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Binary neutron-star systems represent one of the most promising sources of gravitational waves.
In order to be able to extract important information, notably about the equation of state of matter
at nuclear density, it is necessary to have in hands an accurate analytical model of the expected
waveforms. Following our recent work [1], we here analyze more in detail two general-relativistic
simulations spanning about 20 gravitational-wave cycles of the inspiral of equal-mass binary neutron
stars with different compactnesses, and compare them with a tidal extension of the effective-one-
body (EOB) analytical model. The latter tidally extended EOB model is analytically complete up
to the 1.5 post-Newtonian level, and contains an analytically undetermined parameter representing
a higher-order amplification of tidal effects. We find that, by calibrating this single parameter, the
EOB model can reproduce, within the numerical error, the two numerical waveforms essentially up
to the merger. By contrast, analytical models (either EOB or Taylor-T4) that do not incorporate
such a higher-order amplification of tidal effects, build a dephasing with respect to the numerical
waveforms of several radians.

PACS numbers: 04.25.dk, 04.25.Nx, 04.30.Db, 04.40.Dg, 95.30.Sf, 97.60.Jd

I. INTRODUCTION

Binary neutron-star inspirals are among the most
promising and certain target sources for the ad-
vanced versions of the currently operating ground-based
gravitational-wave (GW) detectors LIGO/Virgo/GEO.
These detectors will be maximally sensitive during the
inspiral part of the signal (around a GW frequency of
100 Hz, i.e., significantly below the typical GW frequen-
cies at merger, which are around 1000 Hz). The inspiral
part of the signal will be influenced by tidal interaction
between the two neutron stars (NSs), which, in turn, en-
codes important information about the equation of state
(EOS) of matter at nuclear densities. In other words, the
detection of GWs emitted from inspiralling NS in the
LIGO/Virgo bandwidth could enable us to acquire im-
portant information about the EOS of NS matter. How-
ever, besides getting sufficiently accurate GW data from
advanced detectors, two conditions must be fulfilled for
the success of this program: (i) obtaining a large enough
sample of accurate numerical simulations of inspiralling
binary neutron stars (BNS); (ii) possessing a sufficiently
accurate analytical model of inspiralling BNS, allowing
the extrapolation of the finite set of numerical simula-
tions to the multi-parameter space of possible GW tem-
plates. Extending the work recently reported in [1], we
here address issues and provide useful progress on both of
them. In essence, we will present the results of general-
relativistic simulations spanning about 20 gravitational-
wave cycles of the inspiral of equal-mass BNSs, and show
how a suitably calibrated effective-one-body (EOB) ana-

lytical model of tidally interacting BNS systems enables
us to accurately reproduce the numerically simulated in-
spiral waveform.

Numerical simulations of merging BNSs in full general
relativity have a long history (see the Introduction of [2]
for a brief review), and the first merger to a hypermas-
sive neutron star (HMNS) was computed more than ten
years ago [3]. However, it is only in recent years and
with the use of more advanced and accurate numerical
algorithms that it has been possible to obtain a more
precise and robust description of this process and to in-
clude additional physical ingredients such as magnetic
fields and realistic EOSs. In particular the use of adap-
tive mesh refinement techniques [2, 4, 5] made it possible
to use very high resolutions, increasing not only the level
of accuracy, but giving the possibility, for example, to
compute the full evolution of the HMNS up to black-hole
(BH) formation [2] or to investigate in detail the develop-
ment of hydrodynamical instabilities at the time of the
merger [2]. Also the numerical convergence properties
of BNS simulations have been studied only recently [6],
providing for the first time evidence of the level of accu-
racy that it is now possible to achieve in the generation
of GW templates from these sources. Several groups are
now able to simulate BNSs using more realistic EOSs
(see, e.g., [7–9] and references therein) and to assess the
possibility to measure their effects in the GW signals. In
the last two years three different groups were also able to
perform for the first time the simulations of magnetized
BNSs [10–12]. One conclusion already reached is that no
effect of the magnetic field can be measured in the inspi-
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ral waveforms [12], while the role of the magnetic field
in the post-merger phase has been recently investigated
in [13] as well as its role in the emission of relativistic
jets after the collapse to BH [14]. Because of their possi-
ble connection with the production of short gamma-ray
bursts (GRBs), numerical simulations have also investi-
gated in detail the formation of massive tori and their
dependence on the initial mass and mass ratio of the bi-
nary (see e.g., [15]) as well as on the EOS used (see [8, 9]
and references therein).
On the other hand, the program of developing an an-

alytical description within general relativity of tidally-
interacting binary systems has been initiated only re-
cently [16–22]. Overall, this work has brought to light
two surprising results. First, that the dimensionless ex-
pression kℓ (Love number) in the (gravito-electric) tidal
polarizability parameter Gµℓ ≡ 2kℓR

2ℓ+1/(2ℓ− 1)!! mea-
suring the relativistic coupling (of multipolar order ℓ)
between a NS of radius R and the external gravita-
tional field in which it is embedded strongly decreases
with the compactness parameter C ≡ GM/(c2R) of the
NS [18, 19]1. Second, a recent comparison between a
numerical computation of the binding energy of quasi-
equilibrium circular sequences of BNS systems [23] and
the EOB description of tidal effects [21] suggests that
high-order (beyond the first order) post-Newtonian (PN)
corrections to tidal effects tend to significantly increase
(typically by a factor of order two) the effective tidal po-
larizability of NSs.
The main aim of this paper is to present a detailed

comparison between waveforms computed from the tidal-
completed EOB analytical model of Ref. [21] and wave-
forms from BNS simulations comprising between ≃ 20
and 22 GW cycles of inspiral [1]. More specifically, we
will follow Ref. [21], which has proposed a new way of
analytically describing the dynamics of tidally interact-
ing BNSs, whose validity is not a priori limited (like
the purely PN-based descriptions used in, e.g., [16]) to
the low-frequency part of the GW signal, but may be
extended to higher frequencies, essentially up to the
merger. The proposal of Ref. [21] consists in extending
the EOB method [24–26], which has recently shown its
ability to accurately describe the GW waveforms emit-
ted by inspiralling, merging, and ringing binary black
holes (BBHs) [27, 28], by incorporating tidal effects in
it. We will improve the tidally-extended EOB model of
Ref. [21] (which already contained the 1PN contributions
to the dynamics) by incorporating the 1PN contributions
to the waveform (from [29]), as well as the waveform tail
effects (from [30, 31]).
The paper is organized as follows. In Sec. II we present

in detail our numerical simulations, briefly reviewing our
numerical setup, discussing the dynamics of the binaries,

1 As a consequence, for a given EOS, the Love numbers of a typical
(C ≃ 0.15) NS are found to be about 4 time smaller than their
corresponding Newtonian estimates, that assume C → 0.

and presenting the main features of the waveforms. Sec-
tion III deals instead with the analytical models of the
binary dynamics and of waveforms that include tidal in-
teraction (either PN-based or EOB-based). Sec. IV intro-
duces some tools, notably a certain intrinsic representa-
tion of the time evolution of the GW frequency, which
is useful for doing the numerical-relativity/analytical-
relativity (NR/AR) comparison. Section V discusses the
various errors that affect the NR phasing. The NR/AR
comparison is carried out in Sec. VI. We finally present
a summary of our findings in Sec. VII. Two appendices
give additional technical details on the use of the wave-
forms from the numerical-relativity simulations.
We use a spacelike signature (−,+,+,+) and (unless

explicitly said otherwise) a system of units in which c =
G = M⊙ = 1. Greek indices are taken to run from 0 to
3, Latin indices from 1 to 3.

II. NUMERICAL-RELATIVITY SIMULATIONS

A. Numerical setup

The numerical simulations were performed with the
set of codes Cactus-Carpet-Whisky [32–36]. The reader
is referred to these references for the description of the
details of the implementations and of the tests of the
codes. Since in this work we use the same gauges and
numerical methods already applied and explained in [2,
6], we also refer the reader to these articles for more
detailed explanations of the setup only briefly recalled
below.
In essence, we evolve a conformal-traceless “3+1” for-

mulation of the Einstein equations in which the spacetime
is decomposed into three-dimensional spacelike slices, de-
scribed by a metric γij , its embedding in the full space-
time, specified by the extrinsic curvature Kij , and the
gauge functions α (lapse) and βi (shift), which specify a
coordinate frame (see Ref. [34] for details on the latest
implementation of the Einstein equations in the code).
For the evolution of the matter, the Whisky code imple-
ments the flux-conservative formulation of the general-
relativistic hydrodynamics equations proposed by the Va-
lencia group [37]. Among its important features is that
the set of conservation equations for the stress-energy
tensor T µν and for the matter current density Jµ are
written in hyperbolic, first-order, and flux-conservative
form (see Ref. [2] for details on the latest implementa-
tion of the hydrodynamics equations in the code).
As initial data we use quasi-equilibrium bina-

ries generated with the multi-domain spectral-method
code LORENE developed at the Observatoire de Paris-
Meudon [38]. For more information on the code and its
methods, the reader is referred to the LORENE web pages
[39]. In particular, we use irrotational configurations,
defined as having vanishing vorticity and obtained under
the additional assumption of a conformally flat spacetime
metric [38]. The EOS assumed for the initial data is in
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TABLE I. Properties of the binary NS initial data. From left to right the columns show: the name of the model, the total
baryonic mass Mbar

tot of the system, the total (initial) Arnowitt-Deser-Misner (ADM) mass M
ADM

of the system, the total
(initial) angular momentum J , the initial orbital frequency forb, the initial maximum rest-mass density ρmax, the mean radius
r̄ of each star, the axis ratio Ā of each star, the individual ADM mass M∞ of each star as considered in isolation at infinity, the
compactness C∞ =M∞

NS/R
∞
NS of each star as considered in isolation at infinity, the corresponding (quadrupolar) dimensionless

Love number k2 and tidal constant κT2 as defined in Ref. [21] (see also Eq. (13) below). The mean radius is defined as
r̄ ≡ (r⊢ + r⊣ + r⊥ + rpol)/4, where r⊢ and r⊣ are the (coordinate) radii of the star parallel to the line connecting the stars, r⊥
is the radius in the equatorial plane perpendicular to that line, and rpol is the radius perpendicular to the equatorial plane.
The axis ratio is defined as the ratio between the mean radius parallel to the line connecting the stars and the mean radius in
the plane perpendicular to that line, namely Ā ≡ (r⊥ + rpol)/(r⊢ + r⊣). The values of forb, r̄, Ā, M

∞, and C∞ are computed
with the LORENE code, the values of Mbar

tot , MADM
, J , and ρmax are instead measured on the Cartesian grid by the Whisky code,

and those of k2 (and κT2 ) are computed according to Ref. [18].

Model Mbar
tot M

ADM
J/1049 forb ρmax/1014 r̄ Ā M∞ C∞ k2 κT2

(M⊙) (M⊙) (g cm2/s) (Hz) (g/cm3) (km) (M⊙)

M2.9C.12 2.8899 2.6925 7.1747 188.52 4.60 14.2 0.97 1.359 0.1196 0.09719 496.09

M3.2C.14 3.2504 2.9966 8.5558 197.03 5.93 13.2 0.97 1.514 0.1399 0.07894 183.81

all cases the polytropic EOS

p = K ρΓ , (1)

where p and ρ are the pressure and the rest-mass
(baryonic-mass) density, respectively. The chosen adi-
abatic index is Γ = 2, while the polytropic constant is
K ≃ 123.6 (in units where c = G = M⊙ = 1). For this
particular EOS, the allowed maximum baryonic mass for
an individual stable NS is 2.00M⊙, thus leading to a
maximum compactness M

ADM
/R ≃ 0.25. The initial co-

ordinate separation of the stellar centers in all cases is
d = 60 km.
The physical properties of the two binaries considered

here are summarized in Table I, where we have adopted
the following naming convention: M%C#, with % being re-
placed by the rounded total baryonic mass Mbar

tot of the
binary NS system and # by the compactness. As an ex-
ample, M2.9C.12 is the binary with total baryonic mass
Mbar

tot = 2.8899 M⊙ and compactness C = 0.1196. We
note that at least as far as the tidal effects are concerned,
the most important difference in the two sets of initial
data is represented by the compactness, which is smaller
in the binary M2.9C.12 than in the binary M3.2C.14.
Note that the dimensionless EOB parameter κT2 measur-
ing the strength of the (conservative) quadrupolar inter-
action is nearly three times larger for C = 0.12, than for
C = 0.14.
The initial data is then evolved either using the (isen-

tropic) polytropic EOS (1) or using the (non-isentropic)
“ideal-fluid” EOS defined by the condition

p = ρ ǫ(Γ− 1), (2)

where ǫ is the specific internal energy and e = ρ(1 + ǫ) is
the total energy density. Although these EOSs are ideal-
ized, they provide a reasonable approximation of the dy-
namics of NSs during the inspiral, so that we expect that

the use of realistic EOSs (with similar compactnesses)
would not change the main qualitative conclusions of this
work. A detailed discussion of the consequences of using
either EOS will be presented in Sec. V.

As mentioned above, the use of adaptive mesh-
refinement techniques allows us to reach a consider-
able level of precision and for this we use the Carpet

code [33] that implements a vertex-centered adaptive-
mesh-refinement scheme adopting nested grids with a
2 : 1 refinement factor for successive grid levels. We
center the highest resolution level around the peak in the
rest-mass density of each star. This represents our rather
basic form of adaptive-mesh refinement. The timestep on
each grid is set by the Courant condition (expressed in
terms of the speed of light) and so by the spatial grid
resolution for that level; the typical Courant coefficient
is set to be 0.35. The time evolution is carried out us-
ing fourth-order accurate Runge-Kutta integration steps.
Boundary data for finer grids are calculated with spatial
prolongation operators employing fifth-order polynomi-
als and with prolongation in time employing second-order
polynomials.

In the results presented below we have used 6 lev-
els of mesh refinement with the finest grid resolution of
∆min = 0.12M⊙ = 0.177 km and the coarsest (or wave-
zone) grid resolution of ∆max = 3.84M⊙ = 5.67 km.
Each star is completely covered by the finest grid, so
that the high-density regions of the stars are tracked with
the highest resolution available. The refined grids are
then moved by tracking the position of the maximum of
the rest-mass density as the stars orbit, and are finally
merged when they overlap. In addition, a set of refined
but fixed grids is set up at the center of the computa-
tional domain so as to capture the details of the Kelvin-
Helmholtz instability (cf. [2]). The finest of these grids
extends to r = 7.5M⊙ = 11 km = 5.52M for model
M2.9C.12 and = 4.95M for model M3.2C.14 (here and
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in the following M denotes the gravitational mass of the
system at infinite separation, namely the sum of the grav-
itational masses of each NS as computed individually in
isolation, i.e., M ≡ 2M∞

NS in the notation of Table I).
A single grid-resolution covers then the region between
r = 150M⊙ = 221.5 km and r = 514.56M⊙ = 755.24 km
(or r = 378.63M for M2.9C.12 and r = 339.87M for
M3.2C.14), in which our wave extraction is carried out.
The resolution is here ∆ = 3.84M⊙ = 5.67 km and
thus more than sufficient to accurately resolve the grav-
itational waveforms that have initially a wavelength of
about 720 km.
A reflection symmetry condition across the z = 0 plane

and a π-symmetry condition2 across the x = 0 plane
are used. A number of tests have been performed to
ensure that both the hierarchy of the refinement levels
described above and the resolutions used yield results
that are numerically consistent although not always in a
convergent regime at the time of merger (see the detailed
discussion in Ref. [6]).

B. Overall matter dynamics and gravitational
waveforms

We next briefly recall the physical properties of BNS
inspiral and merger as discussed in Refs. [2, 6]. The
inspiral proceeds at higher and higher frequencies un-
til the time of the merger, just before which the stars
decompress because of the tidal force. At the time of the
merger, a Kelvin-Helmholtz instability develops in the
shearing layer formed by the colliding stars, which could
lead to an exponential growth of magnetic fields if these
are present [40, 41]; such a large growth was not found
in recent related works [12, 13], and no magnetic fields
are included in the simulations reported here. If the total
mass of the system is sufficiently large, the merged object
immediately collapses to a Kerr BH, while, for smaller
masses the merger remnant is a HMNS in a metastable
equilibrium. Because of the excess angular momentum,
the HMNS is also subject to a bar deformation, being
responsible for a copious emission of gravitational radia-
tion with peak amplitudes that are comparable or even
larger than those at the merger (cf. Ref. [2]). As the bar-
deformed HMNS loses energy and angular momentum via
GWs, it contracts and spins up, thus further increasing
the losses. The process terminates when the threshold to
the collapse to BH is crossed and the HMNS then rapidly
produces a rotating BH surrounded by a torus of hot and
high-density material. Although this post-merger evolu-
tion of the binary is of great interest and is likely to yield
a wealth of physical information, it will not be further
considered in the present work, which is instead focussed

2 Stated differently, we evolve only the region {x ≥ 0, z ≥ 0}
applying a 180-degree rotational-symmetry boundary condition
across the plane at x = 0.

on the analytical modelling of the inspiral phase, up to
the merger.
The GW signal is extracted at different surfaces of con-

stant coordinate radius robs by means of two distinct
methods. The first one is based on the measurements
of the non-spherical gauge-invariant perturbations of a
Schwarzschild BH [42, 43]. The second and independent
one uses instead the Newman-Penrose formalism so that
the GW (metric) polarization amplitudes h+ and h× are
then related to ψ4 by (see Sec. IV of Ref. [2] for details
of the Newman-Penrose scalar extraction in our setup)

ḧ+ − iḧ× = ψ4 =

∞∑

ℓ=2

ℓ∑

m=−ℓ

ψℓm4 −2Yℓm(θ, φ), (3)

where we have introduced the (multipolar) expansion
of ψ4 in spin-weighted spherical harmonics [44] of spin-
weight s = −2. The coordinate extraction radius is
robs = 500M⊙ for both models, which corresponds to
robs/M = 184.3 for M2.9C.12 and to robs/M = 165.1 for
M3.2C.14. The top panels of Fig. 1 summarizes most of
the information related to the ℓ = m = 2 curvature wave-
forms ψ22

4 for the M2.9C.12 model (left panels) and for
the M3.2C.14model (right panels). The top panels of the
figures show together the modulus and the real part of
the waveform; the bottom ones, illustrate the behavior
of the instantaneous GW (curvature) frequency Mω22.
Note that the inspiral waveform of M2.9C.12 contains
about 22 GW cycles, while that of M3.2C.14 contains
about 20 GW cycles. To fix conventions, let us recall that
we write the waveform as a complex number according
to

ψℓm4 = |ψℓm4 |e−iφℓm , (4)

so that the instantaneous (curvature) GW frequency is

simply defined as ωℓm ≡ φ̇ℓm. After the initial junk ra-
diation (cf. Ref. [45]) that is responsible for a spike in
the modulus around t = 200M together with incoherent
oscillations in the frequency, the complex ψ22

4 waveform
becomes circularly polarized (as expected for circular-
ized inspiral), with a modulus that grows monotonically
in time up to the merger (see upper panels of Fig. 1).
The matter dynamics is reflected in the behavior of

the frequency: for both models we clearly see that ω22

grows monotonically during the inspiral phase, until it
reaches a maximum around the “merger”. In this work,
we phenomenologically define the “NR merger” as the in-
stant when the modulus of the metric waveform h22 (see
below) reaches its (first) maximum. Roughly speaking,
in our simulations the “dynamical range” of the dimen-
sionless GW frequency parameter Mω22 during the in-
spiral (i.e., before the merger) is 0.015 . Mω22 . 0.15.
Note that, if we were considering a conventional 1.4M⊙−
1.4M⊙ BNS system, we would then have the correspon-
dence fGW/100Hz ≃ 115.4Mω22 so that Mω22 = 0.015
corresponds to fGW ≈ 173.1 Hz, while Mω22 = 0.15 cor-
responds to fGW ≈ 1731 Hz.
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FIG. 1. Curvature gravitational waveforms rψ22
4 (upper panels) and their instantaneous frequency Mω22 (lower panels) for the

M2.9C.12 (left) and M3.2C.14 (right) models. In both cases, the observer’s (coordinate) extraction radius is robs = 500M⊙;
this corresponds to robs/M = 184.3 for M2.9C.12 and robs/M = 165.1 for M3.2C.14.

FIG. 2. Metric gravitational waveforms rh22 and frequencies (upper panels) and the corresponding istantaneous frequency
Mω22 (lower panels) obtained from the (double) time-integration of the curvature waveforms of Fig. 1 [see Eq. (6)]. The left
panels refer to model M2.9C.12, the right panels to model M3.2C.14. The fact that the waveform modulus grows monotonically
without evident spurious oscillations is the indication of the reliability of the determination of the integration constants. See
text for details.

In order to perform direct comparisons with (re-
summed) analytical waveforms and since the resumma-
tions used in the EOB method have been developed (and
tested) mainly for metric waveforms, we derived the met-
ric waveform by a (double) time-integration of the ψ22

4

waveform (the so-obtained metric waveform was found to
be more accurate than the output of the gauge-invariant

perturbation scheme). We recall that the metric wave-
form is also expanded in spin-weighted spherical harmon-
ics with the following convention

h+ − ih× =

∞∑

ℓ=2

ℓ∑

m=−ℓ

hℓm −2Yℓm(θ, φ), (5)
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so that the metric multipoles hℓm at time t can be ob-
tained from ψℓm4 by double time-integration as

hℓm(t) =

∫ t

−∞

dt′
∫ t′

−∞

dt′′ψℓm4 (t′′). (6)

This expression assumes that one knows the curvature
waveform on the infinite time interval (−∞, t]. Since,
however, the simulated curvature waveform does not
start at an infinite time in the past, but at a finite (con-
ventional) time t = 0, one has to find a way of determin-
ing two (complex) integration constants accounting from
the GW emission from infinite time to our present start-
ing time. To do so, we use here an improved version of
the fit procedure of Ref. [46], which is presented in detail
in Appendix A. Figure 2 shows the result of this process,
with the left panels referring to model M2.9C.12 and the
right ones to model M3.2C.14. Note that the waveforms
displayed in these figures are obtained from simulations
with: (i) the non-isentropic (ideal fluid) EOS; (ii) the
highest available resolution; and (iii) an extraction radius
of 500M⊙. These will be taken as our fiducial “target”
waveforms for our NR/AR comparisons, and we will re-
fer to them in the following with the label IFHR500. The
numerical uncertainty on these target waveforms will be
estimated in Sec. V below.

III. ANALYTICAL MODELS

We recall below some basic information relative to the
EOB-based and PN-based descriptions of the binary dy-
namics and waveforms that include tidal effects. We fol-
low here the general discussion of Ref. [21], to which we
refer the reader for more details. We consider succes-
sively: (i) the resummed EOB description of the conser-
vative dynamics, (ii) the resummed EOB description of
the waveform, and (iii) one of the non-resummed (i.e., PN
expanded) descriptions of the phasing.

A. Effective-one-body description of the
conservative dynamics

The EOB formalism [24–26] replaces the PN-expanded
two-body interaction Lagrangian (or Hamiltonian) by a
resummed Hamiltonian, of a specific form, which depends
only on the relative position and momentum of the binary
system (q,p). For a non spinning BBH system, it has
been shown that its dynamics, up to the 3PN level, can
be described by the following EOB Hamiltonian (in polar
coordinates, within the plane of the motion):

HEOB(r, pr∗ , pϕ) ≡Mc2
√
1 + 2ν(Ĥeff − 1) , (7)

where

Ĥeff ≡
√
p2r∗ +A(r)

(
1 +

p2ϕ
r2

+ z3
p4r∗
r2

)
. (8)

Here M ≡ MA + MB is the total mass, ν ≡
MAMB/(MA +MB)

2 is the symmetric mass ratio, and
z3 ≡ 2ν(4−3ν). In addition, we are using rescaled dimen-
sionless (effective) variables, namely r ≡ rABc

2/GM and
pϕ ≡ Pϕc/(GMAMB), and pr∗ is canonically conjugated
to a “tortoise” modification of r [47].
A remarkable feature of the EOB formalism is that

the complicated, original 3PN Hamiltonian (which con-
tains many corrections to the basic Newtonian Hamilto-
nian 1

2 p
2 − 1/r) can be replaced by the simple structure

(7)-(8), whose two crucial ingredients are: (i) a “double

square-root” structure HEOB ∼
√
1 +

√
p2 + · · · and (ii)

the “condensation” of most of the nonlinear relativistic
gravitational interactions in one function of the (EOB)
radial variable: the basic “radial potential” A(r). The
structure of the function A(r) is rather simple at 3PN,
being given by

A3PN(r) = 1− 2u+ 2 ν u3 + a4 ν u
4 , (9)

where a4 = 94/3 − (41/32)π2, and u ≡ 1/r =
GM/(c2rAB). It was recently found that an excellent de-
scription of the dynamics of BBH systems is obtained [27]
by: (i) augmenting the presently computed terms in the
PN expansion (9) by additional 4PN and 5PN terms; (ii)
Padé-resumming the corresponding 5PN “Taylor” expan-
sion of the A function. In other words, the BBH (or
“point mass”) dynamics is well described by a function
of the form

A0(r) = P 1
5

[
1− 2u+ 2νu3 + a4νu

4 + a5νu
5 + a6νu

6
]
,

(10)
where Pnm denotes an (n,m) Padé approximant. It was
found in Ref. [27] that a good agreement between EOB
and numerical-relativity BBH waveforms is obtained in
an extended “banana-like” region in the (a5, a6) plane
approximately spanning the interval between the points
(a5, a6) = (0,−20) and (a5, a6) = (−36,+520). In this
work we will select the values a5 = −6.37, a6 = +50,
which lie within this region (we have checked that the use
of other values within the “good BBH fit” region would
have no measurable influence on our discussion below).
The proposal of Ref. [21] for including dynamical tidal

effects in the conservative part of the dynamics consists
in simply using Eqs. (7)-(8) with the following tidally-
augmented radial potential

A(u) = A0(u) +Atidal(u). (11)

Here A0(u) is the point-mass potential defined in
Eq. (10), while Atidal(u) is a supplementary “tidal con-
tribution” of the form

Atidal =
∑

ℓ≥2

−κTℓ u2ℓ+2Âtidal
ℓ (u) , (12)

where the terms κTℓ u
2ℓ+2 represent the leading-order

(LO) tidal interaction, i.e., the Newtonian order tidal in-
teraction. The dynamical EOB tidal coefficients κTℓ are
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functions of the two massesMA andMB, of the two com-
pactnesses CA,B = GMA,B/RA,B, and of the two (rela-

tivistic) Love numbers kA,Bℓ of the two objects [18–20]:

κTℓ = 2
MBM

2ℓ
A

(MA +MB)2ℓ+1

kAℓ
C2ℓ+1
A

+ { A ↔ B}

=
1

22ℓ−1

kℓ
C2ℓ+1

, (13)

where the second line refers to an equal-mass binary, as
the ones considered here. Note in Table I the rather
large numerical values for the ℓ = 2 tidal coefficients:
κT2 (C = 0.12) ≃ 496 and κT2 (C = 0.14) ≃ 184. In our
EOB modelling we also use the higher multipolar tidal
coefficients κT3 and κT4 , which are even larger than κT2
(e.g., κT4 (C = 0.12) ≃ 20318), although their effect is
marginal in view of the higher power of u (namely u2ℓ+2)
with which they enter the A(r) potential.

The additional factor Âtidal
ℓ (u) in Eq. (12) rep-

resents the effect of higher-order relativistic contri-
butions to the dynamical tidal interactions: next-
to-leading–order (NLO) contributions, next-to-next-to-
leading–order (NNLO) contributions, etc. Here we will
consider a “Taylor-expanded” expression

Âtidal
ℓ (u) = 1 + ᾱ

(ℓ)
1 u+ ᾱ

(ℓ)
2 u2 , (14)

where ᾱ
(ℓ)
n are functions of MA, CA, and kAℓ for a gen-

eral binary. The analytical value of the (ℓ = 2) 1PN

coefficient ᾱ
(2)
1 has been reported in [21] (and recently

confirmed in [48]). In the equal-mass case, it yields

ᾱ
(2)
1 = 1.25. By contrast, there are no analytical cal-

culations available for ᾱ
(ℓ)
1 with ℓ > 2, nor for the 2PN

tidal coefficients ᾱ
(ℓ)
2 . Indeed, one of the main aims of

the present work will be to constrain the value of ᾱ
(2)
2 by

comparing the EOB predictions to numerical data.

B. Effective-one-body description of the waveform
and radiation reaction

Let us first recall that the EOB formalism defines the
radiation reaction from the angular-momentum flux com-
puted from the waveform. Concerning the waveform, in
the case of BBH systems, the EOB formalism replaces
the PN-expanded multipolar (metric) waveform hPN

ℓm by
a specifically resummed “factorized waveform” [31, 49],
say h0ℓm (where the superscript 0 is added to signal the
absence of tidal effects). This tidal-free multipolar wave-
form h0ℓm includes resummed versions of very high-order
PN effects in the phase and the modulus, in particu-
lar tail effects. Actually, in the present work, we have
used a factorized waveform which includes in the modu-
lus (but not in the phase) the new (5PN accurate) ν = 0

terms recently computed in [50]3. We also included in
h0ℓm the two next-to-quasi-circular parameters (a1, a2) as
in Ref. [27]4.
When considering tidally interacting binary systems,

one needs to augment the BBH waveform h0ℓm by tidal
contributions. Similarly to the additive tidal modifica-
tion (11) of the A potential, we will here consider an
additive modification of the waveform, having the struc-
ture

hℓm = h0ℓm + htidalℓm . (15)

This is slightly different from the factorized form intro-
duced in Eq. (71) of [21] and used in [1]. The above
additive form turns out to be more convenient for in-
corporating higher-order relativistic corrections to the
tidal waveform. Using the recent computation [29] of the
1PN-accurate Blanchet-Damour mass quadrupole mo-
ment [51] of a tidally interacting binary system (to-
gether with the Newtonian-accurate spin quadrupole and
mass octupole) and transforming their symmetric-trace-
free tensorial results into our ℓm-multipolar form, we
have computed the corresponding 1PN-accurate value5

of htidal22 , as well as the 0PN-accurate values of htidal21 ,
htidal33 , and htidal31 . In addition, using the general analysis
of tail effects in Refs. [30, 52] and the resummation of
tails introduced in Refs. [31, 53], we were able to further
improve the accuracy of these waveforms by incorporat-
ing (in a resummed manner) the effect of tails (to all
orders in M). From a PN point of view, this means, in
particular, that the tidal contribution we use to the total
metric waveform is 1.5PN accurate.
In summary, the EOB tidal model that we use here is

analytically complete at the 1.5 PN level. In addition,
we adopt the simplifying assumption that the higher–
multipolar tidal–amplification factors Âtidal

ℓ (u), for ℓ > 2,
are taken to coincide with the ℓ = 2 one. This means
that the EOB model that we will use here contains only
one (yet undetermined) higher-order flexibility parame-

ter, say ᾱ2, that is taken to replace the various ᾱ
(ℓ)
2 , with

ℓ = {2, 3, 4, . . .}, entering Eq. (14), i.e. ᾱ
(ℓ)
2 ≡ ᾱ2 (and,

similarly, ᾱ
(ℓ)
1 = ᾱ

(2)
1 ≡ ᾱ1). Note that, although this

parameter is formally of 2PN order, it is used here as an
effective parametrization of all the higher-order effects
not covered by the current analytical knowledge (both in
the conservative dynamics and in the radiation reaction).

3 As in Ref. [49] we resum the ℓ = 2,m = 2 modulus by using the

Padé-resummed function fPf
22 (x; ν) = P 3

2 [f
Taylor
22 (x; ν)].

4 Since both M2.9C.12 and M3.2C.14 are equal-mass binaries, we
fix a1 = −0.0439 and a2 = 1.3077, according to the EOB/NR
comparison (for a BBH equal-mass system) of Ref. [27].

5 We leave a detailed presentation of our results to future work.
Let us however mention that, notwithstanding some statements
in footnote 4 of [29], the 1PN-accurate (circular) quadrupo-
lar waveform exactly matches the form given in Eq. (71) of
[21] (which was expressed in terms of frequency-related gauge-
invariant quantities).



8

Note also that, while in the general case such a parameter
should be allowed to depend on the mass ratio and the
compactnesses, in the equal-mass case that we consider
here, it is a pure number. We will use below the com-
parison between NR simulations and EOB predictions to
constrain the value of the effective higher-order parame-
ter ᾱ2.

C. PN-expanded Taylor-T4

Tidal effects can be accounted for also via modifi-
cations of one of the non-resummed PN description of
the dynamics of inspiralling binaries [7, 16, 20]. Refer-
ence [20], in particular, has recently suggested to use as
baseline a time-domain T4-type incorporation of tidal ef-
fects. We recall that the phasing of the T4 approximant
is defined by the following equations

dφT4
22

dt
= 2 x3/2,

dx

dt
=

64

5
ν x5

{
aTaylor3.5 (x) + atidal(x)

}
, (16)

where aTaylor3.5 is the PN expanded expression describing
point-mass contributions, given by

aTaylor3.5 (x) = 1−
(
743

336
+

11

4
ν

)
x+ 4πx3/2

+

(
34103

18144
+

13661

2016
ν +

59

18
ν2
)
x2 −

(
4159

672
+

189

8
ν

)
πx5/2

+

[
16447322263

139708800
− 1712

105
γ − 56198689

217728
ν +

541

896
ν2

− 5605

2592
ν3 +

π2

48
(256 + 451ν)− 856

105
ln(16x)

]
x3

+

(
−4415

4032
+

358675

6048
ν +

91495

1512
ν2
)
πx7/2 (17)

and where atidal is the tidal contribution. From [29] the
latter is given at 1PN accuracy by

atidal(x) =
∑

I=A,B

aLO(XI)x
5(1 + a1(XI)x) , (18)

with

aLO(XI) = 4k̂I2
12− 11XI

XI
(19)

and

a1(X) =
4421− 12263X + 26502X2 − 18508X3

336(12− 11X)
, (20)

where we introduced the auxiliary quantity

k̂I2 ≡ kI2

(
XI

CI

)5

I = A,B. (21)

In the particular case of equal-mass binaries,XA = XB =
X = 1/2, CA = CB = C, and the tidal contribution
atidal(x) has the form

atidal(x) = 26 κT2 x
5 (1 + aT4

1 x), (22)

with aT4
1 = 5203/4368 ≈ 1.19.

Similarly to the inclusion of yet undetermined higher-
order effects in the tidally-augmented EOB formalism via
the effective parameter ᾱ2, we will consider below an ef-
fective modification of the 1PN result (22) of the form

atidal(x) = 26 κT2 x
5 (1 + aT4

1 x+ aT4
2 x2), (23)

with an effective higher-order parameter6 aT4
2 , which we

will constrain by comparing NR data to the T4-predicted
phasing.
Let us mention that, in the case of inspiralling BBH

systems, several studies [31, 46, 54] have shown that the
nonresummed Taylor-T4 description of the GW phasing
was significantly less accurate than the EOB description,
especially for mass ratios different from one. Ref. [21]
has also shown that, in the presence of tidal effects, it
was predicting GW phases that differed by more than a
radian with respect to the tidal-completed EOB model.
Below, we will investigate how the T4 phasing based on
Eq. (16) differs from the EOB one, both in the absence
(Eq. (22)) and in the presence (Eq. (23)) of the higher-
order parameter aT4

2 .

IV. CHARACTERIZING THE PHASING: THE
Qω(ω) FUNCTION

In order to measure the influence of tidal effects it is
useful to consider the “phase acceleration”7 ω̇ ≡ dω/dt ≡
d2φ/dt2 as a function of ω, say ω̇ = α(ω) (here ω ≡ ω22

can be either the curvature or the metric instantaneous
GW frequency). Indeed, as emphasized in [31], the
function α(ω) is independent of the two “shift ambigui-
ties” that affect the GW phase φ(t), namely the shifts
in time and phase. The α(ω) diagnostics (especially
in its Newton-reduced form aω = α(ω)/(cνω

11/3), with
cν = 12

5 21/3ν, is a useful intrinsic measure of the qual-
ity of the waveform and it has been used extensively in
recent analyses of BBHs [46, 53, 55, 56].
Here we will use another dimensionless measure of the

phase acceleration: the function Qω(ω). It is defined as

6 We found that the 1.5PN fractional contribution aT4
3/2

x3/2 to

atidal(x), predicted by our 1.5PN-accurate EOB waveform, has
(like the 1PN contribution) only a small effect on the phasing
compared to the large amplification that we will need to agree
with NR data. This is why we only consider here, for simplicity
and for easier comparison with the 2PN EOB parameter ᾱ2, the
formally 2PN parameter aT4

2 .
7 In the text of this Section t and ω denote the dimensionless
quantities t̂ ≡ t/M and ω̂ ≡ Mω.
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FIG. 3. Exploring the properties of Qω curves computed
within the EOB model for three binary systems. Tidal inter-
actions are approximated at LO. The inset shows a magnifi-
cation, in order to highlight the differences among the curves.

the derivative of the (time-domain) phase with respect
to the logarithm of the (time-domain) frequency:

Qω(ω) =
dφ

d ln ω
=
ω dφ/dt

dω/dt
=
ω2

ω̇
=

ω2

α(ω)
. (24)

Note that, as a consequence of this definition, the (time-
domain) GW phase φ(ω1,ω2) accumulated between fre-
quencies (ω1, ω2) is given by the following integral:

φ(ω1,ω2) =

∫ ω2

ω1

Qωd lnω . (25)

Stated differently, the function Qω(ω) measures the
number of GW cycles spent by the binary system within
an octave of the GW frequency ω (it is therefore analo-
gous to the “quality factor” Q of a damped oscillator).
Let us also note that, in the stationary phase approxima-
tion, Qω enters as an amplification factor of the signal,
so that the squared signal-to-noise ratio is equal to [57]

ρ2 = 4

∫
d ln ω

Qω(ω)A
2(ω)

ω Sn(f)
, (26)

where A denotes the amplitude of the time-domain met-
ric waveform and where Sn(f) denotes the one-sided
noise power spectral density and f ≡ ω/(2π).
In view of its definition, Qω is a useful quantitative in-

dicator of the physics driving the variation of ω. Indeed,
a change of Qω(ω) of the order ±1 during a frequency
“octave” ln(ω2/ω1) = 1 corresponds to a local dephasing
(around ω) of ∆φ ≃ ±1 rad. Because such a dephasing
(if it occurs within the sensitivity band of the detector)
can be expected to significantly affect the measurabil-
ity of the signal, it is probably necessary to model Qω

with an absolute accuracy of about ±1 (see Ref. [55] for
a quantitative discussion of the admissible error level on
Qω in the BBH context).

We start our analysis by comparing the Qω functions
(as predicted by the EOB formalism) for the (metric)
gravitational waveforms h22 generated by three (equal-
mass) binary models, namely a BBH and the two BNS
systems discussed in Sec. II A. To simplify the discussion,
these functions are computed with the LO tidal interac-
tion Âℓ(u) = 1. [We will separately study below the

effect of changing Âℓ(u).]

Figure 3 compares the properties of the Qω functions
by showing together the curves for the three binaries ver-
sus their corresponding GW frequency. A number of re-
marks are worth making. First, Qω is a large number that
diverges in the small-frequency limit. This follows from
the fact that in the limit ω → 0 one has α(ω) ∼ cνω

11/3,
and then, via Eq. (24), Qω = 1/(cνω

5/3) ∼ (c/v)5.
Second, the presence of tidal interactions decreases the
“point-mass” value of Qω by an amount that is (essen-
tially) proportional to κT2 . In other words, tidal effects
“accelerate” the inspiral by reducing the number of cy-
cles spent around a given frequency. In particular, BBHs
(which have vanishing tidal constants [18, 19]) are effec-
tively the binaries that spend the largest time at any
given frequency. Finally, note that since Qω is a large
number, the fact that the curves look relatively close on
the large-scale plot can be misleading, since the corre-
sponding accumulated relative phase difference can ac-
tually be large (see inset, which shows that the absolute
differences between the various Qω(ω) is of order 10, cor-
responding to integrated dephasings of order 10 radians).

Although the calculation of the phase “quality-factor”
Qω is straightforward within the EOB framework, this
is not the case when Qω is to be calculated from the
NR (either curvature or metric) waveforms. Indeed, the
direct computation of the Qω functions from raw data is
in general made difficult by the presence of both high-
frequency noise in ω(t) and of low-frequency oscillations
probably due to a residual eccentricity. This is illustrated
in the right panels of Fig. 4, where we show with (light)
dashed lines the raw NR Qω functions obtained by direct
time-differentiation of the NR curvature (top panel) or
metric (bottom panel) phase for the binary M3.2C.14.
A fourth order accurate finite differencing algorithm has
been used to compute the derivatives. Similar results
have been obtained also for the binary M2.9C.12.

The right panel of Fig. 4 shows that the two time-
derivatives involved in the definition of Qω(ω) amplify
considerably the high-frequency noise contained in the
NR phase evolution, and make it impossible to extract
a reliable value of Qω(ω) from such a direct numerical
attack. To tackle this problem, one needs to filter out
the high-frequency numerical errors in the time-domain
phase before effecting any time-differentiation. To do
this, we found useful to “clean” the phase φ(t) by fitting
the NR phase to an analytic expression that is inspired
by the PN expansion. More precisely, after introducing
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FIG. 4. Obtaining the Qω diagnostic from a suitable fitting procedure of the GW phase (for both curvature and metric
waveforms). The two vertical lines on the left panels indicate the time interval ∆t/M = [1000, 2290] where we fit the NR
phase with Eq. (28). For completeness we also display the real part of the metric waveform. On the right panels, the (light)
dashed lines refer to the Qω obtained by direct numerical differentiation of the raw data; the solid lines are instead obtained
from the fitted phase. Although the curves displayed here refer to model M3.2C.14, similar results are obtained also for the
binary M2.9C.12.

a formal “coalescence” time tc and defining the quantity

x ≡
[ν
5
(tc − t)

]−1/8

, (27)

we fitted the time-domain NR phase φNR(t) to an expres-
sion of the form

φ(t; tc, p2, p3, p4, φ0) = φ0 +− 2

ν
x−5

×
(
1 + p2x

2 + p3x
3 + p4x

4
)
. (28)

In this expression, we have set the lower coefficients p0
and p1 to p0 = 1 and p1 = 0, as suggested by the corre-
sponding lowest-order PN expression (see, e.g., Eq. (234)
of [58]), but we left tc, φ0, and the higher-PN pi’s as free
coefficients to be determined from the NR data. The
basic idea is that of using a simple analytical form that
incorporates the leading trend of Qω to remove the in-
fluence of the numerical errors while leaving some flexi-
bility in the subleading part of the phase evolution that
is influenced by tidal effects. We view the fitting pa-
rameters p2, p3, p4 as effective parameters for describing
tidal-phasing effects.
Such a fit of the phase evolution can be reliably done

only in a limited time interval. Indeed, one has to cut off
both the early phase of the inspiral (where the numeri-
cal data is too noisy), and the last few cycles before the

merger (where the PN-based fit is no longer a good ap-
proximation). We present in Appendix B a detailed dis-
cussion of the optimal choice of the time interval where
to make the fit, as well as a series of consistency checks.
See also the discussion at the end of Sec. VB.

Let us start by discussing the application of this pro-
cedure to the GW phase (both curvature and metric) of
the binary model M3.2C.14. The result of this fitting is
shown by the solid lines in the right-panels of Fig. 4 (top,
curvature phase; bottom, metric phase). The time inter-
val on which we could reliably apply the fitting procedure
is It/M = [1000, 2290]. This time window is indicated by
the dashed vertical lines in the top-left panel of Fig. 4,
were we show together the time evolution of both the
curvature (dashed, red online) and metric (solid) GW
frequencies. For completeness, the lower-left panel of the
same figure translates this information in terms of GW
cycles of the metric waveform. Note that this time inter-
val excludes the first 4 GW cycles (whose NR frequency
is indeed seen to be quite noisy), but covers about 10
GW cycles, and ends around 2 GW cycles before the
merger (defined as the maximum of the modulus of the
metric waveform; the modulus of the metric waveform is
indicated by a dashed line on the left-bottom panel of
the figure). The corresponding frequency interval can be
visualized on the right panels, and is listed in the fifth
column of Table III. Similar results are obtained also
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for the M2.9C.12 data (see Fig. 10 below). In this case,
the time interval we use is It/M = [1300, 3366], with
the corresponding frequencies listed in the seventh col-
umn of Table III. Finally, notice that for this model the
inspiral is longer than in the previous case and so this
interval actually corresponds to 14 GWs cycles. In ad-
dition, similarly to the other case, our choice of fitting
interval excludes the first 5.5 GW cycles, and ends about
2 GW cycles before merger.
As we will discuss below, although the frequency win-

dows where our cleaning procedure allowed us to compute
an estimate of the NR Qω(ω) functions do not cover the
full inspiral, these estimates will give us access to im-
portant information for performing quantitative compar-
isons with the predictions of the EOB (and Taylor T4)
analytical models.

V. NUMERICAL ERROR-BUDGET

The aim of this section is to discuss the various errors
affecting the numerical waveforms extracted (for both
models) at 500M⊙ and computed with the highest reso-
lution. Such a discussion will in turn allow us to estimate
an uncertainty range on the analytical parameter ᾱ2 rep-
resenting the not-yet-calculated, high-PN-order tidal ef-
fects entering the EOB description of the phasing.
We will discuss in turn the numerical errors entailed by

three different effects: (i) the choice of EOS (isentropic
versus non-isentropic evolution); (ii) the finite extraction
radius; (iii) the finite resolution. We will perform this
analysis both by comparing waveforms in the time do-
main and by means of the Qω diagnostic.

A. Time-domain analysis

1. Non-isentropic evolutions

As discussed in Sec. II A, we have evolved the bina-
ries using either a (isentropic) polytropic EOS or a (non-
isentropic) ideal-fluid EOS. We recall that, in the ab-
sence of large-scale shocks (like those taking place at the
merger), the two EOSs are equivalent and should there-
fore yield evolutions that differ only at machine precision.
In practice, however, when using the ideal-fluid EOS
small shocks are produced in the very low-density layers
of the stars even when these orbit [2]. These small shocks
channel some of the orbital kinetic energy into internal
energy, leading to small ejections of matter (i.e., amount-
ing to a total of ∼ 10−6M⊙), and are thus responsible for
slight differences even during the inspiral. Since we are
here presenting the results of simulations that are consid-
erably longer than any presented so far and in particular
of those in Refs. [2, 6], it is important to quantify the
influence of these non-isentropic effects. Concentrating
on model M3.2C.14, we show in the top-panel of Fig. 5
the real parts of the rψ22

4 waveforms computed with the

FIG. 5. Comparing waveforms from isentropic (dashed) and
non-isentropic (solid) evolution for BNS model M3.2C.14.
Waveforms are computed with the highest resolution and ex-
tracted at robs = 500M⊙. The corresponding phase difference
φpolyHR500 − φIFHR500 is displayed in Fig. 6.

two EOSs as extracted at robs = 500M⊙ = 165.1M . The
bottom panel displays the corresponding instantaneous
frequencies for completeness. As customary in comparing
waveforms in the time domain, one allows for arbitrary
relative time and phase shifts (τ, α). These quantities can
be determined in various ways, for example by means of
the two-frequency pinching technique of Ref. [59]. In this
paper we find it useful to use the method used in Ref. [54]
to compute (τ, α). More precisely, given two timeseries
of the phase {φ1(ti), φ2(ti)} defined on a given time in-
terval [tL, tR] that is covered by N numerical points ti,
with i = 1, 2, . . . , N , we define the quantity

∆φ(ti, τ, α) = φ2(ti + τ) − φ1(ti)− α (29)

and determine τ and α such that they minimize the “re-
duced” χ2 quantity

χ̂2 =
1

N

N∑

i=1

(∆φ(ti, τ, α))
2. (30)

The minimization on α is done analytically, while that on
τ is done numerically. Note in addition that the square
root of the minimum value of Eq. (30), say

σ∆φ =

√√√√ 1

N

N∑

i=1

(∆φ(ti, τ, α))2min (31)

has the meaning of a root-mean-square deviation of the
phase difference ∆φ over the interval [tL, tR]; as such,
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it can also be employed to give a quantitative measure
of a phase difference (and thereby of some phase er-
rors).8 The phase difference ∆φ(t) ≡ φ2(t) − φ1(t) =
φpolyHR500−φIFHR500 (least-square minimized on the time
interval [tL, tR]/M = [300, 2540]) is represented as a
dash-dotted line (solid light blue) in Fig. 6. One sees
that the instantaneous phase difference varies roughly
between +0.2 rad and −0.1 rad on this time interval,
which corresponds to a “two-sided” [59] phase uncer-

tainty of the order ∆φ = ±1

2
(0.2 − (−0.1)) = ±0.15

rad. The information of Fig. 6 is completed by Table II,
where we list the ℓ∞ norm of the phase difference [i.e., the
maximum absolute value of ∆φ(t)], labelled ||∆φ||∞, the
root-mean-square σ∆φ as computed above, and the cor-
responding time interval [tL, tR] that is used to compute
(α, τ). Note that σ∆φ gives a measure of the phase dif-
ference which is always significantly smaller than the ℓ∞

norm. Indeed, these two quantities measure different as-
pects of a phase difference, and, when the time variation
of ∆φ(t) is dominated by low-frequency effects (which
can be roughly modelled as power laws), the averaging
involved in the definition of σ∆φ will lead to a smallish
ratio σ∆φ/||∆φ||∞ < 1 linked to integrals of the type∫ 1

0 dt t
2n = 1/(2n+ 1).

2. Finite-radius extraction

We next discuss the phasing error introduced by the
fact that our high-resolution target waveforms, for both
models, are extracted at the finite coordinate radius
robs = 500M⊙. Note that, when expressed in units of
the gravitational mass M of the binary at infinite sep-
aration, this value corresponds to robs = 134.9M for
M2.9C.12 and robs = 165.1M for M3.2C.14, i.e., , for
one model waves are actually extracted slightly farther
than for the other. For both models we have at our
disposal several extraction radii, so that we can esti-
mate the phasing error linked to the finite extraction
radius as follows: (i) We used the raw rψ22

4 data ex-
tracted at radii r = {400, 450, 500}M⊙; (ii) We time-
shifted them so that this triplet of timeseries is ex-
pressed as a function of the (coordinate) retarded time
t∗ = t − r − 2MADM ln [r/(2MADM)− 1]; (iii) We sepa-
rated each curvature waveform in phase and amplitude
as functions of u ≡ 1/r (cf. page 6); (iv) We fitted each
resulting triplet of timeseries to a linear polynomial in
the triplet of inverse extraction radii: c∞(t∗) + c1(t∗)/r.

8 We note in passing that the alignment procedure also highlights
the weak dependence on the EOS of the late part of the wave-
form: although the inspiral of the non-isentropic waveform is
about 150M longer than the corresponding isentropic one, the
growth ofMω22 (and the corresponding phasing) is qualitatively
and quantitatively very close for both models until Mω22 peaks
for the first time.

FIG. 6. Estimate of the phase uncertainty in the time do-
main for model M3.2C.14 (top) and M2.9C.12 (bottom). The
figure shows the phase difference between different “post-
processed” numerical curvature waveforms rψ22

4 (in particu-
lar, extrapolated in resolution and/or extraction radius) and
the one obtained with the ideal-fluid EOS and extracted at
robs = 500M⊙.

The quantities c∞(t∗) [i.e., A
∞(t∗) and φ

∞(t∗)] yield es-
timates of the amplitude and phase of the infinite-radius
extrapolation of rψ22

4 . We then compare the radius-
extrapolated phase φ∞(t∗) to the phase extracted at the
outermost radius, allowing for additional time and phase
shifts (which are determined by the least-square mini-
mization discussed above).

The time evolution of the phase differences computed
in this way are shown in Fig. 6 for model M3.2C.14 (top
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TABLE II. Uncertainty estimates on the phase (in radians) of
rψ22

4 , computed in the time domain, for both models. From
left to right, the columns report: the model name, the EOS,
the coordinate extraction radius, the type of extrapolation
that is performed on the waveform (either in extraction ra-
dius or resolution), the time interval on which the χ2 of the
phase difference is minimized, the ℓ∞ norm of the phase dif-
ference over this interval, and the root-mean-square of the
phase difference.

Model EOS robs Extrap. [tL, tR] ||∆φ||∞ σ∆φ

[M⊙] [M ] [rad] [rad]

M3.2C.14 IF 500 radius [400, 2650] 0.17 0.035

M3.2C.14 IF 200 resolution [400, 2650] 1.29 0.300

M3.2C.14 poly 500 − [300, 2540] 0.21 0.057

M3.2C.14 poly 500 radius [300, 2550] 0.43 0.080

M2.9C.12 IF 500 radius [250, 3650] 0.31 0.035

panel, dash-line) and for M2.9C.12 (bottom panel). This
local information is completed by the “global” quanti-
tative information (||∆φ||∞, σ∆φ) listed in the last two
columns of Table II. On the basis of this analysis, we es-
timate that, for both models, the phase uncertainty due
to finite extraction is of order ∆φ ≈ ±0.05 rad almost up
to the merger, i.e., roughly 100M before the peak of the
GW frequency.

3. Finite-resolution error

Finite-resolution errors have already been discussed in
detail in our previous work [6], which used the same nu-
merical setup (i.e., the same resolution and grid struc-
ture) adopted here. Skipping the details, we recall that it
was shown there that, at the resolution that we are using
in this work, the dynamics and waveforms are in a conver-
gent regime, with a convergence rate σ that is ≃ 1.8 dur-
ing the inspiral phase and drops to ≃ 1.2 after the merger,
when large-scale shocks appear. As the computational
cost of the calculations presented here is already at the
limit of what can be reasonably afforded, we have decided
to estimate the truncation-error of our present waveform
by assuming that the inspiral convergence rate σ ≃ 1.8
found in our previous work [6] approximately holds in
the present (numerically similar) case. We have then
selected the more compact binary M3.2C.14 and used
only two simulations with different resolutions. More
specifically, we have considered a “high-resolution” sim-
ulation, where the finest refinement level has a resolu-
tion ∆H = 0.12M⊙, and a “low-resolution” simulation,
with ∆L = 0.15M⊙. For this particular comparison
the waveforms are extracted at robs = 200M⊙. When
comparing the low- and high-resolution curvature wave-
forms, after suitable (τ, α) alignment, one discovers that
the phase difference accumulated between the two res-

olutions over a timescale of 2300M during the inspiral
is about 0.45 rad (corresponding to a relative error of
≃ 0.36%). Using the convergence rate discussed above,
we can now Richardson-extrapolate the results obtained
with the two resolutions and obtain an estimate of the
“infinite-resolution” waveform. More precisely, we model
the suitably aligned, low- and high-resolution phase evo-
lutions as

φ∆H
(t) = φ0(t) + k(t)(∆H)

σ, (32)

φ∆L
(t) = φ0(t) + k(t)(∆L)

σ, (33)

where φ0(t) represents the infinite-resolution phase (∆ →
0). From the above equations, we obtain the following
estimate of the infinite-resolution extrapolation of the
phase evolution

φ0(t) =
(∆L)

σφ∆H
(t)− (∆H)

σφ∆L
(t)

(∆L)σ − (∆H)σ
. (34)

We performed the same extrapolation also on the wave-
form modulus, so as to have access to the complete ex-
trapolated curvature waveform. The solid line in Fig. 6
displays the phase difference φIF2000 −φIFHR500. This indi-
cates a phase uncertainty of ∆φ ≈ ±0.5 rad on φIFHR500

as measured up to about 100M before the maximum of
Mω22. See Table II for the corresponding global mea-
sures of the phase uncertainty, ||∆φ||∞ and σ∆φ. Note
that these uncertainty estimates are much larger than
those normally computed for binary BH simulations for
the same computational costs (see, for instance, [60]).
This is the natural consequence of the smaller resolution
employable here and of the lower-order convergence that
one achieves when solving the hydrodynamics equations.
Since this error is deduced only after assuming a certain
convergence order (in addition obtained from a slightly
different numerical setup) it will be used below only to
estimate a rough uncertainty range on the value of the
higher-order EOB tidal correction parameter ᾱ2. We will
comment more on this in the next Sections.
Adding in quadrature the various uncertainties com-

puted so far to obtain a total error bar on the phases
of the IFHR500 data for the M3.2C.14 model would
give a (two-sided) time-domain phase uncertainty ∆φ ≃
±
√
0.152 + 0.052 ≃ ±0.16 rad, when excluding the

uncertainty due to the finite resolution, or ∆φ ≃
±
√
0.152 + 0.052 + 0.52 ≃ ±0.52 rad when including it.

Alternatively, if we add in quadrature the root-mean-
squares of the corresponding phase errors we find σ∆φ ≃
±0.07 rad, when excluding the uncertainty due to the fi-
nite resolution, and σ∆φ ≃ ±0.32 rad when including it.
Clearly the resolution-extrapolation error is dominating
the error budget. In view of the uncertainty in estimating
this source of error, we will not directly use these time-
domain phase-error levels in estimating the uncertainties
in the comparison between the EOB, T4, and NR phas-
ings. As we will discuss next, we prefer to express the
information gathered above on numerical errors in terms
of the corresponding Qω curves.
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FIG. 7. Left panel: span of Qω’s due to the various approximations to the curvature waveforms from model M3.2C.14. Right
panel: the corresponding differences ∆Qω = QXω −QIFHR500

ω between the various curves and the fiducial one obtained from the
phase computed at the highest resolution and extracted at 500M⊙.

TABLE III. Uncertainty estimates on the rψ22
4 phase of the IFHR500 fiducial simulations obtained from integration of the

differences between Qω’s. From left to right the columns report: the model name, the EOS, the coordinate extraction radius,
the type of extrapolation that is performed on the waveform, the frequency interval MIω where the cleaning procedure is
applied, the corresponding time interval It, the accumulated phase difference ∆φψ4

= φX − φIFHR500 on a common frequency

interval MIcω, the number of GW cycles on the same frequency interval, and the relative phase difference ∆̂φψ4
= ∆φψ4

/φψ4
.

We choose the common interval of integration to be MIcω = [0.045, 0.067] for model M3.2C.14 and MIcω = [0.037, 0.054] for
model M2.9C.12.

Model EOS robs Extrap. MIω It ∆φψ4
φψ4

∆̂φψ4

[M⊙] [M ] [rad] [2π] [%]

M3.2C.14 IF 500 − [0.041, 0.068] [1000, 2290] − 9.14 −

M3.2C.14 IF 500 radius [0.044, 0.069] [1000, 2130] −0.39 8.99 −1.61

M3.2C.14 IF 200 resolution [0.046, 0.072] [1000, 2145] 1.28 9.34 2.24

M3.2C.14 poly 500 − [0.041, 0.069] [1000, 2290] −0.92 9.07 −0.69

M3.2C.14 poly 500 radius [0.044, 0.072] [1000, 2030] −1.24 8.94 −2.16

M2.9C.12 IF 500 − [0.036, 0.058] [1300, 3366] − 13.02 −

M2.9C.12 IF 500 radius [0.037, 0.054] [1300, 3070] −0.18 13.00 −0.2

B. Qω analysis

In Sec. IV we have introduced Qω = ω2/ω̇ as a
convenient, intrinsic diagnostics to describe the phas-
ing of the waveform. In particular, it allows us to bet-
ter visualize the influence of tidal effects on the phas-
ing, as well as to compute the dephasing accumulated
on a given frequency interval. It is then useful to re-
cast the various time-domain phase uncertainties on the
high-resolution waveform extracted at 500M⊙ discussed
above, in terms of Qω. In practice, we apply the clean-
ing procedure on each waveform of Table II so as to
obtain four Qω curves. These curves are displayed to-
gether in the left panel of Fig. 7, while the fifth column

of Table III lists the specific frequency intervals Iω that
were selected to apply the cleaning procedure. For a
quantitative assessment of the differences between the
Qω curves, we present in the right panel of Fig. 7 the
quantity ∆QXω (ω) = QXω (ω) − QIFHR500

ω (ω), where the
labelling X indicates any curve other than our fiducial
one, IFHR500. Although the information conveyed by
this figure is qualitatively analogous to the time-domain
analysis, Fig. 6, it is made here both independent of any
phase-alignment procedure and simpler to quantify. First
of all, the figure shows that the extrapolations in radius
and in resolution act in different directions: the first one
pushes the curve down (i.e., less GW cycles accumulated
on a given frequency interval, tidal effects look stronger),
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FIG. 8. Sensitivity of Qω to the phase model used in the
fitting procedure. Note that the n = 4 and n = 6 curves are
barely distinguishable on the plot. See text for details.

while the second one pushes the curve up (i.e., more GW
cycles accumulated and tidal effects look weaker). This
result is qualitatively compatible with the corresponding
∆φ curves in Fig. 6, whose slopes have opposite signs.
In addition, by integrating in frequency the ∆Qω curves
on the common frequency interval MIcω = [0.045, 0.067]
one obtains an estimate of an actual accumulated phase
error that can be compared to our previous time-domain
results (i.e., Fig. 6). The result of this integration is given
in the seventh column of Table III. Note that the ∆φψ4

computed in this way is typically significantly larger than
what was estimated above in the time domain. For in-
stance, regarding the comparison with the resolution ex-
trapolated waveform, the Qω-based procedure indicates
a phase difference of about 1.3 rad over Icω ; by contrast,
inspecting Fig. 6, where the vertical (red) dashed line
corresponds to Icω in the time-domain, we read from the
plot an accumulated phase difference on this interval of
about 0.8 rad, i.e., about 40% smaller. Similar results
hold for the other phase comparisons. This increase in
the estimated phase errors is probably due to the ad-
ditional uncertainty brought by the necessity to use a
phase-cleaning procedure to compute each QXω (ω) (see
below). This is the price we have to pay to be able to
have the convenience of an intrinsic diagnostic of the
phase evolution.

A separate discussion is needed when comparing isen-
tropic and non-isentropic Qω curves. Figure 7 indicates
that the curve corresponding to the ideal-fluid EOS lies
above the polytropic one, and this indicates that the tidal
interaction appears weaker in the former case than the
latter (because the curve referring to the ideal-fluid is
closer to the point-mass curve than the polytropic curve,
see below). This effect was already discussed in Ref. [2]
and is likely due to the small shocks that are formed by
the interaction between the outer layer of the stars and
the external atmosphere. The polytropic EOS should
yield a priori a more accurate evolution during the in-
spiral, when the stars are far apart, but should become
progressively inaccurate and inconsistent when the two
stars become closer and closer, with mass shedding and
the formation of actual shocks that are not simply due to
the weak interaction with the atmosphere. For this rea-
son we will not use the isentropic Qω’s as a lower bound
in our analysis, but we will focus only on non-isentropic
evolutions, though keeping in mind that there is a further
source of error on them.
A natural question that comes at this stage is: what

is the uncertainty on the determination of the Qω(ω)
function that is due to the phase-cleaning (i.e., phase-
fitting) procedure? A first way of addressing this issue
is to measure the impact that changing our fiducial fit-
ting function Eq. (28) has on Qω(ω). Focussing, for both
models, only on our basic IFHR500 data, we computed
the cleaned frequency using, besides our fiducial fitting
polynomial of order n = 4 (see Eq. (28)), either a lower-
order polynomial truncated at n = 3 or a higher-order
one, extended up to n = 6.9 The results of these compu-
tations are displayed in Fig. 8 for model M2.9C.12 (top
panel) and M3.2C.14 (bottom). The results are quali-
tatively analogous in the two cases. First, we see that
the low polynomial order n = 3 is clearly too small, and
fails to capture (when comparing it to the PN or EOB
curves, which are accurate on the low-frequency side) the
low-frequency behavior of Qω(ω). By contrast, the fact
that the n = 6 curve is barely distinguishable (on the
scale of the figure) from the n = 4 one is an indication
of a sort of “convergence” of our fitting procedure as the
number of xn powers is increased. We can therefore use
the difference between Qn=6

ω (ω) and Qn=4
ω (ω) as an esti-

mate of the uncertainty δQω(ω) entailed by the cleaning
procedure. Computing this difference, we find that it re-
mains of order unity all over the fitting frequency interval
Iω. In conclusion, we estimate the uncertainty associated
with the choice of the order of the fitting polynomial to
be δQω ≈ ±0.5. Note that this error is rather small com-
pared to the various numerical errors on Qω(ω) displayed
in Fig. 7, but it is only a lower bound on the uncertainty

9 Note that n = 5 is not meaningful as the corresponding p5 term
is exactly degenerate with φ0. Furthermore, the use of x5 lnx
does not help, as the corresponding term is nearly degenerate
with φ0.
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FIG. 9. Sensitivity of Qω to the choice of the fitting time-
interval It for M3.2C.14. Our preferred cleaning time-interval
It/M = [1000, 2290] (central dashed-line) is compared to
It/M = [1000, 2250] (solid-line) and It/M = [1000, 2330]
(dash-dotted line). See text for details.

level δcleanQω linked to the cleaning procedure.

In particular, another relevant source of uncertainty
on Qω is the choice of the fitting time interval It. In
Appendix B we explicitly discuss some rules of thumb
that we follow to select It such that the cleaning proce-
dure is reliable and robust. To complete the discussion
of Appendix B, we investigate (for model M3.2C.14) the
modifications in Qω brought by changes in the choice of
It. More precisely, we modified the right-end point t2
of our preferred cleaning time interval It/M ≡ [t1, t2] =
[1000, 2290] (see Table III) by ±40 (with fixed polyno-
mial order n = 4 ). The three Qω curves corresponding
to t2 = {2250, 2290, 2330} are displayed in Fig. 9. When
comparing the cases t2 = {2250, 2290}, we find that the
absolute value of the difference in Qω stays ≤ 1 all over
the time-interval It/M = [1000, 1951] (corresponding to a
frequency interval MIω = [0.041, 0.056]), but then grows
up to values of order 30 near t2 = 2250. On the other
hand, when comparing the cases t2 = {2290, 2330} we
find that the absolute value of the difference in Qω stays
of order 3 all over It. This further analysis suggests that
the cleaning procedure allows us to determine Qω within
an uncertainty level δcleanQω ≈ 1 during most of the in-
spiral, with a possible increased uncertainty level ≈ 3
near the end of the inspiral. Note that these levels are
significantly smaller than the changes in the analytical
Qω’s associated to a variation of the NNLO parameter
ᾱ2 between 0 and 100 (see next Section).

VI. COMPARISON OF ANALYTICAL AND
NUMERICAL-RELATIVITY RESULTS

A. Characterizing tidal effects from NR
simulations

Before proceeding with the NR/AR comparison it is
useful to discuss a procedure by means of which it is pos-
sible to effectively subtract the tidal interaction from the
NR Qω curves obtained so far. This procedure will then
allow us to obtain a phase diagnostic Q0

ω that, within
some approximation, represents a non-tidally interact-
ing binary, namely a binary of two point-particles. As
pointed out in Ref. [21], the binding energy of a binary
system Eb(Ω) is approximately linear in κT2 and it is
therefore possible to subtract the tidal effects by com-
bining different sets of binding-energy curves coming out
of NR calculations. In particular, Ref. [21] computed
several “tidal-free” binding energy curves (one curve for
each combination of two different data sets) that were
compared with the corresponding point-mass curve com-
puted within the EOB approach or within non-resummed
PN theory. This procedure allowed for both the identifi-
cation (and thus subtraction) of systematic uncertainties
in the NR data and the discovery of higher-order tidal
amplification effects.
Here we will generalize the approach introduced in

Ref. [21] to the Qω curve. In particular we assume that
the function Qω(ω) is approximately linear in the (lead-
ing) tidal parameter κT2 , at least during part of the in-
spiral, say up to some maximum frequency ωmax (we will
use ωmax ≈ 0.07). As a result of this assumption, we can
approximately write Qω(ω), for each binary, as

Qω(ω; I) = Q0
ω(ω) + (κT2 )I Q

2
ω(ω) +O

(
(κT2 )

2
)
, (35)

where I is an index labelling some binary system. As
a result, given the Qω diagnostics of two different bina-
ries with labels (I, J), we can estimate the two separate
functions Q0

ω(ω) and Q
2
ω(ω) as

Q0
ω(ω) =

(κT2 )IQω(ω; J)− (κT2 )JQω(ω; I)

(κT2 )I − (κT2 )J
, (36)

Q2
ω(ω) =

Qω(ω; I)−Qω(ω; J)

(κT2 )I − (κT2 )J
. (37)

From the decomposition (35), we see that, by definition,
the function Q0

ω denotes the Qω diagnostic of two non-
tidally interacting NSs, namely of two point-like (rela-
tivistic) masses (and also two BHs [18, 19]). Hence, the
function Q2

ω(ω) is seen to represent, within the present
approximation, the effect of the tidal interaction on the
Qω function. The calculation of both functions contains
therefore important information about the analytical rep-
resentation of tidally-interacting binary systems. In the
following we will only discuss the computation of the
tidal-free part Q0

ω(ω), leaving a discussion of the proper-
ties of Q2

ω(ω) to a future work.
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FIG. 10. Subtraction of tidal effects: shown as a solid line
is the point-mass EOB curve, while shown as a dashed line
is the Q0

ω curve obtained by inserting in Eq. (36) the tidally-
modified EOB Qω curves shown in Fig. 3.

This subtraction procedure for computing Q0
ω(ω) can

be first tested by using the EOB metric waveforms com-
puted from binaries with compactnesses C = 0.12 and
C = 0.14. The result of the subtraction is displayed in
Fig. 10, where we compare the point-mass (i.e., BBH)
EOB Qω curve (solid line) to the Q0

ω curve (dashed
line), obtained by inserting in Eq. (36) the C = 0.12
and C = 0.14 data of Fig. 3. The fact that the curves
are barely distinguishable up to Mω = 0.07 (where the
difference is ∆Qω ≈ 1) gives us confidence that the pro-
cedure will be effective also with actual NR data. This
will indeed be shown in the next Section.

B. Inspiral: subtracting tidal effects from NR data

We start our NR/AR comparison by computing the
Q0
ω function as defined by Eq. (36) from NR data using

our two models M2.9C.12 and M3.2C.14 as the binaries
labelled Ig and J in that equation. For all the compar-
isons carried out here we have limited ourselves to using
the curvature waveforms, although similar results can be
obtained from the corresponding metric waveforms.
The results are shown in Fig. 11, which reports four dif-

ferent Qω curves: the two tidally-modified NR Qω curves
for the binaries M2.9C.12 and M3.2C.14 (with the aster-
isks and triangles highlighting a sample of the data on
the common frequency window), the subtracted NR Q0

ω

curve (with empty circles), and the point-mass-EOB Qω
(as a solid line). This figure illustrates at once several
of the main results of this paper. First of all, it high-
lights the excellent agreement between the cleaned NR
Q0
ω and the analytical EOB one (cf. the red solid curve

and the empty circles). This gives evidence both for the
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FIG. 11. Subtraction of tidal effects from numerical relativ-
ity (curvature) Qω curves according to Eq. (36). Note the
excellent agreement with the point-mass EOB curve in the
frequency window where M2.9C.12 and M3.2C.14 data over-
lap. The relative EOB-NR phase difference accumulated over
this overlap interval is ∆φEOBNR

ψ4
= −0.03 rad.

validity of the EOB description and for the robustness
of our cleaning procedure. When we compute the rela-
tive phase difference over the common frequency interval
[0.042, 0.055], we obtain the remarkably small value of
∆φEOBNR

ψ4
≡ φEOB − φNR = −0.03 rad, which translates

into a relative difference ∆φEOBNR
ψ4

/φEOBNR
ψ4

= 0.02% 10.
Second, it confirms, independently of our EOB-based
check (cf. Fig. 10), that the NR tidal effects are ap-
proximately linear in κT2 at least in the early part11 of
the waveform, and thus that they can be efficiently sub-
tracted. Third, it illustrates the fact that the tidal in-
teraction between the two objects is important already
in the early-inspiral part of the waveform, since both
the M2.9C.12 and M3.2C.14 curves are significantly dis-
placed (by ∆Qω ∼ 10) with respect to the point-mass
one. Fourth, such a good agreement with the point-mass
EOB analytical model (which was tuned so as to accu-
rately reproduce the equal-mass BBHs) yields an inde-
pendent check of the consistency and accuracy of our nu-
merical simulations. Finally, we note that in Ref. [21] the

10 To cross-check the consistency of both the recovery procedure
of h22 from ψ22

4 and the cleaning of the phase, we carried out
the same calculation also for the metric waveforms, finding a
difference ∆φEOBNR

h = +0.05 rad, which is consistent with the
estimated error-bar ∆φ = ±0.02 rad on the EOBNR point-mass
waveform during inspiral [27].

11 In the following, we will refer to the frequency domainMω . 0.06
as the “early-inspiral”. Note that for a fiducial 1.4M⊙ − 1.4M⊙

systemMω = 0.06 corresponds to fGW = 690 Hz. Note also that
in the case, for instance, of our C = 0.14 system the frequency
Mω = 0.06 is reached at time t ≃ 2000M , i.e., only about 5 GW
cycles before merger.



18

FIG. 12. Comparison of the EOB Qω curves for different
choices of the effective tidal amplification factor Âtidal

ℓ (u) =
1 + ᾱ1u + ᾱ2u

2, with the corresponding NR ones (dashed
lines with open circles) for the two binaries considered. The
dotted line corresponds to the “tidal free” (or “point-mass”)
EOB, namely, when ignoring tidal effects. The figure also
includes the tidal-free Taylor-T4 model. The good visual
agreement between the analytic and the numerical curves for
ᾱ2 = 100 provides evidence of the need for large NNLO tidal
corrections. The corresponding phase differences ∆φψ4

=
φEOB − φNR are listed in Table IV.

procedure of subtraction, applied there to the NR binding
energy, was giving a curve slightly displaced with respect
to the point-mass EOB (or PN) curve. This displace-
ment was interpreted as evidence of systematic errors in
the NR simulation and prompted the introduction of a
“correcting” procedure, which however is not necessary
for the present NR data.

C. Early inspiral: evidence for large NNLO tidal
effects

We continue our analysis by focussing on the influ-
ence of LO tidal effects on the early-frequency part of
the Qω curves. We already know from Fig. 11 that
tidal effects are important in such early-frequency part
of the simulations, since we found a significant difference
(of order 10) between the point-mass curve and the NR
ones. Can these differences be accounted just by the LO
tidal effects? Figure 12 shows quite clearly that this is
not the case and that the LO description is not suffi-
cient to match the corresponding NR curves (dashed line
with open circles). Note that this is the case for both
the M2.9C.12 (upper panel) and the M3.2C.14 binaries
(lower panel). The difference with NR data (on the fre-
quency interval [0.043, 0.057] where the data of M2.9C.12
and M3.2C.14 overlap) is quantified in the first line of Ta-

FIG. 13. Magnitude of NNLO tidal effects: span of EOB Qω
curves (red) with varying ᾱ2 so as to be compatible with the
various (numerical) Qω curves (black).

ble IV and is rather large, namely several radians.
We next turn to analyzing the effect of NLO and

NNLO tidal interactions. Here, we will regroup un-
der the label of NLO both 1PN and 1.5PN effects. As
seen in Fig. 12, the inclusion of the NLO tidal effects
(ᾱ1 = 1.25 [21], 1PN tidal-radiation effects [29], and
1.5PN tail effects) has only a barely noticeable effect
on the Qω curve. This clearly indicates the need for
large NNLO (2PN and higher) tidal effects, which we
chose to parameterize by means of the effective parame-

ter ᾱ2 ≡ ᾱ
(ℓ)
2 introduced in Eq. (14). We then found that

choosing ᾱ2 = 100 yields a good match between the NR
and EOB Qω curves (solid line, EOBNNLO), especially
for the M3.2C.14 model, for which the analytical curve
is on top of the NR data. See also Table IV for the cor-
responding phase differences. The Table also indicates
that if we use ᾱ2 = 130, as we did in Ref. [1], the ac-
cumulated dephasing on the common frequency interval
[0.043, 0.057] is further reduced to a fraction of a radian
for both models. Note that the implementation of the
EOB waveform and radiation reaction that we use here
is slightly different with respect to the one of [1], which
was based on Ref. [21] and thus did not incorporate the
waveform 1PN corrections [29] nor the tail effects. This
explains why we were quoting different phase differences
(∆Iφ

EOBNR ≈ 0.1 rad) over the same interval when re-
ferring to ᾱ2 = 130 in [1]. However, we prefer here the
smaller value ᾱ2 = 100 because the corresponding Qω
curve is, on average, closer to the NR one on the larger
frequency interval [0.041, 0.068] on which we succeeded
to clean the NR phase.
It is important to recall that various numerical er-

rors affect the computation of the NR Qω curves, and
thereby affect the quantitative determination of the ef-
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fective NNLO parameter ᾱ2. For example, we have seen
that the resolution extrapolation (which seemed to be
the dominant source of uncertainty) has the practical ef-
fect of pushing the numerical Qω curve upwards. This
suggests that the value ᾱ2 ≃ 100 obtained from using
finite-resolution NR data is probably too large. To have
a rough idea of the error range on ᾱ2, we compare in
Fig. 13 various NR and EOB curves. More precisely, this
figure shows two numerical Qω black curves: a solid one,
derived from our fiducial highest-resolution and largest-
extraction-radius IFHR500, and a dashed one, derived
from the resolution-extrapolated NR data. Also reported
in Fig. 13 are three analytical curves (red lines): namely
the EOB predictions for the three values ᾱ2 = 0, 40, 100,
respectively. Clearly, the resolution-extrapolated Qω
curve is close to the analytical curve corresponding to
the value ᾱ2 ≃ 40, which is more than twice smaller than
the value ᾱ2 ≃ 100 suggested by our fiducial, highest-
resolution NR data. It is interesting to note that the
value ᾱ2 ≃ 40 agrees with the preferred value of ᾱ2 (when
using ᾱ1 = 1.25) found in [21], the work that pinpointed
the first evidence for the need of large NNLO effects. Let
us also note that, independently of the precise value of
ᾱ2, Fig. 13 clearly shows the need for large NNLO effects,
namely ᾱ2 & 40.
Let us also recall that the other sources of numerical er-

ror act in various directions. For instance, non-isentropic
effects actually act so as to effectively reduce the magni-
tude of the tidal interaction12, while the extrapolation to
infinite extraction radius acts in the opposite direction,
namely effectively increasing the magnitude of the tidal
interaction.
In view of our incomplete knowledge of all the sources

of error intervening in our NR waveforms, we can only
conclude that ᾱ2 probably lies in the range 40 . ᾱ2 .
130, with the understanding that the lower values (ᾱ2 ≃
40) are preferred because of the expected importance of
the truncation error in the numerical simulations. More
numerical simulations with a more detailed estimate of
the numerical error budget will be needed in the future
to reduce this error range on ᾱ2.
Let us conclude this Section by briefly discussing the

comparison between the NR Qω diagnostics with those
obtained using several versions of the Taylor-T4 approx-
imant. More precisely, Fig. 14 displays the following Qω
curves: the tidal-free T4 model (TTF

4 , dotted line), the
LO Taylor-T4 model (dashed-line), the NLO (i.e., 1PN)
one (dash-dotted line), and finally the effective NNLO
one (solid line), as introduced in Sec. III C above. Let us
recall that the NNLO model contains an effective 2PN
parameter, called aT4

2 , which is a rough T4 analog of

12 Indeed the non-isentropic Qω curve lies above the isentropic one.
This is certainly a source of error during the early-inspiral, where
the isentropic description is a priori more accurate but some
energy is channelled by shocks due to the interaction with the
atmosphere.

TABLE IV. Measuring the phase difference between NR (cur-
vature) waveforms and analytic ones (from both EOB and
Taylor T4 models). The phase differences are computed on
the frequency interval [0.043, 0.057] common to both Qω nu-
merical curves. From left to right, the columns report: the
type of analytical model, the magnitude of the effective pa-
rameters yielding NNLO tidal corrections; and the dephasings
∆φψ4

= φX −φNR (with X being either EOB or T4) for both
M2.9C.12 and M3.2C.14 data obtained by direct integration
of the corresponding Qω’s of Figs. 12 and 14 over the common
interval [0.043, 0.057].

Model NNLO ∆φM2.9C.12
ψ4

∆φM3.2C.14
ψ4

parameters [rad] [rad]

EOBLO ᾱ2 = 0 5.04 1.74

EOBNLO ᾱ2 = 0 4.62 1.58

EOBNNLO ᾱ2 = 100 1.06 0.17

EOBNNLO ᾱ2 = 130 0.056 −0.25

T4LO aT4
2 = 0 6.64 2.33

T4NLO aT4
2 = 0 6.42 2.25

T4NNLO aT4
2 = 350 1.53 0.15

the NNLO EOB parameter ᾱ2 and which enters the T4
tidal amplification factor Eq. (23). Similarly to the EOB
case, one finds that a suitably large value of the effec-
tive 2PN tidal parameter aT4

2 can provide curves that
are close to the numerical ones. The integrated dephas-
ings φT4 − φEOB corresponding to Fig. 14 are listed in
Table IV.
A few comments are worth making on the compari-

son between the EOB and T4 results. Let us first recall
that, in the BBH case, it has been shown that the EOB
description is definitely more accurate than the Taylor-
T4 one, especially when considering unequal mass ra-
tios [46] or spin effects [61]. However, as we are consid-
ering here an equal-mass case and frequencies that are
smaller (when considering the dimensionless frequencies
Mω) than in the BBH case, the tidal-free T4 phasing is
quite close to the EOB one (see Fig. 12). Concerning
tidal-extended models, we see that both EOB and T4
approximations highlight the need for large higher-order
tidal-amplification factors. When choosing one such am-
plification factor for both BNS systems (say ᾱ2 = 100
for EOB and aT4

2 = 350 for T4), a close look at the com-
parison of the corresponding Qω curves suggests that the
EOB-predicted curves are somewhat closer than the T4-
predicted one to the NR curves. However, this, by itself,
would only be a weak indication that EOB gives a better
representation of our fiducial NR data, especially in view
of the large uncertainties discussed above on the actual
value of the Qω(ω) functions. On the other hand, we con-
sider that the need of a much larger tidal-amplification
factor in the T4 case is an indication that the analytical
modelling of (LO, NLO and NNLO) tidal effects within
the EOB-resummed framework might be more robust
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FIG. 14. Comparison of the Taylor-T4 Qω curves for different
choices of the effective tidal amplification factor âtidal(u) =
1 + aT4

1 x + aT4
2 x2, with the corresponding NR ones (dashed

lines with open circles) for the two binaries considered. The
dotted line corresponds to the “tidal free” (or “point-mass”)
T4, namely, when ignoring tidal effects. Note that the value
aT4
2 = 350 of the dimensionless NNLO effective tidal correc-

tion parameter that best matches the (M3.2C.14) NR data is
considerably larger than in the EOB case. The corresponding
phase differences ∆φψ4

= φT4 − φNR are listed in Table IV.

than the corresponding one based on Taylor-expanded
approximants. Indeed, in both cases the parametriza-
tion of NNLO effects involves multiplying tidal effects

by a factor having a similar structure: Â
tidal(EOB)
ℓ (u) =

1 + ᾱ
(ℓ)
1 u + ᾱ

(ℓ)
2 u2 versus âtidalT4 (u) = 1 + aT4

1 x + aT4
2 x2.

In addition, the quantities u and x are numerically close
to each other (both being close to (Mω/2)2/3 ∼ v2/c2).
At the end of the inspiral, Mω reaches numerical values
of order 0.1 (i.e., 1154 Hz for a fiducial BNS system),
corresponding to u ≃ x ≃ 0.136. For such a value one
sees that the EOB amplification factor (with ᾱ2 = 100)

remains relatively moderate13, namely Â
tidal(EOB)
ℓ (u) =

1 + 1.25u + 100u2 ≃ 1 + 0.17 + 1.85 ≃ 3, while the
T4 one (with aT4

2 = 350) is suspiciously large, and is
completely dominated by the 2PN contribution, namely
âtidalT4 (u) = 1 + 1.19x + 350x2 = 1 + 0.16 + 6.47 = 7.63.
Another way to phrase this is to notice that the large T4
value aT4

2 = 350 is such that the 2PN contribution aT4
2 x2

starts dominating the LO term at x = 1/
√
350 ≃ 1/18.7,

13 For ᾱ2 = 40, this amplification factor becomes Â
tidal(EOB)
ℓ (u) =

1 + 1.25u+ 40u2 ≃ 1 + 0.17 + 0.74 ≃ 1.91

i.e., at large separations r ≃ 18.7M corresponding to
rather low frequencies Mω = 2x3/2 = 0.025, i.e., 285 Hz
for a fiducial BNS system. Furthermore, such a large
value for aT4

2 works well for binary M3.2C.14, but less
well for binary M2.9C.12.
Clearly, in view of the large current uncertainties on

the Qω NR curve, more work is needed to confirm this
provisional conclusion. In particular, more accurate NR
simulations, encompassing more compactnesses and dif-
ferent mass ratios will be needed to assess the relative
merits of the EOB versus the Taylor-T4 description of
tidally interacting BNS systems.

D. EOB/NR phasing

So far our NR/AR comparison based on the function
Qω(ω) has been limited to a frequency interval which did
not cover the last octave of frequency evolution, even if,
when viewed in the time domain, this interval covered
most of the cycles of the inspiral. In this section we fi-
nally focus on a phasing comparison in the time domain
which covers the full inspiral and plunge phase, up to the
merger of the two NSs. Our strategy here will not be to
explore from scratch a good range of values of the tidal
NNLO parameter ᾱ2 values, but instead to use the value
ᾱ2 = 100 suggested by our previous Qω(ω)-analysis, and
to explore to what extent it succeeds in providing a wave-
form which agrees with our fiducial (highest-resolution)
NR waveform over the full inspiral. Anticipating our
conclusion, we will find that the EOB waveform with
ᾱ2 = 100 does closely agree (both in phase and modu-
lus) with the NR waveform essentially up to the merger.
This is shown in Fig. 15, which compares the (real

part of the) EOB and NR metric rh22 waveforms for the
case including NNLO effects with ᾱ2 = 100. The left
panels refer to the M2.9C.12 binary, while the right pan-
els refer to the M3.2C.14 one. The top panels show the
real parts of both the EOB and NR h22 waveforms (di-
vided by the symmetric mass ratio ν); the middle pan-
els display instead the corresponding phase differences
∆φEOBNR(t) = φEOB(t) − φNR(t), for both metric (solid
line) and curvature (dashed line) waveforms, for com-
pleteness; the bottom panels compare the EOB (dashed
line) and NR (solid line) instantaneous GW frequency.
The least-squares phase alignment has been performed
on the time interval [tL, tR]/M = [250, 3300] for the
M2.9C.12 binary and [tL, tR]/M = [250, 2250] for the
M3.2C.14 one.
The two vertical lines (dot-dashed and dashed) indi-

cate the “end of the inspiral phase”, as defined either
within the EOB analytical framework (dot-dashed line)
or by using NR information (dashed line). Note that we
call here simply “inspiral” what was called “insplunge”
in previous EOB studies, namely the union of the inspi-
ral and (when it is reached before merger) of the plunge.
More precisely, the dashed line indicates the NR-defined
“merger”, i.e., the time (computed from the NR data)
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FIG. 15. Comparison between EOB and NR phasing for the M2.9C.12 (left panels) and M3.2C.14 (right panels) binaries. The
top panels show the real parts of the EOB and NR h22 waveforms, the middle panels display the corresponding phase differences
∆φEOBNR = φEOB−φNR, both metric (solid line) and curvature (dashed line) waveforms, the bottom panels compare the EOB
(dashed line) and NR (solid line) instantaneous GW frequency. The NNLO corrections to the radial potential are carried out
with the parameter ᾱ2 = 100. Note the agreement reached with the numerical waveform almost up to the time of the merger
as defined in terms of the maximum of the GW amplitude (vertical dashed line) or of the contact position (dot-dashed line;
see the text for details).

at which the modulus of the metric waveform reaches
its first maximum. On the other hand, the vertical dash-
dotted line indicates the EOB-defined “contact” between
the two NSs14. Such a formal contact moment was intro-
duced in Eqs. (72) and (77) of Ref. [21], by a condition
expressing that the EOB radial separation R becomes
equal to the sum of the tidally deformed radii of the two
NSs, namely

Rcontact = (1+hA2 ǫA(R
contact))RA+ { A ↔ B} , (38)

where ǫA(R) =MBR
3
A/(R

3MA) is the dimensionless pa-
rameter controlling the (LO) strength of the tidal de-
formation of the NS labeled A by its companion B and

where hA,B2 is the shape Love number [18, 62]. A re-
cent study of the tidally induced shape deformation of
BHs [62] has shown that the BH shape Love number h2
was a function of the separation r, which increased as

14 Note that the styles of the corresponding merger and contact
vertical lines as depicted in the two panels of Fig. 2 of Ref. [1]
are inverted with respect to the text there. See the arXiv version
for the correct figures.

r decreased (and u increased). This behavior is simi-
lar to the behavior of the (effective) quadrupole Love

number keff2 (u) = k2(1 + α
(2)
1 u + α

(2)
2 u2), where both

α
(2)
1 and α

(2)
2 were found to be positive [21]. One would

need a special study devoted to the comparison of the
EOB-predicted NS shape deformation to NR data to in-
vestigate in detail the u dependence of the analogous

heff2 (u) = h2(1 + γ
(2)
1 u+ γ

(2)
2 u2). Leaving to future work

such a study, we will here replace the u-dependent ef-
fective shape Love number heff2 (u) by a constant, chosen
such that the EOB-predicted contact happens before the
NR-defined merger for the two BNS systems we consider.
We found that heff2 = 3 works, and this is the value we
will use to replace hA2 and hB2 in the contact condition
written above15. An important point to note is that our
(EOB-based) analytical definition of contact allows one
to analytically predict a complete inspiral waveform, in-

15 A similar approach was taken in [1, 18], with a less conservative
value heff2 = 1. Let us recall that the computation of the infinite-
separation shape Love number h2 = heff2 (u = 0) of NSs gives
values of order unity [18].
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cluding its termination just before merger.
Figure 15 shows that the agreement in the time do-

main between the analytic EOB description and the fully
numerical one is extremely good essentially up to the
merger. More precisely, the match between the two de-
scriptions is excellent both in modulus and in phase, with
a dephasing of order ∆φ = ±0.1 rad during most of the
long inspiral phase. It is only during the last 100M be-
fore contact that the dephasing grows significantly. One
should note that this excellent EOB/NR agreement holds
for both binaries M3.2C.14 and M2.9C.12, and has been
obtained by tuning a single tidal-amplification parame-
ter.
Clearly the results presented here give only a first cut

at these issues. More NR/AR comparisons are needed
to confirm our findings and to determine the most ef-
fective value of ᾱ2. With sufficiently accurate NR data
one can hope to determine not only the effective tidal-
amplification factor Âtidal

ℓ (u) = 1 + ᾱ1u + ᾱ2u
2, but

also the precise separation-dependence of Âtidal
ℓ (u). This

would allow one to extend the EOB description right up
to the merger.

VII. CONCLUSIONS

We have presented the first comprehensive NR/AR
comparison of the gravitational waveforms emitted
during the inspiral of relativistic BNSs as computed
via state-of-the-art numerical-relativity simulations and
as modelled via state-of-the-art analytical approaches.
Overall, the work reported here and our findings can be
summarized as follows.

1. We have considered the longest to date numeri-
cal simulations of inspiralling and coalescing equal-
mass BNSs modeled either with an ideal-fluid or
a polytropic EOS. Because tidal effects are most
sensitive to the stellar compactness, we have con-
sidered two binaries with either a small compact-
ness of C = 0.1199 or with a large compactness of
C = 0.1396. The parts of the waveforms relative
to the inspiral cover between 20 and 22 cycles and
have been studied to isolate possible sources of er-
ror, such as non-isentropic evolutions, finite-radii
GW extractions, and the use of finite resolutions.
For the model with the highest compactness, the
first two sources of errors lead to a total error-bar
in the GW phase of ∆φ ≃ ±0.15 rad, while the
error coming from a finite resolution indicates an
accumulated phase error of ∆φ ≃ ±0.54 rad.

2. We have used the function Qω(ω) ≡ ω2/ω̇ as a use-
ful diagnostic of the physics driving the evolution
of the GW frequency ω. The calculation of this
quantity is however challenging when made from
the early-inspiral part of the NR waveforms, as the
latter is affected by a series of contaminating er-
rors. We have filtered out these errors by fitting

the NR phase evolution φ(t) with a simple ana-
lytical expression that reproduces at lower order
the behavior expected from the PN approximation.
We have compared the various Qω’s obtained from
different data to estimate the error range entailed
by comparing analytical predictions to our highest-
resolution, largest-extraction-radius NR data.

3. Using the estimated Qω(ω) function we have shown
that it is possible, at least for frequencies Mω .
0.06 (i.e., fGW . 700 Hz for a fiducial 1.4M⊙ −
1.4M⊙ BNS system), to subtract the tidal-effect
contribution from the NR waveforms and consis-
tently match this with the expected EOB model for
point particles which has been successfully matched
to BBH simulations. The ability to perform this
match accurately provides us with an independent
validation of the quality of our numerical results
as well as with a confirmation that the function
Qω(ω) is approximately linear in the (leading) tidal
parameter κT2 .

4. The comparison of analytical predictions with NR
data shows that tidal effects are significantly am-
plified by higher-order (NNLO) relativistic correc-
tions even in the early inspiral phase. These NNLO
tidal corrections are parameterized within the EOB
approach by a unique (effective, 2PN) tidal param-
eter ᾱ2. Although the most precise available at the
moment, the quality of the NR data is such that
we can only constrain the actual value of ᾱ2 to be
in the range 40 . ᾱ2 . 130.

5. Once a single choice for ᾱ2 is made, the EOB-
predicted waveforms agree (both in phase and in
modulus) with the NR ones (for both BNS sys-
tems) within their error bar and essentially up to
the merger.

6. Finally, we have also compared the NR phasing
with the one predicted by a non-resummed Taylor-
T4 PN expansion, completed by additional tidal
terms. If one uses only the currently known ana-
lytic T4 tidal terms, the T4 model dephases (when
C = 0.12) by more than 2π rad already at the
GW frequency Mω = 0.057, which is about twice
smaller than the GW frequency at merger (we re-
call that Mω = 0.057 corresponds to 658 Hz for
a fiducial 1.4M⊙ − 1.4M⊙ system). On the other
hand, a good match (for both compactnesses) with
the NR phasing is possible if one allows for a T4
analog of the EOB ᾱ2 parameter, i.e., an (effec-
tive) 2PN amplification of tidal effects. The corre-
sponding parameter aT4

2 ≃ 350 is suspiciously large,
works well for binary M3.2C.14 but less well for bi-
nary M2.9C.12, and dominates the amplification
of tidal effects already at frequencies Mω = 0.025
(corresponding to 285 Hz). This seems to suggest
that the EOB-based representation of tidal effects
is more reliable than the Taylor-T4 one.
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In summary, the work presented here opens new av-
enues to the important synergy between numerical and
analytic descriptions of inspiralling compact-object bi-
naries in general relativity. For the first time we have
shown that an analytic modelling is possible also for ob-
jects which cannot be treated as point-particles and for
which, therefore, tidal effects represent important correc-
tions. Although the results presented here are very en-
couraging, a number of improvements are needed on both
the numerical and the analytical sides. On the numer-
ical side, higher resolutions and better measures of the
convergence rates (which are particularly challenging in
non-vacuum simulations) are needed to decrease the nu-
merical phase errors to and reach firm conclusions about
the tidal contributions to the phasing. On the analytical
side, higher-order PN calculations are needed to better
determine the form of the NNLO corrections. Both of
these goals will be the subject of our future work. Hope-
fully, progress on both fronts will enable us to determine
the crucial tidal-induced dephasing function ∆tidalφ(ω)
with an accuracy sufficiently high to extract reliable in-
formation on the EOS of matter at nuclear densities 16.
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Appendix A: Computing metric waveforms from ψ4

We discuss here the details of how to accurately derive
the metric waveforms h+,× from the numerically com-
puted curvature waveforms ψ4. We first recall that the
procedure outlined in Ref. [46] consisted essentially of
three steps. (i) First one performs the double integration
of ψℓm4 starting at t = 0 with the integration constants

16 Simple estimates based on the scaling κT2 ∝ R5 suggest that one
needs to know ∆tidalφ(ω) with a fractional accuracy better than
20% to constrain NS radii to a relative precision of δR/R ≈ 4%.
See also Ref. [22] for the prospects from a BH-NS system.

set to zero; this amounts to defining

ḣℓm0 (t) ≡
∫ t

0

dt′ψℓm4 (t′), (A1)

hℓm0 (t) ≡
∫ t

0

dt′ḣℓm0 (t′). (A2)

The provisional metric waveform hℓm0 differs from the
“exact” metric waveform (6) (integrated from past infin-
ity) by a linear function of t, say

hℓm0 (t) = hℓm(t) + αexactt+ βexact. (A3)

(ii) The second step consists in obtaining an estimate of
the two (complex) integration constants (αexact, βexact)
that enter the metric waveform (6) by fitting over the
full simulation time interval the (t ≥ 0)-integrated wave-

form (A2) to a linear function of t, say hlin−fit
0 = αt+ β,

where α and β are complex quantities. (iii) The third
and final step of the procedure of Ref. [46] consisted in
subtracting the linear function αt + β from hℓm0 so as
to define an approximation to the (t ≥ −∞)-integrated

metric waveform, say holdℓm(t) ≡ hℓm0 (t)− hlin−fit
0 (t).

Here we will use a “new” (three-step) procedure, which
starts with the same step (i), but modifies both steps (ii)
and (iii) so as to get a better approximation to the exact
metric waveform. First of all, we define an “adiabatic-
like” approximation to the metric waveform,

h̃ℓm(t) ≡ −ψ
ℓm
4 (t)

ω2
ℓm(t)

(A4)

and use this to define

h̃ℓm0 (t) ≡ hℓm0 (t)− h̃ℓm(t). (A5)

As h̃ℓm(t) is approximately equal to hℓm(t) (because of
the approximately adiabatic nature of the inspiral), we

see from Eq. (A3) that h̃ℓm0 (t) = hℓm(t) − h̃ℓm(t) +
αexactt+βexact will be closer to the unknown linear func-
tion αexactt+βexact than h

ℓm
0 (t) was. Therefore, the next

step is to perform the linear fit on this h̃ℓm0 rather than
on hℓm0 (t) itself. Then, the last step (iii) consists, as
in the past, in subtracting the resulting improved linear
fit αt + β from the (t ≥ 0)–integrated metric waveform
hℓm0 (t).
In addition, let us note that we perform the fit not

on the whole time interval, but rather on a restricted
time interval that cuts away the first cycles of the wave-
form. Finally, after doing several tests, we realized that
the entire procedure leads to a physically more reliable
metric waveform (see below) if h̃ℓm0 (t) is fitted not to a
simple linear function, but rather to a quadratic17 one,

hquad−fit
0 (t) = γt2 + αt+ β.

17 We think that such a quadratic fit is needed for absorbing several
effects that “pollute” the waveform, notably finite-extraction-
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As emphasized in Ref. [46], we accept the integrated
waveform if and only if its modulus exhibits a mono-
tonic growth in time during the inspiral, consistently with
the expected circularly polarized behavior of the met-
ric waveform (as well as the curvature one)18. Figure 2
displays the metric waveforms (both for the M2.9C.12

(left) and the M3.2C.14 (right) models) obtained using
this improved procedure. The time intervals where we

fit the waveforms to get hquad−fit
0 (t) start respectively

at t1/M = 294 (model M2.9C.12) and at t1/M = 677
(model M3.2C.14). Note how the modulus of both mod-
els exhibits a smooth monotonic behavior in time.

Appendix B: Cleaning the GW phase and Qω curves

We next provide more detailed information about the
cleaning procedure of the NR GW phase advocated in
Sec. IV and used to drive NR/AR comparisons. As we
said in the main text, the final goal is to fit away the high-
frequencies oscillations in the GW phase φ so as to get
a clean and smooth Qω curve, Eq. (24). We recall that
the idea is to fit φ(t) with an analytic expression that is
modeled on the PN expansion. Defining the quantity

x(t, φc) =
{ν
5
(tc − t)

}−1/8

, (B1)

one then fits the NR phase with an expression of the form

φ = − 2

ν
x−5

(
1 + p2x

2 + p3x
3 + p4x

4 + . . .
)
+ φ0, (B2)

where tc, φ0, and the pi’s are free coefficients to be de-
termined by the fit. Note that tc can be thought of as
defining a formal “coalescence” time. There are two del-
icate (correlated) points: (i) how many powers of x [pos-
sibly including also xn ln(x) terms] one has to include in
Eq. (B2), and (ii) on which (time) interval It/M = (t1, t2)
the approximate description of φ given by Eq. (B2) (and
consequently of Qω) is reliable. The procedure to se-
lect the “best” time interval and to consistently assess
the quality of our cleaned curves can be summarized as
follows:

1. The initial time t1 is chosen so as to eliminate as
much as possible the most noisy part of the curva-
ture frequency. In practical terms, this meant cut-
ting at t1 = 1200 for M2.9C.12 data and t1 = 1000

radius effects, remnant junk radiation, etc. In this respect, we
also mention that Ref. [45], in the context of non-spherical star
oscillations, found that a quadratic polynomial used in the re-
covery of h20 from ψ20

4 was a necessary choice to find a good
agreement both with Abrahams-Price metric extraction and per-
turbative waveforms.

18 Note however that small-amplitude, high frequency “ripples” are
still present in the modulus. Their origin is however essentially
numerical, as they are also present in the modulus of ψ22

4 .

for M3.2C.14 data. This is illustrated in the top-
left panels of Fig. 16 (for M2.9C.12 data) and of
Fig. 17 (for M3.2C.14 data), which show the cur-
vature (dashed line) and metric (solid line) instan-
taneous GW frequency ω. In both plots, the first
vertical line identifies the location of t1.

2. For a given order of the polynomial, we found the
right end, t2, of the time window essentially, by trial
and error, monitoring the behavior of several quan-
tities. In particular, (i) we checked that the cleaned
ω visually “averages” the raw ω, for both ψ22

4 and
h22 data. This is illustrated in the top-right and
bottom-right panels of Figs. 16-17, the raw data ap-
pearing as dashed lines, the cleaned data as solid
lines. Then, (ii), we require that the phase dif-
ference φClean − φRaw averages to zero, which in-
dicates that we have subtracted all the “secular”
trends by means of our polynomial fit. The quan-
tity ∆φCleanRaw = φClean − φRaw (both curvature
and metric) is displayed in the bottom-left panel of
Figs. 16-17. The fact that it averages to zero is the
indication that our fit caught the “secular” behav-
ior of the phase, averaging away both (numerical)
low-frequency and high-frequency oscillations.

3. For a fixed time window, the inspection of
∆φCleanRaw is also crucial for choosing the order of
the polynomial in x, which we set to be of fourth-
order. A 3rd-order one is clearly not enough to get
the right trend of the frequency (and thus of Qω)
up to the end of our preferred interval.

4. To better select the end t2 of the time window, we
found it useful to monitor the difference between
the curvature and metric Qω’s, namely ∆Qc−m

ω =
Qcurvature
ω −Qmetric

ω . We typically choose the value
of tR in such a way that ∆Qc−m

ω is always smaller
than 0.2 on the frequency interval corresponding
to It/M . This value can be estimated by compar-
ing curvature and metric Qω’s within the EOB. For
example, for the NNLO model with ᾱ2 = 100 one
checks that ∆Qc−m

ω . 0.2 when ω ∈ [0.035, 0.055]
for C = 0.12, and ∆Qc−m

ω . 0.2 when ω ∈
[0.035, 0.063] for C = 0.14. This gives us an idea
of the level of ∆Qc−m

ω that we can accept from our
cleaned NR curves, so that we can choose the fitting
time window accordingly.

In conclusion, to obtain the central NR-cleaned Qω
curves labelled IFHR500 used in the core of the paper, we
fixed tR/M = 3366 for the M2.9C.12 phase and tR/M =
2290 for the M3.2C.14 one. The time intervals (and the
corresponding frequency ones) used to clean the other
NR phases are also listed in Table III.
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FIG. 16. Testing the fit of the GW phase of the M2.9C.12 simulation. The top-left panel shows the time evolution of the
frequency, computed from the metric and curvature waveforms. The bottom-left panel shows the deviation of the cleaned
phase evolution with respect to the raw data; note that they average to zero. The right panels show the comparison of the
frequency evolution of the cleaned and raw waveforms, for the curvature (top) and metric (bottom) waveforms.
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FIG. 17. The same as Fig. 16 but for the M3.2C.14 simulation.
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