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Abstract

Recently proposed “critical” higher-derivative gravities in AdSD D > 3 are

expected to carry logarithmic representation of the Anti de Sitter isometry group. In

this note, we quantize linear fluctuations of these critical gravities, which are known

to be either identical with linear fluctuations of Einstein’s gravity or else satisfy

logarithmic boundary conditions at spacial infinity. We identify the scalar product

uniquely defined by the symplectic structure implied by the classical action, and

show that it does not posses null vectors. Instead, we show that the scalar product

between any two Einstein modes vanishes, while the scalar product of an Einstein

mode with a logarithmic mode is generically nonzero. This is the basic property of

logarithmic representation that makes them neither unitary nor unitarizable.



1 Introduction

It has been known for many years that power-counting renormalizable theories of gravity

can be obtained by adding to the Einstein-Hilbert action appropriate terms, quadratic

in the Ricci and Weyl tensors. In the absence of a cosmological constant, these theories

admit Minkowski space as background, but they are also perturbatively non-unitary [1].

Since the whole point of having a power-counting renormalizable theory of gravity is

to make perturbative calculations possible, these theories have been justly abandoned

long since. Recently, quadratic-curvature actions with cosmological constant were re-

examined in four [2] and D [3] dimensions. In either case, it was found that there exist

a choice of parameters for which these theories possess one AdS background on which

neither massive fields, nor massless scalars or vectors propagate. Moreover, on the AdS

background, the standard graviton, i.e. the massless tensor mode of Einstein-Hilbert

gravity, also propagates and has vanishing energy (the energy of course depends on the

action, not just on the form of the mode) [2, 3].

Besides those that satisfies the homogenous Einstein equations on AdSD, other tensor

modes propagate in the “critical” theory [4, 5, 6]. Their asymptotic behavior at space-

like infinity differs from standard Einstein-Hilbert modes by terms logarithmic in the AdS

radial coordinate. A complete set of propagating modes for critical D-dimensional gravity

was presented in [6].

In this note, we show that there exists an unambiguous manner to define the energy

and the norm of all modes of log gravity. With that definition, the scalar product of two

modes that solve the homogenous Einstein equation vanishes.

Next we come to out main result: the scalar product of a homogenous mode with

some of the logarithmic modes is nonzero. In other words, homogenous modes are not

null vectors and cannot be factored out to yield a (positive-norm) Hilbert space, except

if we restrict the physical space to homogenous modes only, and then factor them out.

This procedure leave a profoundly uninteresting theory made only the vacuum state. This

picture should be compared to the case of D = 3, where CFTs possess two copies of the

Virasoro algebra. There, in Topologically Massive Gravity (TMG) at the critical point [7],

restriction to homogenous modes –which can be promoted to a bona fide non-perturbative

constraint on the Hilbert space– selects the vacuum of one such algebra, but allows for

nontrivial states of the other [7, 8].

This result shows that the “critical” (a.k.a. log) theory is neither unitary nor does it

contain a unitary subspace other than the vacuum 1. Though the lack of unitarity proven

here is bad news for log gravity to give a viable quantum theory of gravity in AdSD, it

1The ghost pole in one-particle exchange amplitudes between physical sources may cancel [9]; this is

not enough to rescue unitarity as we shall discuss in the last section.
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is consistent with (and indeed required by) it being dual to a logarithmic conformal field

theory in D − 1 dimensions. Such a theory could be of interest in statistical mechanics;

its basic properties are summarized in the next section.

Kinematics of Logarithmic CFTs

The isometry group of AdSD is SO(2, D− 1), which is also the conformal group in D− 1

space-time dimensions. So, the Hilbert space 2 of a consistent quantum gravity in AdSD

decomposes into a direct sum of representations of SO(2, D − 1).

If we do not demand that the representation be unitary, then the Hilbert space, H , can

contain a reducible but indecomposable representation. Let us consider in detail the case

of AdS4. Its isometry group, SO(2, 3), admits a Cartan decomposition into four positive

roots Eαa , a = 1, 2, 3, 4, four negative roots E−αa , and two Cartan generators H1, H2.
3.

In the Cartan basis the SO(2, 3) algebra is:

[Hi, Hj] = 0, [Hi, E
αa ] = αi

aE
αa , [E−αa , Eαa ] =

2

|αa|2
αa ·H, (1)

with |αa|2 =
∑2

i=1(α
i
a)

2.

SO(2, 3) representations with energy H1 bounded below posses a ground state ψ, anni-

hilated by all Eαaψ = 0. Lowest weight vectors can also define logarithmic representations

if they are not eigenstates of H1, but obey instead 4

H1ψ = E0ψ + φ, H1φ = E0φ. (2)

When the generators Hi, E
α, are self-adjoint with respect to a scalar product, 〈 , 〉, not

necessarily positive definite, then the vector φ has zero norm:

0 = 〈ψ, (H1 − E0)
2ψ〉 = 〈(H1 − E0)ψ, (H1 − E0)ψ〉 = 〈φ, φ〉. (3)

The standard procedure to obtain a non-degenerate scalar product is to identify vectors

modulo null vectors. So, if the vector φ is null, i.e. if 〈χ, φ〉 = 0 for all χ in the represen-

tation V , eqs. (2) actually define a standard lowest-weight representation on the quotient

space. So, to obtain a truly new representation, the scalar product of φ with some vector

χ ∈ V (such that 〈χ, χ〉 6= 0) must be non-vanishing.

2By Hilbert space we mean here a vector space H , endowed with a non-degenerate but not necessarily

positive bilinear form 〈u, v〉 such that u ∈ H, v ∈ H 7→ 〈u, v〉 ∈ C.
3The basis used in ref. [6] is: α1 = (−1, 1), α2 = (0, 1), α3 = (−1,−1), α4 = (−1, 0).
4One could consider in principle also poly-logarithmic representations defined by (H1−E0)ψ

k = ψk+1,

k = 0, ..., n.
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Of course, the latter property is incompatible with unitariy, i.e. with the scalar product

being positive definite. For if 〈φ, χ〉 = A 6= 0, the norm of zφ + χ is 〈χ, χ〉 + 2ReAz,

which can have either sign when z ranges over the complex plane.

Two dimensional logarithmic conformal field theories too are characterized by having

zero norm non-null vectors [10] (for a review see [11]). Topologically Massive Gravity

(TMG) at the critical point, which is conjectured to be dual to a logarithmic CFT,

indeed contains such vectors [12, 13, 14].

Four dimensional critical gravity is in many ways the higher dimensional analog of

TMG at the critical point; so, the next question to ask is: does critical gravity too

contain logarithmic representations of SO(2, 3)?

The Example of D = 4 Critical Gravity

Ref. [6] gives a complete set of modes for critical gravity. With some obvious changes of

notations and simplifications, the 4D action of [6] is

S =
1

16πG

∫

d4x
√
−g
[

R− 2Λ− 1

2
fµνGµν +

m2

8
(fµνfµν − f 2)

]

, (4)

with Gµν the Einstein tensor and fµν an auxiliary symmetric tensor field. Elimination

of fµν through its algebraic equations of motion gives an action quadratic in curvatures.

Critical gravity is obtained when the cosmological constant is

Λ = −3m2. (5)

In 4D, Λ is the usual cosmological constant and action (4) admits an Anti de Sitter

background ḡµν with Rµν
ρσ = (Λ/3)(δµρδ

ν
σ − µ ↔ ν).

Expanding gµν and fµν around the AdS background as

gµν = ḡµν + hµν , fµν = −2(ḡµν + hµν) +
2

3m2
kµν , (6)

Action (4) reduces to a constant term plus the quadratic action [6]

6m2S2 =

∫

d4x
√−ḡ

[

2hµνGµν(k)−
1

3
(kµνkµν − k2)

]

. (7)

The linearized Einstein operator Gµν reduces to −(1/2)(�+ 2m2) on transverse-traceless

modes. The equations of motion following from action (7) are

Gµν(h) =
1

3
(kµν − ḡµνk), Gµν(k) = 0. (8)
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Thanks to the Bianchi identity, kµν is transverse and traceless. In the gauge Dµhµν −
Dνh = 0 eqs. (8) become

−1

2
(�+ 2m2)hµν =

1

3
kµν , −1

2
(�+ 2m2)kµν = 0. (9)

In global coordinates (co-latitude θ, longitude φ, radius ρ, and time t) the AdS4 metric

is

m2ds2 = − cosh2(ρ)dt2 + dρ2 + sinh2(ρ)[dθ2 + sin2(θ)dφ2]. (10)

The Cartan generators of SO(2, 3) are H1 = i∂t, H2 = −i∂φ [6]. The explicit expressions

for the Eα generators are also given in [6]. Imposing Eαaψ = 0 one finds two particularly

interesting classes of solutions to (9).

One, ψE
µν , solves the homogeneous linearized Einstein equation Gµν(ψ

E) = 0. In global

coordinates it has the form ψE
µν = e−iE0t+2iφF (ρ, θ)µν . For large ρ one finds

F (ρ, θ)ρρ ∼ e−(E0+2)ρ, F (ρ, θ)ρ∗ ∼ e−E0ρ, F (ρ, θ)∗∗ ∼ e−(E0−2)ρ. (11)

Here ∗ denotes coordinates other than ρ and we did not spell out the θ dependence in F .

Normalizability of ψE for ρ→ ∞ gives E0 = 3 [6].

The other one is

f(t, ρ)ψE
µν , f(t, ρ) = it+ log sinh ρ. (12)

It obeys eq. (8) with kµν = −(9m2/2)ψE
µν

5 .

After this brief review of the result of [6] we come to the definition of the scalar product

and energy for linearized critical gravity.

The Inner Product of Quadratic Theories

Consider a general quadratic action

S =

∫

dt
1

2
(−q̇TLq̇ ++q̇TQq + qTKq), (13)

where L and K are symmetric matrices while Q is antisymmetric and commuting with

L: [L,Q] = 0. They are defined in terms of a matrix Ω obeying

LΩ− ΩTL = 2iQ, ΩTLΩ = K. (14)

Reality of K follows from [L,Q] = 0; together with the first of the equations above,

it implies that LΩ = S + iQ, with S a real symmetric matrix. If Ω satisfies eqs. (14)

5Our inhomogeneous mode equals that in [6] plus a homogenous mode.
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so does −Ω∗. When some of the eigenvalues of the matrix Ω coincide, Ω may be non-

diagonalizable but it can always be put it in Jordan form. We choose Ω to have “positive

frequency” by demanding that its eigenvalues are positive definite.

Next we split the vector q into q = 2−1/2(A + A∗) with iȦ = ΩA (iȦ∗ = −Ω∗A∗).

Eqs. (14) guarantee that A solves the equations of motion LÄ−2QȦ+KA. The canonical

momentum p conjugate to q is p = Lq̇−Qq. The canonical momenta conjugate to A, A∗

are

P = LȦ∗ −QA∗ = iLΩ∗A∗ −QA∗, P ∗ = LȦ−QA = −iLΩA −QA. (15)

By using eqs. (14,15) it is straightforward to find that the conserved energy is

H =
1

2
(q̇TLq̇ + qTKq) =

1

2
(P T Ȧ + P ∗T Ȧ∗) (16)

In canonical quantization, A∗ is replaced by the Hermitian conjugate A† and the non-

zero canonical commutation relations are [AI , PJ ] = iδIJ , [A
† I , P †

J ] = iδIJ . The standard

Fock vacuum obeys A|0〉 = 0, so a classical positive-frequency solution of the equations

of motion, iΦ̇(t) = ΩΦ(t), defines a one-particle state |Φ〉 = −iΦIPI |0〉, which obeys

A(t)|Φ〉 = Φ(t)|0〉. The scalar product of two states |Φ〉, |Ψ〉 is then

〈Ψ|Φ〉 = i(Ψ∗TLΦ̇−Ψ∗TQΦ). (17)

An example directly related to action (7) is

L =

(

0 1

1 0

)

, Ω =

(

ω 0

1/2ω ω

)

, A(t) =

(

2ωiαe−iωt

(αt+ β)e−iωt

)

(18)

Notice that, though A(t) contains terms linear in t, the scalar product is time-independent.

Explicitly, on two solutions defined by constants α, β, α′, β ′, the scalar product for-

mula (17) reduces to 〈Ψ|Φ〉 = 2ωα′∗α + 2ω2i(β ′∗α − α′∗β). States with α = α′ = 0

have vanishing norm, but these states are not null: the norm of state α = 0, β 6= 0 with

an α′ 6= 0 state does not vanish.

Action (7) has the form (13). To see that, we can use the fact that kµν is transverse-

traceless and integrate by part in time 6

6m2S2 =

∫

d4x
√−ḡ

[

ḡ00D0h
µνD0kµν − hµν

(

3
∑

i=1

DiD
i + 2m2

)

kµν −
1

3
(kµνkµν − k2)

]

,

(19)

6Initial time and final time configurations are held fixed when varying the action, so we can always

add a total time derivative to the action without changing the equations of motion. Adding a total

divergence of space coordinate, instead, changes the boundary conditions at the AdS boundary, so in

general it changes the equations of motion by modifying the boundary behavior of the fields.
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Now, a straightforward application of formula (17) gives the scalar product of any two

positive-frequency modes of log gravity as

〈ψ|φ〉 = 3i

4

∫

d3x
√
−ḡḡ00[(�+ 2m2)ψ∗

µνD0φ
µν + ψ∗

µνD0(�+ 2m2)φµν ] (20)

Evidently, the scalar product between two solutions of the homogeneous Einstein equa-

tions, φ = φE, ψ = ψE vanishes. Also, the potentially dangerous term ∝ t in the scalar

product of two “log” modes φs = f(t, ρ)φE, ψ = f(t, ρ)ψE (see definition in eq. (12))

vanishes.

Crucially, the homogeneous modes ψE are not null vectors, since their scalar product

with the log mode constructed from ψE, φs = f(t, ρ)ψE is nonzero:

〈ψE |φs〉 = −9im2

4

∫

d3x
√−ḡḡ00ψE ∗

µν D0ψ
E µν 6= 0. (21)

Non vanishing of eq. (21) can be proven by a simple direct calculation or by noticing

that (21) is proportional to the norm of the transverse-traceless mode ψE
µν in standard

Einstein gravity 7.

The Einstein modes do have zero scalar product with special logarithmic modes: the

spin-1 “Proca” modes [6], which have the form ψs
µν = fψE , ψE = D(µAν). Transversality

and tracelessness of ψE
µν hold when Aµ obeys the massive spin-1 Proca equation

DνFνµ = 6m2Aµ. (22)

Vanishing of 〈ψE|fD(µAν)〉 follows immediately from the fact that this quantity is propor-

tional to the Einstein gravity scalar product
∫

d3x
√−ḡḡ00ψE ∗

µν D0D
µAν , which vanishes

because in Einstein gravity transverse modes are orthogonal to pure gauge modes.

In 3D, the Proca modes are the only inhomogeneous solutions of eq. (8), hence the

Einstein modes are true null vectors that can be modded out to yield a positive-metric

Hilbert space. Actually, the normalizable Proca modes decay so rapidly at infinity that

they too are null in the norm induced by the NMG action. So, the modding out by these

null vectors yields a trivial theory in 3D too 8. Of course, one can also define the norm of

the Proca fields using the Proca action; this is what makes new massive gravity [15] at the

critical point potentially nontrivial and consistent, at least at linear order. In D > 3, the

Proca modes [6] and the truly transverse-traceless spin-2 logarithmic modes mix under

the action of SO(D − 1) ⊂ SO(2, D − 1); therefore, one cannot consistently keep the

Proca modes, which are transverse to the Einstein modes, without also keeping the spin-2

modes, which are not.

7See e.g. ref. [13] for the analogous calculation in 3D chiral gravity.
8This fact became clear in conversations with O. Hohm.
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Linearized Energy

A reasonable way to define the energy of a solution which is asymptotically AdS is to

construct the linearized stress tensor of a metric perturbation, and integrate the tt com-

ponent over a spacial slice, which by the Gauss’ law constraint reduces to a boundary

term. Including the nonlinear terms schematically in the r.h.s of the equations of motion,

we find the equations

G(kµν) = Θ(NL)
µν , G(hµν)−

1

3
(kµν − ḡµνk) = Ξ(NL)

µν . (23)

Note that thanks to the Bianchi identity Θ
(NL)
µν is automatically covariantly conserved,

while Ξ
(NL)
µν is not. We therefore can use Θ = G(k) to construct conserved charges following

the method of [16] and replacing the metric perturbation hµν with kµν = 3Gµν(h) −
ḡµνGσ

σ (h), which gives that the conserved charge for a killing vector ξ is

E(ξ̄) =
1

8πG

∮

dSi

√−ḡ
[

DβK
0iνβ −K0jνiDj

]

ξ̄ν , (24)

where

Kµανβ =
1

2

[

ḡµβHνα + ḡναHµβ − ḡµνHαβ − ḡαβHµν
]

, Hµν = kµν − 1

2
ḡµνk. (25)

It is clear from this formulation that any solution that is purely an Einstein mode will

have kµν = 0 and therefore will have all conserved charges vanish, in agreement with

other calculations of the energy in critical gravity. To find a nonzero energy we must

turn on a nonzero kµν mode. At large radius the only static, spherically symmetric

solution to (8) is simple in terms of kµν = k̃µν + D(µξν), the Coulomb tail of a mass in

AdS (k̃µν), along with a vector mode9 (D(µξν)). The Coulomb taill of a mass in AdS4

behaves as k̃tt = −ḡttk̃ρρ = M̃/ sinh ρ. We must include a vector mode to ensure the

consistency of the equation for h, because DµGµν = 0 and we must therefore require that

Dµ(kµν − ḡµµk) = 0 so that the equation of motion is covariantly conserved. This is

ensured with ξr = M̃/6 sinh2 ρ cosh ρ, which gives

ktt = −kρρ sinh2 ρ cosh2 ρ = 2kθθ = 2kφφ/ sin
2 θ =M/ sinh ρ, (26)

where M = 2M̃/3. It is easy to check that the mass as defined in (24) is simply M/2G.

We also note that this nonzero kµν sources a logarithmic falloff in h,

htt =
M log cosh ρ

3 sinh ρ
+
M cosh2 ρ

3

(

π − 4 arctan[tanh(ρ/2)]− 1 + tanh2 ρ

sinh ρ

)

,

9This is of course not an honest linear diffeomorphism , as by eq. (8) and the diff invariance of G we

see that k does not transform.
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hρρ =
M log cosh ρ

3 cosh2 ρ sinh ρ
. (27)

We can also turn on a homogeneous mode in h, that is one satisfying G(h) = 0, but this

will clearly not contribute to the energy.

Miscellaneous Remarks

The one-particle Hilbert space obtained by quantizing critical gravity on its AdS back-

ground splits into a sum of Einstein modes and log modes: H = Hs ⊕HE . The norm N

on such space vanishes on HE but it is off diagonal. Schematically, for |ψ〉 = |ψs〉⊕ |ψE〉,
|φ〉 = |φs〉 ⊕ |φE〉, one has:

〈ψ|N |φ〉 =
(

〈ψs|, 〈ψE|
)

(

1 α

α 0

)(

|φs〉
|φE〉

)

, α 6= 0. (28)

A computation of the energy using formula (16) shows that, on a mode of frequency ω,

its unnormalized expectation value is proportional to the norm N : 〈ψ|H|φ〉 = ω〈ψ|N |φ〉.
The Fock space contain only states with positive frequency, so that whenever the norm is

nonzero, the normalized energy, 〈ψ|H|φ〉/〈ψ|N |φ〉, is positive and equal to the frequency

ω, as expected. When the norm vanishes, by consistency one must define the energy so

that it also vanishes. Restricting the multi-particle Hilbert space to the Einstein modes is

thus equivalent to selecting the zero-energy sub-sector of critical gravity, in perfect analogy

with 3D chiral gravity [8]. To obtain a properly defined Hilbert space, the restriction to

Einstein modes must be followed by modding out by null states.

Unlike 3D chiral gravity, here the end result of this procedure leaves only one state in

the theory, the Fock vacuum.

The results described so far were obtained by studying linearized critical gravity. Yet,

the general structure we found can be promoted to a full non-linear analysis. In particular,

the vanishing of energy in solutions which asymptotically become Einstein modes has been

shown to hold for black holes too in [2, 3]. A general proof that all asymptotically-Einstein

solutions have zero energy should be possible using the general definition of energy in

quadratic-curvature gravities given in [17]. Conversely, in the previous section we just

proved that non-vanishing energy requires the asymptotic behavior of log modes.

It was conjectured in [18] and proven in [19] that TMG in 3D is perturbatively stable

around certain warped AdS3 vacua, even for non-critical values of the Chern-Simons

coupling constant. Stability is achieved by restricting the asymptotic boundary conditions

in such a way that only boundary gravitons of one chirality propagate. This is in perfect

analogy with the behavior of TMG at the critical point on non-warped AdS3. In this

paper, we argued that in D > 3, restriction to the Einstein asymptotics can give us only
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a trivial Hilbert space made only of the vacuum. So, if an analog to the results of [18, 19]

could be found for D > 3 higher-derivative gravity, it would probably require asymptotics

on fields that leave no physical state beyond the vacuum.

It may happen that negative-norm ghost poles cancel against some positive norm poles

in one-particle exchange diagrams between physical sources [9]. This is not enough to

ensure unitarity, since in the full non-linear theory defined by eq. (4) ghosts can obviously

also be pair-produced. Moreover, even at the level of one-particle diagrams, one must still

mod out by null states, arriving again at an empty theory.

Finally, we must point out explicitly that the Hilbert space of Einstein modes is the

only physically meaningful subspace without negative norm states (unfortunately, it also

has no positive norm states). Obviously, by diagonalizing the metric N in eq. (28) one

can obtain a positive-norm subspace. Unfortunately, that subspace is not closed under

SO(2, 3) transformations, since logarithmic representations are indecomposable. It is

amusing to check explicitly this property by verifying that a positive-norm subspace is

not even closed under time evolution. In fact, its vectors must be linear combinations

of log modes and gravity modes. Consider in particular a mode of frequency ω: |ψ〉 =

|ψs〉+ |φE〉, ψs = f(t, ρ)ψE. Under a time translation t→ t+τ , it transforms into ψ(t) →
ψ(t + τ) = exp(−iωτ)(ψ + iτψE). Equation (21) says that 〈ψs|ψE〉 = c〈ψE|ψE〉E , where
〈|〉E is the scalar product in Einstein gravity and c is a positive constant; so the scalar

product 〈ψ(t + τ)|N |ψ(t + τ)〉 is independent of τ . Now consider the linear combination

ψ(t) + Cψ(t+ τ). Its norm is

〈ψ(t) + Cψ(t + τ)|N |ψ(t) + Cψ(t+ τ)〉 = (CC∗ + 1)〈ψ|ψ〉+ 2〈ψ|ψ〉Re (Ce−iωτ ) +

−2c〈ψE|ψE〉EIm (τCe−iωτ ). (29)

The right hand side in this equation becomes negative for C 6= 0 and τ large.

Acknowledgments

It is a pleasure to thank Olaf Hohm, Chris Pope and Eric Bergshoeff for useful corre-

spondence and discussions. M.P. is supported in part by NSF grant PHY-0758032, and

by ERC Advanced Investigator Grant n.226455 Supersymmetry, Quantum Gravity and

Gauge Fields (Superfields); M.M.R. is supported by the Simons Postdoctoral Fellowship

Program.

References

[1] K. S. Stelle, “Renormalization of Higher Derivative Quantum Gravity,” Phys. Rev.

D16, 953-969 (1977); “Classical Gravity with Higher Derivatives,” Gen. Rel. Grav.

9



9, 353-371 (1978).

[2] H. Lu, C. N. Pope, “Critical Gravity in Four Dimensions,” [arXiv:1101.1971 [hep-th]].

[3] S. Deser, H. Liu, H. Lu, C. N. Pope, T. C. Sisman, B. Tekin, “Critical Points of

D-Dimensional Extended Gravities,” [arXiv:1101.4009 [hep-th]].

[4] M. Alishahiha, R. Fareghbal, “D-Dimensional Log Gravity,” [arXiv:1101.5891 [hep-

th]].

[5] I. Gullu, M. Gurses, T. C. Sisman, B. Tekin, “AdS Waves as Exact Solutions to

Quadratic Gravity,” [arXiv:1102.1921 [hep-th]].

[6] E. A. Bergshoeff, O. Hohm, J. Rosseel, P. K. Townsend, “Modes of Log Gravity,”

[arXiv:1102.4091 [hep-th]].

[7] W. Li, W. Song, A. Strominger, “Chiral Gravity in Three Dimensions,” JHEP 0804,

082 (2008) [arXiv:0801.4566 [hep-th]].

[8] A. Maloney, W. Song, A. Strominger, “Chiral Gravity, Log Gravity and Extremal

CFT,” Phys. Rev. D81, 064007 (2010) [arXiv:0903.4573 [hep-th]].

[9] T. C. Sisman, I. Gullu, B. Tekin, “All unitary cubic curvature gravities in D dimen-

sions,” [arXiv:1103.2307 [hep-th]].

[10] V. Gurarie, “Logarithmic operators in conformal field theory,” Nucl. Phys. B410,

535-549 (1993) [hep-th/9303160].

[11] M. Flohr, “Bits and pieces in logarithmic conformal field theory,” Int. J. Mod. Phys.

A 18 (2003) 4497 [arXiv:hep-th/0111228].

[12] K. Skenderis, M. Taylor, B. C. van Rees, “Topologically Massive Gravity and the

AdS/CFT Correspondence,” JHEP 0909, 045 (2009) [arXiv:0906.4926 [hep-th]];

“AdS boundary conditions and the Topologically Massive Gravity/CFT correspon-

dence,” [arXiv:0909.5617 [hep-th]].

[13] D. Grumiller, I. Sachs, “AdS (3) / LCFT (2) → Correlators in Cosmological Topo-

logically Massive Gravity,” JHEP 1003, 012 (2010) [arXiv:0910.5241 [hep-th]].

[14] D. Grumiller, N. Johansson, “Gravity duals for logarithmic conformal field theories,”

J. Phys. Conf. Ser. 222, 012047 (2010) [arXiv:1001.0002 [hep-th]].

[15] E. A. Bergshoeff, O. Hohm, P. K. Townsend, “Massive Gravity in Three Dimensions,”

Phys. Rev. Lett. 102, 201301 (2009) [arXiv:0901.1766 [hep-th]].

10



[16] L. F. Abbott and S. Deser, “Stability Of Gravity With A Cosmological Constant,”

Nucl. Phys. B 195 (1982) 76.

[17] S. Deser, B. Tekin, “Gravitational energy in quadratic curvature gravities,” Phys.

Rev. Lett. 89, 101101 (2002) [hep-th/0205318]; “Energy in generic higher curvature

gravity theories,” Phys. Rev. D67, 084009 (2003) [hep-th/0212292].

[18] D. Anninos, W. Li, M. Padi, W. Song, A. Strominger, “Warped AdS(3) Black Holes,”

JHEP 0903, 130 (2009) [arXiv:0807.3040 [hep-th]].

[19] D. Anninos, M. Esole, M. Guica, “Stability of warped AdS(3) vacua of topologically

massive gravity,” JHEP 0910, 083 (2009) [arXiv:0905.2612 [hep-th]].

11


