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Abstract

In a theory where the cosmological constant Λ or the gauge coupling constant g

arises as the vacuum expectation value, its variation should be included in the first law

of thermodynamics for black holes. This becomes dE = TdS+ΩidJi +ΦαdQα +ΘdΛ,

where E is now the enthalpy of the spacetime, and Θ, the thermodynamic conjugate of

Λ, is proportional to an effective volume V = −16πΘ
D−2 “inside the event horizon.” Here

we calculate Θ and V for a wide variety of D-dimensional charged rotating asymptoti-

cally AdS black hole spacetimes, using the first law or the Smarr relation. We compare

our expressions with those obtained by implementing a suggestion of Kastor, Ray and

Traschen, involving Komar integrals and Killing potentials, which we construct from
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conformal Killing-Yano tensors. We conjecture that the volume V and the horizon area

A satisfy the inequality R ≡ ((D − 1)V/AD−2)
1/(D−1) (AD−2/A)

1/(D−2) ≥ 1, where

AD−2 is the volume of the unit (D − 2)-sphere, and we show that this is obeyed for

a wide variety of black holes, and saturated for Schwarzschild-AdS. Intriguingly, this

inequality is the “inverse” of the isoperimetric inequality for a volume V in Euclidean

(D−1) space bounded by a surface of area A, for which R ≤ 1. Our conjectured Reverse

Isoperimetric Inequality can be interpreted as the statement that the entropy inside a

horizon of a given “volume” V is maximised for Schwarzschild-AdS. The thermody-

namic definition of V requires a cosmological constant (or gauge coupling constant).

However, except in 7 dimensions, a smooth limit exists where Λ or g goes to zero,

providing a definition of V even for asymptotically-flat black holes.
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1 Introduction

In theories where physical constants such as Yukawa couplings, gauge coupling constants

or Newton’s constant G and the the cosmological constant Λ are not fixed a priori, but

arise as vacuum expectation values and hence can vary, their variation should be included

in thermodynamic formulae such as the first law of black hole thermodynamics. In fact such

“constants” are typically to be thought of as the values at infinity of scalar fields. In the

case of modulus fields, the conjugate thermodynamic variables are scalar charges [1]. The

cosmological constant Λ behaves like a pressure,

P = −D − 2

16π
Λ = 〈 V 〉 , (1.1)

where V is the potential of any scalars, and the conjugate thermodynamic variable V is an

effective volume inside the horizon, or alternatively a regularised version of the difference in

the total volume of space with and without the black hole present. [2, 3, 4, 5].1 Thus the

first law of thermodynamics for black holes reads

dE = TdS +
∑

i

ΩidJi +
∑

α

ΦαdQα + V dP (1.2)

and E should be thought of as the total gravitational enthalpy, which is the analogue of

H = U + PV , (1.3)

where U is the total internal energy, so that

dU = TdS +
∑

i

ΩidJi +
∑

α

ΦαdQα − PdV . (1.4)

(Some further discussion of varying the cosmological constant in the black hole thermody-

namical context has recently been given in [6, 7].)

Of course if the cosmological constant is not treated as a variable, then H , U and E

coincide. However, even if the cosmological constant is not varied the quantities P and Θ

enter the generalised Smarr-Gibbs-Duhem relation, since Λ affects the scaling properties of

the thermodynamic variables. The Smarr-Gibbs-Duhem relation is a simple consequence of

1The term V dP is also written as ΘdΛ.
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the first law (1.2), combined with dimensional analysis. In D spacetime dimensions it reads

[4, 8, 5]

E = (D − 2)(TS +
∑

i

ΩiJi) +
∑

α

ΦαQα − 2

D − 3
V P . (1.5)

Moreover, in the simplest case of the Schwarzschild anti-de Sitter metric, and in its single

charged version, Reissner-Nordström anti-de Sitter, one finds that

V =
AD−2

D − 1
rD−1
H , (1.6)

where AD−2 is the area of the unit (D − 2)-sphere and rH is the radius of the horizon

expressed in terms of the Schwarzschild radial coordinate.

These general considerations become especially interesting in the case of gauged super-

gravity and string theories, where the cosmological constant and the gauge coupling constant

g are related by

Λ = −(D − 1)g2 , P =
(D − 2)(D − 1)

16π
g2 . (1.7)

Such theories can be obtained by means of sphere reductions from the eleven or ten di-

mensional ungauged supergravity theories. The most interesting gauged supergravities arise

in D = 4, obtained by an S7 reduction from eleven dimensions; in D = 5, obtained by

an S5 reduction from ten dimensions; and in D = 7, obtained by an S4 reduction from

eleven dimensions. In these cases the cosmological constant and gauge coupling constant

are related to the curvature of the compactifying sphere; that is, they are proportional to

(radius)−2. Thus in these cases the term V dP in the first law incorporates the thermody-

namics of the extra dimensional sphere, and its inclusion would be important if the size of

the extra dimensions, i.e. the radius of the sphere, were to change with time.

If one is contemplating time-dependent extra dimensions, one should bear in mind that

in descending from (n +D) to D spacetime dimensions on a compact manifold Kn one has

the relation

GD =
GD+n

Vol(Kn)
(1.8)

between the Newton constants. Thus if GD+n is regarded as fundamental and hence un-

changing, then if Vol(Kn) changes with time, so will GD, and its variation should also be

contained in the first law.
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In the remainder of this paper, we shall use the cosmological constant Λ rather than the

pressure P as the intensive thermodynamic variable, and the conjugate extensive variable

will be taken to be Θ. Thus the first law will be

dE = TdS + ΩidJi + ΦαdQα +ΘdΛ , (1.9)

where the metric in D dimensions is asymptotically AdS, with the Ricci tensor equal to (or,

in the case of charged black holes, approaching) Rµν = Λgµν . We take Λ = −(D − 1)g2,

where for solutions in gauged supergravities, g is the gauge coupling constant.

From dimensional scaling arguments, the generalised Smarr relation is

E =
D − 2

D − 3
(TS + ΩiJi) + ΦαQα − 2

D − 3
ΘΛ . (1.10)

The pressure and cosmological constant are related by (1.1), and so Θ is related to the

volume by

Θ = −(D − 2)

16π
V . (1.11)

In this paper, we investigate the role of the volume term in the thermodynamics of

asymptotically AdS black holes from various points of view. First of all, we note that since

all the other quantities in the generalised Smarr relation are already known, we can simply

use (1.10) to furnish a definition of Θ in all the known black hole examples. This will

necessarily also be consistent with the generalised first law (1.9). It then becomes of interest

to see whether V calculated via (1.11) admits a natural physical interpretation as a “volume”

of the black hole.

In simple cases such as a Schwarzschild-AdS or Reissner-Nordström-AdS, it turns out

that the volume calculated from (1.11) coincides with a “naive” integration

∫ r+

r0

dr

∫

dΩ
√−g (1.12)

over the interior of the black hole, where the radial coordinate ranges from the singularity

at r = r0 to the outer horizon at r = r+. In fact, in such cases the volume V turns out to

be expressible as

V =
r+A

D − 1
, (1.13)
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where A is the area of the outer horizon. With an appropriate modification in the case that

there are running scalar fields, a naive volume integration again allows the potential Θ to be

calculated for static charged asymptotically AdS black holes.

We find, however, that the situation becomes more complicated in the case of rotating

black holes. If, for example, we consider the Kerr-AdS black hole in D dimensions, then a

natural integration over the volume interior to the horizon, of the form (1.12), again, remark-

ably, gives rise to the expression on the right-hand side of (1.13) (if one uses the standard

radial coordinate that appears in the metrics given in [11, 12]).2 However, this volume, which

we shall now call V ′, is not the one that gives rise to the correct thermodynamic potential

Θ. Rather, it gives

V ′ ≡ − 16π

(D − 2)
Θ′ =

r+A

(D − 1)
, (1.14)

where A is the area of the outer horizon. Θ′ is related to the true thermodynamic potential

(defined via (1.9) or (1.10)) by

Θ′ = Θ+
1

2(D − 1)

∑

i

aiJi , (1.15)

where ai are the rotation parameters and Ji the angular momenta of the black hole. We

may refer to the associated volumes V and V ′ as the “thermodynamic volume” and the

“geometric volume” respectively.

Since in general we now have two different candidate definitions, it becomes of interest

to investigate the possible physical interpretations of each of the volumes V and V ′. In

view of the fact that the geometric volume for Kerr-AdS has the remarkable feature that

V ′ = rH A/(D − 1), as if it were just the volume inside a sphere in Euclidean space, it

is interesting to test whether V ′ and A satisfy the Isoperimetric Inequality of Euclidean

bounded volumes. Indeed, we find that

((D − 1)V ′

AD−2

) 1
D−1 ≤

( A

AD−2

) 1
D−1

(1.16)

for all Kerr-AdS black holes, with equality attained when the rotation vanishes. However,

2In four dimensions, the notion of a “black hole volume,” obtained by integrating
∫
d4x

√−g, was discussed

previously in [9, 10].
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we find that for electrically charged black holes, even without rotation (and hence V and V ′

are the same), the isoperimetric inequality is violated.

If we instead use the thermodynamic volume V , then we find that the isoperimetric

inequality is always violated by rotating Kerr-AdS black holes. Furthermore, we find strong

indications that using V , the isoperimetric inequality is violated for all black holes, with or

without rotation and/or charge. This leads us to conjecture that all black holes satisfy the

Reverse Isoperimetric Inequality, which asserts that

((D − 1)V

AD−2

) 1
D−1 ≥

( A

AD−2

) 1
D−1

(1.17)

where V is the thermodynamic volume of the black hole and A is the area of the outer

horizon. Equality is attained for Schwarzschild-AdS.

The reverse isoperimetric inequality may be rephrased as the statement that for a black

hole of given thermodynamic volume V , the entropy is maximised for Schwarzschild-AdS.

The Smarr relation for black hole solutions of the vacuum Einstein equations can be

derived by the Komar procedure, based on the integration of the identity d∗dξ = 0 over a

spacelike hypersurface intersecting the horizon, where ξ = ξµ dx
µ and ξµ is a Killing vector

that is timelike at infinity. A generalisation to the case with a cosmological constant Λ

has been discussed in [15, 16, 5]. One writes ξ in terms of a 2-form Killing potential ω as

ξ = ∗d∗ω, and then integrates the identity d∗dξ+2Λd∗ω = 0 over the spacelike hypersurface.

After using Stokes’ theorem the integration of ∗ω contributes a term on the sphere at infinity

that removes a divergent contribution from ∗dξ to give a finite expression for the mass E,

and a term on the horizon that furnishes an expression for Θ. One might hope that this

could provide a further insight into the question of whether the “thermodynamic” or the

“geometric” Θ is to be preferred. Unfortunately, however, there is an ambiguity in the

definition of the Killing potential (the freedom to add a co-closed but not co-exact 2-form

to ω), and this allows the expressions for E and for Θ to be adjusted in tandem. As we

discuss later, the best that one can do is to choose a gauge for ω such that the mass E comes

out to be the correct value, as already determined by other means. Necessarily, the integral

yielding Θ then produces the “thermodynamic” expression rather than the geometric one.

We shall see that although the concept of the thermodynamic volume V requires that
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one consider an asymptotically AdS black hole in a theory with a nonvanishing cosmological

constant, it is possible (except in D = 7) to take a smooth limit in the expression for V

in which the cosmological constant is set to zero. Since the thermodynamic volume still, in

general, differs from the geometric volume in this limit, one may define, for an asymptotically

flat black hole, the thermodynamic volume by first obtaining its expression in the more

general asymptotically AdS case, and then taking the limit where the cosmological constant

goes to zero. We find that this limit exists for all the known asymptotically AdS black holes

except for those in seven-dimensional gauged supergravity. This case is exceptional because

of the existence of an odd-dimensional self-duality constraint in the seven-dimensional theory.

It has the consequence that the volume diverges in this case if the three rotation parameters

and the electric charge are all nonvanishing.

The organisation of the paper is as follows. In section 2, we use the Smarr relation, or,

equivalently, the first law of thermodynamics, to calculate Θ for the various static multi-

charged black holes in four, five and seven dimensional gauged supergravities, and we show

how Θ is related to a volume integral of the scalar potential. In section 3, we use the

same methods to calculate the thermodynamic expressions for Θ for the rotating Kerr-

AdS black holes in arbitrary dimensions. We also show how these expressions are related

to the geometric quantities Θ′ that are directly given by volume integrations. We also

perform similar calculations for some examples of charged rotating black holes in four and

five dimensional gauged supergravities. In section 4 we examine the isoperimetric inequality,

and we show in particular that the Reverse Isoperimetric Inequality holds for all the black

hole examples we have considered. In section 5 we review the derivation for the Smarr relation

using the generalisation of the Komar procedure, and then we give a detailed construction

of the required Killing potentials ω for Kerr-AdS, making use of the conformal Killing-Yano

tensors that exist in these backgrounds. The paper ends with conclusions in section 6. In

an appendix, we present some explicit results for the Killing potentials in four and five

dimensional Kerr-AdS.
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2 Static Charged Black Holes

In this section, we consider charged static black hole solutions in gauged supergravities in

D = 4, 5 and 7 dimensions. We shall work in conventions where Newton’s constant is set to

1, and the action takes the form

I =

∫ √−g
[ 1

16π
R− 1

16π
f(φ)F µνFµν − V(φ) + · · ·

]

, (2.1)

where Fµν is a U(1) field strength (there may be just one, or several), f(φ) represents the

coupling of scalar fields, and V(φ) is the potential term for the scalar fields. In the solutions

we shall consider, the scalar fields go to zero at infinity, and then fφ) approaches 1, and the

potential approaches

V −→ −(D − 1)(D − 2)

16π
g2 , (2.2)

where g is the gauge coupling constant. Thus the black hole solutions are asymptotic to

AdSD with Rµν −→ −(D − 1)g2 gµν . Details of the black hole solutions can be found in

[18, 17, 19], where they were constructed, and further discussion of their thermodynamics

can be found in [20]. In what follows, we summarise the pertinent properties of the black

holes for each of the dimensions 4, 5 and 7, and we calculate the quantity Θ in each case.

2.1 Charged AdS black holes in D = 4

The metric, electromagnetic potentials, and scalars fields are given by [18]

ds24 = −
4∏

i=1

H
−1/2
i fdt2 +

4∏

i=1

H
1/2
i

(

f−1dr2 + r2dΩ2
2

)

,

Ai =

√

qi(qi + µ)

2(r + qi)
dt , Xi = H−1

i

4∏

j=1

H
1/4
j , (2.3)

where

f = 1− 2m

r
+ g2r2

4∏

i=1

Hi , Hi = 1 +
qi
r
. (2.4)

The four scalar fields Xi, subject to the constraint
∏4

i=1Xi = 1, have the potential

V = − g2

16π

∑

i<j

XiXj . (2.5)
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The relevant thermodynamic quantities are given by

E = m+ 1
4

∑

i

qi , Qi =
1
2

√

qi(qi + 2m) , S = π
∏

i

(r+ + qi)
1/2 ,

T =
f ′(r+)

4π

∏

i

H
−1/2
i (r+) , Φi =

√

qi(qi + 2m)

2(r+ + qi)
, (2.6)

where the outer horizon is located at r = r+, the largest root of f(r+) = 0.

Substituting into the first law (1.9) or the Smarr relation (1.10), we find that Θ is given

by

Θ = Θ(r+) = −r
3
+

24

∏

i

Hi(r+)
∑

j

1

Hj(r+)
. (2.7)

To interpret our result we note the non-trivial relation

−Λ
dΘ(r)

dr
=

∫

dΩ2V
√
−g . (2.8)

Thus we may introduce a quantity r0 so that

ΛΘ = −W (2.9)

where W is the integral of the scalar potential

W =

∫ r+

r0

dr

∫

dΩ2V
√−g . (2.10)

It is easily seen that r0 is the largest root of

4r30 + 3r20
∑

i

qi + 2r0
∑

i<j

qiqj +
∑

i<j<k

qiqjqk = 0 . (2.11)

The appearance of W in (2.9) is not unexpected since it appears in the classical action but

we do not, as yet, have an independent definition of r0 other than via (2.10). The situation

is similar in all of the examples which follow and we shall give the analogues of (2.9),( 2.10)

and (2.11) without further detailed comment.
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2.2 Charged AdS black holes in D = 5

The metric, electromagnetic potentials, and scalars fields are given by [17]

ds25 = −
3∏

i=1

H
−2/3
i fdt2 +

3∏

i=1

H
1/3
i

(

f−1dr2 + r2dΩ2
3

)

,

Ai =

√

qi(qi + 2m)

(r2 + qi
dt , Xi = H−1

i

3∏

j=1

H
1/3
j , (2.12)

where

f = 1− 2m

r2
+ g2r2

3∏

i=1

Hi , Hi = 1 +
qi
r2
. (2.13)

The three scalar fields Xi, subject to the constraint
∏3

i=1Xi = 1, have the potential

V = − g2

4π

∑

i

1

Xi
. (2.14)

The relevant thermodynamic quantities are given by

E = 1
4
π[3m+ q1 + q2 + q3] , Qi =

1
4
π
√

qi(qi + 2m) , S = 1
2
π2

∏

i

(r2+ + qi)
1/2 ,

T =
f ′(r+)

4π

∏

i

H
−1/2
i (r+) , Φi =

√

qi(qi + 2m)

(r2+ + qi)
, (2.15)

where the outer horizon is located at r = r+, the largest root of f(r+) = 0.

Substituting into the first law (1.9) or the Smarr relation (1.10), we find that Θ is given

by

Θ = −πr
4
+

32

∏

i

Hi(r+)
∑

j

1

Hj(r+)
. (2.16)

With the integral of the scalar potential defined by

W =

∫ r+

r0

dr

∫

dΩ3V
√
−g , (2.17)

where r0 is taken to be the largest root of

3r40 + 2r20
∑

i

qi +
∑

i<j

qiqj = 0 , (2.18)

we find that Θ can again be written as

Θ = − 1

Λ
W . (2.19)
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2.3 Charged AdS black holes in D = 7

The metric, electromagnetic potentials, and scalars fields are given by [19]

ds27 = −(H1H2)
−4/3 fdt2 + (H1H2)

1/5

(

f−1dr2 + r2dΩ2
5

)

,

Ai =

√

qi(qi + 2m)

(r4 + qi
dt , Xi = H−1

i (H1H2)
2/5 , (2.20)

where

f = 1− 2m

r4
+ g2r2H1H2 , Hi = 1 +

qi
r4
. (2.21)

The two scalar fields Xi have the potential

V = − g2

4π
(4X1X2 + 2X−1

1 X−2
2 + 2X−1

2 X−2
1 − 1

2
(X1X2)

−4) . (2.22)

The relevant thermodynamic quantities are

E = 1
8
π2[5m+ 2(q1 + q2)] , Qi =

1
4
π2
√

qi(qi + 2m) , S = 1
4
π3r+

∏

i

(r4+ + qi)
1/2 ,

T =
f ′(r+)

4π
(H1(r+)H2(r+))

−1/2 , Φi =

√

qi(qi + 2m)

(r4+ + qi)
, (2.23)

where the outer horizon is located at r = r+, the largest root of f(r+) = 0.

Substituting into the first law (1.9) or the Smarr relation (1.10), we find that Θ is given

by

Θ = −π
2r6+
96

[H1(r+)H2(r+) + 2H1(r+) + 2H2(r+)] . (2.24)

With the integral of the scalar potential defined by

W =

∫ r+

r0

dr

∫

dΩ5V
√
−g , (2.25)

where r0 is taken to be the largest root of

5r80 + 3(q1 + q2)r
4
0 + q1q2 = 0 , (2.26)

we find that Θ can again be written as

Θ = − 1

Λ
W . (2.27)

12



3 Rotating Black Holes

3.1 Kerr-AdS black holes in all dimensions

The Kerr-(A)dS solution in all dimensions, which generalises the asymptotically-flat rotating

black hole solutions of [21], was obtained in [11, 12]. The metric obeys the vacuum Einstein

equations Rµν = −(D − 1)g2gµν . In the ‘generalized’ Boyer-Lindquist coordinates it takes

the form

ds2 = −W (1 + g2r2)dt2 +
2m

U

(

Wdt−
N∑

i=1

aiµ
2
i dφi

Ξi

)2

+

N∑

i=1

r2 + a2i
Ξi

(µ2
idφ

2
i + dµ2

i )

+
Udr2

V − 2m
− g2

W (1 + g2r2)

( N∑

i=1

r2 + a2i
Ξi

µidµi + ǫr2νdν
)2

+ ǫr2dν2 , (3.1)

where

W ≡
N∑

i=1

µ2
i

Ξi
+ ǫν2 , V ≡ rǫ−2(1 + g2r2)

N∏

i=1

(r2 + a2i ) ,

U ≡ V

1 + g2r2

(

1−
N∑

i=1

a2iµ
2
i

r2 + a2i

)

, Ξi = 1− g2a2i . (3.2)

Here N ≡ [(D− 1)/2], where [A] means the integer part of A and we have defined ǫ to be 1

for D even and 0 for odd. The coordinates µi are not independent, but obey the constraint

N∑

i=1

µ2
i + ǫν2 = 1 . (3.3)

In the remainder of the paper, we shall not in general indicate the range of the i index

in summations or products; it will always be understood to be for 1 ≤ i ≤ N , with N =

(D − 1)/2 in odd dimensions, and N = (D − 2)/2 in even dimensions.

The calculation of Θ is slightly different in the two cases that the dimension D is odd or

even. We discuss these cases in the following two subsections.
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3.1.1 Odd-dimensional Kerr-AdS black holes

Here, we take D = 2N + 1. As discussed in [8], the various thermodynamic quantities are

given by

E =
mAD−2

4π
∏

j Ξj

(∑

i

1

Ξi

− 1
2

)

, Ji =
maiAD−2

4πΞi

∏

j Ξj

, S =
AD−2

4r+

∏

i

r2+ + a2i
Ξi

, (3.4)

T =
r+(1 + g2r2+)

2π

∑

i

1

r2+ + a2i
− 1

2πr+
, Ωi =

(1 + g2r2+)ai
r2+ + a2i

, (3.5)

where m and ai are the “mass” and the N rotation parameters appearing in the Kerr-AdS

metrics, the summations and products are taken over 1 ≤ i ≤ N , the horizon radius is

determined by the relation

2m =
1

r2+
(1 + g2r2+)

∏

i

(r2+ + a2i ) , (3.6)

and the Ξi are given by Ξi = 1 − g2a2i . The quantity AD−2 is the volume of the unit-radius

(D − 2)-sphere, and is given by

AD−2 =
2π(D−1)/2

Γ[(D − 1)/2]
. (3.7)

After substituting into (1.9) or (1.10), we find that Θ is given by

ΘΛ =
mAD−2

8π
∏

j Ξj

(∑

i

1

Ξi

+
D − 3

2
− D − 2

1 + g2r2+

)

(3.8)

= 1
2
E − m(D − 2)AD−2

16π
∏

i Ξi

1− g2r2+
1 + g2r2+

. (3.9)

This may in fact be written more simply if we introduce another quantity Θ′, such that

Θ = Θ′ − 1

2(D − 1)

∑

i

aiJi , (3.10)

with Θ′ being given by

Θ′ = − (D − 2)mAD−2

8π(D − 1)
∏

i Ξi

r2+
1 + g2r2+

= −(D − 2)

(D − 1)

r+A

16π
, (3.11)

where A = 4S is the area of the horizon. Remarkably, r+A is related to the spatial integral

of
√−g up to the horizon radius. Specifically, we define

V (r+) =

∫ r+

r0

dr

∫

dΩ
√
−g , (3.12)
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where dΩ denotes the integration over the coordinates parameterising the (D − 2)-sphere

surfaces, and r0 is given by r20 = −a2min, where a
2
min is the smallest amongst the values of the

a2i . (The (D − 2)-spheres are not round spheres, of course.) Using the expression for
√−g

obtained in the appendix of [8], we then find after some algebra that

V (r+) =
r+A

D − 1
. (3.13)

This therefore implies that

Θ′ = −(D − 2)

16π
V (r+) . (3.14)

(Note that in performing the integration in eqn (3.12), it is really more appropriate to use

x = r2 as the radial variable, since in odd dimensions r2 can be negative.)

It is interesting also that Θ′ can be obtained from a Smarr relation if one works in a

certain frame that is rotating at infinity. Specifically, we have

E ′ =
D − 2

D − 3
(TS + Ω′

iJi) + ΦαQα − 2

D − 3
Θ′Λ , (3.15)

where E ′ and Ω′

i are the energy and the angular velocities of the horizon measured with

respect to a frame defined by sending the azimuthal coordinates φi in the the black-hole

metrics to φi + aig
2t. This implies that3

E ′ = E − g2
∑

i

aiJi =
(D − 2)mAD−2

8π
∏

i Ξi

, (3.16)

Ω′

i = Ωi − aig
2 =

ai Ξi

r2+ + a2i
. (3.17)

The Einstein action in D dimensions is (with G = 1)

ID =
1

16π

∫ √
−g[R − (D − 2)Λ] dDx . (3.18)

Thus if we define the potential W to be

W ≡ (D − 2)Λ

16π

∫ r+

r0

dr

∫

dΩ
√−g , (3.19)

then we have

Θ′ = − 1

Λ
W . (3.20)

3It should be noted, however, that the thermodynamic variables E′ and Ω′

i do not satisfy the first law of

thermodynamics. Thus, for example, if we hold Λ fixed then dE′ is not equal to TdS + Ω′

idJi, and indeed,

the latter is not even an exact differential. (See [8] for a detailed discussion.)
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3.1.2 Even-dimensional Kerr-AdS black holes

Here, we take D = 2N + 2. As discussed in [8], the various thermodynamic quantities are

now given by

E =
mAD−2

4π
∏

j Ξj

∑

i

1

Ξi
, Ji =

maiAD−2

4πΞi

∏

j Ξj
, S = 1

4
AD−2

∏

i

r2+ + a2i
Ξi

, (3.21)

T =
r+(1 + g2r2+)

2π

∑

i

1

r2+ + a2i
− 1− g2r+

4πr+
, Ωi =

(1 + g2r2+)ai
r2+ + a2i

, (3.22)

and the location of the horizon is determined by the equation

2m =
1

r+
(1 + g2r2+)

∏

i

(r2+ + a2i ) , (3.23)

where the summations and products are over 1 ≤ i ≤ N . We find from (1.9) or from (1.10)

that

ΘΛ =
mAD−2

8π
∏

j Ξj

(∑

i

1

Ξi
+
D − 2

2
− D − 2

1 + g2r2+

)

(3.24)

= 1
2
E − m(D − 2)AD−2

16π
∏

i Ξi

1− g2r2+
1 + g2r2+

. (3.25)

Again we find that Θ can be expressed more simply in the form (3.10), with Θ′ given by

(3.11). As in the odd-dimensional case, we again find that if we define a volume “inside the

horizon” as in (3.12), then the relation (3.13) again holds, and hence Θ′ is again related to

the potential W by equation (3.20). The only difference from the odd-dimensional case is

that in the volume integral (3.12), the lower limit for the radial integration should now be

r0 = 0. (This is really the same rule as is used in odd dimensions, since in even dimensions

there is effectively a “missing” rotation parameter that is equal to zero.)

16



3.2 Rotating pairwise-equal 4-charge black hole in D = 4 gauged

supergravity

The metric for this black hole is obtained in [22]. The various thermodynamic quantities are

given by [23]

E =
m+ q1 + q2

Ξ2
, S =

π(r1r2 + a2)

Ξ
, J =

a(m+ q1 + q2)

Ξ2
,

Q1 = Q2 =

√

q1(q1 +m)

2Ξ
, Q3 = Q4 =

√

q2(q2 +m)

2Ξ
,

T =
∆′

r

4π(r1r2 + a2)
, Ω =

a(1 + g2r1r2)

r1r2 + a2
,

Φ1 = Φ2 =
2r1

√

q1(q1 +m)

r1r2 + a2
, Φ3 = Φ4 =

2r2
√

q2(q2 +m)

r1r2 + a2
, (3.26)

where r1 = r + 2q1, r2 = r + 2q2,

∆r = r2 + a2 − 2mr + g2r1r2(r1r2 + a2) , (3.27)

and all r-dependent quantities in (3.26) are evaluated at the horizon radius r+, determined

as the largest root of ∆r(r+) = 0.

Substituting into either (1.9) or (1.10), we can determine Θ. As usual in rotating black

holes, the expression is quite complicated, and it is most elegantly expressed, via (3.10), in

terms of Θ′ defined in the rotating frame:

Θ = Θ′ − 1
6
aJ , (3.28)

where

Θ′ = −r + q1 + q2
6Ξ

(r1r2 + a2) , (3.29)

(evaluated at r = r+).

There is a scalar potential in the four-dimensional gauged supergravity, given by

V = − g2

16π
(4 + 2 coshϕ+ eϕ χ2) , (3.30)

and in the black hole solution we have [22]

eϕ =
r21 + a2 cos2 θ

r1r2 + a2 cos2 θ
, χ =

a(r2 − r1) cos θ

r21 + a2 cos2 θ
. (3.31)
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If we define

U(r) =

∫ 2π

0

dφ

∫ π

0

dθ V√−g , (3.32)

then we find that
dΘ′

dr+
= − 1

Λ
U(r+) . (3.33)

In integral form, if we define the potential term

W =

∫ r+

r0

dr

∫ 2π

0

dφ

∫ π

0

dθV
√
−g , (3.34)

then

Θ′ = − 1

Λ
W , (3.35)

where the lower limit of integration is taken to be

r0 = −q1 − q2 +
√

(q1 − q2)2 − a2 . (3.36)

3.3 Charged rotating black hole in minimal D = 5 gauged super-

gravity

The metric for this black hole is obtained in [24]. It has the thermodynamic quantities

E =
mπ(2Ξa + 2Ξb − ΞaΞb) + 2πqabg2(Ξa + Ξb)

4Ξ2
aΞ

2
b

, S =
π2[(r2+ + a2)(r2+ + b2) + abq]

2ΞaΞb r+
,

Ja =
π(2am+ qb(1 + a2g2)]

4Ξ2
aΞb

, Jb =
π(2bm+ qa(1 + b2g2)]

4Ξ2
bΞa

, Q =

√
3πq

4ΞaΞb

,

T =
r4+[1 + g2(r2+ + a2 + b2)]− (ab+ q)2

2πr+[(r
2
+ + a2)(r2+ + b2) + abq]

, Φ =

√
3 qr2+

(r2+ + a2)(r2+ + b2) + abq
,

Ωa =
a(r2+ + b2)(1 + g2r2+) + bq

(r2+ + a2)(r2+ + b2) + abq
, Ωb =

b(r2+ + a2)(1 + g2r2+) + aq

(r2+ + a2)(r2+ + b2) + abq
, (3.37)

where the location of the horizon is determined by the equation

2m =
(r2+ + a2)(r2+ + b2)(1 + g2r2+) + q2 + 2abq

r2+
. (3.38)

From (1.9) or from (1.10) we find that

Θ = Θ0 −
abqπ

16Ξ2
aΞ

2
br

2
+

[

2r2+ + a2 + b2 − g2(r2+(a
2 + b2) + 2a2b2)

]

−πq
2(a2 + b2 − 2a2b2g2)

32Ξ2
aΞ

2
br

2
+

, (3.39)
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where Θ0 is the value for five-dimensional Kerr-AdS, as given in (3.8) for D = 5. As in

the Kerr-AdS examples, the quantity Θ′ evaluated in the asymptotically rotating frame, and

defined by (3.10), is much simpler, and is given in this case by

Θ′ = − π

32ΞaΞb
[3(r2+ + a2)(r2+ + b2) + 2abq] . (3.40)

The metric in [24] has

√−g =
r sin θ cos θ (r2 + a2 cos2 θ + b2 sin2 θ)

ΞaΞb
, (3.41)

and hence if we define

U(r) ≡ −3g2

4π

∫ 2π

0

dφ

∫ 2π

0

dψ

∫ 1
2
π

0

dθ
√−g =

3g2πr(2r2 + a2 + b2)

4ΞaΞb

, (3.42)

(where −3g2/(4π) is the coefficient of the cosmological term in the Lagrangian), then we see

that
dΘ′

dr+
= − 1

Λ
U(r+) . (3.43)

To integrate this we introduce the radial variable x = r2, and integrate from x = x0 to

x = r2+, where x0 is the less negative of the two possibilities

x0 = −1
2
(a2 + b2)± 1

2

√

(a2 − b2)2 − 8
3
abq . (3.44)

4 Reverse Isoperimetric Inequality

The isoperimetric inequality for the volume V of a connected domain in Euclidean space

E
D−1 whose area is A states that

((D − 1)V

AD−2

)D−2

≤
( A

AD−2

)D−1

(4.1)

with equality if and only if the domain is a standard round ball. Thus we may restate the

inequality as R ≤ 1, where we define

R ≡
((D − 1)V

AD−2

) 1
D−1

(AD−2

A

) 1
D−2

. (4.2)
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It is interesting to examine whether or not the area of the black hole horizon and the

“volume” defined via either Θ or Θ′ satisfy the isoperimetric inequality. Let us first consider

the case of electrically neutral black holes; i.e., the rotating Kerr-AdS black holes in arbitrary

dimensions. Intriguingly, we find that if we use the quantity Θ′ to define the volume of the

black hole, then the isoperimetric inequality is always satisfied in Kerr-AdS, with equality

being attained for the non-rotating Schwarzschild-AdS limit. If, on the other hand, we use

the quantity Θ, which arises naturally from thermodynamic considerations, to define the

volume, then the opposite is true, and the isoperimetric inequality is always violated, except

in the non-rotating limit.

4.1 Isoperimetric inequality for the Θ′ volume

For the Kerr-AdS metrics, if A is the area of the event horizon, then in all cases

V ′ = − 16π

D − 2
Θ′ =

r+A

D − 1
, (4.3)

and if D is odd

A =
AD−2

r+

∏

i

r2+ + a2i
Ξi

, (4.4)

whilst if D is even

A = AD−2

∏

i

r2+ + a2i
Ξi

. (4.5)

A simple calculation shows that in both odd and even dimensions, R′ defined by (4.2),

and using the volume V ′, given by

R′ =
∏

i

(1 + a2i /r
2
+

Ξi

)
−

1
(D−1)(D−2)

. (4.6)

Since Ξi = 1−g2a2i ≤ 1 for each i, it is evident that R′ ≤ 1, with equality when all ai vanish.

Thus remarkably, the geometrical V ′ and the surface area A of the black hole satisfy the

standard isoperimetric inequality for a ball in flat Euclidean space E
D−1. There is an obvious

analogy here with the liquid drop model, which regards a nucleus as a ball of incompressible

fluid, whose volume is thus fixed. If the energy is solely due to positive surface tension, then

the configuration which minimizes the energy is spherical.
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4.2 Reverse isoperimetric inequality for the Θ volume

We saw in equation (3.10) that the thermodynamic quantity Θ in Kerr-AdS is more negative

than Θ′, and hence it follows that the associated volume V is larger than V ′. In fact, from

(4.3) and (3.10) we find that

V =
r+A

(D − 1)

[

1 +
(1 + g2r2+)

(D − 2)r2+

∑

i

a2i
Ξi

]

. (4.7)

This suggests the possibility that although V ′ and A satisfy the isoperimetric inequality, as

we saw above, it might be that the volume V and the area A could violate it in Kerr-AdS

black holes. This is indeed exactly what we find. Since, as it turns out, this violation seems

to be a universal property, for all rotating and/or charged black holes, we may elevate this

to the status of a conjecture in its own right. Thus we make the conjecture that the ratio R

defined in (4.2) actually satisfies the Reverse Isoperimetric Inequality

R ≥ 1 (4.8)

for all black holes, if one uses the “thermodynamic” definition of the volume V . We now

demonstrate the validity of the conjecture for a variety of black hole solutions.

4.2.1 Kerr-AdS

Defining the (necessarily non-negative) dimensionless quantity

z =
(1 + g2r2+)

r2+

∑

i

a2i
Ξi
, (4.9)

we consider RD−1, where R is given by (4.2), and observe that in odd dimensions

RD−1 = r+

[

1 +
z

D − 2

] [ 1

r+

∏

i

(r2+ + a2i )

Ξi

]
−

1
D−2

=
[

1 +
z

D − 2

] [∏

i

(r2+ + a2i )

r2+ Ξi

]
−

1
D−2

≥
[

1 +
z

D − 2

] [ 2

D − 1

(∑

i

1

Ξi
+
∑

i

a2i
r2+ Ξi

)]
−

(D−1)
2(D−2)

=
[

1 +
z

D − 2

] [

1 +
2z

D − 1

]
−

(D−1)
2(D−2) ≡ F (z) , (4.10)
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where the inequality follows from (
∏

i xi)
1/N ≤ (1/N)

∑

i xi for non-negative quantities xi.

Noting that F (0) = 1, and that

d logF (z)

dz
=

(D − 3) z

(D − 2)(D − 2 + z)(D − 1 + 2z)
, (4.11)

which is positive for non-negative z in D > 3 dimensions, it follows that F (z) ≥ 1, and hence

the reverse isoperimetric inequality (4.8) is satisfied by all odd-dimensional Kerr-AdS black

holes.

In even dimensions the calculation is rather similar, since now we have

RD−1 = r+

[

1 +
z

D − 2

] [∏

i

(r2+ + a2i )

Ξi

]
−

1
D−2

=
[

1 +
z

D − 2

] [∏

i

(r2+ + a2i )

r2+ Ξi

]
−

1
D−2

≥
[

1 +
z

D − 2

] [ 2

D − 2

(∑

i

1

Ξi
+
∑

i

a2i
r2+ Ξi

)]
−
1
2

=
[

1 +
z

D − 2

] [

1 +
2z

D − 2

]
−
1
2 ≡ G(z) . (4.12)

Thus G(0) = 1 and d logG(z)/dz ≥ 0, and so again we conclude that R ≥ 1. Thus the

reverse isoperimetric inequality holds for even-dimensional Kerr-AdS black holes also.

4.2.2 Charged static black holes

All of the charged static black hole solutions in gauged supergravity satisfy the reverse

isoperimetric inequality also. There is no distinction between the V and V ′ volumes in this

case, since there is no rotation. Consider, for example, the 4-charge solution given in section

2.1. The volume and area are given by

V = 1
3
π
∑

i

1

r+ + qi

∏

j

(r+ + qj) , A = 4π
∏

i

(r+ + qi) , (4.13)

and so from (4.2) we have

R3 = 1
4

∑

i

1

r+ + qi

∏

j

(r+ + qj) , (4.14)
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and so using the inequality

∏

i

(r+ + qi)
−
1
4 ≤ 1

4

∑

i

1

r+ + qi
, (4.15)

we see that R ≥ 1.

Very similar calculations show that the inequality R ≥ 1 holds for the static charged

black holes in D = 5 and D = 7 also.

4.2.3 Charged rotating black holes

We have verified explicitly that R ≥ 1 for the rotating black hole in four-dimensional gauged

supergravity with pairwise equal charges (described in section 3.2), and also for the charged

rotating black hole in five-dimensional ungauged minimal supergravity (i.e. setting g = 0 in

the solution described in section 3.3). In each case, the calculations are quite complicated,

and we shall not present them here.

In the case of the rotating black hole in five-dimensional gauged minimal supergravity,

we have constructed an analytical proof that R ≥ 1 in the case that the product abq is

non-negative. Numerical investigations indicate that R ≥ 1 also if abq is negative.

It is worth remarking that whilst we can obtain an expression for the volume V of an

asymptotically flat black hole in ungauged supergravity (or with zero cosmological constant)

by sending g → 0 or Λ → 0 in the expressions obtained for an asymptotically AdS black

hole, we do not have an intrinsic way in general of defining V for an asymptotically flat black

hole if the more general asymptotically AdS solution is not itself known.

The dependence of volume on g is smooth; there are no discontinuities for g → 0 or in

the large to small black hole transition. To illustrate this point we display the V = V (g)

dependence for a Kerr-AdS black hole of fixed mass in Fig. 1.

We have not checked our Reverse Isoperimetric Conjecture for all the known examples

of charged rotating black holes in gauged supergravities. We have, however, examined the

recent construction in [13] of the rotating black hole in four-dimensional maximal gauged

supergravity with two zero charges and the other two freely specifiable. With non-zero gauge

coupling the complexity of the metric has so far prevented us from obtaining an analytic

proof, but the indications from numerical analysis are that the conjecture is satisfied. The
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Figure 1: Thermodynamic volume of the Kerr-AdS black hole. The graph displays

the dependence of V on gauge coupling g, Λ = −3g2, for various rotation parameteres, while

we keep the total gravitational enthalpy fixed, E = 1 (J = a). The upper curve represents

Schwarzschild-AdS (a = 0), the lower curves, in descending order, correspond to Kerr-AdS

with a = 0.5, a = 0.7, a = 0.9 and a = 0.99, respectively. Obviously, the smooth limit exists

for g → 0, the volume is smooth also in the transition between large and small black holes.
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expression for the thermodynamic volume V is much simpler in the limit that g = 0, and in

this case we have been able to show analytically that the reverse isoperimetric conjecture is

satisfied.

We have evaluated the volume for all solutions known to us in all dimensions D ≤ 7.

When g 6= 0, the volume may be obtained from the Smarr formula (1.10) by dividing by

Λ ∼ −g2. If D ≤ 6, the numerator is always found to be proportional to g2, and hence a

smooth limit exists as g tends to zero. In D = 7, however, the numerator contains in addition

terms proportional to g (times the product of the three rotation parameters ai), and hence

the g → 0 limit diverges if all the ai are nonvanishing. The fact that the D = 7 solutions [14]

are not invariant under g → −g may be traced back to the self-duality constraint for the 3-

form gauge potential in the seven-dimensional gauged supergravity theory (see for example,

equation (3.8) in [14]), since this equation contains a term linear in g.

5 Komar Integration, Smarr Formula and Killing Po-

tentials for Kerr-AdS Black Holes

5.1 Komar derivation of the Smarr relation

In a D-dimensional stationary, axisymmetric black hole spacetime, let Σ denote a spacelike

hypersurface that intersects H+, a Killing horizon of ξ = k + Ωimi, in a (D − 2)-sphere H .

Here, k is a Killing vector that is timelike at infinity, mi are U(1) Killing fields that generate

rotations in the orthogonal spatial 2-planes, and Ωi are the corresponding angular velocities

of the horizon. Since any Killing vector satisfies ∇µK
µ = 0 and �Kµ+RµνK

ν = 0 it follows

that if the metric is Ricci flat, corresponding to the case of an asymptotically-flat black hole,

then d∗dξ = 0, and hence

0 =

∫

Σ

d∗dξ =
∫

∂Σ

∗dξ =
∫

S∞

∗dξ −
∫

H

∗dξ , (5.1)

where S∞ denotes the sphere at infinity. One can show that the Komar integrals con-

structed using the Killing vectors k and mi give the energy and angular momenta of the
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asymptotically-flat black hole

E = − (D − 2)

16π(D − 3)

∫

S∞

∗dk , Ji =
1

16π

∫

S∞

∗dmi , (5.2)

while the integral of ∗dξ over the horizon gives

1

16π

∫

H

∗dξ = κA

8π
= TS , (5.3)

and so from (5.1) one obtains the Smarr relation

E =
(D − 2)

(D − 3)

(κA

8π
+ ΩiJi

)

=
(D − 2)

(D − 3)
(TS + ΩiJi) (5.4)

for an asymptotically-flat black hole.

If the cosmological constant is negative rather than zero, then the above Komar derivation

of the Smarr relation requires modification. Following the arguments in [15, 16, 5], one may

note that since any Killing vector satisfies d∗K = 0, there must always exist, locally, a 2-form

Killing potential ωK such that K may be written as K = ∗d∗ωK. In view of the fact that

with Rµν = Λgµν we now have d∗dξ + 2Λ ∗ξ = 0, and it follows that

d∗dξ + 2Λ d∗ωξ = 0 . (5.5)

By integrating this over Σ, one thereby obtains

0 =

∫

Σ

(d∗dξ + 2Λ d∗ωξ) =

∫

∂Σ

(∗dξ + 2Λ∗ωξ)

=

∫

S∞

(∗dk + 2Λ∗ωξ) + Ωi

∫

S∞

∗dmi −
∫

H

∗dξ − 2Λ

∫

H

∗ωξ . (5.6)

Of course the Killing potential ωξ is not unique; one may add any co-closed 2-form ν to

ωξ. If ν is co-exact, ν = ∗d∗η for any 3-form η, then the integrals of ∗ωξ in (5.6) will be

unaltered, since ∫

S∞

d∗η =

∫

∂S∞

∗η = 0 ,

∫

H

d∗η =

∫

∂H

∗η = 0 . (5.7)

However, if ν is co-closed but not co-exact, each of the integrals
∫

S∞

∗ωξ and
∫

H
∗ωξ will be

separately changed by the addition of ν, although their difference will be unaltered, since

∫

S∞

∗ν −
∫

H

∗ν =

∫

Σ

d∗ν = 0 . (5.8)
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By analogy with the asymptotically-flat case we discussed above, one would like to in-

terpret the integrals over S∞ in (5.6) as being proportional respectively to the energy and

the angular momenta of the black hole. Indeed, one again finds that the integrals of ∗dmi

give the angular momenta, as in (5.2). The integral
∫

S∞

∗dk by itself now diverges, as does
∫

S∞

∗ωξ, but remarkably, the combination
∫

S∞

(∗dk + 2Λ∗ωξ) turns out to be finite. Since,

however, as we remarked above, its value is altered if one exploits the gauge freedom to add

a co-closed 2-form ν to ωξ, one cannot use
∫

S∞

(∗dk + 2Λ∗ωξ) to provide an unambiguous

definition of the energy of the black hole. The best that can be done is to make a gauge

choice for ωξ such that

E = − (D − 2)

16π(D − 3)

∫

S∞

(∗dk + 2Λ∗ωξ) (5.9)

yields the true mass E of the black hole, which itself is determined by other means.

The easiest and most reliable way of calculating the mass of an asymptotically AdS black

hole is by means of the conformal definition of Ashtekar, Magnon and Das (AMD) [25, 26].

This has the great advantage over other methods, such as that of Abbott and Deser [27],

that it involves an integration at infinity of a finite quantity, computed from the Weyl tensor,

that does not require any infinite subtraction of a pure AdS background. The AMD mass

for the Kerr-AdS black hole in arbitrary dimension was calculated in [8], and it was shown

to be consistent with the first law of thermodynamics.

Having chosen a gauge for ωξ for which the integration in (5.9) yields the AMD mass E,

the remaining integrals in (5.6) can be evaluated. Defining

Θ =
(D − 2)

16π

∫

H

∗ωξ , (5.10)

we recover precisely the Smarr relation (1.10) for the uncharged case,

E =
D − 2

D − 3
(TS + ΩiJi)−

2

D − 3
ΘΛ . (5.11)

5.2 Killing potentials from the conformal Killing-Yano tensor

In this subsection we review the work of [28], which shows how one may construct the towers

of hidden and explicit symmetries of a spacetime that admits a Principal Conformal Killing-
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Yano (PCKY) tensor. In this discussion we closely follow [29], and then we present a new

method for constructing the Killing potentials for the Killing vectors.

The PCKY tensor h is a non-degenerate closed conformal Killing-Yano 2-form [28]. This

means that there exists a 1-form η such that

∇µhνρ = 2gµ[ν ηρ] . (5.12)

The condition of non-degeneracy means that at a generic point of the manifold, the skew-

symmetric matrix hµν has the maximum possible (matrix) rank, and that the eigenvalues of

hµν are functionally independent in some spacetime domain. The equation (5.12) implies

dh = 0 , η =
1

D − 1
∗d ∗ h . (5.13)

This means that there exists a 1-form PCKY potential b, such that

h = db . (5.14)

The 1-form η associated with h is called primary, and turns out to be a Killing 1-form.

The PCKY tensor generates a tower of closed conformal Killing-Yano (CKY) tensors [28]

h(j) ≡ h∧j = h ∧ . . . ∧ h
︸ ︷︷ ︸

total of j factors

. (5.15)

The CKY tensor h(j) is a (2j)-form, and in particular h(1) = h. Since h is non-degenerate,

one has a set of N +ε nonvanishing closed CKY tensors in dimension D = 2N +1+ε, where

ε = 0 in odd dimensions and ε = 1 in even dimensions. In an even-dimensional spacetime,

h(N+1) is proportional to the totally antisymmetric tensor, whereas it is dual to a Killing

vector in odd dimensions. In both cases such a CKY tensor is trivial, and can be excluded

from the tower of hidden symmetries. Therefore we take j = 1, . . . , N − 1 + ε.

The CKY tensors (5.15) can be generated from the potentials b(j),

b(j) = b ∧ h∧(j−1) , h(j) = db(j) . (5.16)

For each (2j)-form h(j), its Hodge dual is a (D − 2j)-form, denoted by

f (j) = ∗h(j) . (5.17)
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In their turn, these tensors give rise to the Killing tensors K(j),

K(j)
µν ≡ 1

(D − 2j − 1)!(j!)2
f (j)

µρ1...ρD−2j−1
f (j)

ν
ρ1...ρD−2j−1 . (5.18)

(The coefficient in this definition (5.18) is a convenient choice in the canonical basis, see [29].)

The metric itself trivially satisfies the conditions for a Killing tensor, and it is convenient to

define K
(0)
µν = −gµν , extending the range of the j index so that j = 0, . . . , N − 1 + ε.

The PCKY tensor also naturally generates (N + 1) vectors η(k) (k = 0, . . . , N) which

turn out to be the independent commuting Killing vector fields. These are given as

η(j)µ = K(j)µ
ν η

ν , j = 0, . . . , N − 1 + ε , (5.19)

where ηµ is the Killing vector given by (5.13). In odd dimensions the last Killing vector is

in the tower is given by the N -th Killing-Yano tensor

η(N) = − 1

N !
f (N) . (5.20)

The canonical spacetimes with all these symmetries were constructed in [30, 31]. When

the Einstein equation is imposed, they are the general Kerr-NUT-AdS spacetimes constructed

in [32].

5.2.1 Killing potentials

We shall now show how the PCKY tensor may be used in order to construct the Killing

potentials for the Killing vectors. We define the following 2-forms, for j = 0, . . . N − 1 + ε:

ω(j)
µν =

1

D − 2j − 1
K(j)

µρ h
ρ
ν , ω(N) =

√
−c
N !

∗b(N) , (5.21)

where the second expression, for ω(N), applies only in odd dimensions.
√
−c is some appro-

priately chosen constant (see [29]). It is easy to verify (for example in the canonical basis)

that these are Killing potentials for the previously-constructed Killing fields, i.e, we have

η(i) = ∗d∗ω(i) . (5.22)

Note that although in odd dimensions the gauge freedom b→ b+ dλ affects ω(N),

ω(N) → ω(N) +

√
−c
N !

∗d(λh(N−1)) , (5.23)
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its divergence ∗d∗ω(N) remains unchanged. Since any Killing vector ξ in a canonical space-

time is a linear combination of the η(i), of the form ξ =
∑N

i=0 ciη
(i), the problem of finding its

Killing potential reduces to the algebraic problem of finding the constant coefficients ci(ξ)

of this expansion:

ξ = ∗d∗ωξ , ωξ =

N∑

i=0

ci(ξ)ω
(i) , (5.24)

where ω(i) are given by (5.21).

5.3 Kerr-AdS black holes

The Kerr-AdS black hole metrics (3.1) possess a closed conformal Killing-Yano 2-form h [33]

which can be derived from the potential b, h = db, given by

b =
1

2

{[

r2 +

N∑

i=1

a2iµ
2
i

(
1 + g2

r2 + a2i
Ξi

)]

dt−
N∑

i=1

aiµ
2
i

r2 + a2i
Ξi

dφi

}

. (5.25)

The 2-form h is non-degenerate, i.e., it is a PCKY tensor when all rotations ai are non-zero

and distinct. In that case any Killing vector of the spacetime is a linear combination of the

(independent) Killing fields η(i), and its Killing potential is given by (5.24), where in odd

dimensions we identify the constant
√
−c =

∏N
i=1 ai.

4

The outer Killing horizon of the Kerr-AdS metric (3.1) is located at r = r+, the largest

root of V (r+)− 2m = 0. It is a Killing horizon for the Killing field

ξ = ∂t + Ωi∂φi
, Ωi =

ai(1 + g2r2+)

r2+ + a2i
. (5.26)

The Killing potential ωξ, (5.24), now reads

ωξ =
r2N+

∏N
i=1(r

2
+ + a2i )

N∑

j=0

1

r2j+
ω(j) . (5.27)

Before using ωξ in (5.6) to derive the Smarr relation, we must first consider the gauge

freedom to add to it a non-trivial co-closed 2-form ν. Since co-closure, or divergence freedom,

4If the ai are not distinct or if some of them vanish, then h is degenerate. In such a case one does not

recover all the Killing fields of the spacetime by the construction (5.19) and (5.20). However, the formula

for the Killing potential ωξ obtained in the next section, eqn (5.27), still applies.
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can be written as

∂µ(
√−g νµν) = 0 , (5.28)

it is clear that a co-closed ν is obtained if we take all its contravariant components to vanish

except for νtr = constant/
√−g. This is equivalent to the statement that

∗ν = αΩD−2 , (5.29)

where α is a constant and ΩD−2 is the volume element of the unit (D−2)-sphere. Evaluating

(5.9) with ωξ given by (5.27) plus ν,

ωξ −→ ω̃ξ = ωξ − α ∗ΩD−2 , (5.30)

we find that in order for (5.9) to produce the correct AMD mass for the Kerr-AdS black

holes, we must choose

α = − 2m

(D − 1)(D − 2) (
∏

j Ξj)

∑

i

a2i
Ξi

. (5.31)

Using ω̃ξ in this gauge in (5.10), we find that it indeed reproduces the expressions for Θ that

we obtained in section 3 from the thermodynamic calculations.

The construction of the Killing potential (5.27) by means of Killing-Yano tensors that we

have described is essentially unique. It is interesting, therefore, to observe that if we choose

not to add the “gauge correction” term ν to the Killing potential given in (5.27), then the

integral (5.10) over the horizon produces precisely the modified quantity Θ′ that we discussed

in section 3, which can be written in terms of the geometric volume V ′ = r+A/(D − 1) as

in (3.11). It is not clear whether there is some simple geometrical explanation for this.

6 Conclusions

In this paper, we have investigated some of the consequences of treating the cosmological

constant, or the gauge coupling constant in a gauged supergravity, to become a dynamical

variable. In particular, this means that it should then be treated as a thermodynamic variable

in the first law of thermodynamics for black holes. Since the cosmological constant can be
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thought of as a pressure, this means that its conjugate variable in the first law is proportional

to a volume. Using the first law, we have calculated this “thermodynamic volume” V for

a wide variety of black holes, including static multi-charge solutions in four, five and seven

dimensional gauged supergravities; rotating Kerr-AdS black holes in arbitrary dimensions;

and certain charged rotating black holes in four and five dimensional gauged supergravities.

When there is no rotation, the thermodynamic volume V can be interpreted as an integral

of the scalar potential over the volume “inside the event horizon” of the black hole. In cases

without scalar fields, this corresponds precisely to a naive geometrical notion of the “volume”

inside the horizon. When there is rotation, however, the thermodynamic volume V differs

from the notion of the “geometric volume” V ′ by a shift related to the angular momenta of

the black hole. We showed that although in some examples the geometric volume has certain

intriguing characteristics suggestive of a volume in Euclidean space that is “excluded” by

the black hole, it appears that the thermodynamic volume has a more universal character.

In particular, we have found that it and the horizon area obey the “Reverse Isoperimetric

Inequality” (1.17), which can be restated as the property that at fixed geometric volume V ,

the black hole with the largest entropy is Schwarzschild-AdS.

Although the concept of the thermodynamic volume V requires that one consider an

asymptotically AdS black hole in a theory with a nonvanishing cosmological constant, inter-

estingly it is nevertheless possible (except in D = 7) to take a smooth limit in the expression

for V in which the cosmological constant is set to zero. Since the thermodynamic volume

still, in general, differs from the geometric volume in this limit, it appears that to give a def-

inition of V for an asymptotically flat black hole, one needs first to obtain the expression in

the more general asymptotically AdS case. For example, for the Myers-Perry asymptotically

flat rotating black holes, the thermodynamic volume is given by setting g = 0 in (4.7). As

we discussed in section 4, this limiting procedure also works for the known rotating black

holes in all gauged supergravities except in D = 7. The case D = 7 is exceptional because

of the g dependence of the odd-dimensional self-duality constraint in the seven-dimensional

gauged supergravity. As a consequence, the volume diverges in the g → 0 limit if the electric

charges and all three rotation parameters are non-zero.

We also studied the derivation of the Smarr relation when the cosmological constant is
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allowed to become a thermodynamic variable. This procedure, which is a generalisation

of the Komar method for asymptotically flat black holes, involves the introduction of a

Killing potential 2-form ω whose divergence gives the asymptotic timelike Killing vector.

Because of the gauge freedom to add a co-closed 2-form to ω, the procedure does not provide

an unambiguous computation of the conjugate variable Θ unless one first fixes the gauge

ambiguity by requiring that the integration at infinity yield the correct expression for the

mass of the black hole. Having made this gauge choice, we showed that one then recovers

the thermodynamic result for Θ.

We also presented a method for constructing the Killing potentials for the Killing vectors

in the Kerr-AdS black holes, based on the existence of conformal Killing-Yano tensors in

these metrics. They occur because of certain “hidden symmetries” in the Kerr-AdS metrics,

associated with the separability of equations such as the Dirac equation in these backgrounds.

The procedure for constructing the Killing potential from the Killing-Yano tensors is an

essentially unique one, and it yields the result in a very specific gauge. Interestingly, it is

the gauge in which the integral
∫

H
∗ω generates the “geometric volume” V ′. This suggests

that the other remarkable properties of the geometric volume, such as the fact that it is

given by the Euclidean space formula (3.13), might be related to the existence of the hidden

symmetries of the Kerr-AdS metrics.
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A Killing Potentials in D = 4 and D = 5 Kerr-AdS

In this appendix, for illustrative purposes, we present explicit results for the Killing potentials

in the four-dimensional and five-dimensional Kerr-AdS metrics.

A.1 D = 4 Kerr-AdS

In the frame that is non-rotating at infinity, the four-dimensional Kerr-AdS metric, satisfying

Rµν = −3g2 gµν , can be written as

ds24 = −(1 + g2r2)∆θ dt
2

Ξ
+

(r2 + a2) sin2 θ dφ2

Ξ
+
ρ2 dr2

∆r

+
ρ2 dθ2

∆θ

+
2mr

Ξ2 ρ2
(∆θ dt− a sin2 θ dφ)2 , (A.1)

where

∆r = (r2 + a2)(1 + g2r2)− 2mr , ∆θ = 1− a2g2 cos2 θ ,

ρ2 = r2 + a2 cos2 θ , Ξ = 1− a2g2 . (A.2)

The 1-form potential b given by (5.25) is

b = 1
2
(r2 + a2 sin2 θ) dt− a (r2 + a2) sin2 θ

2Ξ
(dφ− ag2 dt) . (A.3)

Following the steps described in section 5.2 for constructing the Killing potentials ω(0) and

ω(1) in this case, we find that their contravariant components are given by

ω(0) tr = −r(r
2 + a2)

3ρ2
, ω(0) tθ = −a

2 sin θ cos θ

3ρ2
,

ω(0) rφ =
ar(1 + g2r2)

3ρ2
, ω(0) θφ =

a∆θ cot θ

3ρ2
, (A.4)

ω(1) tr = −a
2r(r2 + a2) cos2 θ

ρ2
, ω(1) tθ =

a2r2 sin θ cos θ

ρ2
,

ω(1) rφ =
a3r(1 + g2r2) cos2 θ

ρ2
, ω(1) θφ = −ar

2∆θ cot θ

ρ2
. (A.5)

These Killing potentials give rise to the corresponding Killing vectors

∇µω
(0)µν ∂ν =

∂

∂t
+ ag2

∂

∂φ
,

∇µω
(1)µν ∂ν = a2

∂

∂t
+ a

∂

∂φ
. (A.6)
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Thus the Killing potential for the Killing vector

ξ =
∂

∂t
+ Ω

∂

∂φ
(A.7)

that is null on the horizon is

ωξ =
r2+

(r2+ + a2)

(

ω(0) +
1

r2+
ω(1)

)

. (A.8)

A.2 D = 5 Kerr-AdS

In the frame that is non-rotating at infinity, the five-dimensional Kerr-AdS metric, satisfying

Rµν = −4g2 gµν , can be written as

ds25 = −(1 + g2r2)∆θ dt
2

Ξ1Ξ2
+

(r2 + a21) sin
2 θ dφ2

1

Ξ1
+

(r2 + a22) cos
2 θ dφ2

2

Ξ2
+
ρ2 dr2

∆r
+
ρ2 dθ2

∆θ

+
2m

ρ2

[∆θ dt

Ξ1Ξ2
− a1 sin

2 θ dφ1

Ξ1
− a2 cos

2 θ dφ2

Ξ2

]2

, (A.9)

where

∆r =
(r2 + a21)(r

2 + a22)(1 + g2r2)

r2
− 2m, ∆θ = 1− a21g

2 cos2 θ − a22g
2 sin2 θ ,

ρ2 = r2 + a21 cos
2 θ + a22 sin

2 θ , Ξ1 = 1− a21g
2 , Ξ2 = 1− a22g

2 . (A.10)

The 1-form potential b given by (5.25) is

b = 1
2
(r2+a21 sin

2 θ+a22 cos
2 θ) dt−a1(r

2 + a21) sin
2 θ

2Ξ1

(dφ1−a1g2dt)−
a2(r

2 + a22) cos
2 θ

2Ξ2

(dφ2−a2g2dt) .
(A.11)

Following the steps described in section 5.2 for constructing the Killing potentials ω(0), ω(1)
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and ω(2) in this case, we find that their contravariant components are given by

ω(a) tr = −(r2 + a21)(r
2 + a2i

2))

4rρ2

[

1,
2(1−∆θ)

g2
, a21 a

2
2

]

,

ω(a) tθ =
(a21 − a22) sin θ cos θ

4ρ2

[

− 1, 2r2, a2b2
]

,

ω(a) rφ1 =
a1(r

2 + a22)

4rρ2

[

(1 + g2r2),
2(1 + g2r2)(1−∆θ)

g2
, a22(r

2 + a21)
]

,

ω(a) rφ2 =
a2(r

2 + a21)

4rρ2

[

(1 + g2r2),
2(1 + g2r2)(1−∆θ)

g2
, a21(r

2 + a22)
]

,

ω(a) θφ1 =
a1 cot θ

4ρ2

[

∆θ,−2r2∆θ, a
2
2(a

2
1 − a22) sin

2 θ
]

,

ω(a) θφ2 = −a2 tan θ
4ρ2

[

∆θ,−2r2∆θ,−a21(a21 − a22) cos
2 θ

]

, (A.12)

where the components for ω(a) with a = 0, 1 and 2 correspond to the first, second and third

entries of the square bracketed factors respectively.

The three Killing potentials give rise to the following Killing vectors:

∇µω
(0)µν ∂ν =

∂

∂t
+ a1g

2 ∂

∂φ1
+ a2g

2 ∂

∂φ2
,

∇µω
(1)µν ∂ν = (a21 + a22)

∂

∂t
+ a1(1 + a22g

2)
∂

∂φ1
+ a2(1 + a21g

2)
∂

∂φ2
,

∇µω
(2)µν ∂ν = a21a

2
2

( ∂

∂t
+

1

a1

∂

∂φ1
+

1

a2

∂

∂φ2

)

. (A.13)

Thus the Killing potential for the Killing vector

ξ =
∂

∂t
+ Ω1

∂

∂φ1
+ Ω2

∂

∂φ2
(A.14)

that is null on the horizon is

ωξ =
r4+

(r2+ + a21)(r
2
+ + a22)

(

ω(0) +
1

r2+
ω(1) +

1

r4+
ω(2)

)

. (A.15)
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