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We derive semi-analytic formulae for the local bispectrum and trispectrum in general two-field
inflation and provide a simple geometric recipe for building observationally allowed models with
observable non-Gaussianity. We use the δN formalism to express the bispectrum in terms of spectral
observables and the transfer functions, which encode the super-horizon evolution of modes. Similarly,
we calculate the trispectrum and show that the trispectrum parameter τNL can be expressed entirely
in terms of spectral observables, which provides a new consistency relation unique to two-field
inflation. We show that in order to generate observably large non-Gaussianity during inflation,
the sourcing of curvature modes by isocurvature modes must be extremely sensitive to a change
in the initial conditions orthogonal to the inflaton trajectory and that the amount of sourcing
must be non-zero. Under some minimal assumptions, we argue that the first condition is satisfied
only when neighboring trajectories through the two-dimensional field space diverge during inflation.
Geometrically, this means that the inflaton must roll along a ridge in the potential V for some time
during inflation and that its trajectory must turn somewhat in field space. Therefore, it follows that
under our assumptions, two-field scenarios with attractor solutions necessarily produce small non-
Gaussianity. This explains why it has been so difficult to achieve large non-Gaussianity in two-field
inflation, and why it has only been achieved in a narrow class of models where the potential and/or
the initial conditions are fine-tuned. Some of our conclusions generalize at least qualitatively to
multi-field inflation and to scenarios where the interplay between curvature and isocurvature modes
can be represented by the transfer function formalism.

I. INTRODUCTION

Cosmological inflation [1–5] is widely thought to be re-
sponsible for producing the density perturbations that
initiated the formation of large-scale structure. Dur-
ing such an inflationary expansion, quantum fluctuations
would have been stretched outside the causal horizon and
then frozen in as classical perturbations. These primor-
dial perturbations would later be gravitationally ampli-
fied over time into the cosmological large-scale structure
that we observe today [6–11].

Pinning down the specific nature of inflation or what-
ever physics seeded the primordial density fluctuations is
one of the greatest open problems in cosmology. The sim-
plest models of inflation are driven by a single scalar field
whose fluctuations are adiabatic, nearly scale-invariant,
and nearly Gaussian. But these are assumptions and
need to be tested. Whether the primordial fluctuations
were indeed adiabatic and near scale-invariant can be de-
termined by measuring the power spectra of fluctuations;
the upper limit on the isocurvature spectrum constrains
non-adiabaticity, while the slope of the scalar (curva-
ture) power spectrum constrains the deviation from scale-
invariance. Similarly, whether the primordial fluctua-
tions obey Gaussian statistics can be tested by measur-
ing reduced n-point correlation functions, where n ≥ 3.
For Gaussian fluctuations, these higher-point functions
all vanish, and only the two-point function (the power
spectrum) is non-zero. Any deviations from adiabaticity,
near scale invariance, and Gaussianity would signal some
non-minimal modifications to the simplest scenarios and
hence would provide exciting insight into ultra-high en-
ergy physics.

Of these observational measures, non-Gaussianity has
the potential to be the most discriminating probe, given
all the information contained in higher-point statistics.
This is particularly valuable given how challenging it has
been to discriminate among the myriad different infla-
tionary models.
The two lowest order non-Gaussian measures are the

bispectrum and the trispectrum. Just like the power
spectrum PR represents the two-point function of the
comoving curvature perturbation R in Fourier space, the
bispectrum BR represents the three-point function and
the trispectrum TR represents the four-point function:

〈R(k1)R(k2)〉 = (2π)3δ3

(

2
∑

i=1

ki

)

PR(k1,k2), (1)

〈R(k1)R(k2)R(k3)〉 = (2π)3δ3

(

3
∑

i=1

ki

)

BR(k1,k2,k3),

(2)

〈R(k1)R(k2)R(k3)R(k4)〉

= (2π)3δ3

(

4
∑

i=1

ki

)

TR(k1,k2,k3,k4).

(3)

The δ-functions in equations (1)-(3) reflect the fact that
the statistical properties are translationally invariant in
real space, which makes the above three correlations van-
ish except if all k-vectors add up to zero — i.e., are the
negative of one another for the power spectrum, form the
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three sides of a triangle for the bispectrum, and form the
sides of a (perhaps non-flat) quadrangle for the trispec-
trum. Since the statistical properties are also rotation-
ally invariant, the power spectrum depends only on the
length and not the direction of its vector argument, and
the bispectrum depends only on the lengths of the three
triangle sides, so they can be written simply as PR(k)
and BR(k1, k2, k3), respectively.

For the bispectrum, it is standard in the literature to
define a dimensionless quantity fNL(k1, k2, k3) by divid-
ing by appropriate powers of the power spectrum [12]1:

−6

5
fNL(k1, k2, k3) =

BR(k1, k2, k3)
[

PR(k1)PR(k2) +
cyclic

permutations

] .

(5)

Although fNL can in principle depend on the triangle
shape of the k-vectors in very complicated ways, it has
been shown that in practice, essentially all models pro-
duce an fNL that is well approximated by one of merely
a handful of particular functions of triangle shape, with
names like “local”, “equilateral”, “orthogonal”, “warm”,
and “flat” [13, 14]. For example, the local function peaks
around triangles that are degenerate (with one angle
close to zero, like for k3 ≪ k1 ≈ k2), while the equi-
lateral function peaks around triangles that are equi-
lateral (k1 = k2 = k3). Bispectra dominated by dif-
ferent triangle shapes correspond to different inflation-
ary scenarios and different physics. In particular, for
multi-field inflation, barring non-canonical kinetic terms
or higher-order derivative terms in the Lagrangian, the
dominant type of bispectra is of the local form [13, 14].
Local non-Gaussianity arises from the non-linear evolu-
tion of density perturbations once the field fluctuations
are stretched beyond the causal horizon. Seven-year
data from WMAP constrains non-Gaussianity of the lo-
cal form to [15]

−10 < f local
NL < 74 (95%C.L.), (6)

and a perfect CMB measurement has the potential to
detect a bispectrum as low as |fNL| ≈ 3 [16].

Similarly, the dominant form of trispectra for standard
multi-field inflation is also of the local form, and it can
be characterized by two dimensionless non-linear param-
eters, τNL and gNL. Five-year data from WMAP con-

1 The factor of − 6

5
arises from the fact that the non-linear pa-

rameter fNL was originally introduced to represent the degree
of non-Gaussianity in the metric perturbation [16, 17],

Φ = ΦG + fNLΦ
2

G, (4)

where ΦG is Gaussian and Φ is not. Here, Φ is the metric pertur-
bation in the Newtonian gauge, which equals the gauge-invariant
Bardeen variable. After inflation ends and during the matter-
dominated era, 2Φ = − 6

5
R.

strains these two parameters to [18, 19]

−0.6× 104 < τNL < 3.3× 104 (95%C.L.),

−5.4× 105 < gNL < 8.6× 105 (95%C.L.). (7)

Interestingly, for standard single-field inflation, the
non-linear parameters representing the bispectrum [12,
20–27] and trispectrum [28–30] are all of order the slow-
roll parameters (i.e., at the percent level) and will not
be accessible to CMB experiments. However, if infla-
tion is described by some non-minimal modification, such
as multiple fields or higher derivative operators in the
inflationary Lagrangian, then non-Gaussianity might be
observable in the near future. Indeed, there have been
many attempts to calculate the level of non-Gaussianity
in general multi-field models (e.g., [31–42]), as well as in
two-field models (e.g., [43–51]). However, it has been
very difficult to find models that produce large non-
Gaussianity, though some exceptions have been found
such as in the curvaton model [52–58], hybrid and multi-
brid inflation (e.g., [59–67]), in certain modulated and
tachyonic (p)re-heating scenarios (e.g., [68–74]), and in
some quadratic small-field, two-field models by taking
appropriate care of loop corrections [75, 76]. Moreover,
it has not been wholly clear why it is so difficult to pro-
duce large non-Gaussianity in such models. Though some
authors [31, 32, 41, 44, 45, 47] have found spikes in non-
Gaussianity whenever the inflaton trajectory changes di-
rection sharply, these spikes in non-Gaussianity are tran-
sient and die away before the end of inflation. That
makes a comprehensive study of non-Gaussianity gen-
eration timely, to understand any circumstances under
which observably large non-Gaussianity arises in such
models.

In this paper, we calculate the bispectrum and trispec-
trum in general two-field inflation models with standard
kinetic terms. We provide conditions for large non-
Gaussianity, and we formulate a geometric recipe for
building two-field inflationary potentials that give rise
to large non-Gaussianity. In the process, we provide a
unified answer to the mystery of why it has been so hard
to produce large non-Gaussianity in two-field inflationary
models. The rest of this paper is organized as follows. In
Section II, we present the background equations of mo-
tion for the fields and discuss the field vector kinematics.
Section III presents the equations of motion for the field
perturbations and some necessary results for the power
spectra. In Section IV, we describe the δN formalism,
which we use to calculate the bispectrum, both for gen-
eral two-field inflation and for specific models. There-
after, we discuss the necessary conditions for large non-
Gaussianity. Finally, we tackle the trispectrum in Section
V. We summarize our conclusions in Section VI.
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II. BACKGROUND FIELD EQUATION &

KINEMATICS

In this section, we review the background equations
of motion and discuss the kinematics of the background
fields. This discussion will help us calculate the pri-
mordial bispectrum and trispectrum in two-field infla-
tion and understand what features are necessary for non-
Gaussianity to be observably large.
We consider general two-field inflation where the non-

gravitational part of the action is of the form

S =

∫
[

−1

2
gµνδij

∂φi

∂xµ

∂φj

∂xν
− V (φ1, φ2)

]√−g d4x, (8)

where V (φ1, φ2) is a completely arbitrary potential of the
two fields, gµν is the spacetime metric, and δij reflects the
fact that we assume the kinetic terms are canonical.
In this paper, we adopt similar notation to [77]: bold-

face for vectors and standard vector product notation.
We use the symbol T to denote the transpose of a vector,
and we use this symbol to convert a naturally covariant
vector into a contravariant vector and vice versa. Gra-
dients (∇ ≡ { ∂

∂φi }) and partial derivatives (∂i ≡ ∂
∂φi )

represent derivatives with respect to the fields, except
where explicitly indicated otherwise. We set the reduced
Planck mass, m̄ ≡ 1√

8πG
, equal to unity, so that all fields

are measured in units of the reduced Planck mass. To
simplify the equations of motion and connect them more
directly with observables, we use the number of e-folds,
N , as our time variable. N is defined through the relation

dN = Hdt, (9)

where t is the comoving time and H is the Hubble pa-
rameter. We denote derivatives with respect to N using
the notation

′ =
d

dN
. (10)

Using N as the time variable, we showed in [77] that
the background equation of motion for the fields can be
written as

η

(3− ǫ)
+ φ′ = −∇

T lnV. (11)

The parameter ǫ is defined as

ǫ ≡ −(lnH)′ =
1

2
φ′ · φ′, (12)

and η is the field acceleration, defined as

η ≡ φ′′. (13)

In [77], we also explained how the two quantities φ′

and η represent the kinematics of the background fields.
If we view the fields as coordinates on the field manifold,
then φ′ represents the field velocity, and

v ≡ |φ′| (14)

represents the field speed. Similarly, η is the field accel-
eration.
The velocity vector, φ′, is also useful because it can be

used to define a kinematical basis [78–80]. In this basis,
the basis vector e‖ points along the field trajectory, while
the basis vector e⊥ points perpendicularly to the field
trajectory, in the direction that makes the scalar product
e⊥ ·η positive. To denote the components of a vector and
a matrix in this basis, we use the short-hand notation

X‖ ≡ e‖ ·X, X⊥ ≡ e⊥ ·X, (15)

and

M‖⊥ ≡ e
T
‖ Me⊥, etc. (16)

The kinematical basis is useful for several reasons. First,
the field perturbations naturally decompose into com-
ponents parallel and perpendicular to the field trajec-
tory, and the former represent bona fide density pertur-
bations, while the latter do not. This decomposition of
the field perturbations is helpful in finding expressions for
the power spectra. Second, it allows us to consider sep-
arate aspects of the background field kinematics, which
in [77], we encapsulated in a set of three quantities. The
first quantity is the field speed, v. The second and third
quantities arise from decomposing the field acceleration
into components parallel and perpendicular to the field
velocity. In particular, the quantity

η‖

v represents the log-
arithmic rate of change in the field speed (the speed-up
rate), while the quantity η⊥

v represents the rate at which
the field trajectory changes direction (the turn rate) [77].
This distinction between the speed-up rate and the

turn rate is important for two reasons. First, the
turn rate represents uniquely multi-field behavior (as the
background trajectory cannot turn in single-field infla-
tion), whereas the speed-up rate represents single-field-
like behavior. Second, the speed-up and turn rates have
very different effects on the evolution of the field per-
turbations and hence on the power spectra. Indeed, the
features in the power spectra depend not only on the ab-
solute sizes of the two rates but also on their relative sizes
to each other; in particular, the ratio of the turn rate to
the speed-up rate is an indicator of the relative impact
of multi-field effects. So disentangling the two quantities
allows for a better understanding of the power spectra
and all the ways that the spectra can be made consistent
with observations.
To fully take advantage of this distinction between the

speed-up and turn rates, we redefined the standard slow-
roll approximation in [77], splitting it into two different
approximations that can be invoked either separately or
together. As background, the standard slow-roll approx-
imation is typically expressed as

ǫ ≈ 1

2
|∇ lnV |2 ≪ 1, (17)

and
∣

∣

∣

∣

∂i∂jV

V

∣

∣

∣

∣

≪ 1. (18)
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However, as argued in [77], the latter condition lumps to-
gether and simultaneously forces the speed-up rate, the
turn rate, and a quantity called the entropy mass to be
small. So instead, we redefined the slow-roll approxima-
tion to mean that the field speed is small,

ǫ =
1

2
v2 ≪ 1, (19)

and is slowly changing,
∣

∣

∣

η‖
v

∣

∣

∣
≪ 1. (20)

In other words, the above slow-roll approximation rep-
resents the minimum conditions necessary to guarantee
quasi-exponential inflationary expansion, and it corre-
sponds to limits on single-field-like behavior. As for the
turn rate, we endowed it with its own separate approxi-
mation, the slow-turn approximation, which applies when
the turn rate satisfies

η⊥
v

≪ 1. (21)

The slow-turn limit corresponds to limits on multi-field
behavior. Finally, this alternative framework does not
restrict the value of the lowest order entropy mass. (See
[77] for further discussion of these points.)
When the background field vector is both slowly rolling

and slowly turning, we call the combined slow-roll and
slow-turn limits (which is equivalent to the conventional
slow-roll limit minus the constraint on the entropy mass)
the SRST limit for brevity. In the combined limit, the
evolution equation for the fields can be approximated by

φ′ ≈ −∇
T lnV. (22)

Also in this combined limit, the speed-up rate and the
turn rate can be approximated by

η‖
v

≈ −M‖‖,
η⊥
v

≈ −M‖⊥, (23)

respectively, where we define the mass matrix, M, as the
Hessian of lnV , i.e.,

M ≡ ∇
T
∇ lnV. (24)

Being a symmetric 2 × 2 matrix, M is characterized by
three independent coefficients. In the kinematical ba-
sis, these three coefficients are M‖‖, M‖⊥, and M⊥⊥,
the third of which is the lowest order entropy mass.2 In
other words, in the kinematical basis and under the SRST
limit, we can interpret the mass matrix as follows:

M =

(

M‖‖ M‖⊥
M‖⊥ M⊥⊥

)

=

(

−speed up rate −turn rate

−turn rate entropy mass

)

,

(25)

2 We refer to M⊥⊥ as the entropy mass, even though we con-
structed it to be dimensionless.

where the speed-up rate and turn rate alone determine
the background kinematics. However, all three quantities
— the speed-up rate, the turn rate, and the entropy mass
— affect how the perturbations evolve, as described in
the next section.

III. PERTURBATIONS, TRANSFER

FUNCTIONS, AND POWER SPECTRA

In this section, we summarize the general results for
the evolution of perturbations and for the power spectra.
These expressions will enable us to calculate the bispec-
trum and trispectrum in two-field inflation and to express
the results in terms of spectral observables.
Because we know the power spectra at horizon exit

(k = aH), to find the spectra at the end of inflation,
we need to know how the modes evolve after they exit
the horizon. In [77], we derived the following general
equation of motion for the field perturbations in Fourier
space:

1

(3− ǫ)
δφ′′ + δφ′+

(

k2

a2V

)

δφ

= −
[

M+
ηηT

(3 − ǫ)2

]

δφ, (26)

where δφ represents the field perturbation in the
flat gauge, which coincides with the gauge-invariant
Mukhanov-Sasaki variable [81, 82]. (In comparison to
[77], we drop the subscript f on δφf since we are work-
ing exclusively in the flat gauge.) When the field pertur-
bations are well outside the horizon (k ≪ aH), we can

drop the subhorizon term
(

k2

a2V

)

δφ in equation (26). If

additionally the background fields are in SRST limit, the
acceleration of both the unperturbed and perturbed fields
can be neglected. Therefore, in the combined SRST and
super-horizon limits, equation (26) reduces to [77]

δφ′ ≈ −M δφ. (27)

In the first half of this section, we use the symbol ≈
to indicate relationships that hold in the SRST limit,
whereas for relationships that hold in the super-horizon
limit, we use = and note the domain of validity.
Now we switch to working in the kinematical ba-

sis, where the modes decompose into adiabatic modes,
δφ‖ ≡ e‖ · δφ, and entropy modes, δφ⊥ ≡ e⊥ · δφ. We
make this change of basis for two reasons: (1) it allows
us to identify which modes correspond to density modes,
and (2) it simplifies the super-horizon equations of mo-
tion. The adiabatic modes correspond to fluctuations
forwards or backwards along the classical trajectory, and
they represent density perturbations. By contrast, en-
tropy modes are fluctuations orthogonal to the classical
inflaton trajectory, and hence they represent relative per-
turbations among the fields that leave the overall density
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unperturbed. The super-horizon equations of motion for
the two mode types are

δφ′
‖ =

(η‖
v

)

δφ‖ + 2
(η⊥

v

)

δφ⊥,

δφ′
⊥ ≈ −M⊥⊥δφ⊥, (28)

where the first equation is valid irrespective of the be-
havior of the background fields, while the second super-
horizon equation is valid to lowest order in the slow-turn
limit. (Second-order expressions and further discussion
are given in [77].) Equation (28) shows that in the SRST
limit, the evolution of modes is determined by the three
unique coefficients of the mass matrix. The evolution
of adiabatic modes is controlled by

η‖

v ≈ −M‖‖ and by
η⊥

v ≈ −M‖⊥. The third unique coefficient of the mass
matrix, M⊥⊥, alone determines the relative damping or
growth of entropy modes. We call M⊥⊥ the lowest or-
der entropy mass (or just the entropy mass) because it
approximates the effective mass in the full second-order
differential equation of motion for the entropy modes [77].
In addition to being viewed as an effective mass, M⊥⊥
can also be viewed as a measure of the curvature of the
potential along the e⊥ or entropic direction. When the
curvature of the potential along the entropic direction is
positive, the entropy modes decay; when the curvature is
negative, the entropy modes grow.
Directly related to these two modes are the curvature

and isocurvature modes, the two quantities whose power
spectra are typically computed when considering the two-
field power spectra. The utility of working in terms of
the curvature power spectrum is that it can be directly
related to the power spectrum of metric perturbations or
density perturbations after inflation ends; the three are
equivalent up to factors of order unity. Hence, we will
also work in terms of curvature and isocurvature modes.
During inflation, the curvature and isocurvature modes

are simply related to the adiabatic and entropy modes,
respectively, by a factor of 1

v [83]. That is, the curvature
modes are given by

R =
δφ‖
v

, (29)

and the isocurvature modes by

S ≡ δφ⊥
v

. (30)

The super-horizon evolution of curvature and isocur-
vature modes can be determined from the equations
of motion for the adiabatic and entropy modes. We
parametrize the solutions through the transfer matrix
formalism [83, 84]:

(

R
S

)

=

(

1 TRS
0 TSS

)(

R∗
S∗

)

, (31)

where the transfer functions can be written as

TRS(N∗, N) ≡
∫ N

N∗

α(Ñ)TSS(N∗, Ñ) dÑ ,

TSS(N∗, N) ≡ e
∫

N

N∗
β(Ñ) dÑ . (32)

The script ∗ means that the quantity is to be evaluated
when the corresponding modes exit the horizon. The
transfer function TSS therefore represents how much the
isocurvature modes have decayed (or grown) after exiting
the horizon. The transfer function TRS represents the
total sourcing of curvature modes by isocurvature modes;
that is, it represents the importance of the multi-field
effects. In [77], we found that

α = 2
η⊥
v

(33)

exactly, which tells us that the curvature modes are only
sourced by the isocurvature modes when the field trajec-
tory changes direction. However, the isocurvature mass,
β, must be approximated or computed numerically. To
lowest order in the SRST limit,

α ≈ −2M‖⊥,

β ≈ M‖‖ −M⊥⊥. (34)

From a geometrical perspective, equation (34) for β
shows that how fast the isocurvature modes evolve de-
pends on the difference between the curvatures of the po-
tential along the entropic and adiabatic directions. From
a kinematical perspective, the isocurvature modes will
grow if the entropy modes grow faster than the field vec-
tor picks up speed. This means that isocurvature modes
tend to grow in two types of scenarios: when M⊥⊥ is
large and negative and when ǫ decreases quickly. Other-
wise, when the entropy modes do not grow faster than
the field vector picks up speed, the isocurvature modes
decay. This lengthy discussion will become more impor-
tant later when we consider the conditions for large non-
Gaussianity.
Now we present expressions for the power spectra and

their associated observables, using the above results. The
power spectrum of a quantity X is essentially the variance
of its Fourier transform:

PX (k1)δ
3(k1 + k2) =

k3

2π2
〈X (k1)X †(k2)〉. (35)

From here forward, we will work to first-order in the
SRST limit, so we will suppress the ≈ signs to avoid
having to write them repeatedly. Now using the above
results, the curvature, cross, and isocurvature spectra at
the end of inflation can be written to lowest order as [83]

PR =

(

H∗
2π

)2
1

2ǫ∗
(1 + T 2

RS),

CRS =

(

H∗
2π

)2
1

2ǫ∗
TRSTSS , (36)

PS =

(

H∗
2π

)2
1

2ǫ∗
T 2
SS ,

where it is implied that the transfer functions are eval-
uated at the end of inflation, which we take to be when
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ǫ = 1. The associated curvature spectral index is [77]

nR = ns − 1 ≡ d lnPR
dN

= nT + 2eTNM∗eN , (37)

where ns is the standard scalar spectral index that is
constrained by observations, nT = −2ǫ∗ is the tensor
spectral index, and the unit vector eN is [77]

eN = cos∆N e
∗
‖ + sin∆N e

∗
⊥, (38)

where ∆N is the correlation angle, defined by

tan∆N ≡ TRS . (39)

As we will show in the next section, the unit vector eN

points in the direction of the gradient of N , which ex-
plains why we affix the subscript N to both this unit
vector and the correlation angle. In turn, the correla-
tion angle can be given in terms of the dimensionless
curvature-isocurvature correlation, rC , which we define
as [77]

rC ≡ CRS√
PRPS

= sin∆N , (40)

in analogy to the tensor-to-scalar ratio,

rT ≡ PT

PR
= 16ǫ∗ cos

2 ∆N , (41)

where PT is the tensor spectrum of gravitational waves.
rC can also be expressed in terms of other observables:

rC =

√

1 +
rT
8nT

, (42)

so it can be determined if either isocurvature or tensor
modes are detected. Similarly, another ratio of spectra,
the isocurvature fraction,

fiso ≡ PS
PR

=
T 2
SS

1 + T 2
RS

= cos2 ∆NT 2
SS , (43)

constitutes another observable, and it gives the relative
size of TSS to TRS .
These results will enable use to calculate the bispec-

trum and trispectrum in general two-field inflation and
will allow us to express the results in terms of spectral
observables.

IV. THE BISPECTRUM

In this section, we calculate the bispectrum for general
two-field inflation using the δN formalism and the trans-
fer function formalism, which we described above. The
result can be expressed entirely in terms of spectral ob-
servables and transfer functions. We then further explore
the key term that determines whether the bispectrum is
large, and we show how this term can be calculated for
analytically solvable and similar models. We end by con-
sidering what features a general two-field inflationary po-
tential needs in order for the bispectrum to be observably
large.

A. Calculation of fNL Using the δN Formalism

We consider bispectrum configurations of the local or
squeezed type (e.g., k3 ≪ k1 ≈ k2), which is the dom-
inant type present during standard multi-field inflation.
As we showed in equation (5), the bispectrum can be ex-
pressed in terms of the dimensionless non-linear param-
eter fNL [12]. From here on, whenever fNL appears in
this paper, it represents the local form, so we drop the su-
perscript local. Non-Gaussianity of the local form arises
from the super-horizon evolution of the modes. Since
the super-horizon mode evolution is neatly encapsulated
by our two transfer functions, it is natural to consider
whether we can derive an expression for fNL in terms of
the transfer functions and the other dynamical functions
we introduced earlier. This is exactly what we will do in
this section.
We start by recognizing that fNL can be written in

terms of the δN formalism [85–87], where N represents
the number of e-folds of inflation. Under the δN formal-
ism, it can be shown that R = ∇N ·δφ [86, 87], where δφ
is measured in the flat gauge and where it is implied that
the gradient is with respect to the fields at horizon exit.
(For brevity, we drop the subscript ∗ on ∇, but restore it
in later sections whenever there might be some ambigu-
ity.) Using this result, correlators of R can be written in
terms of gradients of N . In particular, it has been shown
[88] that the local form of fNL can be written as

−6

5
fNL =

∇N ∇
T
∇N ∇

TN

|∇N |4 . (44)

To use equation (44) to find an expression for fNL,
we first find a semi-analytic formula for ∇N in two-field
inflation. By comparing equation (36) to the lowest order
result for the curvature power spectrum in multi-field
inflation [86],

PR =

(

H∗
2π

)2

|∇N |2, (45)

we obtain

|∇N | =
√

1 + T 2
RS

2ǫ∗
, (46)

where again it is implied that TRS is evaluated at the
end of inflation. Combining equation (46) with the fact
that

∇N · φ′
∗ = 1, (47)

we conclude that ∇N takes the following form in the
kinematical basis:

∇N =
1√
2ǫ∗

[

(e∗‖)
T + TRS(e

∗
⊥)

T
]

. (48)
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The above equation implies that we can also write ∇N
as

∇N =

√

1 + T 2
RS

2ǫ∗
e
T
N =

e
T
N√

2ǫ∗ cos∆N
, (49)

where e
T
N is the unit vector in the direction of ∇N and

is given by equation (38).
Next, we re-write equation (44) for fNL as

−6

5
fNL =

eTN ∇
T
∇N eN

|∇N |2 . (50)

Since eN · eN = 1, it follows that ∇eN · eN = 0, and
hence

∇
T
∇N eN = ∇

T |∇N |. (51)

Taking this result, dividing through by |∇N |, and using
equations (39) and (46), we find

∇
T
∇N eN

|∇N | = −∇
T ǫ∗
2ǫ∗

+ sin∆N cos∆N∇
TTRS . (52)

In the SRST limit, using equations (12) and (22), it holds
that

∇
T ǫ = −Mφ′. (53)

Substituting this result into equation (52) and dividing
through by another factor of |∇N |, we find that

∇
T
∇N eN

|∇N |2 =cos∆N× (54)

[

M∗e
∗
‖ + sin∆N cos∆N

√
2ǫ∗ ∇

TTRS
]

.

To complete our calculation of fNL, we need to
contract equation (54) with the unit vector eN . We
break this calculation into two parts, based on the fact
that eN = cos∆N e

∗
‖ + sin∆N e

∗
⊥. First, we contract

cos∆N (e∗‖)
T with equation (54). Using d

dN = φ′ ·∇ and

equation (46), we can write

cos∆N (e∗‖)
T
∇

T
∇N eN

|∇N |2 = cos2 ∆N
d

dN
ln |∇N |. (55)

From equations (37) and (45), it follows that

cos∆N (e∗‖)
T
∇

T
∇N eN

|∇N |2 =
1

2
cos2 ∆N (nR − nT ). (56)

Second, we calculate sin∆N (e∗⊥)
T contracted with equa-

tion (54), which yields

sin∆N (e∗⊥)
T
∇

T
∇N eN

|∇N |2 = sin∆N cos∆N×
(57)

[

M∗
‖⊥ + sin∆N cos∆N

√
2ǫ∗ e

∗
⊥ ·∇TRS

]

.

Combining equations (56) and (57), we finally arrive at
a general expression for fNL:

−6

5
fNL =

1

2
cos2 ∆N (nR − nT ) + sin∆N cos∆N

(

M∗
‖⊥ + sin∆N cos∆N

√−nT e
∗
⊥ ·∇TRS

)

. (58)

Equation (58) shows that fNL depends on just four
quantities: nR, nT , the turn rate η⊥

v ≈ −M‖⊥, and
the transfer function TRS (which sets the value of the
trigonometric functions). We cast it in the above form
to show the explicit dependence of fNL on the curvature
(scalar) and tensor spectral indices. In fact, fNL can
be written completely in terms of spectral observables,
with one exception: the term e

∗
⊥ · ∇TRS . To cast fNL

almost completely in terms of spectral observables, the
terms sin∆N , cos∆N , and M∗

‖⊥ can be replaced by the

observables rC ,
√

1− r2C , and
rC√
1−r2

C

(

nS−nC

2

)

, respec-

tively, where nC and nS are the spectral indices for the

cross and isocurvature spectra, respectively [77].

Equation (58) has another very important benefit: al-
though we derived it under the assumption of two-field
inflation, it can be applied either directly or with mini-
mal modifications to other scenarios where the interplay
between curvature and isocurvature modes can be repre-
sented by the transfer function formalism. For example,
our general expression for fNL can be applied to mixed
inflaton and curvaton models. To apply equation (58) to
such models, we used equation (36) to tease an expression
for the transfer function TRS out of the expression for
the power spectrum in [58], and then we performed the
calculations for various scenarios and found good agree-
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ment with the results in [58]. Also, although we have
not shown it here and the calculation is more difficult,
similar qualitative conditions hold for general multi-field
inflation; the main difference is that for multi-field in-
flation, the sourcing term analogous to TRS is a vector,
rather than a scalar.
A third benefit of equation (58) is that it allows us to

determine what kinds of “multi-field effects” are needed
in order for fNL to be large in magnitude. The standard
slow-roll, single-field case produces |fNL| ≪ 1, making
fNL undetectably small. Indeed, taking the single-field
limit of equation (58), we recover the consistency equa-
tion [26]

−6

5
fNL =

1

2
(nR − nT ). (59)

Yet, although adding one or more fields can produce
large non-Gaussianity, we know that the overwhelming
majority of multi-field scenarios do not produce large
non-Gaussianity. Equation (58) reveals why this is so—
namely, it reveals which kinds of multi-field effects pro-
duce large non-Gaussianity. Examining equation (58),
all terms must be significantly smaller than unity3 ex-
cept the term e

∗
⊥ · ∇TRS . Therefore, |fNL| cannot be

greater than unity unless

∣

∣sin2 ∆N cos2 ∆N (e∗⊥ ·∇TRS)
∣

∣ ∼>
1√−nT

. (60)

So we see that for |fNL| to be at least of order unity, the
multi-field effects must satisfy two requirements:

1. The total amount of sourcing of curvature modes by
isocurvature modes (TRS) must be extremely sen-
sitive to a change in the initial conditions perpen-
dicular to the inflaton trajectory. In other words,
neighboring trajectories must experience dramati-
cally different amounts of sourcing.

2. The total amount of sourcing must be non-zero
(i.e., sin∆N 6= 0) and sufficiently sized so that the
trigonometric terms do not prevent the bound in
equation (60) from being satisfied.

The first condition, that TRS be extremely sensitive to
the initial conditions, makes sense on an intuitive level.
In order to produce a large degree of skew in the primor-
dial fluctuations, perturbations off the classical trajec-
tory must move the inflaton onto neighboring trajecto-
ries that produce very different values for the curvature
perturbation at the end of inflation.

3 Observational constraints force the magnitudes of nR and nT

to be much less than unity, and the turn rate at horizon exit
must be at least somewhat less than unity to avoid violating
scale-invariance and causing a complete breakdown of the SRST
approximation at horizon exit.

0 5 10 15
0.00

0.05
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0.15

0.20

0.25
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si
n2
D

N
co

s2
D

N

FIG. 1: The trigonometric factor sin2 ∆N cos2 ∆N as a func-
tion of the total amount of mode sourcing, TRS . For reference,
when TRS = 1, half of the curvature (scalar) power spectrum
at the end of inflation is due to the sourcing of curvature
modes by isocurvature modes.

The second condition reflects the fact that in the limit
of no sourcing — which corresponds to single-field behav-
ior — the bound in equation (60) can never be satisfied.
And more likely than not, the sourcing will be moderate,
but this is not a requirement. Rather, if the total sourc-
ing is tiny (sin∆N ≪ 1) or is very large (cos∆N ≪ 1),
then the trigonometric terms will make it even that much
harder to satisfy the bound in equation (60). Figure 1
illustrates this point by showing the value of the factor
sin2 ∆N cos2 ∆N as a function of the total mode sourc-
ing, TRS . Its maximum value is 0.25, which occurs at
TRS = 1.
While we provided a preview of the conditions for large

non-Gaussianity in this section, we will revisit this topic
and treat it in much greater detail in Section (IVC).
But before doing that, we show how e

∗
⊥ · ∇TRS can be

explicitly found for some analytically solvable two-field
scenarios.

B. Calculation of e∗

⊥ ·∇∗TRS

In this section, we will proceed to take the calculation
of e∗⊥ · ∇∗TRS as far as possible. The work we present
here is mostly applicable to analytically solvable models.
As examples, we find e

∗
⊥ ·∇∗TRS for four different classes

of tractable models, and we show how strikingly similar
the results are if they are expressed in terms of ǫ, the en-
tropy mass, and the transfer functions. This underscores
the fact that only a few key quantities appear to control
the level of non-Gaussianity in two-field inflation.
Before we proceed, we note that we will indicate when

certain quantities are to be evaluated; in particular, we
use the superscript e to denote that a quantity is to be
evaluated at the end of inflation. Like in the previous
sections, the transfer functions are to be evaluated at the
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end of inflation (which we take to be when ǫ = 1), except
when explicitly indicated otherwise.
Calculating the term e

∗
⊥ · ∇∗TRS is difficult for two

reasons: (1) the field values at the end of inflation de-
pend on the field values at horizon exit and (2) TRS is
not necessarily a conservative function. To act the oper-
ator ∇∗ on the expression for TRS in equation (32), we
change variables and rewrite the equation as a line in-
tegral expression of the fields. We can convert equation
(32) into a line integral by working in the SRST limit
and by replacing the function α = 2 η⊥

v with its SRST
counterpart −2M‖⊥, which yields

TRS = −2

∫ φ
e

φ∗

TSS(φ∗,φ)
e
T
⊥M dφ√

2ǫ
. (61)

If the integrand of TRS is the gradient of a function,
then operating ∇∗ on TRS simply returns the integrand
evaluated both at horizon exit and at the end of infla-
tion, with the latter being times a matrix representing
the sensitivity of the final field values to the initial field
values. However, in general, the integrand of TRS will
not be the gradient of a function. To account for this,
we introduce a model-dependent function γ to represent
how much the integrand of TRS in equation (61) deviates
from being the gradient of a function. Now operating ∇∗
on TRS and using the new function γ, we obtain

∇∗TRS =

[

2M e⊥√
2ǫ

+ γe⊥

]

∗
−X

[

2M e⊥√
2ǫ

+ γe⊥

]

e

TSS + TRS ∇∗ (lnTSS)φe=const , (62)

where

X i
j ≡

∂C

∂φ∗
i

dφe
j

dC
. (63)

The variable C in equation (63) parametrizes motion or-
thogonal to the given trajectory, as only changes in the
initial field vector that are off the trajectory will affect the
final field values. The last new term that we introduce
is ∇∗ (lnTSS)φ

e
=const, which means to take the gradient

of lnTSS while holding the amplitude of the isocurvature
modes at the end of inflation constant. It can be thought
of as some sort of measure of the sensitivity of TSS to the
initial conditions. This term arises from the fact that act-
ing ∇∗ on TRS in equation (61) involves differentiating
under the integral, which is necessary since TSS(φ∗,φ)
depends on φ∗. We emphasize that the form we assume
for ∇∗TRS in equation (62) is best applicable to ana-
lytically solvable models and models where the coupling
term | ∂1∂2V

∂1V ∂2V
| ≪ 1 or is approximately constant, as will

become clearer later.
The matrix X that arises in the above expression cap-

tures how a change in the initial conditions at horizon
exit affects the final values of the fields at the end of
inflation. As it turns out, the matrix X has a model-
independent form, which we will now prove. First, since
C is constant along a given trajectory,

C′ = φ′ ·∇C = 0. (64)

Therefore, ∇C must be orthogonal to the inflaton tra-
jectory — that is,

∇C = |∇C| (e⊥)T . (65)

Next, consider
dφ

e

dC . Since a change in C corresponds to
motion orthogonal to the trajectory and since the δN
formalism is applied to surfaces of constant energy den-

sity (see, for example, [89]),
dφ

e

dC is parallel to e
e
⊥. Now

combining this fact with equation (65) and with

1 =
dC

dC
=

dφe

dC
·∇eC (66)

implies that dφe

dC = |∇C|−1
e e

e
⊥. Substituting this result

and equation (65) into equation (63) yields

X =
|∇C|∗
|∇C|e

e
∗
⊥(e

e
⊥)

T . (67)

Finally, we express the ratio of the norms of the gradients
of C at horizon exit and the end of inflation in terms of a
physical quantity: the relative amplitude of the entropy
modes. Since δC = δφ ·∇C, then for a given variation
in the trajectory, δC, we have

|∇C|∗ δφ∗
⊥ = |∇C|e δφe

⊥. (68)

Combining equations (67) and (68), we finally arrive at
the model-independent expression

X =

(

δφe
⊥

δφ∗
⊥

)

e
∗
⊥(e

e
⊥)

T =

√

2ǫe
2ǫ∗

TSS e
∗
⊥(e

e
⊥)

T . (69)

This interesting result shows that the sensitivity of
the final field values to the initial field values can be
given very simply in terms of the relative growth or de-
cay of entropy modes. In other words, the evolution of
entropy modes mirrors whether neighboring trajectories
converge or diverge over time. In scenarios where neigh-
boring trajectories converge (“attractor solutions”), the
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entropy modes decay. However, when neighboring trajec-
tories diverge, the entropy modes grow. That such a rela-
tionship should hold between the convergence/divergence
of neighboring trajectories and the evolution of entropy
modes makes sense. From a geometrical perspective, we
intuitively expect that a positive curvature along the en-
tropic direction focuses neighboring trajectories, whereas
a negative curvature creates a hill or ridge in the poten-
tial, causing neighboring trajectories to diverge. But we
also know that the curvature along the entropic direction
determines the evolution of entropy modes. By equation

(28), the entropy modes grow when M⊥⊥ < 0 and decay
when M⊥⊥ > 0, and how quickly they do so depends on
the magnitude of the curvature. Combining these two
facts together, we could have concluded that the diver-
gence/convergence of neighboring trajectories must cor-
relate with the growth/decay of entropy modes, with-
out even deriving this result. Nonetheless, equation (69)
gives this important relationship explicitly.

Now substituting equation (69) into equation (62) and
projecting the result onto e

∗
⊥, we obtain

√
2ǫ∗ e

∗
⊥ ·∇∗TRS =

(

2M∗
⊥⊥ +

√
2ǫ∗ γ∗

)

−
(

2M e
⊥⊥ +

√
2ǫe γe

)

T 2
SS +

√
2ǫ∗ TRS e

∗
⊥ ·∇∗ (lnTSS)φ

e
=const . (70)

The above relation gives us a nice way to understand
what geometrical and physical attributes are needed to
produce sourcing that is very sensitive to changes in the
initial conditions orthogonal to the inflaton trajectory.
The above equation shows that the sensitivity of TRS to
the initial conditions is determined by ǫ, M⊥⊥, TSS , TRS ,
and the model-dependent factor γ. Notice how strongly
TSS controls

√
2ǫ∗ e∗⊥ ·∇∗TRS .

At this point, it is not possible to proceed any further
without specifying the inflationary potential. In the re-
mainder of this section, we discuss how to find the model-
dependent terms TSS and γ, which arise in the expression
for e∗⊥ ·∇∗TRS ,. We will illustrate the procedure by con-
sidering four classes of inflationary models.
First, recall that we defined the model-dependent func-

tion γ so that it is zero whenever TRS is a conservative
function. This occurs for product potentials, defined as

V = V1(φ1)V2(φ2), (71)

and can be attributed to the fact that in these models,
the two fields evolve independently of each other. γ is
therefore non-zero whenever the evolutions of the two
fields influence each other.
We can see that γ is zero for product potentials as

follows. For product potentials, the isocurvature mass
equals

β = M‖‖ −M⊥⊥ = (tan θ − cot θ)M‖⊥, (72)

where θ is the polar coordinate in the (φ′
1, φ

′
2) plane —

that is,

tan θ ≡ φ′
2

φ′
1

. (73)

Using −M‖⊥ ≈ η⊥

v = θ′ and plugging equation (72) into
equation (32), one finds that the transfer function TSS
for these models can be approximated by

TSS =
sin θe cos θe
sin θ∗ cos θ∗

. (74)

Substituting η⊥

v = θ′ and equation (74) into equation
(32) yields

TRS =

∫ Ne

N∗

2θ′
sin θ cos θ

sin θ∗ cos θ∗
dN,

=
1

sin θ∗ cos θ∗

∫ Ne

N∗

d

dN

(

sin2 θ
)

dN, (75)

which integrates to give

TRS =
1

sin θ∗ cos θ∗

(

sin2 θe − sin2 θ∗
)

,

= − tan θ∗ + tan θeTSS . (76)

Now we take the gradient of the above transfer function
and use that

∇e‖ = ∇(cos θ, sin θ) = −Me⊥√
2ǫ

e
T
⊥ (77)

in the SRST limit for any two-field model of inflation.
Finally, projecting the result onto e

∗
⊥ and using equation

(72), we find
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√
2ǫ∗ e

∗
⊥ ·∇∗TRS =2M∗

⊥⊥ − 2M e
⊥⊥(TSS)

2 +
√
2ǫ∗ TRS e

∗
⊥ ·∇∗ (lnTSS)φe=const ,

=2M∗
⊥⊥ − 2M e

⊥⊥(TSS)
2 +

(

M∗
⊥⊥ −M∗

‖‖
M∗

‖⊥

)

M∗
⊥⊥TRS . (78)

where again TSS for product potentials is given by equa-
tion (74). Comparing the first line of equation (78) to
equation (70) indeed shows that γ = 0.
Now for general two-field inflation, we can use a simi-

lar procedure to find the model-dependent term γ. Since
γ measures how much TRS deviates from being a conser-
vative function and whether TRS is conservative depends
on TSS , γ depends on TSS . Therefore, we must first find
a general expression for the transfer function TSS . Start-
ing from equation (42) in [90], after some algebra, we can
show that this implies that TSS takes the form

TSS =

(

sin θe cos θe
sin θ∗ cos θ∗

)

exp

[

∫ Ne

N∗

M12

sin θ cos θ
dN

]

,

=

(

sin θe cos θeVe

sin θ∗ cos θ∗V∗

)

s(φ∗,φe), (79)

where M12 ≡ ∂1∂2 lnV and

s(φ∗,φe) ≡ exp

[

−
∫ φe

φ∗

(

V ∂1∂2V

∂1V ∂2V

)

∇ lnV · dφ
]

.

(80)

Equation (80) shows that whenever
(

V ∂1∂2V
∂1V ∂2V

)

is con-

stant, s(φ∗,φe) becomes analytic and hence TSS be-
comes analytic. This means that there are several in-
stances in which we can find either exact or approxi-
mate analytic expressions for the isocurvature modes.
For product potentials, M12 = 0 in equation (79), re-
producing the result for TSS that we derived in equation
(74). For sum potentials, defined as

V = V1(φ1) + V2(φ2), (81)

the coupling term ∂1∂2V = 0, and so

TSS =
sin θe cos θeVe

sin θ∗ cos θ∗V∗
. (82)

Equation (82) can also be used to approximate TSS in

scenarios where
∣

∣

∣

V ∂1∂2V
∂1V ∂2V

∣

∣

∣
≪ 1 during all of inflation. Fi-

nally, in the more general case where
(

V ∂1∂2V
∂1V ∂2V

)

is ap-

proximately constant during inflation, TSS can be ap-
proximated by an analytic function similar to equation

(82), but possessing additional powers of (Ve/V∗). Im-
portantly, all of the above models share the commonality

that either M12 or
(

V ∂1∂2V
∂1V ∂2V

)

is exactly or approximately

constant. And whenever this is true, we have that the
last term in equation (70) equals
√
2ǫ∗ e

∗
⊥·∇∗(lnTSS)φ

e
=const = (cot θ∗ − tan θ∗)M

∗
⊥⊥,
(83)

since gradients of functions of V do not contribute to
e
∗
⊥ ·∇∗(lnTSS)φ

e
=const. Hence for the above mentioned

models, the expression encapsulating the sensitivity of
TSS to the initial conditions always has the same form.

Otherwise, when neither the term M12 nor
(

V ∂1∂2V
∂1V ∂2V

)

is

approximately constant, this adds extra terms to e
∗
⊥ ·

∇∗(lnTSS)φ
e
=const that contribute to fNL.

Now that we have a general solution for TSS , we
can proceed to find an expression for γ. To find γ,
we plug the expression for TSS into equation (32) for
TRS . Integrating by parts again using the fact that
(sin2 θ)′ = 2 sin θ cos θθ′, we obtain the following integral
expression:

TRS =− tan θ∗ + tan θeTSS− (84)

1

sin θ∗ cos θ∗V∗

∫ φe

φ∗

dφ ·∇ [V s(φ∗,φ)] sin
2 θ.

The perpendicular component of the gradient of TRS can
be calculated directly from the above equation, where
equation (77) comes in handy.4 And by cleverly grouping
the terms in the resultant expression, we can determine
γ.
For example, for sum potentials, the function s(φ∗,φ)

equals unity, so the integral in equation (84) evaluates to
∫ φ

e

φ∗
sin2 θ∇V · dφ = V e

2 − V ∗
2 , producing

TRS =− tan θ∗ +
V ∗
2

sin θ∗ cos θ∗V∗

+

(

tan θe −
V e
2

sin θe cos θeVe

)

TSS . (86)

Taking the gradient of the above expression, e∗⊥ ·∇∗TRS
for sum potentials can be written as
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4 From equation (84), we can also derive an upper limit for TRS

for general two-field inflation whenever the SRST limit is a valid
approximation. Using the fact that sin2 θ ≤ 1, we find from
equation (84) that

TRS ≤ cot θ∗ − cot θeTSS . (85)

√
2ǫ∗ e

∗
⊥ ·∇∗TRS =(2M∗

⊥⊥ − 2ǫ∗)− (2M e
⊥⊥ − 2ǫe)T

2
SS +

√
2ǫ∗ TRS e

∗
⊥ ·∇∗ (lnTSS)φe=const ,

=(2M∗
⊥⊥ − 2ǫ∗)− (2M e

⊥⊥ − 2ǫe)T
2
SS +

(

M∗
⊥⊥ −M∗

‖‖ − 2ǫ∗

M∗
‖⊥

)

M∗
⊥⊥TRS , (87)

where TSS is given by equation (82). Hence, by com-
paring the first line of equation (87) to equation (70),

we conclude that γ = −
√
2ǫ for sum potentials. Sim-

ilarly, for potentials of the form V ∝ ωp, where ω =
V1(φ1) + V2(φ2), we find that

TSS =
sin θe cos θeωe

sin θ∗ cos θ∗ω∗
, (88)

and hence

TRS =− tan θ∗ +
V ∗
2

sin θ∗ cos θ∗ω∗

+

(

tan θe −
V e
2

sin θe cos θeωe

)

TSS . (89)

Therefore,
√
2ǫ∗ e∗⊥·∇TRS for these potentials is identical

to the right-hand side of equation (87), except with the
substitution of 2ǫ → 2ǫ/p and except that equation (88)

is used for TSS . Hence, γ = − 1
p

√
2ǫ for these models.

Finally, we consider one last case, which is broader in
scope. For all potentials that satisfy

(

V ∂1∂2V

∂1V ∂2V

)

= c, (90)

where c is either exactly or approximately constant, we
can also find TSS and γ. This corresponds to the case
where

(

∂1V

V c
,
∂2V

V c

)

= (f(φ1), g(φ2)), (91)

where f and g are arbitrary functions of their arguments.
The above two equations allow us to find TSS analyti-
cally:

TSS =
sin θe cos θeV

(1−c)
e

sin θ∗ cos θ∗V
(1−c)
∗

. (92)

Following a procedure similar that which we followed for
sum potentials, the above two equations imply that γ =
(c − 1)

√
2ǫ. Indeed, the product (c = 0), sum (c = 1),

and V ∝ [V1(φ1)+V2(φ2)]
p (c = 1− 1

p ) potentials can be

seen as subcases of this broader class of models.
In considering four tractable examples with analytic

transfer functions TSS , we saw that the results for
e
∗
⊥ · ∇∗TRS were strikingly similar for these models.

For each class of models we considered, e
∗
⊥ · ∇∗TRS

depends on ǫ, the entropy mass, and the two transfer
functions. Although fNL has been calculated before for
three of these four models—for product potentials by
[46], sum potentials by [47], and potentials of the form
V ∝ [V1(φ1)+V2(φ2)]

p by[50]—the results in this and the
previous section cast the expressions in what we believe
is a more transparent physical form. In particular, this
formulation reveals how very strongly the isocurvature
modes control the size of fNL.
To find γ for other potentials, if TSS can be found

analytically, then following the procedure outlined here
may lead to an analytic formula for e∗⊥·∇∗TRS . For weak
coupling among the fields, we expect γ to be of order
the slow-roll parameters, as it was for all the models we
considered in this section. However, this term may be
larger in the limit of strong coupling. Otherwise, if TSS
cannot be found analytically, then e

∗
⊥ · ∇∗TRS can be

computed numerically.

C. Conditions for Large |fNL|

As we showed in Section (IVA), if the power spectra
are nearly scale-invariant, the magnitude of fNL can be
greater than unity only if | sin2 ∆N cos2 ∆N

√−nT e
∗
⊥ ·

∇∗TRS | & 1. Satisfying this bound requires that two
conditions be met: (1) that TRS be extremely sensitive
to changes in the initial conditions perpendicular to the
given trajectory and (2) that the amount of sourcing be
non-zero. In this section, we explore these two condi-
tions in more detail, and we investigate what features
an inflationary potential needs in order to produce large
non-Gaussianity.
We start by considering the second condition, since

it is easier to understand. The second condition, that
the sourcing must be non-zero, requires that TRS 6= 0.
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By equations (32) and (33), this in turn requires that
the turn rate not be zero for all of inflation. Typically,
we will also find that the sourcing of curvature modes
by isocurvature modes will be moderate, although this
is not required; rather, weak sourcing (sin∆N ≪ 1) or
strong sourcing (cos∆N ≪ 1) simply makes the bound
in equation (60) even that much harder to satisfy. In
other words, searching for scenarios where the sourcing
is moderate maximizes the chance of finding scenarios
that produce large non-Gaussianity. To achieve moder-
ate sourcing, how much of a turn is needed depends on
the relative amplitude of the isocurvature modes during
the turn. If the isocurvature modes are small at the time,
then a larger turn is need. However, if the isocurvature
modes are large, then only a minuscule turn in the tra-
jectory is needed. Conversely, in scenarios where |fNL| is
large, but the sourcing is either very weak or very strong,
we expect more extensive fine-tuning will be involved.
Now let us examine the first condition for large |fNL|.

The first condition, that TRS be very sensitive to a
change in initial conditions orthogonal to the trajectory,
means that neighboring trajectories must experience very
different amounts of sourcing. This requirement can be
understood as follows: perturbations off the classical tra-
jectory must move the inflaton onto neighboring trajecto-
ries that experience very different dynamics for the cur-
vature perturbation. This instability in the inflaton tra-
jectory is required to produce a large degree of skew in
the primordial fluctuations.
After arriving at this qualitative prescription, it is im-

portant to explore what features are needed to make the
sourcing function TRS so sensitive to the initial condi-
tions. To start, we can examine equations (32), (33),
and (34). These equations show that TRS is determined
by an integral of the turn rate times relative amplitude of
isocurvature modes (TSS). Therefore, to satisfy the first
condition for large non-Gaussianity, neighboring trajec-
tories need to have very different turn rate profiles, TSS
profiles, or both.
In Section (IVB), we attempted to explore the first

condition from a more quantitative perspective. This
can be done in models where TRS can be approximated
by an analytic function. For the collection of models we
considered, our goal was to determine the dependence of
e
∗
⊥ ·∇∗TRS on the dynamical and physical attributes of

the inflationary scenario. Let us now consider the key re-
sult of that section: equation (70). Examining equation
(70) reveals that

√−nT e
∗
⊥ ·∇∗TRS will be large in mag-

nitude for these models if at least one of the following
three conditions is met:

1. 2M∗
⊥⊥ +

√
2ǫ∗γ∗ is large in magnitude,

2. (2M e
⊥⊥ +

√
2ǫeγe)T

2
SS is large in magnitude, or

3. TSS is very sensitive to changes in the initial condi-
tions orthogonal to the inflaton trajectory — more
specifically, that

√
2ǫ∗ e∗⊥ ·∇∗ ln(TSS)φe=constant is

large in magnitude.

In conventional slow-roll, the magnitudes of the entropy
mass (M⊥⊥) and the other slow-roll parameters at hori-
zon exit are significantly less than unity, so only the latter
two conditions can be satisfied. If we assume conven-
tional slow-roll at horizon exit and additionally that the
magnitudes of M e

⊥⊥ and γe not much greater than unity,
then for detectably large fNL, the second condition above
requires that T 2

SS ∼ O(10). If we tighten the constraints
even further, strictly requiring that |M⊥⊥| ≪ 1 during
all of inflation, then the second condition becomes even
more stringent, requiring that T 2

SS be very large, at least
of order O(100). Regardless of the exact constraints im-
posed on M e

⊥⊥, these conditions suggest that to produce
large |fNL| when equation (70) holds, then the isocur-
vature modes must be very large at the end of inflation
and/or their relative amplitude (TSS) needs to be very
sensitive to the initial conditions.

Let us reconcile this statement with the criteria for
large bispectra for product potentials and sum poten-
tials, as articulated by Byrnes et. al. [48]. For product
potentials, Byrnes et. al. found that fNL will be large
in magnitude when one of the two fields starts with far
more kinetic energy than the other (either cot θ∗ ≫ 1 or
tan θ∗ ≫ 1) and when the asymmetry in the kinetic ener-
gies of the two fields diminishes significantly by the end
of inflation. The reason that these two conditions pro-
duce large bispectra in product potentials is that they
together guarantee three things: that TSS ≫ 1 (which
follows from equation (74)), that TSS is very sensitive
to changes in the initial conditions orthogonal to the
inflaton trajectory, and that the turn rate is small yet
significant enough to produce moderate sourcing. Inter-
estingly, this means that for product potentials, both the
second and third conditions for large

√−nT e
∗
⊥ ·∇∗TRS

are always simultaneously satisfied, as the third condi-
tion combined with the requirement that the total sourc-
ing is moderate guarantees the second condition, and vice
versa. For sum potentials, the conditions for large bis-
pectra are a bit more complicated to untangle but end
up being similar; however, the expression for TSS con-
tains a factor of Ve

V∗
, so there may be a way to somehow

satisfy condition 3 without requiring that the isocurva-
ture modes be large at the end of inflation. Although
we state the conditions for large |fNL| differently and
slightly extend them in scope by relaxing constraints on
M⊥⊥, our conditions otherwise agree with those uncov-
ered by Byrnes et. al. [48]. The benefit of our variant of
these same conditions is that our version shows that the
amplitude of the isocurvature modes at the end of infla-
tion and their sensitivity to perturbations in the classical
trajectory are what determines whether non-Gaussianity
has any chance of being large.

Let us return to the general case of two-field inflation.
Now that we have explored the conditions for large |fNL|
separately, we might wonder whether the two most gen-
eral conditions give us any constraints on the possible
ways that the turn rate and/or TSS can vary and still
produce large |fNL|. The answer to this question is yes.
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We can best see this by considering the sourcing function
TRS . Consider the case where the amplitude of isocurva-
ture modes never exceeds its value at horizon exit, i.e.,
TSS(N∗, N) ≤ 1. In this case, TRS can never exceed

TRS ≤ 2

∫ Ne

N∗

θ′ dN = 2(θe − θ∗), (93)

where again θ is the polar angle for the field velocity
vector. For the most common scenarios, the field velocity
vector does not turn through an angle of more than 90o,
yielding a bound of

TRS ≤ π. (94)

Let us compare this bound of TRS ≤ π with a nu-
merical example. If ǫ∗ = 0.02 and we assume nearly
scale-invariant scalar and tensor spectra, then we need
e
∗
⊥ · ∇∗TRS & 60 in order to produce |fNL| ≈ 3. At

a glance, this seems extremely difficult to achieve given
the bound in equation (94) and the desirability of mod-
erate sourcing. Now within this set of scenarios where
TSS(N∗, N) ≤ 1 during all of inflation, let us consider
the subset for which M⊥⊥ ≥ 0 both along and in a
small neighborhood about the classical inflaton trajec-
tory. If M⊥⊥ ≥ 0 always holds, then neighboring trajec-
tories must converge (or at least not diverge) over time.
Since neighboring trajectories remain close to each other
during all of inflation and thus must turn through ap-
proximately the same angle, TRS cannot differ widely
among neighboring trajectories without discontinuous or
other extreme features in the potential that violate the
SRST conditions. To be more precise, this would re-
quire the speed-up rate, turn rate, and/or entropy mass
to be hugely varying in the direction orthogonal to the
given trajectory, which effectively constitutes a violation
of higher-order SRST parameters. In particular, it is
not possible for a neighboring trajectory to have a much
larger or smaller turn rate for a substantial period of
time without having the two trajectories diverge,5 which
would violate our assumption that M⊥⊥ ≥ 0. Therefore,
we argue that large non-Gaussianity cannot be produced
in scenarios where both TSS(N∗, N) ≤ 1 and M⊥⊥ ≥ 0
during all of inflation.
Since we argue that it is not possible to achieve large

non-Gaussianity during inflation if both TSS(N∗, N) ≤ 1
and M⊥⊥ ≥ 0 during all of inflation, then to produce
large non-Gaussianity, one or both of these conditions
must be violated during inflation. That is, the super-
horizon isocurvature modes must grow and/or neighbor-
ing trajectories must diverge at least for some time dur-
ing inflation. If we adopt the common assumptions that
ǫ∗ ≪ 1, ǫ never drops below its value at horizon exit,

5 We make the usual unstated assumption that there are no clas-
sical degeneracies in the gradient of lnV , which means that tra-
jectories cannot cross each other.

and ǫ increases significantly (but not necessarily mono-
tonically) in order to end inflation, then the only way
to satisfy TSS(N∗, N) > 1 is for the entropy modes to
grow. But this in turn implies that M⊥⊥ < 0. So under
these minimal assumptions on ǫ, TSS > 1 automatically
implies that M⊥⊥ < 0. Therefore, to obtain large non-
Gaussianity under these assumptions, we conclude that
we must have M⊥⊥ < 0 during at least part of inflation.

This conclusion leads to very important implications
for the geometry of the inflationary potential. As long
as ǫ does not dip below ǫ∗ during inflation, then large
non-Gaussianity requires M⊥⊥ < 0, which implies that
the curvature of lnV along the entropic direction is nega-
tive. Geometrically, what this means is that the inflaton
must roll along a ridge in the potential for some time
during inflation. That is, the inflaton trajectory must be
unstable, so that neighboring trajectories diverge. More-
over, the potential must not only possess a ridge, but the
initial conditions must be fine-tuned so that the infla-
ton rolls along the ridge for a sufficiently long time and
so that the inflaton trajectory turns somewhat during
inflation so that TRS 6= 0. Furthermore, since large non-
Gaussianity is more likely to be realized when the sourc-
ing is moderate, we will typically find that the steeper
the ridge that the inflaton rolls along, the smaller the
turn in the trajectory tends to be. However, if ǫ can dip
significantly below ǫ∗, then there may be a way to re-
alize large non-Gaussianity in two-field inflation without
needing a ridge in the potential.6 For the purposes of
this paper, we will not focus on this potential exception,
as very few models satisfy the requisite ǫ ≪ ǫ∗ necessary
to potentially circumvent our general prescription.

In Figure 2, we show an example of a potential with a
steep ridge that provides the perfect conditions to make
the total sourcing (TRS) so sensitive to the initial condi-
tions. The trajectory of interest (solid lines) rolls along
the ridge and turns ever so slightly at the end of infla-

6 If we relax the assumption that ǫ never decreases below its value
at horizon exit, then it may be possible to produce large |fNL|
in two-field inflation without any negative curvature along the
entropic direction. Indeed, Byrnes et. al. [64] showed that this
is possible for a three-field model: a two-component hybrid infla-
tion model, where we are counting the waterfall field as the third
field. During the first phase of inflation, which is governed by
a vacuum-dominated sum potential and during which only two
of the fields are active, ǫ exponentially decays after the given
modes exit the horizon. The exponential decay of ǫ causes the
isocurvature modes to grow dramatically during the initial phase
of inflation, resulting in TSS ≫ 1. As a result of the very large
isocurvature modes, TRS greatly exceeds the bound in equation
(93) and can vary dramatically among neighboring trajectories
even in the SRST limit. Hence, large non-Gaussianity is pro-
duced in this scenario, even before the waterfall field comes into
play. Here, the large exponential decay in ǫ, which hugely boosts
the amplitude of the isocurvature modes, circumvents the abso-
lute need for a negative entropy mass at some point during in-
flation. However, in this model, a third field, the waterfall field
with its associated negative mass, is needed to end inflation.
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FIG. 2: For |fNL| to be large, the amount of sourcing of curvature modes by isocurvature modes (TRS) must be extremely
sensitive to changes in the initial conditions orthogonal to the trajectory and the amount of sourcing must be non-zero (and most
likely, it will be moderate). We argue that under some minimal assumptions on ǫ, this implies that the inflaton must roll along a
ridge in the potential for some time and that its trajectory must turn at least slightly. Above is an example of a trajectory (solid

lines) that meets these criteria. We use the potential V (φ1, φ2) =
1

2
e−λφ2

2m2φ2

1, which Byrnes et. al. thoroughly investigated

in [48]. We set λ = 0.05 and illustrate the results for two trajectories: (1) one that starts at (φ∗
1, φ

∗
2) = (17, 10−4), follows along

the ridge, and turns slightly at the end of inflation (solid lines), and (2) a neighboring trajectory that starts only |∆φ
∗
| = 0.01

away in field space, but that eventually rolls off the narrow ridge (dashed lines). The plot on the left shows the inflationary
potential as a function of the fields, along with the two inflaton trajectories. The plots on the right show the turn rate, the
relative amplitude of isocurvature modes (TSS), and the total sourcing (TRS) as a function of N . Here, the approximately
50-fold difference in the total sourcing stems more from the difference in the turn rates for the two trajectories, which both
possess large isocurvature modes. Interestingly, the trajectory that rolls along the ridge (solid lines) produces |fNL| ∼ 102,
while the neighboring trajectory (dashed lines) corresponds to |fNL| ≈ 1 [48], visually illustrating the role of fine-tuning in
achieving large non-Gaussianity.

tion, resulting in large isocurvature modes and moder-
ate sourcing, and therefore producing |fNL| ∼ 102. By
comparison, a neighboring trajectory (dashed lines) even-
tually rolls off the ridge, producing large isocurvature
modes but resulting in very strong sourcing. As a result,
this second trajectory produces |fNL| ≈ 1, which is below
the detection threshold for CMB experiments.

Cumulatively, these results explain why it has been
so difficult to realize large non-Gaussianity in two-field
inflation. First, models with purely attractor solutions
(meaning M⊥⊥ ≥ 0 during all of inflation) and that sat-
isfy ǫ ≥ ǫ∗ in the super-horizon regime cannot produce
large non-Gaussianity. Second, even in models without

purely attractor solutions, the potential must be fine-
tuned enough to possess a steep ridge, while the initial
conditions must be fine-tuned enough that the inflaton
rolls along the ridge for a significant length of time during
inflation, but also slightly turns. Nonetheless, a few two-
field scenarios that produce large non-Gaussianity have
been identified. For example, Byrnes et. al. [48] showed
that product potentials where one of the two fields domi-
nates the inflationary dynamics (meaning that the kinetic
energy of one field is much larger than the kinetic energy
of the other) during all of inflation, but the subdomi-
nant field picks up speed logarithmically faster than the
dominant field produce large |fNL|. Given the results in
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this section, we suggest focusing future searches for large
non-Gaussianity on models in which the entropy mass is
negative during the super-horizon limit.

V. TRISPECTRUM

Now we calculate the local form of the trispectrum.
The local trispectrum can be expressed in terms of two
dimensionless non-linear parameters, τNL and gNL:

TR = τNL [PR(|k1 + k3|)PR(k3)PR(k4) + 11 perms]

+
54

25
gNL [PR(k2)PR(k3)PR(k4) + 3 perms] . (95)

Under the δN formalism, these parameters can be writ-
ten as [91, 92]

τNL =
e
T
N ∇

T
∇N ∇

T
∇N eN

|∇N |4 ,

54

25
gNL =

e
T
N ∇

T
∇∇N eN eN

|∇N |3 . (96)

Since the expression for gNL is less illuminating and
cannot be written exclusively in terms of other observ-

ables, we focus on τNL. Equation (96) for τNL is equiv-
alent to

τNL =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∇
T
∇N eN

|∇N |2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

. (97)

Using equation (97) and the fact that we already cal-

culated the vector ∇
T
∇N eN

|∇N |2 in equation (54), we can

quickly arrive at the answer. Dividing equation (56) by

cos∆N , we obtain the e∗‖ component of ∇
T
∇N eN

|∇N |2 :

(e∗‖)
T
∇

T
∇N eN

|∇N |2 =
1

2
cos∆N (nR − nT ). (98)

Similarly, dividing equation (57) by sin∆N gives us the
e
∗
⊥ component:

(e∗⊥)
T
∇

T
∇N eN

|∇N |2 = cos∆N× (99)

[

M∗
‖⊥ + sin∆N cos∆N

√
2ǫ∗ e

∗
⊥ ·∇∗TRS

]

.

Substituting the above two equations into equation (97),
we find that

τNL =
1

4
cos2 ∆N (nR − nT )

2 + cos2 ∆N

[

M∗
‖⊥ + sin∆N cos∆N

√−nT e
∗
⊥ ·∇TRS

]2

. (100)

Using equations (37), (40), and (58), we can write τNL

completely in terms of observables, giving the following
consistency condition:

τNL =
1

4

(

1− r2C
)

(nR − nT )
2 +

1

r2C

[

6

5
fNL +

1

2

(

1− r2C
)

(nR − nT )

]2

, (101)

where recall that rC is the curvature-isocurvature corre-
lation. This gives us a new consistency relation that is
unique to two-field inflation and that relates the observ-
ables τNL, fNL, nR, nT , and rC .

Examining equation (100), we find that τNL cannot be
large unless

√−nT e
∗
⊥ ·∇TRS is large in magnitude. So

like for |fNL|, τNL cannot be large unless the inflaton
trajectory lies along an instability in the potential that
causes TRS to vary dramatically among neighboring tra-
jectories. Equivalently, by equation (101), τNL can only

be large if
(

fNL

rC

)2

is large. Previously, Suyama and Ya-

maguchi [70] showed that

τNL ≥
(

6

5
fNL

)2

, (102)

proving that τNL will be large whenever f2
NL is large.

But this result still left open the question of whether it
is possible for τNL to be large if f2

NL is not. This ques-
tion has since been answered affirmatively for particular
models (e.g., [64, 71]). Above we show that it is more
generally possible for τNL to be large even if f2

NL is not,
but only if

√−nT e
∗
⊥ · ∇TRS is large in magnitude and

r2C ≪ 1. As rC = sin∆N , this means that the combi-
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nation of large τNL and small f2
NL can only appear in

two-field models where the sourcing effects are weak —
that is, when TRS is much smaller than 1.
Now we consider the limit where |fNL| & 1. In this

limit, equation (101) reduces to

τNL ≈ 1

r2C

(

6

5
fNL

)2

, (103)

and how much τNL exceeds the Suyama-Yamaguchi
bound depends only on rC . While we might naively ex-
pect that making rC as small as possible would maximize
the value of τNL relative to f2

NL, this is not necessarily
the case. This is because there is a trade-off: scenarios
in which the multi-field effects are very small (rC ≪ 1)
behave in many ways like single-field models and hence
they are likely to produce small values for |fNL|. There-
fore, to further reduce rC while preserving larger values
for |fNL| typically comes at the expense of even more

fine-turning. Therefore, for detectable non-Gaussianity
without excessive fine-tuning, we expect that most mod-
els will produce a value for τNL that is no more than one
to two orders of magnitude greater than f2

NL.

We conclude this section by finding an expression for
gNL. However, the result can be expressed only partially
in terms of observables. Below, we cast the result in the
most simple and transparent way. Starting by operating

1
|∇N | eN · ∇ on the expression for fNL, and then using

the definitions of the non-linear parameters and that

τNL =
e
T
N ∇

T (|∇N |eTN )∇T
∇N eN

|∇N |4 , (104)

=

(

e
T
N ∇

T
∇NeN

|∇N |2

)2

+
e
T
N (∇T

e
T
N )∇T

∇N eN

|∇N |3 ,

gNL can be written as

54

25
gNL = −2τNL + 4

(

6

5
fNL

)2

+

√

rT
8

eN ·∇
(

−6

5
fNL

)

. (105)

The last term in equation (105) is equivalent to

√

rT
8

eN ·∇
(

−6

5
fNL

)

= (1− r2C)

(

−6

5
fNL

)′
+ rC

√

−nT (1 − r2C) e
∗
⊥ ·∇

(

−6

5
fNL

)

, (106)

where d
dN ≈ d

d lnk . So the last term in equation (105)
is a linear combination of the scale-dependence of fNL

and of the sensitivity of fNL to changes in the initial
conditions orthogonal to the trajectory. (For an entry
point into the literature on the scale-dependence of local
non-Gaussianity, we refer the interested reader to [93–
95].) Taken together, this means that gNL can be large in
magnitude only if τNL is large, f2

NL is large, and/or if fNL

varies dramatically in a small neighborhood about the
initial conditions. Therefore, if gNL is large, but neither
τNL and fNL are, then it means that fNL has very strong
scale-dependence and/or that the inflaton trajectory is
near neighboring trajectories that do produce large fNL.

Finally, we remark that equations (101) (or (103)) and
(105) are important because the relationships among the
observables fNL, τNL, and gNL will help us probe the
model-dependent nature of inflation. Different scenarios
can produce widely different values for these three pa-
rameters, which provides another way to test inflationary
models. There has already been some interesting work

to classify models by the relationship among fNL, τNL,
and gNL, in particular by Suyama et. al. [96]. Our work
adds to this by showing that it is the degree of sourcing
(TRS) that determines the relationship between fNL and
τNL, thereby demystifying what controls the Suyama-
Yamaguchi bound in two-field inflation. Also, we have
shown that while the relationship among all three pa-
rameters is complicated, comparing the values of the pa-
rameters with equation (105) will give us some further
insight into the nature of inflation.

VI. CONCLUSIONS

In this paper, we considered the local form of the bis-
pectrum and trispectrum in general two-field inflation.
We found semi-analytic expressions for fNL, τNL, and
gNL, and we developed a set of novel conditions encap-
sulating when non-Gaussianity is large. To do so, we
worked within the δN formalism, which expresses the
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bispectrum and trispectrum in terms of gradients of N ,
where N is the number of e-folds of inflation. To per-
form the calculation, we invoked the slow-roll and slow-
turn approximations, and we used a unified kinematical
framework and the transfer matrix formalism.
We showed that fNL can be written in terms of sines

and cosines (related to the degree of sourcing) times
nR = 1 − ns, nT , the turn rate at horizon exit, and
e
∗
⊥ ·∇∗TRS , where TRS is the transfer function that en-

codes the relative degree of sourcing of curvature modes
by isocurvature modes. As the magnitudes of all quanti-
ties but the term sin2 ∆N cos2 ∆N

√−nT e
∗
⊥ ·∇∗TRS are

constrained to be less than unity, |fNL| can only be large
when (1) TRS is extremely sensitive to a change in ini-
tial conditions orthogonal to the inflaton trajectory and
(2) the total sourcing is non-zero. The former condition
makes sense on an intuitive level, as to produce a large
amount of skew in the primordial perturbations, fluctu-
ations off the classical inflaton trajectory must result in
very different inflationary dynamics for the field pertur-
bations. Now since TRS is an integral of the turn rate
and the relative amplitude of isocurvature modes (TSS),
the former condition implies that neighboring trajecto-
ries must have dramatically different turn rate profiles,
TSS profiles, or both. Though we only presented proofs of
these conditions for two-field inflation, similar conditions
hold for multi-field inflation as well. Moreover, one of the
important benefits of our expression for fNL is that it can
be applied either directly or with modifications to other
scenarios described by the transfer function formalism.
Next, we found an expression for e∗⊥ ·∇∗TRS for four

analytically solvable scenarios, and we outlined a pre-
scription to try in the more general case when TSS is
analytic. We found that the result depends on the en-
tropy mass, the isocurvature transfer function TSS , and a
model-dependent correction γ, which quantifies the cou-
pling between the fields. Invoking minimal assumptions
about the terms in equation (70), we showed that for√−nT e

∗
⊥ · ∇∗TRS to be large requires that the rela-

tive amplitude of isocurvature modes (TSS) at the end
of inflation be large and/or that TSS be very sensitive
to changes in the initial conditions perpendicular to the
inflaton trajectory.
We then further explored the conditions for large non-

Gaussianity in general two-field inflation. After proving
an upper bound for TRS in the case where TSS ≤ 1
during all of inflation, we argued that if neighboring
trajectories do not diverge, then due to constraints on
higher-order SRST parameters, the amount of sourcing
cannot vary dramatically among neighboring trajectories
and hence non-Gaussianity cannot be large. Therefore,
either TSS > 1 or M⊥⊥ < 0 sometime during inflation.
Under the assumption that ǫ ≥ ǫ∗ in the super-horizon
regime, the first condition implies the second one, and
hence we require that M⊥⊥ < 0 during at least part of
inflation. Geometrically, this means that |fNL| will be
large only if the inflaton traverses along a ridge in the

inflationary potential at some point during inflation and
the inflaton trajectory turns at least slightly.

Unfortunately, though, this implies that some fine-
tuning of the potential and/or the initial conditions is
usually needed both to produce a steep enough ridge
and/or to situate the inflaton on top of the ridge without
it falling off too quickly and yet still slightly turning. In-
flationary scenarios that are attractor solutions and that
satisfy ǫ ≥ ǫ∗ therefore cannot produce large |fNL|. This
explains why it has been so difficult to achieve large non-
Gaussianity in two-field inflation. Moreover, it explains
why large non-Gaussianity arises in models such as ax-
ionicN -flation and tachyonic (p)reheating. The common
denominator of these models is a significant negative cur-
vature (mass) along the entropic direction that produces
the requisite instability.

Finally, we showed that the calculations of τNL and
gNL are very similar to that of fNL. τNL can be written
entirely in terms of the spectral observables fNL, nR,
nT , and rC , where rC is the dimensionless curvature-
isocurvature correlation. This provides a new consis-
tency relation unique to two-field inflation. Like for
fNL, we found that τNL cannot be large unless TRS
varies dramatically among neighboring trajectories. In
addition, we shed new light on the Suyama-Yamaguchi

bound τNL ≥
(

6
5fNL

)2
, showing that for |fNL| & 1,

τNL =
(

6fNL/5
rC

)2

. Thus, it is the amount of sourc-

ing, TRS , that controls the Suyama-Yamaguchi bound.
We also calculated the trispectrum parameter gNL and
showed that it can only be large in magnitude if τNL is
large, f2

NL is large, fNL has strong scale-dependence, or
fNL varies dramatically among neighboring trajectories.

Our results for the local bispectrum and trispectrum
from inflation allow us to better test and constrain
two-field models of inflation using observational data.
Our results also provide better guidance for model-
builders seeking to find inflationary models with large
non-Gaussianity. In the future, it will be interesting to
explore the range of shapes of ridges that give rise to
large non-Gaussianity and to better understand the de-
gree of fine-turning needed in the potential and/or initial
conditions. Finally, it is important to better understand
the model-dependent nature of (p)reheating and the af-
termath of inflation, to understand how they affect the
primordial non-Gaussianity from inflation.
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