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We study the field theoretical description of a generic theory of gravity flowing to Einstein General
Relativity in IR. We prove that, if ghost-free, in the weakly coupled regime such a theory can never
become weaker than General Relativity. Using this fact, as a byproduct, we suggest that in a
ghost-free theory of gravity trans-Planckian propagating quantum degrees of freedom cannot exist.
The only physical meaning of a trans-Planckian pole is the one of a classical state (Black Hole)
which is described by the light IR quantum degrees of freedom and gives exponentially-suppressed
contributions to virtual processes. In this picture Einstein gravity is UV self-complete, although not
Wilsonian, and sub-Planckian distances are unobservable in any healthy theory of gravity. We then
finally show that this UV/IR correspondence puts a severe constraint on any attempt of conventional
Wilsonian UV-completion of trans-Planckian gravity. Specifically, there is no well-defined energy
domain in which gravity could become asymptotically weak or safe.

PACS numbers: 04.20.-q, 04.70.-s, 11.10.-z

I. INTRODUCTION

Einsteinian gravity, described by the Einstein-Hilbert action,

SEH =

∫

d4x
√
−g

1

16πGN
R , (1)

is a unique theory which propagates a single massless spin-2 graviton, hµν , and no other degrees of freedom.

The reduced Planck mass, MP ≡
√

1
16πGN

∼ 1018GeV, and the corresponding Planck length, LP ≡ M−1
P ∼

10−32cm, play a central role in general relativity (GR). For example, from the field theoretical point of view, MP sets
the interaction strength of the canonically-normalized graviton expanded around Minkowski,

1

MP
hµν T

µν . (2)

Here, Tµν is an arbitrary conserved energy-momentum source. A very special property of gravity is that also self-
interactions are regulated by the coupling (2), where in this case Tµν is the energy-momentum tensor of the graviton
evaluated to a given non-linear order in hµν .
In Einsteinian gravity all energy-momentum sources universally couple to gravity. At linearized level, one can thus

define an effective dimensionless parameter describing the strength of the gravitational interaction for any elementary
process of characteristic momentum transfer p,

αgrav(p
2) ≡ 16πGN p2 . (3)

Where here, and throughout the paper, we assumed only asymptotically flat spaces so that gravity may be expanded
in terms of linear gravitons up to the strong coupling scale of the theory. Note that in this way one can construct
gauge invariant (e.g. diffeomorphism invariant with respect to the background metric) global and local operators such
as the S-Matrix and/or the scattering amplitude A(p) of a scattering process prepared at spatial infinity.
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The parameterization of (3) the gravitational strength clearly shows why gravity is weak in low energy processes,
p ≪ MP (or IR). In this way Einsteinian gravity admits a universal strong coupling scale, MP . The above energy-
dependence of the effective gravitational coupling is the source of the non-renormalizability of Einstein gravity and
the reason why gravitational amplitudes violate perturbative unitarity above the scale MP .
Notice that the coupling parameterization is equally applicable to extensions of Einstein gravity in which gravity

is mediated by additional degrees of freedom, but which still obey the Strong Equivalence Principle [1].
For our purposes, it is useful to parameterize the notion of the gravitational strength and of its UV-completion by

the behavior of gravitational scattering amplitudes.
Consider a scattering on asymptotically flat space among two conserved external sources [29] Tµν and τµν with

characteristic momentum-transfer p. Throughout the paper we will only be interested in sources that do not violate
null energy conditions. To linear order, the scattering amplitude can be written as

A(p) =
αgrav(p)

(p2)2
(Tµντ

µν + b(p)T µ
µτ

ν
ν) . (4)

Here, b(p) may in general depend on p non-trivially. At this point, αgrav(p) is just a useful parametrization of the
gravitational strength. Notice that in any theory in which gravitational interactions are mediated by spin-2 states,
the parameter b(p) is generically of order one. However, it can be larger if contributions from spin-0 dominate. Such
a case can be easily incorporated in our discussions, but is not of our primary interest. Moreover, the dependence on
b(p) can be eliminated by taking at least one of the sources to be relativistic (say τµµ = 0).
Universally, the scale of strong gravity can be defined as the lowest energy scale M∗ for which

αgrav(p ≡ M∗) = 1 . (5)

In pure Einstein gravity M∗ = MP , but, in general, M∗ can be arbitrarily lower though never higher [2], as we will
discuss. In any given theory, we refer to the region of energies p ≫ M∗ as the trans-Planckian region (or UV) and to
the corresponding length scales L ≪ L∗ ≡ M−1

∗ as sub-Planckian distances.
In quantum field theory one always describes physics at any given length scale in terms of propagating quantum

degrees of freedom. In this sense, all existing states of the theory (including the classical ones) are in principle
accounted for as states of degrees of freedom which are propagating at the length scales of interest. Of course, when
one moves from scale to scale, the notion of elementary propagating degrees of freedom can change (e.g. some may
become composites of more fundamental ones), but at any scale there always exist some.
Resolving a distance scale L means that we integrate in propagating degrees of freedom of mass/energy 1/L, which

can be treated as elementary at distances L. For example, it should make sense to talk about interactions of these
degrees of freedom within the space-time interval of size L. All known non-gravitational UV-completions are based
on this fundamental notion. By extending this concept to UV-completions of gravity beyond the Planck length
L ≪ LP (or more general L ≪ L∗), one would try to integrate in some trans-Planckian degrees of freedom of mass
1/L. However, as suggested in [3], in Einstein gravity trans-Planckian propagating degrees of freedom cannot exist,
instead any such degree of freedom becomes a classical state with smallest size ∼ 2L2

P/L, the Schwarzschild radius
corresponding to the mass 1/L. This classical state is no longer an independent entity and is fully described by already
existing IR degrees of freedom, such as the massless graviton. Thus, the would-be trans-Planckian states carry no
information about the trans-Planckian physics and decouple from quantum processes, just as classical objects should
do. In this way, Einstein gravity self-completes itself in the deep UV by mapping would-be trans-Planckian degrees
of freedom to classical IR states [3]. In particular, this is the field theoretic manifestation of the fact that in Einstein
gravity the Planck length is the shortest length-scale of nature and the underlying reason for the so-called Generalized
Uncertainty Principle [4],[30]. This notion also exists in string theory where it can be argued that the fundamental
string length as well sets a limit on the shortest distance which is possible to probe [6].
The formation of BH as an outcome of Trans-Planckian collisions is a natural expectation (see e.g. [7]). The

discovery of low scale quantum gravity scenarios [8, 9] promoted this possibility to a potentially experimentally-
observable phenomenon. Indeed, BH formation in high energy scatterings at particle colliders was predicted in [9]
(for subsequent work in this direction see [10]). This feature of gravity was formulated in terms of the “Asymptotic
Darkness” as a unique outcome of Trans-Planckian scattering at small impact parameter in [11].
In this work, we will furthermore claim that a BH is the only output of any trans-Planckian scattering process in

any healthy theory of gravity. In other words we will argue that there is no contribution from sub-Planck distance
physics in any high (or low) energy scattering process.
In the present paper we shall reiterate the above notion and, in this light, address the viability of attempts of

conventional (Wilsonian) UV-completions of Einstein gravity in the trans-Planckian domain.
This understanding has important consequences for cases in which gravity is assumed to become weaker in the deep

UV, an example of which is the Asymptotic Safety Scenario [12]. That is, the mapping of trans-Planckian gravity to
classical IR gravity excludes UV-completions of gravity by asymptotically safe behavior in any domain.
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FIG. 1: Momentum-scale dependence of αgrav. The dashed line shows a running of the gravitational coupling where gravity
becomes weaker in the weakly coupled regime. In a ghost free theory this cannot happen. The solid line represents a typical
running of αgrav usually found within the Asymptotic Safety scenario. Here, gravity first hits the strong coupling (αgrav = 1) at
scale M∗, before turning over to the fixed point scaling. The shaded region indicates the regime in which Black Hole formation
takes place and which hence cannot be probed by experiments.

In order to see this, we will first show that gravity cannot become weaker than in pure Einstein gravity before
hitting the strong coupling scale, by requiring the absence of negative norm states. To be more precise, as shown in
[2], in any ghost-free theory in the weak-coupling domain αgrav(p) must satisfy,

αgrav(p) ≥ αEin(p) ≡ p2/M2
P , (6)

and the quantity αgrav(p)/αEin(p) must be a non-decreasing function of p2, at least until αgrav(p) becomes of order
one. In other words, a weakening of gravity cannot set in while αgrav(p) ≪ 1 (see Fig. 1). Thus, before the turn-over,
αgrav(p) first has to reach the strong coupling point. Hence, the turn-over cannot happen for p ≪ M∗.
However, beyond M∗ we are in the trans-Planckian domain, which is mapped on classical IR gravity. So gravity

cannot display Asymptotic Safety in any well-defined physical sense. Due to the Black Hole (BH) barrier, beyond
M∗ any shorter distances cannot be probed in principle. For instance, in the trans-Planckian domain scattering cross
sections with center of mass energy E should be dominated by BH-production, which can be estimated to be given
by the geometric cross section σ ∼ E2/M4

P . This growth is hard to reconcile with the notion of Asymptotic Safety,
or with a weakening of UV-gravity in general. This result agrees with a complementary proof of the impossibility
of AS in a theory of gravity containing BHs [13]. In [13], Shomer shows that any UV fixed point in which gravity
becomes weaker, as in AS, is incompatible with the Bekenstein-Hawking entropy for BHs. The observation that the
BH barrier prevents probing the fixed point behavior of Asymptotic Safety has also been made in [14].
To summarize, the self-completeness of gravity raises the question, whether Wilsonian UV-completions of trans-

Planckian gravity are viable or even physically motivated in the light of [3].

II. NON-EXISTENCE OF SUB-PLANCKIAN DISTANCES IN EINSTEIN GRAVITY

In this section, we shall reiterate the point of [3]. We shall first discuss why trans-Planckian physics, in the sense
of probing distances L ≪ LP , cannot exist in Einstein gravity.
First of all let us mention that this statement is Lorentz invariant (as seen from an observer at spatial infinity) as

distances (and energies) here refer to the distances (and energies) measured in the center of mass reference frame.
In this frame, one may also use the seemingly non-relativistic relation that shorter distances are measured by higher
energies, i.e. E ∼ 1/L. Of course, a boost will accordingly change the L and E values but not their relation.
However, a reader may be worried that in the highly nondynamical gravitational background due to the collision of
the sources, the definition of length should include some notion of the local spacetime. In this case we will always
refer as a “length” the instantaneous local invariant length measured by an ADM observer [15]. In this case, the four
dimensional metric is split in 3 + 1 as

ds2 = −N2dt2 + gij(dx
i −N idt)(dxi −N idt) . (7)
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As we will only be concerned with S-wave (spherical) scatterings, at a fixed time one may then choose coordinates
such that they define the following (instantaneous) three-dimensional metric [16]

gij

∣

∣

∣

t=const
= φ4(r)δij , (8)

where δij is the Kronecker delta. In this way the invariant length is given by

L(r0) ≡ 4π

∫ r0

0

drφ2(r) , (9)

where r0 is the coordinate radius we would like to measure.
From now on we will assume without loss of generality that we will just talk about distances L. In light of these

definitions, to be precise with our opening statement, we will prove that instantaneous distances shorter than the
Planck length cannot be probed.

A. Field theoretical hoop conjecture

In quantum field theory any measurement that attempts to resolve the distance L has to excite, via a scattering
experiment, degrees of freedom of energy 1/L within the box of size L. The explicit construction of such a scattering
experiment would involve at least two particles which are boosted in such a way that their (Lorentz-invariant) center
of mass energy exceeds 1/L and that their impact parameter will be less than L. For L ≪ LP such an attempt will
lead to the formation of a classical BH (see also [6, 9–11]). Note, that by itself none of the involved boosted particles
is a BH even when boosted to energies ≫ MP as no graviton exchange is involved. Their correct description is given
by the so-called Aichelburg-Sexl geometries [17]. The fact that the outcome of such an experiment will inevitably
produce a BH can be regarded as a field-theoretic interpretation of Thorne’s hoop conjecture [18], according to which
a BH with horizon forms when, and only when, a mass M gets compacted into a region whose circumference in every
direction is less than the corresponding Schwarzschild horizon (RS(M)) [31]. In terms of such a scattering experiment,
this means that a BH will form anytime the transfer energy is localized (dynamically) within RS . Thus an attempt
of resolving sub-Planckian distances will lead to the formation of a macroscopic BH of horizon size 2L2

P/L, which can
only probe large distances. This observation leads to two important conclusions. The first one is that a elementary
state with mass bigger than Mp cannot exist because its Compton wavelength is below RS . the second conclusion is
that, by BH barrier, no sub-Planckian distances may ever be probed and therefore it is not a physical statement to
talk about these distances.
The previous discussion has been however based on a classical analysis so one might wonder whether quantum

mechanical arguments could spoil it. It has been argued in [11] that a scattering experiment of transfer energy
E ≫ Mp, with impact parameter L ≪ Lp, may indeed produce elementary particles as an outcome with (quantum)

probability e−E2L2

p . The key observation we want to make here is that such small probability is due to a production
of a virtual BH. This conclusion can be drawn by noticing that the factor E2L2

p ∼ S where S is the Bekenstein-

Hawking BH entropy and therefore the suppression e−S represent a Boltzmann suppression. In other words, the
produced particles are the result of a BH which formed during the collision and subsequently evaporated completely
into elementary particles in a short time. Because the Compton wavelength of the emitted elementary particle is
larger than the Planck length, this implies that again, even in this rare case, no sub-Planckian distances may be
probed.

III. EINSTEIN GRAVITY IS THE WEAKEST GRAVITY

We have seen in the previous section that because of the BH barrier, sub-Planckian distances are unphysical, and
therefore the only sense in which we can talk about gravity at trans-Planckian energies is in terms of IR gravity.
This fact eliminates the need of a UV-completion of Einstein’s theory which would be due to an improved behavior

of the graviton propagator for large p.
In this section we will prove, following the reasonings of [2], that any modification of gravity that does not propagate

ghost degrees of freedom in the weak regime, always produces a stronger gravitational attraction. In this sense,
modifying the theory of gravity only leads to a BH production at even lower energies making the BH barrier more
efficient.
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For a scattering process of particles with characteristic momentum transfer ∼ p and a center of mass energy E ∼ p,
weak gravity is defined as the condition

αgrav(p) ≪ 1, (10)

where αgrav(p) is given by (4). For example, in the pion-nucleon scattering at QCD scale energies, Einsteinian gravity
is weak.
In this regime, consider a one-graviton exchange process between two energy-momentum sources Tµν and τµν . The

amplitude of this process in momentum space is given by

A(p) = T µν(p)∆µν,αβ(p)τ
αβ(p), (11)

where Tµν(p) and ταβ(p) are the Fourier-transforms of the sources, and ∆µν,αβ(p) is the graviton propagator in
momentum space.
In Einsteinian gravity, in which the gravitational force is mediated by a single massless spin-2 particle, the tensorial

structure of A(p) is uniquely fixed:

Amassless(p) = GN

Tµν(p)τ
µν(p)− 1

2T
µ
µ (p)τ

ν
ν (p)

p2
. (12)

Notice, if, in the UV (or IR), gravity deviates from the Einsteinian theory, the structure of A(p) will be different,
but still extremely restrictive. This follows directly from the spectral representation of the graviton propagator for
which the most general ghost-free structure is,

A(p) = T µν∆µν,αβτ
αβ =

=
1

M2
P

(

Tµντ
µν − 1

2T
µ
µ τ

ν
ν

p2
+

∫ ∞

0

dsρ2(s)
Tµντ

µν − 1
3T

µ
µ τ

ν
ν

p2 + s
+

∫ ∞

0

dsρ0(s)
T µ
µ τ

ν
ν

p2 + s

)

, (13)

where we have seperated the contributions from the massless spin-2, the massive spin-2 and the spin-0 poles. It is
crucial to note that the absence of ghosts demands ρ2(s) ≥ 0 and ρ0(s) ≥ 0, ∀s. In order to understand the meaning
of ρ2 and ρ0 let us consider the ADM decomposition [1] of the metric. The graviton can be decomposed into a spin
2 field hij (the spatial metric), a scalar N (the lapse) and a vector N i (the shift) (i, j, ... are 3-dimensional indices
(with a positive defined metric) and α, β, ... are the 4-dimensional indices). In the transverse-traceless gauge (that
can always be taken because of the linearized diffeomorphism group), the kinetic term of the spin 2 part looks like
(∂αhij)(∂

αhij). This kinetic term has no sign ambiguities, dependent on the choice of the 4-dimensional signatures,
the sign in front of it determines whether hij is a propagating ghost or not. This sign is encoded in ρ2. Of course,
different to GR, for example the trace of hij (the scalar degree of freedom) can propagate and the sign of its kinetic
term is determined by ρ0.
Also the tensorial structure is fixed by the requirement of the absence of ghosts.
Then, we are lead to a powerful conclusion: The running of αgrav(p) (or equivalently GN (p)) can be understood in

terms of ρ2(s) and ρ0(s), and the positivity requirement automatically excludes a weakening of gravity in the weakly-
coupled regime [2, 21]. Indeed, using the spectral decomposition (13) we can represent αgrav(p) in the following
form,

αgrav(p)

αEin(p)
= 1 + p2

∫ ∞

0

ds
ρ2(s)

p2 + s
, (14)

where αEin(p) ≡ p2/M2
P is the strength of pure-Einstein gravity and relativistic sources are used. Due to the

positivity of ρ2(s),
αgrav(p)
αEin(p)

is a never decreasing function larger than one,

αgrav(p)

αEin(p)
≥ 1 and

d

dp2

(

αgrav(p)

αEin(p)

)

≥ 0 . (15)

Thus, weak gravity can never become weaker! In other words, Einsteinian gravity is the weakest among all possible
gravities that flow to Einstein with a given GN in the IR. A direct consequence of this fact is that, in the weak gravity
regime, any modification of Einsteinian gravity always produces (for a given mass) BHs of size RH ≥ RS , where
RS = 2GNM is the Schwarzschild horizon [2].
The physical meaning of the above statement is clear. Equation (13) tells us that the gravitational force mediated by

positive norm particles is always attractive. Thus, the weakest gravity at any scale is the one that is mediated by the
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minimal number of messengers; this is Einstein’s gravity mediated by a single massless spin-2 graviton. Furthermore,
the positivity of ρ2(s) and ρ0(s) requires the strong coupling scale M∗ of any UV modification of gravity to be lower
than the strong coupling scale of pure Einsteinian gravity,

M∗ ≤ MP . (16)

This fact is a direct consequence of (15) (see also appendix B).
An example of a healthy modification of Einsteinian gravity with such a property is provided by Kaluza-Klein

theories in which gravity becomes high-dimensional above a compactification scale Mc ≡ 1/Rc. For example, the
5-dimensional case corresponds to a particular case of (13) with

ρ2(s) =
∑

n

δ(s− (nMc)
2) , ρ0(s) = δ(s) . (17)

Then, for energies p ≫ Mc, (ignoring tensorial structures) the one-graviton exchange amplitude takes the form

A(p) ∝ 1

M∗
√

p2
, (18)

where M∗ is the 5-dimensional Planck mass. We can recast this as the usual 4-dimensional propagator but with a
momentum dependent Newton constant GN (p)

A(p) ∝ GN (p)
1

p2
, (19)

where GN (p) ≡
√

p2

M3
∗
. At p = Mc, the “running” Newtonian coupling must match the four-dimensional Newton’s

constant. This matching gives the well known geometric relation between the four-dimensional and five-dimensional
Planck scales,

M∗ = (M2
PMc)

1

3 ≤ MP . (20)

Here, gravity becomes strong at a scale M∗ ≤ MP , due to the fact that compactification scale is smaller than the 4
dimensional Planck scale, Mc < MP .
It is very important to note that what we just said is independent of the precise change of the law of gravity. Hence,

the only hope for gravity to become weaker in the UV is to first reach the strong coupling regime (the scale M∗) and
only then turn around its strength. We shall now try to see if such a behavior can be physically meaningful.

IV. TRANS-PLANCKIAN GRAVITY IS IR GRAVITY

In the previous section we proved that gravity cannot become weaker than GR in the weak gravity regime. Could
we allow αgrav/p

2 to start decreasing in the strong gravity region, p ≫ M∗? We shall now argue that such a decrease
is unphysical, because the region p ≫ M∗ is protected by the BH barrier. Because of the impossibility of probing
length scales L ≪ L∗, an asymptotic weakening of gravity at such distances is physically meaningless, and moreover
unnecessary, since gravity in this region is fully controlled by large distance classical dynamics. The key point is that
there are no perturbative states with masses above M∗ that can be excited. This is due to the fact that the Compton
wavelength of such a particle would be smaller than its BH horizon. Rather, the only well-defined meaning for any
such state is that of a non-perturbative classical object, probing at best distances of order of its own BH horizon,
which because of the positivity of the spectral representation is always above L∗.
One may however wonder whether this result can be implemented in a consistent quantum field theory. In other

words one may wonder whether imprints of sub-Planck-distance physics cannot be avoided in infinitely precise low
energy experiments. If this were true than the existence of large mass quantum states would be necessary, invalidating
our results.
In the Wilsonian picture the information about a large energy physics (E = M ≫ MP ) is carried by propagating

quantum degrees of freedom of mass ∼ M . By integrating-out such particles in the effective low energy theory, we
get a series of operators of the form

g Fµν
1

M2 + �
Fµν Fαβ

1

M2 + �
Fαβ + . . . , (21)
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FIG. 2: Trans-Planckian distances are shielded by a Black Hole barrier. Probing poles at p2 = L−2
≪ M2

P one has to localize
energy of order L−1 within the distance L. The corresponding Black Hole horizon of this energy, RH(L) ≥ RS(L) = 2L2

P /L,
shields the sub-Planckian region (L < LP ) from being probed by any physical experiment. The sub-Planckian distance L is
mapped to the macroscopic distance RH(L). On the right-hand-side we show a qualitative plot of the energy-distance relation.
The grey “blob” around the Planck scale indicates that at the Planck scale itself we don’t know how the precise relation between
engery and distances is. Also, there is an uncertainty about the far IR Black Holes, i.e. for energies EIR = 2L2

P /LIR as we
cannot exclude the possibility that at scales L ≫ LIR gravity is modified.

where g is some effective coupling of order one. By performing very precise measurements at very low energies, we
could in principle read-off the structure of these operators and thus decode physics at distances ∼ M−1. In our
field theory, we however postulate that gravity is not Wilsonian and in fact that massive (trans-Planckian) states are
classical BHs.
In this picture, integrating out such classical objects, we get an operator that looks like the leading order (at low

energies) of (21), or

ge
− M

Mp Fµν
1

M2
Fµν Fαβ

1

M2
Fαβ + . . . . (22)

The above form is due to the fact that we are considering virtual BHs into scattering of photons. Extrapolating
from the properties of on-shell BHs we expect that also virtual BHs are thermodynamical objects and therefore their
contribution into the scattering amplitude is at least Boltzmann suppressed. This produces the exponentially small

factor e
− M

Mp . However, while the operators in (21) incorporate propagating degrees of freedom that show up at the

next to leading order in the expansion �

M2 , in our case, objects of mass larger than MP are no propagating. Therefore,
operators in (22) differs greatly from the operators in (21). In fact, the operators in (22) carry no more information
about energy scale above MP than any other operator obtained by integrating-out any classical (or solitonic) object
of mass M .
Summarizing, it is then clear that scales smaller than the strong coupling scale of the gravitational theory can

never be resolved. This is in the same spirit of the Heisenberg uncertainty principle and in fact it is a high energies
generalization of it (for a pictorial representation see Fig. IV and for previous literature see [4]).
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FIG. 3: Gravitational field produced by a source T . The wiggled lines represent the emitted gravitons hµν . At the horizon the
trilinear and higher order interactions are of the same order as the one-particle exchange

A. Trans-Planckian pole in Einstein gravity

We want to discuss a concrete example in which one attempts to add an extra propagating degree of freedom to the
massless graviton in the trans-Planckian region. We show that if one tries to discover the trace of this new state in
precise measurements at large distances, one inevitably fails. Let us try to modify the laws of UV gravity by adding
a scalar graviton φ of mass m to the spin-2 Einstein graviton, hµν . That is, we shall assume that the metric seen by
the external probe-sources is given by

gµν = ηµν +
hµν

MP
+ ηµν

φ

MP
. (23)

We will see that this addition is meaningful only as long as m . MP and becomes meaningless when m crosses over
into the trans-Planckian region.
At large distances, the dynamics of the massless spin-2 graviton is described by Einstein’s equation,

Gµν = 8πGN Tµν , (24)

which to linear order in the graviton can be written as (we use harmonic gauge ∂µhµν = 1
2∂νh),

� hµν = − 16πGN (Tµν − 1

2
ηµν T

α
α ), (25)

where h ≡ hµ
µ. To linear order in the fields, the only contribution to Tµν is coming from the energy-momentum tensor

of the external source, which will be taken to be a static, pointlike mass M with Tµν = δ0µδ
0
ν δ

3(r)M . This gives the
usual first order result for the graviton,

h
(1)
µν

MP
= δµν

RS

r
, (26)

where RS = 2GNM is the Schwarzschild horizon of the corresponding mass M BH. Note that to this order, the signal

of approaching the horizon is that h
(1)
µν becomes of order one. At the same time, by consistency, the proximity of

the horizon is signalled by the second and higher order perturbations in GN becoming of the same order, i.e. the
contributions from the non-linear coupling of the graviton to the source are becoming as important as the ones from
the linear coupling to the source. Hence, the series has to be resummed; see also Fig. 3. This signals the formation
of a horizon [22].
Notice, despite the corrections to the metric becoming of order one, the characteristic momenta flowing through

the graviton vertices are of order 1/RS, and thus, as long as RS ≫ LP , the near horizon geometry is not a probe of
Planckian physics. For such sources, gravity is in the weakly-coupled regime (αgrav ≪ 1).
In order to find non-linear corrections, we have to expand eq. (24) to second order in hµν , which effectively takes

into account the interaction of the graviton with its own energy-momentum tensor Tµν(h). To be fully consistent one

also has to include the corrections to the energy-momentum tensor of the source T
(1)
µν which is calculated in appendix

A.

8πGN Tµν(h) = −1

2
hαβ (∂µ∂νhαβ + ∂α∂βhµν − ∂α(∂νhµβ + ∂µhνβ)) −

−1

2
∂αhβν∂

αhβ
µ +

1

2
∂αhβν∂

βhα
µ − 1

4
∂µ hαβ ∂ν h

αβ

− 1

4
ηµν

(

∂α hβγ ∂
β hαγ − 3

2
∂α hβγ ∂

α hβγ)

)

− 1

4
hµν � h +

1

2
ηµν hαβ � hαβ + T (1)

µν , (27)
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evaluated for the linearized graviton h
(1)
µν . We then get the standard corrections to the metric at second order in GN .

For example,

h
(2)
00

MP
= −1

2

R2
S

r2
and

h
(1)
00

MP
=

RS

r
(1 + a

M2

M2
P

) , (28)

where a is a factor of order 1 and M ≪ MP . Taking into account the backreaction of the gravitational field the
source produces on itself gives a small shift in the “effective” gravitational mass of the source particle, which can be
safely neglected. These corrections are the manifestation of the fact, that at the horizon, r = RS , the expansion of
the metric in powers of (RS/r) breaks down, and the series has to be resummed.
The novelty due to the presence of the massive scalar graviton φ, also coupled to the same static external source

T , is that to second order in GN , h
(2)
µν gets corrections also from the coupling to the energy momentum tensor of φ,

Tµν(φ) = ∂µφ∂νφ − 1

2
ηµν(∂αφ∂

αφ + m2φ2) . (29)

These corrections are accounted for by including the contributions from (29) evaluated to the first oder solution
φ(1) = e−mr(RS/r) on the right hand side of (24). Obviously, this contribution gives only an exponentially-supressed

correction to h
(2)
µν .

The more important, power-law-suppressed, corrections can appear if there are couplings between φ and h of the
form,

φ∂nhk

Mn+k−3
P

, (30)

as in non-minimally coupled gravity and where the tensorial structure is not disclosed. Such couplings will induce an
effective source for φ,

(� +m2 )φ =
(∂nhk)

Mn+k−3
P

+ ... , (31)

and can give corrections to φ which are not exponentially suppressed, but only by powers of (rm)−1 and (rMP )
−1.

For example, evaluating the right hand side of (31) for h = h(1) and r ≫ m−1 can (subject to cancellations in the
tensorial structure) give corrections of the order

φ(k)

MP
∼ Rk

S

rk
1

(MP r)n−2(mr)2
. (32)

The reason why these correction are not exponentially suppressed can be understood from the fact that they arise
from short range processes which do not require propagation of virtual φ-quanta over distances larger than their
Compton wave-lengths.
In other words, these corrections can be viewed as the corrections to the metric in form of non-linear powers of

exclusively massless gravitons, appearing as a result of a tree-level integrating-out of a heavy scalar graviton of mass
m, see also Fig. 4,

gµν = ηµν +
hµν

MP
+ ηµν

(∂nhk)

Mn+k−3
P m2

+ ... . (33)

To summarize, we have seen that corrections coming from a heavy gravitational degree of freedom to the Einsteinian
metric at distances larger than its Compton wavelengths are suppressed either exponentially, or by inverse powers of
its mass m and cannot significantly affect Einsteinian gravitational dynamics at distances r ≫ m−1. For example,
they cannot interfere with the formation of BHs with Schwarzschild radius RS ≫ m−1. This is in full accordance
with the notion of a decoupling of heavy states at low energies [32]. Although a heavy quantum state gives negligible
corrections to the metric at large distances, in the case m . MP , these corrections are measurable. In this way
signatures of new gravitational physics of distance-scale m−1 can in principle be probed by precision measurements
at much larger scales r ≫ m−1.
However, for m ≫ MP this is not true as the new degree of freedom is no longer a perturbative state, but rather a

macroscopic BH, which does not carry any information about the UV physics. Take for example the above massive
scalar graviton φ of mass m. Once m ≫ MP , φ can no longer be treated perturbatively as its Compton wavelength
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FIG. 4: A heavy scalar (double line) is mediating the interaction between a source T and k gravitons (wiggled line). Integrating-
out this scalar at tree-level will induce an effectice point-like interaction between the source and k gravitons.

(m−1) is smaller than its BH horizon. To see this, it is enough to examine the gravitational field produced by the
non-relativistic particle φ by simply replacing M by the mass m in equation (24). The analysis following eq. (24)
immediately shows us that the φ particle develops a horizon (Rφ = 2GNm) at scales larger than m−1. For this
reason, it is a fully legitimate classical BH. Hence, our perturbative analysis, in which we considered contributions
of virtual φ quanta, is no longer applicable. This also implies that the effective operator obtained by integrating-out
φ can no longer have the power-law suppressed form. Instead, we must take into account that φ is now a BH, and
therefore any contact interaction resulting from its integrating-out must be exponentially suppressed by at least the
entropy (S) factor e−S. In other words, by becoming trans-Planckian, φ cannot carry information other than what
is already carried by an IR black hole of the same mass. Therefore, a particle with trans-Planckian mass should be
integrated out as an ordinary classical BH of the same mass.
To summarize, given the fact that any degree of freedom with massM ≫ MP is a classical object, it becomes obvious

that – no matter how sophisticated one tries to be – there is no process (including BH evaporation, primordial quantum
fluctuation, scattering experiments, etc.) which can probe trans-Planckian physics.
Note that the covering of sub-Planckian distances is even more efficient than what we described before. In fact, as

shown in [23], before the BH formation an eikonal barrier may well form. In this case eikonal amplitudes (exchange of
many soft gravitons) become important preventing hard energy transfers through a single graviton line which would
encode information about short distance physics.

B. Trans-Planckian poles in general theories of gravity

In this section we extend the result of the previous section to the case in which the strong gravity scale is M∗ < Mp.
We will prove that, even in this case, no elementary states with mass bigger than M∗ may exist. In order to prove
that we will consider the one-graviton exchange analysis as a good approximation up to the strong coupling scale. In
fact, although large classical BH are formed by a large number of gravitons (collective effect) as to produce a strong
gravitational field, they can be treated separately as weakly coupled.
The proof is a direct consequence of the fact that the scale of the strong coupling M∗ defined by (5) also sets the

upper bound on the center of mass energy and the inverse impact parameter above which the BH formation starts.
The most straightforward way to prove this is to start from the opposite end. Let us take a large classical BH of

mass M and horizon RH . The only condition on RH is that for momenta p = R−1
H gravity is in the weakly-coupled

regime, αgrav(p = R−1
H ) ≪ 1. The relation between the horizon and M can be found from the condition that

h00(RH)/MP = 1, which using (13) can be rewritten as,

h00(RH)

MP
= 2

∫ ∞

0

ds
ρ(s)

M2
P

e−
√
sRH

RH
M = 1. (34)

Using the same (13), we can also represent αgrav(p) as,

αgrav(p) =
(p2)2

M2
P

∫ ∞

0

ds
ρ(s)

p2 + s
. (35)

We can now start decreasing the mass of the BH, until the horizon and the inverse mass cross, RH = M−1. We shall
denote the corresponding mass by M∗ ≡ L−1

∗ . Black holes heavier than M∗ are in the classical regime. The scattering
processes with center of mass energy M ≫ M∗ and impact parameter ≪ RH will lead to classical BH formation.
The crucial point is that the strong coupling is reached precisely around this energy M∗ and never well below. In
other words, there is no window above M∗ in which one can probe αgrav(p) without encountering BH formation.



11

We can see this easily from the fact that αgrav evaluated for momenta p = M∗ is of the same order as the quantity
h00(M

−1
∗ )/MP ,

αgrav(M∗) =
M2

∗
M2

P

∫ ∞

0

ds
ρ(s)

1 + s/M2
∗

∼ h00(L∗)

MP
= 2

M2
∗

M2
P

∫ ∞

0

ds ρ(s) e−
√
s/M∗ = 1. (36)

This approximate equality follows from the fact that ρ(s) is a positive definite function which gets exponentially cut

off by the above-discussed Boltzmann factor e−
√
sRH , where RH is the horizon of a classical BH of mass M =

√
s,

determined from (34). So, effectively the integration is cut off at s = M2
∗ (recall that for M∗, RH(M∗) = M−1

∗ ),

which makes the difference between the factors e−
√
s/M∗ and (1 + s/M2

∗ )
−1 irrelevant.

C. On the weakening of gravity at strong-coupling scale

By summing up the previous findings we are lead to the following picture: By gradually increasing p in the scattering
experiment we probe stronger and stronger gravity. By the time we reach the scaleM∗, where gravity becomes strongly
coupled, we start seeing the BH formation. Any further attempt of increasing p will result in the formation of larger
and larger classical BHs. The region beyond M∗ is thus outside of physical reach. Any weakening of αgrav(p) for
p ≫ M∗ has no clear physical meaning since it cannot be probed.
Since we are only deriving the upper bound on the threshold scale of BH formation, beingM∗, our proof is insensitive

to the details of the theory. We are approaching it from the weakly coupled domain, in which the one-particle exchange
is a good approximation, and stop as soon as this approximation breaks down. In this way, we manage to derive
a necessary connection between the strong-coupling and the threshold of BH formation, which allows us to see the
impossibility of probing physics at distances shorter than L∗.
We shall now illustrate our general conclusion on two examples.
a. An attempt of asymptotically safe gravity in four-dimensions Consider a theory where Einstein gravity is valid

all the way up to the Planck scale. In such a theory M∗ ≡ MP . We then wish to modify the theory in such a way
that in the deep UV (p → ∞) a fixed point scaling for the gravitational coupling sets in, i.e. αgrav → α∞ = const.
Let us see whether such a behavior could have a well-defined physical meaning. This behavior can be modelled by a
propagator of the form

∆(p) =
1

M2
P p

2

1

1 + p2

α∞M2

P

. (37)

where α∞ > 1 is a constant and ∆(p) → α∞

p4 for p ≫ √
α∞MP . In this limit αgrav(p) = 16πGN(p)p2 ≃ α∞ > 1. This

simulates, for example, the running of αgrav of the Asymptotic Safety scenario. For probing distances r ∼ 1√
α∞MP

we need a center of mass energy of order E ∼ √
α∞MP and a momentum transfer p ∼ E.

This example is very similar to the one of an additional graviton of trans-Planckian mass m, which we have
considered previously, with the only difference that now the trans-Planckian state has a negative norm. We shall
ignore this sign for a moment since, despite this difference, our argument about the impossibility of resolving the
heavy pole remains unchanged. Therefore, any attempt of probing the length-scale L =

√
α∞

−1LP (corresponding
to the asymptotically safe regime) will result in the formation of a BH of macroscopic size, RH ≃ 2LP

√
α∞. This BH

formation cannot be influenced by the would-be asymptotically safe behavior in the deep UV, since for the dynamics
of a BH of size RH , corresponding to E ∼ √

α∞MP , the ghost pole is decoupled and hence irrelevant. This is also
obvious from the equality that determines the BH horizon,

h00(RH) = 2

√
α∞

MP

1

RH

[

1− α∞e−
√
α∞MPRH

]

= 1 , (38)

where we see that the existence of the heavy ghost pole at
√
α∞MP only affects the value of RH with exponentially

weak corrections. So in the attempted scattering process, a BH will be produced with radius RH ≃ 2
√
α∞

MP
> M−1

P ,
which makes a penetration of the trans-Planckian region impossible. Thus Asymptotic Safety is rendered irrelevant
before it had any chance to influence gravitational physics.
To conclude, the existence of a ghost pole, which was assumed to be responsible for the would-be Asymptotic Safety

behavior, is at best unphysical. Moreover, the UV-IR connection of gravity indicates that it should not have been
included in the first place. Indeed, because of the BH barrier, any physically sensible trans-Planckian state is mapped
to a macroscopic object from the IR region. However, in a consistent theory of gravity there are no negative energy
classical states. Therefore, the ghost pole simply cannot have any IR counterpart, and thus should be excluded by
self-consistency of the theory.
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b. Asymptotically safe gravity with a lower cut-off scale Next, we wish to consider an extension of the previous
example in which gravity becomes strong at scaleM∗ < MP . This will happen whenever new (positive norm) gravitons
open up at some intermediate energies. A good example of this property is provided by KK theories, in which gravity
becomes higher-dimensional above the compactification scale Mc = R−1

c . Thus, at short distances r < Rc, gravity
crosses over to the five-dimensional regime and becomes strong at distances of the five-dimensional Planck length L∗.
Let us then consider the case in which four dimensional gravity becomes weaker at high energies (a behavior shared

with asymptotically safe gravity), i.e. at distances ≪ √
α∞

−1LP , and which has a strong coupling scale M∗ < MP .
To simulate this behavior we consider the following propagator

∆(p) =







(MP /M∗)
2

∑

n=1

1

p2 + n2

R2
c







1

1 + p2

α∞M2

P

, (39)

where RcM
3
∗ ≡ M2

P . The only difference to the previous example is that above the scale 1
Rc

there is a tower of massive
gravitons, which makes gravity strong at the scale M∗ as opposed to MP . The shortest observable length scale in
this theory is L∗ ≡ M−1

∗ . There is again a trans-Planckian ghost pole, which makes gravity asymptotically safe, but
because of BH formation, this pole is unphysical and cannot be probed. Indeed for energies required in order to probe
the ghost pole, E ∼ √

α∞MP , the BH horizon is macroscopic RH ≫ M−1
∗ , and the corresponding states belong to

the classical gravity region.
Again, we see that Asymptotic Safety has no physical meaning in this example. The BH barrier, which maps the

trans-Planckian region to classical IR gravity, completely washes out the Asymptotic Safety region.

D. Continuum Tails of Trans-Planckian Physics

Previously, arguing along the lines of [3], we have shown that trans-Planckian states cannot be detected in precision
measurements at large distances. The reason is that, because of the BH barrier, trans-Planckian states themselves
are macroscopic objects and are fully described by the classical IR sector of the theory. Thus, their influence must be
fully accounted for by the large-distance gravitational physics. We have illustrated this on the examples of isolated
poles in the graviton propagator.
We wish to extend this discussion to the continuum of states. Such states could result in sub-leading corrections

to the one particle exchange diagrams represented by the decomposition (13), which seemingly may be probed in the
deep IR.
In particular, let us focus on sub-leading corrections that would make gravity slightly weaker.
Without loss of generality, let us consider GR with a strong gravity scale MP and a perturbation to the Newtonian

potential of the type

V (r) = GN
mM

r
(1 − L2

r2
+O

(

L3

r3

)

) . (40)

In fact, this potential has been considered for example as the correction to the Newtonian physics within the
Asymptotic Safety scenario for gravity [24]. The 1-loop correction to the Schwarzschild metric in an effective field
theory approach studied in [25] was also found to be of this type.
The negative contribution ∝ L2/r3 can be understood as the result of an exchange of a continuum tower of ghosts

states. To see this we can rewrite (40) as [26],

V (r)

m
≃ GNM

[

1

r
− L2

∫ ∞

0

dm̃
e−m̃r

r
m̃

]

. (41)

The second term in the square brackets is nothing else than a sum over a continuum of massive particles. Indeed in
Fourier space one readily obtains

V (p)

m
≃ GNM

[

1

p2
− L2

2

∫ ∞

0

ds
1

p2 + s

]

. (42)

In other words, the potential (40) is obtained by the exchange of a massless graviton and an infinite tower of equally
distributed massive ghosts, i.e. with a constant spectral density ρ(s) = L2/2. This potential in momentum space can
also be considered as being a consequence of the following running Newtonian constant

GN (p) = GN [1− L2p2 ln p] , (43)
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which would make gravity weaker and weaker at high energies.
If L ≫ LP , the contribution from the ghost tower dominates at the scale ≫ LP , and the theory makes no sense

already in IR. So such a continuum correction cannot exist in a consistent theory.
If L ≪ LP , for any classical BH the correction from the ghost tower is subdominant to the first non-linear correction

from the massless graviton, which according to (28) goes as ∼ R2
s/r

2. Thus the ghost tower cannot affect the BH
formation and the BH barrier cannot be altered.
Consequently, the trans-Planckian members of the continuum are again shielded by the BH barrier and are either

unphysical or simply inconsistent.
Hence, there is no domain in which the potential (40) is a sensible description of physics.
A seeming way out of the impossibility of probing UV distances would be to construct a scattering experiment with

center of mass energy E < M2
PL and impact parameter b < L. In this region, it seems from the expanded potential

(40) that BHs cannot form. However, such an experiment cannot be performed in principle. In fact, the impact
parameter would be smaller than the Compton wavelength of a particle of mass M = E and therefore, by Heisenberg
principle, these center of mass energies E can never probe distances b. The minimal distance that such an experiment
can probe is E−1 > (LP /L)LP ≫ LP . So, once again, the Planck scale turns out to be impenetrable.

E. Sub-Planckian Experiments

In this section we would like to consider the question of whether trans-Planckian physics can be observed by
preparing a scattering experiment at scales in which the modification of gravity is already important.
In the weak gravity regime, as proven before, any healthy modification of gravity can only make gravity stronger

and therefore the BH barrier would be even more effective than in the GR case.
One may, however, envision an experiment prepared at distances shorter than the strong gravity scale where one

can wonder whether the hoop conjecture may be violated and enable a resolution of the sub-Planckian scales without
the BH barrier. Our results disagree with this point (see also [27] and note [33]). In fact, by conservation of energy,
any experiment prepared at distance-scales smaller than the Planck length (and correspondingly energies bigger than
the Planck energies) has to be surrounded by a classical BH.
Suppose such an experiment is indeed set up without a BH formation so that an asymptotic observer detects some

output from the experiment. Then, this implies that a degree of freedom with energy larger than the Planck mass
has to cross outside a sphere of radius LP before reaching the detector. As soon as this happens, a BH will inevitably
form, as discussed before. However, if there was no BH before this would be in contradiction with the conservation
of energy which is manifest on an asymptotically flat background. An asymptotic observer may in fact draw a sphere
around the region of the experiment and continuously monitor the energy inside the sphere by measuring the Gaussian
flux at infinity. Therefore, the only way of conserving the flux at infinity is to exclude the absence of the BH during
any exchange of information from inside the sphere.
We thus conclude that at best the experiment was prepared inside of an already existing BH.
From a slightly different perspective: One cannot have an energy localized within distance L ≪ LP and crossing

outside this region without causing a surrounding gravitational field of a BH.
Imagine for example an extreme case in which the gravitational force vanishes at some scale L ≪ LP . Take a

spherical shell placed entirely inside this region. Although this shell has a positive energy it does not gravitate as long
as its radius R ≪ L. Naively then, one would conclude that there is no gravitational field outside the sphere, thus an
asymptotic observer would see a flat space. Now let the shell communicate with an outside observer by expanding and
crossing outside the L sphere. At some point this sphere will cross into a R > L region. Since the energy of the shell
is trans-Planckian it has to form a BH. However, the BH cannot appear out of nothing by conservation of Gaussian
flux at infinity. We then see that a BH must have been formed from the very beginning when the experiment is set
up.

F. Infrared Scales

For definiteness, our treatment was limited to theories which flow to Einstein gravity on asymptotically-flat spaces
in the deep IR. A theory may contain an infrared scale LIR beyond which this assumption breaks down. For example,
this may be a scale of a small background curvature, or something more profound. Since the existence of such a scale
may modify the properties of BHs, the connection between deep-UV gravity and classical IR BHs can also be affected.
In such a case we still expect our conclusions to hold true in the energy interval between 1/LIR and LIR/(2L

2
P ), the

latter value being set by the mass of an Einsteinian BH with Schwarzschild radius equal to LIR (see also Fig. IV).
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If LIR is a curvature radius produced by a positive cosmological constant, we expect the concept of a minimal
length to be unaffected. If anything, positive curvature makes it harder to probe short distances, since for a given
mass the effective Schwarzschild radius is increased. For example the time component of a static metric would then
be (in Schwarzschild coordinates)

g00 = 1− 2GN
M

r
− r2

LIR
. (44)

For the observed cosmological constant, LIR = 1028cm, the deviation from the flat space case only appears for
energies comparable to the mass of the observable Universe and can be ignored.
If, for instance, LIR is related to a negative cosmological constant, one should consider the concept of AdS/CFT

correspondence [28]. However, this will not be the concern of our paper.

V. CONCLUSIONS

In [3], it has been argued that quantum gravity might be fully described by light degrees of freedom. In this sense
GR has been considered self-complete. Following this idea we have shown that this self-completeness property, which
is built-in in Einstein gravity, persist for a wide class of its deformations. The basic reason for self-completeness is the
non-existence of trans-Planckian propagating degrees of freedom. Any would-be trans-Planckian pole is mapped on
a classical IR state, described by low-energy degrees of freedom of the IR theory. This remains true in the presence
of a BH if one assumes that BH evaporation is fully described by low energy physics. This assumption is backed
up by noticing that, in order to see trans-Planckian corrections to the Hawking evaporation, one should integrate-in
an operator of mass larger than the Planck scales. However, this operator defines a particle of Compton wavelength
smaller than the BH horizon of the same mass in the weakly coupled region, so such an operator can only integrate-in
other BHs.
As a consequence we have seen, the same properties that make Einsteinian gravity self-complete in the deep UV,

also render many attempts of a conventional UV-completion in the trans-Planckian region physically meaningless.
We have focussed on the class of such attempted UV-completions which are based on the ideas of an asymptotic

weakening and of Asymptotic Safety. We have shown that in Einstein gravity and its ghost-free deformations there
is essentially no energy interval in which these ideas can be realized in a physically clear way. We have found that,
in both cases, the necessary condition is that a weakening (or safety) can only take place within the strong gravity
domain. We have shown that in ghost-free extensions of Einstein this domain includes the domain where gravity
starts to be mapped to the IR region, because of the BH barrier. In other words, there is no interval of distances in
which gravity may be strongly-coupled but not shielded by the BH barrier.
Thus, both mechanisms of the completion are necessarily pushed in the region in which gravity seems to be self-

complete anyway. So the only meaning of such completions would be if they are mapped to IR physics, but this is
not possible for the asymptotically weak gravity case.
In this paper we did not address the question of a connection between the self-completeness of gravity and a string

theoretic completion. For this we refer the reader to [3] and references therein.
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Appendix A: Corrections to energy-momentum tensor of the source

The energy-momentum tensor of the colliding particles is modified during the scattering process due to its coupling
to gravity. This modification is encoded in the conservation equation

∇αT
α
β = 0 (A1)
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valid at all order. The conservation equation (A1) is automatically obtained thanks to the diffeomorphism invariance
of the action. At linear order, the conservation equation is obtained by the interaction

∫

d4x
hαβ

Mp
T

(0)
αβ , (A2)

where T (0) is the energy momentum tensor calculated in absence of gravity, or in other words, by considering the
energy-momentum tensor as an external source. In fact by considering the linear diffeomorphic group under which
the perturbation of the metric transform as hαβ = ∂(αξβ) we obtain the equation

∂αT
(0)
αβ = 0 , (A3)

which is the zeroth order in eq. (A1). Obviously one may consider the first order in eq. (A1). In this case the energy
momentum tensor may no longer be consider as an external source. This is similar to radiative corrections in QED,
for example. However, this contribution will only be important whenever the operator eq. (A2) will give a large
contribution, i.e., after black hole formation (since the colliding particle masses are small with respect to the Planck
scale). However this regime is hidden behind a Black Hole. Concluding, although it is true that, at full non-linear
level, the energy-momentum tensor is not an external source, it is at linearized level, which is the regime considered
in our paper.
The following computation is to show that the first order corrections to the stress-energy tensor of the “external”

particle are indeed negligible. In this case, the particle can no longer be considered as a point-like δ-function source.
Instead we model the particle as a perfect fluid ball of radius of the its Compton wavelength Rc with constant density
ρ = M

V = const for r < Rc = M−1, where V is the volume of the ball and M the mass of the particle. The
stress-energy tensor of such a fluid ball is given by

T
(0)
αβ = (ρ+ p)uαuβ + pgαβ . (A4)

We assume the matter to be non-relativistic to first approximation., i.e. ρ ≫ p. In a static spacetime the fluid
velocity 4-vector points in the same direction as the static Killing vector field: uα ∝ (dt)α. Which in our coordinates
means uα ∝ δ0α. A timelike 4-velocity gives the constraint

uαu
α = −1 , (A5)

and it follows that uα = 1√
−g00

δ0α.

On a Minkowski background, eq. (A1) is satisfied by ρ = const, p = 0 and uα being a solution to the geodesic
equation

uα∇αuβ = 0 . (A6)

This source yields the first order perturbations in the metric, see eq. (26). What is the effect of these perturbations
on the source itself?
The 4-velocity up to first order corrections is

uα = (1− 1

2
h00)δ0α . (A7)

From eq. (26) we know that hµν = 2Gm(r)
r δµν with m(r) =

∫ Rc

0 d3xρ. Let us split eq. (A1) in two orthogonal parts;
one in the direction of uα and the other orthogonal to it.

uα∇αρ+ (ρ+ p)∇αu
α = 0 , (A8)

(p+ ρ)uα∇αuβ + (gαβ + uαuβ)∇αp = 0 . (A9)

Eq. (A8) gives ∂tρ = 0 which is satisfied trivially. Eq. A9 gives us the correction to the pressure due to the
selfinteraction of the gravitational source. In a static spacetime the pressure cannot depend on t and we find

−1

2
ρ ∂ihtt + ∂ip = 0 , (A10)

where i denotes the three spatial coordinates. Together with the boundary condition that p(Rc) = 0 we find that

p(1)(r) = 1
2ρ(h

(1)
00 (r) − h

(1)
00 (Rc)). So the first order correction to Tαβ is given by
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T
(1)
αβ = 2ρu(1)

α u
(0)
β + p(1)ηαβ , (A11)

where u
(1)
α = − 1

2h
00δ0α and u

(0)
β = δ0β .

We see that the first order correction is always subleading as long as hµν ≪ 1. This is the point where a BH starts
forming and hence our approximation ceases to be valid.
It immediately follows that the gravitational binding energy, which is given by

EB = Mp −M =

∫ Rc

0

d3xhi
iρ , (A12)

where Mp =
∫ Rc

0
d3x
√

g(3)ρ is the proper mass defined by the proper volume integral over the density, is (as expected)
negligible in the weak coupling regime, i.e. before the BH formation. This is also obviously true for any modification
of gravity that does not violate energy conditions, or, in field theoretical terms, that do not at least propagate ghosts.
We conclude that we can safely neglect the back-reaction of the gravitational field on the source in the weak coupling

regime.

Appendix B: Strong Coupling Scale

In this appendix we want to estimate the strong coupling scale M∗. The strong coupling scale is given by the
minimal scale at which some scattering amplitudes become of order one. To put a bound on this scale, we consider a
non-relativistic particle of mass M .
The gravitational potential can now be probed by an external static non-relativistic source τµν = δ0µδ

0
ν δ

3(r − r′)m
and the strength of this interaction is set by the amplitude

A =

∫ ∞

0

h00(r
′)

MP
δ3(r − r′)md3r′ =

h00(r)

MP
m. (B1)

Whenever A/m ∼ 1 unitarity is violated, as the probability of this process per unit time and probe mass is of order
one.
For a given mass Mv, there is always a radius rv at which the unitarity bound of the theory is violated, or in other

words

2

∫ ∞

0

ds
ρ(s)

M2
P

e−
√
srv

rv
Mv = 1 . (B2)

In the previous expression we used the fact that one can always spectrally decompose h00(r) to be

h00(r) = 2

∫ ∞

0

ds
ρ(s)

MP

e−
√
sr

r
E, where all spin-2 and spin-0 poles were summed up.

By Heisenberg principle, rv cannot be smaller that the Compton wavelength of a particle with mass Mv, i.e.
rv ≥ M−1

v . Therefore, the minimal Mv is obtained by inverting

2

∫ ∞

0

dsρ(s)e−
√

s

Mv

(

Mv

MP

)2

= 1 , (B3)

i.e.

Mv =
MP

√

I(Mv)
≤ MP . (B4)

The last inequality is a direct consequence of that

I(Mv) ≡ 2

∫ ∞

0

dsρ(s)e−
√

s

Mv ≥ 1 . (B5)

(B5), as explained in section (III), is related to the fact that any ghost free theory of gravity can only produce a
stronger gravitational field than the one produced in the Einstein theory, for which ρ(s) = δ(s). By definition then
the strong coupling scale of the theory is M∗ ≤ Mv ≤ MP .
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A consistency check of (B4) is obtained by considering that in Einstein gravity, in which I = 1, the strong coupling
scale is the Planck scale MP .
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