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We present new results on the dynamics and gravitational-wave emission from the collapse of
differentially-rotating neutron stars. We have considered a number of polytropic stellar models hav-
ing different values of the dimensionless angular momentum J/M 2 where J and M are the asymp-
totic angular momentum and mass of the star, respectively. For neutron stars with J/M 2 <1, de.,
“sub-Kerr” models, we were able to find models that are dynamically unstable and that collapse
promptly to a rotating black hole. Both the dynamics of the collapse and the consequent emission
of gravitational waves resemble the one seen for uniformly rotating stars, although with an overall
decrease in the efficiency of gravitational-wave emission. For stellar models with J/M2 > 1, d.e.,
“supra-Kerr” models, on the other hand, we were not able to find models that are dynamically un-
stable and all of the computed supra-Kerr models were found to be far from the stability threshold.
For these models a gravitational collapse is possible only after a very severe and artificial reduction
of the pressure, which then leads to a torus developing nonaxisymmetric instabilities and eventually
contracting to a stable axisymmetric stellar configuration. While this does not exclude the possi-
bility that a naked singularity can be produced by the collapse of a differentially rotating star, it
also suggests that cosmic censorship is not violated and that generic conditions for a supra-Kerr

progenitor do not lead to a naked singularity.

PACS numbers: 04.30.Db, 04.40.Dg, 04.70.Bw, 95.30.Lz, 97.60.Jd

I. INTRODUCTION

Differentially rotating neutron stars, either dynami-
cally stable or unstable, can be the result of several astro-
physical scenarios such as stellar-core collapse or binary
neutron star mergers (see, e.g. Refs. [1-11] for some re-
cent works). Because of their differential rotation, these
stars can support masses higher than if they were uni-
formly rotating [12]. Furthermore, if J and M are re-
spectively the angular momentum and the gravitational
mass of the star, differentially rotating models can reach
values of the dimensionless spin parameter J/M? > 1;
this is not possible for stars in uniform rotation, at least
when described by a hadronic equation of state (EOS),
in which case J/M? < 0.7 [13]. Finally, when hypermas-
sive, that is when having masses larger than the one of the
associated mass-shedding configuration in uniform rota-
tion, differentially rotating stars can be related to events
such as gamma-ray bursts (GRBs). Hypermassive differ-
entially rotating neutron stars can indeed be formed after
the merger of binary neutron stars and their eventual col-
lapse can produce a spinning black hole surrounded by
an hot and massive disk, which could generate the rela-
tivistic jets that are observed in short GRBs [11].

The investigation of the collapse of uniformly rotating
neutron stars to rotating black holes was first studied in
detail in Ref. [14], where a specific set of dynamically

unstable models was constructed (named D1 to D4) for
a polytropic index N = 1. The region of dynamical in-
stability to axisymmetric perturbations was probed by
following the stability criterion of Friedman, Ipser and
Sorkin [15], who suggested that the turning point along
a constant angular-momentum sequences also marks the
onset of a secular instability. Models D1 to D4 in Ref. [14]
were then chosen to be near the turning-point line, but
with somewhat larger central densities so as to ensure
dynamical (and not just secular) instability (see Table 1
and Fig. 1 of Ref. [14])%.

In a series of works starting with Ref. [17], the study
of the collapse of differentially rotating neutron stars was
initiated, both in axisymmetry and in three spatial di-
mensions (3D). In Ref. [17], in particular, three differ-
ent models were considered, two of which were “sub-
Kerr”, i.e., with J/M? < 1 and one was instead “supra-
Kerr”, i.e., with J/M? > 1. The collapse of the lat-
ter was obtained by artificially depleting the pressure
by 99%, but no investigation was made on the stability

L A recent investigation by Takami, Rezzolla and Yoshida [16]
aimed at determining the neutral point along these sequences
(i.e., where the eigenfrequency of the fundamental mode goes to
zero), shows however that the secular stability does not coincide
with the turning point, but must be at smaller central densities.



of the progenitor models. The results presented in [17]
were based on the use of a non-conservative numerical
scheme and of a polytropic EOS preventing the forma-
tion of strong shocks, which cannot be handled well by
non-conservative numerical methods. In a subsequent
work [18], the collapse of similar models was studied in
the presence of viscosity and the first results were pub-
lished, but only in axisymmetry, for the collapse of dif-
ferentially rotating neutron stars in the presence of a
poloidal magnetic field [19-23].

The main goal of this work is to reconsider the effect of
differential rotation on the collapse of rotating neutron
stars and to present a systematic investigation of the sta-
bility properties of differentially rotating models. Special
attention has been paid to the following two questions:
(1) Do stellar models exist with J/M? > 1 and that are
dynamically unstable to the collapse to black hole? (2)
If a stellar model with J/M? > 1 is induced to collapse,
does it lead to a naked singularity, thus violating cosmic
censorship?

Overall, our results can be summarized as follows:

(i) differentially rotating, sub-Kerr neutron-star
models can be found that are dynamically unstable
to the gravitational collapse to rotating black holes;

(7) the dynamics of sub-Kerr models is very sim-
ilar to the one of uniformly rotating models: non-
axisymmetric instabilities do not have sufficient
time to grow and the stars collapse promptly to
black holes;

(#i) the efficiency in the emission of gravitational
radiation is comparable to that of uniformly ro-
tating stars, although generically smaller since the
collapse is generally slower;

(iv) differentially rotating, supra-Kerr models that
are dynamically unstable to the gravitational col-
lapse to rotating black holes could not be found;
rather, all of the supra-Kerr models studied were
found to be dynamically stable;

(v) a supra-Kerr model can be induced to collapse
only through a very severe depletion of the pres-
sure support which, however, does not lead to the
prompt formation of a rotating black hole;

(vi) because of the development of non-
axisymmetric instabilities, the gravitational-wave
emission from supra-Kerr models could in principle
be considerably larger than that of sub-Kerr
models if ever induced to collapse.

The paper is organized as follows. In Sect. IT we briefly
summarize the equations solved and the numerical infras-
tructure used. In Sect. III we present our study on the
stability of differentially rotating neutron stars with dif-
ferent degrees of differential rotation and different poly-
tropic EOSs. In Sect. IV we present the dynamics of the
collapse of four models, three with J/M? < 1 and one

with J/M? > 1, presenting also the gravitational-wave
signal emitted. Finally, in sec. VI we summarize and
conclude.

Throughout this paper we use a spacelike signature of
(—=,+,+,+) and a system of units in which ¢ = G =
Mg = 1. Greek indices are taken to run from 0 to 3,
Latin indices from 1 to 3 and we adopt the standard
convention for the summation over repeated indices.

II. BASIC EQUATIONS AND NUMERICAL
SETUP

All the simulations presented here were done using
the Whisky code which solves the general-relativistic hy-
drodynamic equations on a three-dimensional numerical
grid with Cartesian coordinates [24]. The code has been
constructed within the framework of the Cactus Com-
putational Toolkit [25], which provides high-level facil-
ities such as parallelization, input/output, portability
on different platforms and several evolution schemes to
solve general systems of partial differential equations.
Clearly, special attention is dedicated to the solution
of the Einstein equations, whose matter-terms in non-
vacuum spacetimes are handled by the Whisky code.

In other words, while the Cactus code provides at each
time step and on a spatial hypersurface the solution of
the Einstein equations

G = 81T, , (1)

where G, is the Einstein tensor and 7),, is the stress-
energy tensor, the Whisky code provides the time evolu-
tion of the hydrodynamic equations, expressed through
the conservation equations for the stress-energy tensor
TH and for the matter current density J*

V. =0, VuJt=0. (2)
This system of equations is then closed by an EOS which
relates the pressure to the rest-mass density and to the
specific internal energy.

In what follows, and mostly for the sake of complete-
ness, we give a brief overview of how both the right and
the left-hand-side of equations (1) are computed within
the coupled Cactus/Whisky codes. The equations pre-
sented have already been discussed in several different
publications, e.g. in [14, 26, 27] and we refer the in-
terested readers to these works for more details. We
note that the Whisky code can also solve the equations
of general-relativistic magnetohydrodynamics (GRMHD)
within the ideal-MHD limit [10, 11, 28]. Hereafter, how-
ever, in order to build the necessary understanding of the
dynamics of gravitational collapse in the presence of dif-
ferential rotation, we will consider unmagnetized fluids
only, leaving the inclusion of magnetic fields to a future
study.



A. Evolution of the field equations

We use the conformal and traceless decomposition of
the ADM formulation [29] of the Einstein equations as
first presented in 3D in Ref. [30], which is based on
the ADM construction and has been further developed
in [31]. Details of our particular implementation of the
conformal traceless reformulation of the ADM system as
proposed by [30-32] are extensively described in [26, 33]
and will not be repeated here.

The code is designed to handle arbitrary shift and
lapse conditions, which can be chosen as appropriate for
a given spacetime simulation. More information about
the possible families of spacetime slicings which have
been tested and used with the present code can be found
in [26, 34]. Here, we limit ourselves to recalling details
about the specific foliations used in the present evolu-
tions. In particular, we have used hyperbolic K-driver
slicing conditions of the form

Oya = —f(a) o* (K — Kyp), (3)

with f(a) > 0 and Ky = K(t = 0), with K being the
trace of the extrinsic curvature and « the lapse func-
tion. All the simulations discussed in this paper were
performed using condition (3) with f = 2/a. For the
spatial gauge we use one of the “Gamma-driver” shift
conditions proposed in [34] (see also [33]). In particular,
all the results reported here have been obtained using the
hyperbolic Gamma-driver condition,

026 = Fo,I — no,d, (4)

where (¢ is the shift, I'" are the “conformal connection
functions” and F' and 7 are, in general, positive func-
tions of space and time. For the hyperbolic Gamma-
driver conditions it is crucial to add a dissipation term
with coefficient 7 to avoid strong oscillations in the shift.
Experience has shown that by tuning the value of this
coefficient it is possible to almost freeze the evolution of
the system at late times. We typically choose F' = 3/4
and n = 3 and do not vary them in time.

The singularity-avoiding properties of the above gauge
choices have proved equally good both when using exci-
sion, as it was done in refs. [14] and [27], and when not
using excision [35]. In particular in this paper we em-
ploy the “no-excision” technique introduced in Ref. [35]
and we add an artificial dissipation of the Kreiss-Oliger
type [36] on the right-hand-sides of the evolution equa-
tions for the field variables (no dissipation is introduced
for the hydrodynamical variables). As first pointed out
in Ref. [35], in fact, renouncing to excision and using
instead suitable “singularity-avoiding” slicing conditions
improves dramatically the long-term stability of the sim-
ulations, allowing for the calculation of the gravitational
waveforms well beyond the quasi-normal-mode ringing.

B. Evolution of the hydrodynamic equations

An important feature of the Whisky code is the imple-
mentation of a conservative formulation of the hydrody-
namic equations [37], in which the set of equations (2) is
written in a hyperbolic, first-order and flux-conservative
form of the type

dvq + 0if(q) =s(q) , (5)

where f(!)(q) and s(q) are the flux-vectors and source
terms, respectively [38]. Note that the right-hand-side
(the source terms) does not depend on derivatives of the
stress-energy tensor.

An important feature of this formulation is that it al-
lows for the extension to a general-relativistic context
of the powerful numerical methods developed in classi-
cal hydrodynamics, in particular High-Resolution Shock-
Capturing schemes based on exact [39-41] or approxi-
mate Riemann solvers (see Ref. [38] for a detailed bibli-
ography). Such schemes are essential for a correct repre-
sentation of shocks, whose presence is expected in several
astrophysical scenarios.

For all the results presented here, we have solved the
hydrodynamic equations employing the Marquina flux
formula and a third-order PPM [42] reconstruction. A
third-order Runge-Kutta scheme was then used for the
evolution.

C. Mesh Refinement

We solve both the spacetime and hydrodynamic equa-
tions on non-uniform grids using a “box-in-box” mesh re-
finement strategy implemented in Whisky via the Carpet
driver [43]. This introduces two important advantages:
firstly, it reduces the influence of inaccurate boundary
conditions at the outer boundaries, which can be moved
far from the central source; secondly, it allows for the
wave zone to be included in the computational domain
and thus for the extraction of important information
about the gravitational-wave emission produced during
the collapse. In practice, we have adopted a Berger-
Oliger prescription for the refinement of meshes on dif-
ferent levels [44] and used the numerical infrastructure
described in [43].

D. Gravitational-Wave Extraction

While several different methods are possible for the ex-
traction of the gravitational-radiation content in numer-
ical spacetimes, we have adopted a gauge-invariant ap-
proach in which the spacetime is matched with the non-
spherical perturbations of a Schwarzschild black hole (see
refs. [45, 46] for applications to Cartesian coordinates).
In practice, a set of “observers” is placed on 2-spheres
of fixed coordinate radius r.x, where the gauge-invariant



odd-parity ng and even-parity \I/ﬁi metric perturba-
tions [47-49] are extracted. From these quantities it is
possible to compute the even- and odd-parity perturba-

tions
Q= AT (6)
Qi = Qi) (7)
where A = /2(€ +2)!/(¢ — 2)!. Using these quantities it

is also possible to compute the gravitational-wave ampli-
tudes in the two polarizations hy and hy as

1 t
h+ —1h>< = ; Z (Q;m - l‘/_Q;m(tl)dtl> 72Y€m7 (8)

,m

where _,Y*™ are the s = —2 spin-weighted spherical har-
monics. We note that the approach discussed above can-
not be employed when simulating the supra-Kerr model,
for which a very high resolution is necessary and hence
the use of a computational domain with rather close
boundaries. As we will comment later on in Sect. VB,
for that model the gravitational-wave emission will be
computed through the quadrupole formula.

III. INITIAL STELLAR MODELS
A. Equation of state and differential-rotation law

We construct our initial stellar models using the nu-
merical code rns [50] (see [51, 52] for evaluations of its
accuracy) as isentropic, differentially rotating relativistic
polytropes, satisfying the polytropic EOS

p=Kp", 9)

p
e=p+ —1 (10)
where p, p and e are pressure, rest-mass density and en-
ergy density, respectively, while K = 100 and I" are the
polytropic constant and the polytropic exponent, respec-
tively. In our discussion we will also use the polytropic
index N, defined through the relation ' =1+ 1/N.
We further assume that the equilibrium models are
stationary and axisymmetric, so that the spacetime ge-
ometry is described by a metric of the form

ds? = _e2udt2+e2w(d¢_wdt)2 +e2“(dr2+7‘2d92)7 (11)

where v, ¥, ; and w are functions of the quasi-isotropic
coordinates r and 6 only. The degree of differential ro-
tation, as well as its variation within the star, are essen-
tially unknown and because of this we here employ the
well-known “j-constant” law of differential rotation [53]

(Q —w)e??

2 _ R S
A =) =g~y

(12)

where Q = Q(r, 0) is the angular velocity, €. is the angu-
lar velocity at the center of the star and A is a con-
stant (with the dimensions of length) that represents
the lengthscale over which the angular velocity changes
(see [54] for a new and more realistic law of differential
rotation). In the remainder of this Section, we will mea-
sure the degree of differential rotation by the rescaled
quantity A = A/r., where 7. is the equatorial coordinate
radius of the star. For A — oo uniform rotation is re-
covered while a low value of A indicates a high degree of
differential rotation.

B. Equilibrium models

As mentioned in the Introduction, when studying the
gravitational collapse of a rotating neutron star to a Kerr
black hole, an interesting question is about what happens
to a configuration with an initial dimensionless spin pa-
rameter J/M? > 1 (i.e., a supra-Kerr model). If the
cosmic censorship conjecture is expected to hold, such
models cannot collapse promptly to Kerr black holes,
which are limited to J/M 2 < 1. Rather, one expects
that the transition to a black hole, when it occurs, takes
place after the stellar model has shed some of its angular
momentum. This was indeed what was shown to happen
in the previous study of Ref. [17], where a dynamically
stable supra-Kerr model was induced to collapse after a
dramatic depletion of the pressure support.

Here, we consider again this interesting question but,
before discussing in more detail the features of the grav-
itational collapse of either supra- or sub-Kerr models,
it is worth discussing the properties of the equilibrium
models that can be computed with the prescriptions of
the EOS and of the differential-rotation law discussed in
the previous Section IITA. As it will become apparent,
the study of these equilibrium models will be quite re-
vealing for the stability properties and hence for what is
realistic to expect from the gravitational collapse of dif-
ferentially rotating neutron stars. To this end, we have
constructed a large set of initial models for various val-
ues of the polytropic index N and degree of differential
rotation A, reaching close to the mass-shedding limit and
spanning a wide range of central densities.

Figure 1 shows the value of J/M? as a function of
central rest-mass density p. for the three different EOSs
with N = 0.5, N = 0.75 and N = 1.0. In these se-
quences the rotation law and the polar-to-equatorial co-
ordinate axis ratio are fixed to A = 1.0 and r,/r. = 0.35,
respectively. The choice of A=101is a typical one,
representing moderate differential rotation (the angular
velocity at the axis and at the equator differ by a factor
of ~ 3), while the axis ratio of 0.35 refers to very rapidly
rotating models near the mass-shedding limit (when the
limit exits). Along each sequence, we mark by a filled
circle the model which roughly separates stable models
(at lower central rest-mass densities) from unstable mod-
els (at higher central rest-mass densities). As we do not
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FIG. 1: J/M2 as a function of central rest-mass density p.
for models with polytropic indices N = 0.5, N = 0.75 and
N = 1.0, when the rotation law and the polar-to-equatorial
coordinate axis ratio are fixed to A = 1.0 and rp/re = 0.35,
respectively. The circle denotes roughly the separation be-
tween stable (at the left of the circle) and unstable (at the
right) models along each sequence.

know precisely which are the marginally stable models
(no simple turning point criterion exists in the case of
differential rotation) we use as a reference the stability
limit of the nonrotating models and thus we mark with
a circle the central rest-mass density of the nonrotating
model having the maximum mass for each EOS?. Stated
differently, all models to the right of the circles are ex-
pected to be dynamically unstable or at least very close
to the instability threshold.

As it becomes clear from this Figure, all unstable mod-
els we were able to construct have J/M? < 1, i.e., are
sub-Kerr. In contrast, in order to find supra-Kerr mod-
els, one must reach very low central rest-mass densi-
ties, where equilibrium models are instead expected to
be (very) stable against axisymmetric perturbations. In-
terestingly, for the particular sequences considered here,
the value of J/M? in the unstable region (i.e., to the
right of the filled circles) becomes nearly constant for all
the considered values of the polytropic indices considered;
this represents an additional evidence that all unstable

2 We also note that the value of the central rest-mass density sep-
arating stable from unstable models in the case of uniformly
rotating NSs changes by less than = 5% when moving from a
nonrotating sequence to a maximally rotating one. As a result,
using a nonrotating model to mark the stability is a very good
approximation which does not affect the results presented here.
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FIG. 2: J/M? of the most rapidly rotating models with a
central rest-mass density equal to that of the maximum-mass
nonrotating models (i.e., for the models marked with the cir-
cles in Fig. 1) as a function of the rotation law parameter A
and for different values of N. All models have J/M? < 1
indicating the difficulty of constructing unstable supra-Kerr
models.

models are indeed sub-Kerr.

In order to investigate further the effect of the
differential-rotation-law parameter A and of the EOS on
the above conclusion, we have investigated a large num-
ber of rapidly rotating models, spanning a wide range of
values for A (between 0.6 and 1.8) and a wide range of
polytropic indices (between 0.5 and 1.5). In all cases, we
have computed the value of J/M? of the most rapidly
rotating models we could construct (which was normally
close to the mass-shedding limit, when it exists) for a
central rest-mass density equal to that of the maximum-
mass nonrotating model (i.e., for the models marked by
circles in Fig. 1). The results of this analysis are col-
lected in Fig. 2, which shows that all the models with
a central density equal to the maximum-mass nonrotat-
ing stars have J/M? < 1, when N and A are allowed
to vary. This remains true also when considering the
unstable models in Fig. 1 (i.e., the ones with an higher
central density), which all have a value of J/M? lower
than the models shown in Fig. 2. Tt is therefore evident
that no combination of N and A could yield an unstable
supra-Kerr model. All of these results provide a strong
evidence that all supra-Kerr models examined here are
stable.

Bearing this in mind, it should be noted that because
our numerical method does not reach exactly the mass-
shedding limit for any degree of differential rotation (it
is difficult to achieve convergence at very small values of
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FIG. 3: The solid, short-dashed and long-dashed lines (upper
curves with individual models marked) represent the gravi-
tational mass M of some of the unstable models shown in
Fig. 2, as a function of the maximum energy density, for
N =0.5,0.75 and 1.0. The different values of A are reported
near each model. The lower curves show the corresponding
nonrotating sequence of models for each of the above EOSs.

the axis ratio r,/7.) and since the existence of a bifurca-
tion between quasi-spheroidal and quasi-toroidal models?
with the same axis ratio and central density has not been
investigated yet, we cannot strictly exclude the existence
of supra-Kerr unstable models.

The rapidly rotating models with N = 1.0, N = 0.75
and N = 0.5 shown in Fig. 1 are also shown in Fig. 3
in a mass vs. maximum energy density plot. Since the
most rapidly rotating models with differential rotation
and small axis ratio are quasi-toroidal, the correspond-
ing maximum energy density is larger than the central
energy density by a factor of roughly two, depending on
the degree of differential rotation. It is not yet known
whether the value of the central energy density or of the
off-center maximum energy density is more important in
determining the stability to axisymmetric perturbations
of quasi-toroidal models. Therefore, the models shown in
Figures 2 and 3 could either be only marginally stable or
unstable or strongly unstable. Nevertheless, the fact that
the central density of models in Fig. 1 with J/M? > 1 is
at least a factor of three smaller than the central density

3 We define as “quasi-spheroidal” those models having the central
and maximum rest-mass density being coincident, while we de-
fine as “quasi-toroidal” those models having the maximum of the
rest-mass density not located at the center of the star.
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FIG. 4: Comparison between our initial models (filled trian-
gles, see table I) and the uniformly rotating models studied in
Ref. [14]. Here we plot the gravitational mass M as a function
of the central energy density e.. The solid, dashed and dotted
lines correspond to the sequence of nonrotating models, the
sequence of models rotating at the mass shedding limit and
the sequence of uniformly rotating models that are at the on-
set of the secular instability to axisymmetric perturbations.
Also shown are the secularly (open circles) and dynamically
unstable (filled circles) initial models used in Ref. [14] (see
inset).

of the corresponding maximum-mass nonrotating mod-
els, indicates that even if all models in Fig. 3 are well in-
side the dynamically unstable region, there should still be
no supra-Kerr unstable models for the parameter range
examined.

C. Supra- and Sub-Kerr initial data

We have investigated the dynamics of differentially ro-
tating collapsing compact stars by focusing on three sub-
Kerr, dynamically unstable models and on one supra-
Kerr, dynamically stable model. For the latter, the col-
lapse was triggered through an artificially-large pressure
depletion of 99%, as was done in Ref. [17]. All models
are constructed with the polytropic EOS with N = 1
and K = 100. The three dynamically unstable models
are labeled as A1 to A3 and are shown as filled triangles in
Fig. 4 while their detailed properties are displayed in Ta-
ble I. The central rest-mass density of the three models
is chosen to be the same as the central rest-mass density
of the maximum mass nonrotating model for this EOS.
The degree of differential rotation varies from A = 0.6
to A = 1.4. The maximum rest-mass density increases
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initial central rotation period of the star, Prot,c = 13M.



TABLE I: Initial data for the different stellar models. The different columns refer, respectively, to: the central rest-mass density
pe and its maximum pmax, the ratio of the polar to the equatorial coordinate radii 7, /re, the total gravitational mass M, the
circumferential equatorial radius Re, the central angular velocity €., the ratio of rotational kinetic energy to gravitational
binding energy T/|W|, the ratio J/M?, where J is the angular momentum, and the degree of differential rotation A, where
for A — oo uniform rotation is recovered. All the initial models have been computed with a polytropic EOS with K = 100
and N = 1. The last column shows instead the ratio JBH/M%H for the BH formed after the collapse of the Sub-Kerr models
computed using equation (5.2) in Ref. [14].

Model  pex107%  pmax x 107 1,/re  M/Ms  Re/M Qe T/|W| J/M? A Jer /Mp
AL 3.0623 6.8920 0.23 1.7626  3.5424  0.51891  0.18989  0.75004 0.6 0.74
A2 3.0623 4.0236 0.33 22280  3.5316  0.21752  0.21705  0.81507 1.0 0.81
A3 3.0623 3.0623 0.33 2.6127  4.1111  0.10859  0.23163  0.88474 1.4 0.88
Bl 0.4630 0.4632 0.39 1.9009 88185  0.03723  0.21509  1.08650 1.0 —

with respect to the central density, as differential rota-
tion becomes stronger (i.e., as the relative lengthscale A
becomes smaller), as it can be seen by comparing the
values in the second and third columns of Table I. All
three models have comparable values of J/M? (0.75 to
0.88), of the ratio of rotational kinetic energy to gravi-
tational binding energy T'/|WW| (0.19 to 0.23) and of the
total (gravitational) mass M (1.8 to 2.6), while they dif-
fer significantly in radius (6.4 to 11) and central angu-
lar velocity (0.52 to 0.11). Even though the axisymmet-
ric stability of these models cannot be determined from
a turning-point method, the numerical simulations per-
formed and discussed later on, showed that these models
are indeed dynamically unstable and collapse without the
need of a pressure depletion.

Finally, the fourth model studied, model B1 in Table I,
is shown as a empty triangle in Fig. 4 and represents
a stable supra-Kerr model, with comparable mass and
T/|W|-ratio as models Al to A3, but with much smaller
central rest-mass density and J/M? = 1.09. The com-
plete set of initial data is displayed in Fig. 4, which re-
ports the total mass versus the energy density at the
center of the star e.. Also shown as useful references
are the sequence of non-rotating models (solid line), the
sequence of models rotating at the mass-shedding limit
(dashed line) and the sequence of models that are at the
onset of the secular instability to axisymmetric perturba-
tions (dotted line). Similarly, indicated respectively with
open and filled circles, are the secularly (S1 —84) and
dynamically unstable (D1 — D4) uniformly rotating mod-
els used in the collapse simulations discussed in Ref. [14]
(see inset).

IV. DYNAMICS OF THE COLLAPSE

We next discuss the dynamics of the matter during the
collapse of the initial stellar models described in the pre-
ceding section. All the models were studied with different
resolutions and using fixed mesh refinement techniques.
In the case of the sub-Kerr models A1, A2 and A3, up
to seven refinement levels were used, in order to be able

to extract the gravitational-wave signal in a region suffi-
ciently distant from the sources.

The supra-Kerr model B1, on the other hand, was
studied using three levels because the dynamics is not
limited to a small central region of the computational
domain (the process follows several bounces and subse-
quent collapses) and so the finest refinement level was
set to be larger with respect to the one used for the sub-
Kerr models in order to reduce the numerical error. The
outer boundaries were then moved at those distances that
were computationally affordable, but not sufficiently far
away to allow for gravitational-wave extraction as in the
sub-Kerr cases. For this model, in fact, we resort to
a gravitational-wave extraction via the quadrupole for-
mula, as discussed in Sect. V B.

An ideal-fluid EOS, P = pe(T' — 1), with T' = 2 was
used during the evolution of all the models.

A. Sub-Kerr Collapse

All the three sub-Kerr models considered A1, A2, A3
show the same qualitative dynamics, with the gravita-
tional collapse leading to a central black hole. All of
them were evolved in equatorial and 7/2 symmetry (i.e.,
we considered the region {x > 0,y > 0,z > 0} applying
reflection symmetry at z = 0 and a rotational symmetry
at = 0 and y = 0) since they did not show the devel-
opment of nonaxisymmetric instabilities (when evolved
without symmetries at lower resolutions), in a way simi-
lar to the uniformly rotating models studied in Ref. [14].

Because of the similar behavior, we concentrate here
only on the description of model A2. The results shown
here were produced on a grid with boundaries located
at [0,137.9M] x [0,137.9M] x [0,137.9M] with a resolu-
tion ranging from Az’ = 0.86M on the coarsest grid to
Az’ = 0.013M on the finest one, using seven refinement
levels. The boundaries of the finest grid were chosen in
order to include all the star and thus to reduce numerical
errors. The results shown here were obtained without the
introduction of any initial perturbation, except from the
truncation error, but a similar dynamics was obtained
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FIG. 6: Maximum of the rest-mass density p normalized to
its initial value. The triangle, the circle and the square rep-
resent the moment at which an apparent horizon is formed
for models A1, A2 and A3, respectively. This figure should be
compared with the corresponding Fig. 10, which refers to the
supra-Kerr model B1.

1.0004 ‘

\\\\\
!

B I
|

0)

1/3(t

\ |
O \\\\‘H - \H I I ‘ I I ‘ | —

0 1 2 3 4 5
t [ms]

Lol il

FIG. 7: Total rest-mass M, and angular momentum J of the
matter, normalized at ¢ = 0 for the three different models A1
(solid line), A2 (short-dashed line) and A3 (long-dashed line).
The triangle, the circle and the square represent the moment
at which an apparent horizon is formed for respectively model
A1, A2 and A3.

when the collapse was triggered by reducing the pressure
by 2%, as was done in the case of uniformly rotating
models in Ref. [14].

As one can see in the first row of panels in Fig. 5, where
we show the isodensity contours in the (z,y) (i.e., equa-
torial) and (x,z) planes, the star has a toroidal shape
due to its strong differential rotation. Its evolution is
rather similar to what was already observed for the uni-
formly rotating models and especially for model D4 in
Ref. [14]. The collapse is axisymmetric and leads to the
formation of a black hole, as indicated by the appearance
of an apparent horizon (AH) [55]. The AH, represented
by a dashed line in Fig. 5, is found at ¢t = 6.71P;ot,c,
where P,ot,c is the initial rotational period at the center
of the star and is equal to ~ 13M. At the time the AH is
formed, the star has assumed the shape of a disk which
rapidly accretes until no matter is left outside, as one can
see from the last row of panels in Fig. 5. Even if we used
an ideal-fluid EOS, we did not see the formation of global
shocks during the collapse.

In Fig. 6 we plot instead the maximum of the rest-
mass density normalized at its initial value for all the
three sub-Kerr models. All the models show the same
dynamics with an exponential increase in the maximum
of the rest-mass density and with the AH forming when
Pmax has reached a value ~ 2 times larger than the initial
one. As expected, models with a higher value of J/M?
collapse on a longer timescale.

In Fig. 7 we compare the total rest-mass and the total
angular momentum of all the three models (A1, A2, A3)
normalized to their initial values. As one can see from
this Figure, the level of accuracy for these simulations
is very high, with a relative error in the conservation
of rest-mass and angular momentum smaller than 1073,
Note also that the angular momentum is computed from
the matter sources, outside the apparent horizon, and
hence it is shown to vanish at late times in Fig. 7, as the

matter is dissipated near the singularity (see discussion
in [35, 56]).

B. Supra-Kerr Collapse

Model B1 has J/M? =~ 1.1 and shows very differ-
ent dynamics with respect to the sub-Kerr models. Be-
cause in this case we expected the development of non-
axisymmetric instabilities, we decided to adopt equato-
rial and 7-symmetry (this means that we evolved only
the region {z > 0,z > 0} applying a rotational symmetry
boundary condition at x = 0 and reflection symmetry at
z = 0). Here we report the results obtained on a grid with
boundaries located at [0, 34 M| x [-34M, 34 M] x [0, 34 M|
and with a resolution ranging from Az’ = 0.17M to
Az® = 0.04M with three refinement levels and with
the finest grid covering the entire star. It is worth re-
marking that the resolutions adopted here for the supra-
Kerr model are considerably finer than the ones routinely
adopted in the simulation of binary neutron stars (see,
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FIG. 9: Logarithm of the power in the m = 2 (solid line) and
m = 4 (dashed line) Fourier modes as a function of time for
model B1. The modes not shown in this plot are zero during
all of the evolution.

e.g., |4, 10, 11, 57]), and of a factor ~ 4 larger. As a re-
sult, although this scenario is much simpler to simulate,
its computational costs are indeed equally high.
Because model B1 is a very stable configuration, we
had to enforce its collapse by artificially reducing the ini-
tial pressure by 99%, as was done by Duez et al. [17],
while smaller pressure reductions were found to be insuf-
ficient to trigger the collapse. With its pressure support
removed, the model immediately flattens along the z-
direction and collapses toward the center on the equato-
rial plane, producing a strong shock. After a first bounce,
due to the centrifugal barrier produced by the large an-
gular momentum, a quasi-toroidal structure forms, which
rapidly fragments into four clumps (see the snapshots
from time ¢ = 1.122P,44c to t = 2.154P,0 . in Fig. 8)
whose formation was observed also in Ref. [17]. We have
also extracted the Fourier modes of the rest-mass den-
sity p, by computing at z = 0 and at different cylindrical

radii @ = /22 + y2, the averages
k(') = / p(w’ cos(p), @’ sin(¢))e™?dp. (13)
=0,w’
The mode power P, is then simply given by

py=— 1 / o (@)|de (1)

Wout — Win Win

where w;, and weyt are chosen to cover the whole domain
(for details and an extensive use of this technique see also
Ref. [58, 59]).
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The presence of an m = 4 mode at the beginning can
be then seen looking also at the modes’ power plotted
in Fig. 9, where we show the evolution of the m = 2
(solid line) and m = 4 (dashed line) modes, being the
other modes either zero or much smaller during the en-
tire simulation. It is not clear at the moment whether
the fragmentation has to be considered physical and only
triggered by the use of a Cartesian grid, or entirely due to
our Cartesian coordinate system. We note that Truelove
and collaborators [60] have shown that spurious fragmen-
tation can occur if the Jeans length is not well resolved,

i.e., if the following “Jeans condition” is verified
Axr 1
— 15
2 (15)

where Ay is the Jeans length and is given by

A~ (”—) (16)

p

and ¢ is the sound speed. Duez et al. [17] estimated
the minimum of the Jeans length to be A\; ~ 1.3M for
a model similar to our model B1 and using a polytropic
EOS (for an ideal-fluid EOS, as the one used in our sim-
ulations, the sound speed is generically larger). In the
simulation of Duez et al. [17], but also in ours, the value
of Az /A is indeed found to be smaller than 0.25, leading
to the conclusion that the fragmentation is physical and
due to a genuine nonaxisymmetric instability. We should
remark, however, that in Ref. [60] the condition (15) was
indicated as necessary but not in general sufficient to
avoid the formation of spurious fragmentation. Thus,
even if the resolutions used in our simulation and in the
one reported in Ref. [17] satisfy the “Jeans condition”,
we cannot thus strictly exclude that the origin of this
m = 4 mode is due to the use of a Cartesian grid. Fur-
ther investigations with resolutions higher than the ones
that could be afforded here and with different coordinate
systems will be necessary in order to clarify this issue.
At time t ~ 2.5P,0t,c the four fragments merge and
a new collapse and bounce follows with the formation
of a new quasi-toroidal structure. The effects of these
bounces on the maximum of the rest-mass density p and
specific internal energy € are shown in Fig. 10. At ¢ ~
3.0P,ot,c the quasi-toroidal structure contracts towards
the center, forming a new configuration which does not
collapse further, but that develops a bar which lasts for
~ 2 ms. At this point, the model approaches a new stable
configuration, as one can easily see from the world-line
of the maximum of the rest-mass density p (Fig. 11) and
from its evolution (Fig. 10, top panel). It is also evident
from Fig. 9 that at late times the m = 2 mode dominates.
In Fig. 12 we plot the evolution of the total rest mass
and of the total angular momentum normalized to their
initial values. When we stopped the simulation, J had
dropped by ~ 10%. The loss in the angular momentum
cannot be accounted for in full by the emission of grav-
itational waves and it is due to the loss of mass, which
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FIG. 11: World-line of the maximum of the rest-mass density
p for model B1. The final configuration has a maximum lo-
cated at a radius smaller than the initial one. Note also the
three bounces.
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FIG. 12: Total rest-mass M, and total angular momentum J
normalized at their initial values for the supra-Kerr model B1.
The inset shows instead the profiles of the angular velocity 2
at the initial time (purple long-dashed line) and at the end of
the simulation (light blue solid line). For comparison we also
show the Keplerian profile Qg oc r~3/2 (black short-dashed
line).

is expelled by shocks through the external boundaries.
In the inset of Fig. 12 we plot instead the profiles of the
angular velocity along the z-axis, Q = (av¥ — Y)/z at
the initial time (purple long-dashed line) and at the end
of the simulation (light blue solid line), and where v’ is
the three-velocity of the fluid as measured by an Eulerian
observer [14]. For comparison we also show the Keple-
rian profile Q o r=3/2 (black short-dashed line). Tt is
evident that the collapse leads to an even larger degree of
differential rotation than the initial one and that the new
equilibrium is very close to a Keplerian configuration in
its outer layers. This is clearly the result of having es-
sentially removed pressure forces, leaving the centrifugal
ones the only responsible for the equilibrium.

As a final remark we note that the fact that we were
not able to force this model to collapse to a black hole,
even when artificially reducing the pressure by 99%, con-
firms that supra-Kerr models cannot directly collapse to
a black hole. Furthermore, the evidence that even when
forced to collapse the supra-Kerr model does not produce
a black hole, but rather redistributes its angular momen-
tum to reach a stable and axisymmetric stellar configu-
ration, provides strong evidence that cosmic censorship
is not violated and that rather generic conditions for a
supra-Kerr progenitor do not lead to a naked singularity.
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FIG. 13: Gravitational-wave amplitudes h4 (top panel) and
hx (bottom panel) for the collapse of model A2. The
waves are computed using gauge-invariant perturbations of
a Schwarzschild spacetime.

V. GRAVITATIONAL-WAVE EMISSION

We now concentrate on the emission of gravitational
waves from the sub-Kerr and supra-Kerr models, with
the aim of comparing our results with those obtained in
refs. [27, 61] for the collapse of uniformly rotating neutron
stars models.

A. Sub-Kerr Models

In Fig. 13 we show h; and hy for the A2 sub-Kerr
model. We recall that in the case of axisymmetric col-
lapse to BH the signal is expected to be composed by an
initial rapid increase in the amplitude, due to the initial
phase of the collapse, followed by a ring-down phase of
the formed BH [27, 35, 61-64]. These two phases are very
evident in fig. 13 and the same behavior is shown also by
the other sub-Kerr models. The initial oscillations visible
in the hy for the first 0.5ms are spurious effects related
to the initial violation of the Hamiltonian constraint in-
troduced by importing axisymmetric models computed
on a spherical grid onto the Cartesian grid used for the
evolution. We have verified indeed that these oscillations
decrease in amplitude with increasing resolution, while
the rest of the signal remains the same.

In Table IT we report the signal-to-noise ratio for vari-
ous second and third-generation gravitational-wave de-
tectors and the energy emitted through gravitational
waves for all the sub-Kerr models, assuming a galactic
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source at a distance of 10 kpc. For example, gravitational
waves from the collapse of model A2, with a total energy
of about 1.4 x 10~7M, would arrive at the Virgo detector
with a signal-to-noise ratio of S/N = 2.11 (with a char-
acteristic amplitude of h, = 6.14 x 1072}(M /M) and at
a characteristic frequency f. = 1367Hz). In the case of
LIGO, instead, we obtain h. = 5.28 x 1072 (M/My)
at f. = 1133Hz with S/N ~ 1.5 while for advanced
LIGO we have h. = 3.81 x 10721(M/My) at f. =
809Hz with S/N =~ 14.7. However, when consider
third-generation detectors such as the Einstein Telescope
(ET) [65], the signal-to-noise ratio would increase dra-
matically to S/N =~ 247 and the source could then be
detected up to a distance of ~ 1 Mpc. Even though
detection of individual events is difficult, the case of a
stochastic background is worth further investigation.

The gravitational-wave energies computed here are
similar to those obtained for the collapse of uniformly
rotating neutron stars, as reported in [61]. This is to be
expected, since even though the initial quadrupole mo-
ment is larger for differentially rotating models, the col-
lapse proceeds more slowly, due to the higher values of
J/M? and this reduces the efficiency in energy emission
through gravitational waves. This can also be seen in
Fig. 14, where we plot the total energy emitted by grav-
itational waves, AE/M, as a function of J2/M, which
is proportional to the initial axisymmetric quadrupole
moment. The triangles represent the uniformly rotating
neutron stars discussed in [61], the squares represent the
differentially rotating models discussed here, while the
solid line is the best fit of the data with the following
analytic expression

& B (J2/M)n1
M ay (J2/M)™ + ay

(17)

where a1 = (5.17 £4.37) x 10°, ag = (1.114+0.57) x 10,
ng = 2.63+0.53 and ny = 1.43+£0.74. Clearly, because of
the small statistics, the error in some of the coefficients is
rather large, but this can be compensated by performing
additional simulations.

B. Supra-Kerr Model

As anticipated in Sect. IV, we have also estimated the
gravitational-wave signal emitted by model B1 using the
standard quadrupole formula [66, 67] since in this case
the outer boundary was not located far enough from the
source to allow for the extraction of the signal using the
method described in Sec. IID. In this approximation,
the observed waveform and amplitude for the two polar-
izations for an observer situated at large distance r along
the z-axis are approximately given by [58]

I72(t) — Ivv(t)

hy = (18)

<

hy = 2 iU , (19)

r
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TABLE II: Signal-to-noise ratio (SNR) computed for the collapse of sub-Kerr and supra-Kerr models assuming a source at
a distance of 10kpc. The last column shows also the energy emitted through gravitational waves which, in the case of the
sub-Kerr models, is comparable to the one obtained in [61] from the collapse of uniformly rotating neutron stars.

Model SNR (Virgo) SNR (LIGO) SNR (Adv. Virgo) SNR (Adv. LIGO) SNR (ET) AE/M
Al 1.00 0.60 3.56 4.80 107.41 5.46 x 1077
A2 2.11 1.47 13.98 14.67 246.77 1.38 x 1077
A3 4.55 3.79 45.70 47.99 594.54 6.24 x 107°
B1 16.13 9.39 45.30 71.75 1688.95 7.89 x 10~*
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FIG. 14: Energy emitted through gravitational waves, nor-
malized to the total initial mass M, as a function of J*/M.
Triangles represent the uniformly rotating neutron star mod-
els studied in [61], while the squares refer to the differentially
rotating models discussed here. The solid line is the best fit
(see text for details).

where
k= /d% D aizh (20)

is the quadrupole moment of the matter distribution,
D = ,/4pW, v is the determinant of the three metric and
W is the Lorentz factor. The results for the gravitational-
wave amplitudes hy and hy are finally reported in Fig. 15
and they are one order of magnitude larger than those
emitted by the sub-Kerr models. This produces conse-
quently much larger signal-to-noise ratios as one can see
by looking at the last row of table II. As an example,
if such a collapse happened at a distance of 10kpc, we
would obtain in the case of advanced LIGO a signal-to-
noise ratio of S/N = 72, with a characteristic amplitude
of he = 1.32 x 107 (M /M) and at a characteristic fre-
quency f. = 2714Hz. In the case of ET instead the signal

FIG. 15: Gravitational-wave amplitudes h4 and hx for the
collapse of model B1. The waves are computed using the
Newtonian quadrupole formula.

could be detected for a source at a distance of up to =~ 10
Mpec.

VI. CONCLUSIONS

We have presented new results on the collapse of dif-
ferentially rotating neutron stars in full general relativ-
ity, using simulations with fixed mesh refinement and in
3D. We have considered two different classes of initial
configurations, consisting of either sub-Kerr models with
J/M? < 1, or of supra-Kerr models with J/M? > 1.
In particular, we have performed a detailed study of the
parameter space of different equilibrium configurations
and, for polytropes which could represent neutron-star
models, we could only find models unstable to an ax-
isymmetric instability that are sub-Kerr.

When evolving three representative sub-Kerr models
with different degrees of differential rotation we observed
in all cases a dynamics which is very similar to the one



already found in the case of uniform rotation. In par-
ticular, all models remain axisymmetric during collapse
and produce a Kerr black hole. We have also studied the
collapse of a supra-Kerr model when its collapse is trig-
gered by a 99% depletion of its pressure. In this case, we
observed a very different dynamics, with the formation
of non-axisymmetric instabilities, the development of a
torus and its subsequent fragmentation in four clumps
that merge again, forming a bar and eventually a sta-
ble axisymmetric configuration. While lack of evidence
cannot be taken to exclude the possibility that a naked
singularity can be produced by the collapse of a differen-
tially rotating star, our results also suggest that cosmic
censorship is not violated and that rather generic condi-
tions for a supra-Kerr progenitor do not lead to a naked
singularity.

For all the models presented here, we have also com-
puted the gravitational-wave signal, which is compara-
ble to the one from uniformly rotating neutron stars.
In particular, the efficiency in the emission of gravita-
tional waves for the sub-Kerr models is slightly smaller
than the one of uniformly rotating stars. This is due to
the large angular momentum that differentially rotating
neutron stars have and which increases the timescale on
which the collapse happens. Therefore, even if the ini-
tial quadrupole moment is much larger, the longer time
needed for the collapse decreases the overall efficiency.
Furthermore, as for the collapse of uniformly rotating
neutron stars, also in this case the detection of such
events would be possible only for sources located in our
Galaxy in the case of the advanced Virgo and advanced
LIGO detectors. However, a third-generation detector
such as ET could instead be able to detect a source at a
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distance of ~ 1Mpc.

We plan to extend the work presented here by mak-
ing use of the axisymmetric code developed in Ref. [68],
which will allow us to consider a larger number of mod-
els and EOSs. We also plan to investigate the effect that
magnetic fields have on these configurations and espe-
cially on the supra-Kerr models by using the GRMHD
version of Whisky [28]. The magnetic field can in fact
redistribute the angular momentum inside the star and
thus alter the dynamics of the collapse, as already studied
in axisymmetry [20-22] and in 3D [10].
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