital plane, we would expect to be able to
align β with−θ from the numerical relativity simulation, and
likewise for γ and −ϕ . However, it is clear from Fig. 8 that
the orbital-plane angles contain extra oscillations. Based on
the illustration in Fig. 6, this suggests that the GW signal is
emitted in the direction of the orbital angular momentum. In
particular, we plot in Fig. 8 the direction of the orbital angu-
lar momentum as predicted in PN theory, which shows good
agreement with the angles that define the quadrupole-aligned
frame.

Fig. 9 shows the amplitude of the original Ψ′4,22 and the
quadrupole-aligned signal that results from the maximization
procedure, Ψ4,22. We see that the maximization procedure has
indeed increased the amplitude at all times, and also seems to
have removed some oscillations.

The frequency of the (` = 2,m = 2) mode before and after
the maximization procedure is shown in Fig. 10. This fig-
ure illustrates one of the key results of this work: the high-
frequency oscillations in the wave frequency have been re-
moved by the maximization procedure, and we are left with
a far simpler functional form. We note, however, that the os-
cillations in the frequency have not been completely removed.
This is to be expected from Eq. (1.1). In the absence of pre-
cession, during the inspiral the gravitational wave frequency
of a spherical harmonic mode (`,m) is with a high degree of
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panel shows the frequency of the (`= 2,m = 2) mode, which exhibits significant oscillations. (The data are also noisy at early times, but this
is typical for such data.)

accuracy proportional to the orbital frequency, ω`m = Mωorb.
In the presence of precession, this is however replaced by
Eq. (1.1), which adds an extra term depending on the precess-
ing motion of the orbital plane. In Fig. 11 we compare the
frequency of the (` = 2,m = 2) mode after the maximization
procedure with the orbital frequency with the precession term
added according to Eq. (1.1), and we find reasonable agree-
ment. We also show the frequency ωN that results from rotat-
ing the system according to the direction perpendicular to the
orbital plane, which is also the direction of the naive Newto-
nian orbital angular momentum. It is clear from Fig. 11 that
the oscillations due to the orbital-plane rotations are much
larger, and this further suggests that the quadrupole-aligned
frame is optimal. We have also verified that the remaining os-
cillations are not due to residual eccentricity in the system, by
repeating our analysis on a simulation with roughly twice the
eccentricity, and by studying PN examples.

It is clear that the maximization procedure produces (` =
2, |m|= 2) modes that are of a simpler form than in the origi-
nal data. However, this is not a guarantee that we have cor-
rectly tracked the direction of the GW emission; we have
not necessarily put the waveform into a physically meaning-
ful frame of reference. One test of our method is to calcu-
late the effect on the sub-dominant modes. We expect that in

the quadrupole-aligned frame the amplitude of the GW sig-
nal will agree to a good approximation with that from a q = 3
nonspinning binary. (The spin effect on the rate of inspiral is
dominated by S ·L, and this is close to zero throughout our
simulation, so we expect the inspiral to be similar to that for a
nonspinning binary with the same mass ratio.)

Fig. 12 shows a selection of modes for the quadrupole-
aligned waveform. The left frame shows the transformed
modes for the precessing binary, and the right frame shows
the same modes for the nonspinning q = 3 waveform pre-
sented in [37]. Two things are remarkable about this figure.
The first is that the amplitudes of the modes show extremely
good agreement. The other is that we have found that the
magnitude of the (` = 2,m = 1) mode is extremely sensitive
to the angle by which the system is rotated. If, for example,
we were to modify β or γ by a fraction of a degree, Ψ4,21
could change by orders of magnitude. With this fact borne in
mind, the oscillations in |Ψ4,21| are not very large at all. This
figure suggests that we have located an optimal frame from
which to study the GW signal.

Finally, we will discuss the application of our procedure to
the merger and ringdown. We can calculate the final black
hole’s spin magnitude and direction using information from
the apparent horizon [50]. Ideally our method would locate
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FIG. 10: Frequency of the (` = 2,m = 2) mode before (Ψ′4,22) and
after (Ψ4,22) the maximization procedure. We see that the high-
frequency oscillations have been removed. The remaining oscilla-
tions are of a lower frequency and much lower amplitude; see text
and Fig. 11.

the same spin direction. However, as pointed out in Sec. IV A,
the ringdown signal is a superposition of spheroidal (rather
than spherical) harmonics [46, 51], and so we do not expect a
maximization of the `= 2, |m|= 2 coefficients of a spherical-

harmonic decomposition of the waveform to necessarily pro-
duce meaningful results. And indeed, we find that our method
does not locate the correct final-spin direction through ring-
down. We intend to explore the use of spheroidal harmonics
in future work.

V. DISCUSSION

We have presented a simple method to track the precession
of a binary system, using only information from the GW sig-
nal. Our procedure is to rotate the system such that the magni-
tude of the (`= 2, |m |= 2) modes is maximized, based on the
physical assumption that this will be the direction of dominant
GW emission. We refer to this as the “quadrupole-aligned”
waveform. Based on evidence from PN theory, we show that
this direction seems to correspond to that of the orbital angu-
lar momentum, which is in general not perpendicular to the
orbital plane. We also show that our method produces higher-
mode amplitudes consistent with what we know from compa-
rable non-precessing binaries.

The result of our procedure is that the waveform is repre-
sented in a more simple form than the one produced directly
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from the numerical code. This is particularly true for the sub-
dominant modes; compare Figs. 7 and 12. We expect that this
will simplify the task of producing analytic inspiral-merger-
ringdown models, which is one of the main motivations for
our work. This method also provides a normal form for the
inspiral waveform, which will facilitate future comparisons
between numerical and analytic results.

One could propose alternative procedures to track the pre-
cession of the system, and we will now discuss some of them,
and their difficulties.

Only the total angular momentum of the spacetime is unam-
biguously defined in General Relativity. The form of Bowen-
York puncture initial data is such that we can analytically
calculate the angular momentum ([29, 52–54]) of the initial
slice from the initial-data parameters; it is simply given by
L = r1×p1+r2×p2, where ri are the coordinate locations of
the punctures, and pi are the momenta that are input into the
Bowen-York extrinsic curvature. We can calculate the angular
momentum radiated through the spheres on which we measure
the GW signal, and so we can determine the total angular mo-
mentum of the system as a function of time. However, we
want the orbital angular momentum, L = J−S. To calculate
this we need to know the black-hole spins as a function of
time (which can be estimated with reasonable accuracy from
the black holes’ apparent horizons [50]), but these quantities
are calculated at the black holes, not at the GW extraction
sphere, and cannot easily be translated.

One could attempt to instead calculate the orbital angular
momentum entirely at the sources, but this also presents diffi-
culties. The proper distance between the black-hole horizons
and their momenta could be calculated by some quasi-local
procedure (for example [55]), and hence the orbital angular
momentum. But it will be difficult to assess the gauge errors
in any such method. Alternatively, one could calculate the an-
gular momentum using the puncture locations and PN theory,
but this will only be an approximation to the true general rel-

ativistic angular momentum. One direction we can easily de-
termine is the normal to the orbital plane of the binary, but we
have seen in Sec. IV, that this is not the direction in which the
dominant GW signal is emitted, and nor does it define a ref-
erence frame from which the GW signal appears simpler than
what can be achieved by the maximization procedure that we
have used.

Nonetheless, a number of issues remain to be resolved
in our procedure. In particular, our method does not seem
to accurately track the quadrupole-aligned direction through
merger and ringdown. If it were able to do this, it would pro-
vide an alternative procedure to determine the direction of the
spin of the final black hole. We find that the angles from our
maximization procedure continue to vary through merger and
ringdown, and do not settle at constant values, which is what
they would do if they corresponded to the final spin direction.
As we pointed out at the end of Sec. IV this may be due to the
decomposition of the waveform using an inappropriate basis;
other subtle effects, for example the motion of the center-of-
mass of the system due to gravitational recoil, may also com-
plicate the method. We will investigate these issues further in
future work.

One may also question whether this method will work
beyond the single precessing case that we have considered,
which involved only one spinning black hole, and the spin di-
rection was explicitly chosen such that S ·L = 0. However,
we have made preliminary studies with a number of other
precessing-binary configurations, and find results consistent
with those presented here.

[While working on this project we have learned that an in-
dependent effort to identify precession effects via a similar
algorithm will be presented by Seiler et al. in a forthcoming
publication [56].]
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FIG. 12: Left: selected modes of the precessing-binary waveform, after being transformed into the non-precessing frame, i.e., after the system
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Appendix A: Transformation of Ψ4,lm under rotations

We aim to derive the transformation of the Weyl scalar Ψ4
under a rotation R ∈ SO(3). A similar calculation is per-
formed in [49]. It can be shown that the Weyl scalar is a field
of spin-weight s =−2 and hence it can be expanded as

Ψ4 = ∑
l,m

Ψ4,lmY−2
lm , (A1)

where Y−2
lm denote the spherical harmonics of spin-weight s =

−2 [57]. For s = 0 we obtain the regular spherical harmonics
Ylm, which are the eigenfunctions of the angle-dependent part
of the Laplace operator.

The transformation of the spin-weighted spherical harmon-
ics is a simple composition of the transformation of the spin-
basis-dependent part and of Ylm. It is convenient to introduce
standard polar coordinates (r,θ ,ϕ) and to define Ylm with re-
spect to the polar angles (θ ,ϕ). The spherical harmonics then
have the form

Ylm(θ ,ϕ) = φ(ϕ)Θ(θ). (A2)

We will consider rotations R, which transform angles Ω =
(θ ,ϕ) to the new coordinates Ω′ = (θ ′,ϕ ′). The spin-weight-
zero spherical harmonics Ylm then transform according to
Ylm(θ ,ϕ) 7→ Ylm(θ

′,ϕ ′) by applying the operator PR, where
R is a rotation about the z-axis by the angle γ such that
ϕ 7→ ϕ ′ = ϕ + γ and θ = θ ′, is given by

Ylm(θ
′,ϕ ′)≡ PRYlm(θ ,ϕ) = eimγYlm(θ ,ϕ). (A3)

Now, let R(γβα) denote an arbitrary rotation by the Euler
angles γ,β ,α . Using the z-y-z convention, the spherical har-
monics then obey the following transformation law [58, 59]:

Ylm(θ
′,ϕ ′) =

l

∑
m′=−l

eim′γ dl
m′m(β )e

imαYlm(θ ,ϕ), (A4)

where the dl
m′m denote the Wigner d-matrices which are given

by [60]

dl
m′m =

√
(l +m)!(l−m)!(l +m′)!(l−m′)!

×∑
k

(−1)k+m′−m

k!(l +m− k)!(l−m′− k)!(m′−m+ k)!

× (sin
β

2
)2k+m′−m(cos

β

2
)2l−2k−m′+m. (A5)

Due to the properties of the group SO(3), the inverse transfor-
mation is then given by

Ylm(θ ,ϕ) =
l

∑
m′=−l

e−im′γ dl
m′m(−β )e−imαYlm′(θ

′,ϕ ′). (A6)

The next step is to include the change of spin-basis under a ro-
tation. According to [61] a quantity η of spin-weight s obeys
the following law under a change of the spin basis:

η
′ = ηeisχ . (A7)

Combining Eqs. (A6) and (A7) yields the transformation law
for the spin-weighted spherical harmonics:

Y s
lm(θ ,ϕ) = e−isχ

l

∑
m′=−l

e−im′γ dl
m′m(−β )e−imαY s

lm′(θ
′,ϕ ′).

(A8)
We invert Eq. (A1) to determine the transformation law for
the Ψ4,lm-modes,

Ψ4,lm =
∫

Ψ4Y s
lm(θ ,ϕ)dΩ

=
∫

e−isχ
Ψ
′
4eisχ

∑
m′

eim′γ dl
m′m(−β )

× eimαY s
lm′(θ

′,ϕ ′)dΩ
′

=
l

∑
m′=−l

eim′γ dl
m′m(−β )eimα

Ψ
′
4,lm′ , (A9)
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where we see that explicit knowledge of χ as a function of θ

and ϕ is not necessary to determine the coefficients Ψ4,`m.
This transformation law can now be applied to any given
Ψ′4,lm, e.g. our numerical data, in order to change the frame
of reference. The remaining free parameters are the three an-
gles that determine the general rotation. In practice, one does
not need to perform the third rotation about α [49, 58]. We

therefore restrict ourselves to a rotation about two the Euler
angles, β and γ , only. Since we aim to align the orbital an-
gular momentum with the z-axis at every instant of time, i.e.,
L̂ 7→ ẑ, a simple calculation shows that in order to fulfill this
β =−θ and γ =−ϕ are required, where (θ ,ϕ) are the polar
coordinates determining the direction of L̂.
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Rev. D78, 064026 (2008), 0712.3737.
[41] M. Hannam, S. Husa, B. Brügmann, and A. Gopakumar, Phys.
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