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Abstract

The channeling of the ion recoiling after a collision with a WIMP in direct dark matter crystalline

detectors produces a larger scintillation or ionization signal than otherwise expected. Channeling

is a directional effect which depends on the velocity distribution of WIMPs in the dark halo of

our Galaxy and could lead to a daily modulation of the signal. Here we compute upper bounds to

the expected amplitude of daily modulation due to channeling using channeling fractions that we

obtained with analytic models in prior work. After developing the general formalism, we examine

the possibility of finding a daily modulation due to channeling in the data already collected by

the DAMA/NaI and DAMA/LIBRA experiments. We find that even the largest daily modulation

amplitudes (of the order of 10% in some instances) would not be observable for WIMPs in the

standard halo in the 13 years of data taken by the DAMA collaboration. For these to be observable

the DAMA total rate should be 1/40 of what it is or the total DAMA exposure should be 40 times

larger. The daily modulation due to channeling will be difficult to measure in future experiments.

We find it could be observed for light WIMPs in solid Ne, assuming no background.
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I. INTRODUCTION

The channeling effect in crystals refers to the orientation dependence of charged ion pen-

etration in crystals. Channeling occurs when ions propagating in a crystal along symmetry

axes and planes suffer a series of small-angle scatterings that maintain them in the open

“channels” in between the rows or planes of lattice atoms and thus penetrate much further

into the crystal than in other directions and loose all their energy into electrons. In dark

matter crystalline detectors, a channeled ion recoiling after a collision with a WIMP (Weakly

Interacting Massive Particle) would give all its energy to electrons, thus the quenching factor

is Q ≃ 1 instead of the usual Q < 1 for a non-channeled ion. Thus channeling increases

the ionization or scintillation signal expected from a WIMP. The potential importance of

the channeling effect for direct dark matter detection was first pointed out for NaI (Tl)

by Drobyshevski [1] and subsequently by the DAMA collaboration [2] in 2007. In 2008,

Avignone, Creswick, and Nussinov [3] suggested that a daily modulation due to channeling

could occur in NaI crystals, which would be a background free dark matter signature. Such

a modulation of the rate due to channeling is expected to occur at some level because the

“WIMP wind” arrives to Earth on average from a particular direction fixed to the Galaxy.

Assuming that the dark matter halo is on average at rest with respect to the Galaxy, this

is the direction towards which the Earth moves with respect to the Galaxy. Earth’s daily

rotation naturally changes the direction of the “WIMP wind” with respect to the crys-

tal axes, thus changing the amount of recoiling ions that are channeled vs non-channeled.

This amounts to a daily modulation of the dark matter signal detectable via scintillation or

ionization.

Using analytic models of channeling which started to be developed in the 1960’s, shortly

after the effect was discovered, mostly by Lindhard [4] and collaborators, we recently com-

puted channeling probabilities as function of the recoil energy ER and initial direction q̂

of a recoiling ion in different materials [5, 6]. We used a recursion of the addition rule in

probability theory (see Eq. 5.13 in Ref. [5]) to find the probability χ(ER, q̂) that a recoiling

ion enters into any channel in terms of the channeling fractions for single channels χi(ER, q̂)

that we computed (where the index i runs over all channels, both axial and planar). The

channeling fractions for axial and planar channels are given in Eqs. 5.2 and 5.4 of Ref. [5],

respectively.
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In our previous papers [5, 6], we also obtained the “geometric” channeling fraction

Pgeometric(ER) in the crystals we studied, by averaging the channeling probability χ(ER, q̂)

over the initial recoil directions q̂ (assuming an isotropic distribution in q̂)

Pgeometric(ER) =
1

4π

∫

χ(ER, q̂)dΩq. (1)

This integral was computed using the Hierarchical Equal Area iso-Latitude Pixelization

(HEALPix) [7] of the recoil direction sphere (see Appendix B of Ref. [5]). Here “geometric”

refers to assuming that the distribution of recoil directions is isotropic. In reality, in a

dark matter direct detection experiment, the distribution of recoil directions depends on the

momentum distribution of the incoming WIMPs (see Section II).

Fig. 1.a and 1.b reproduced from Ref. [5], show respectively upper bounds to some chan-

neling fractions for single channels χi(ER, q̂) for Na recoils (with c = 1) and geometric

channeling fraction of Na and I recoiling ions in a NaI crystal at room temperature for

1 keV < ER < 20 keV. The parameter c mentioned in the figures is a number that we

expect to be between 1 and 2, which regulates the importance of temperature corrections

(for details see Ref. [5]). The channeling fractions are typically smaller for larger values of

c thus setting c = 0, which is an unrealistic value, we get the largest upper bound to the

channeling fractions that our calculations provide. In the figures we used c = 0 and c = 1.

Notice also that the results in the figures do not take into account dechanneling effects which

should also decrease the channeling fractions (we do not know how to properly take into

account these effects with our analytic methods).

In this paper, we use the (upper bounds to the) channeling probability χ(ER, q̂) and the

actual differential recoil spectrum to compute the event rate, taking into account channeled

and non-channeled recoils (see Section III, in particular Eqs. 17 and 18 and compare them

with Eq. 1). We then use this rate to compute upper bounds to the amplitude of the daily

modulation due to channeling expected in NaI crystals. In Section IV, we examine the

possibility that such a daily modulation might be observable in the data accumulated by

the DAMA collaboration.
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FIG. 1: (Color online) Upper bounds to the (a) channeling fractions for single channels χi(E, q̂)

of Na recoils for axial (black lines) and planar (green/gray lines) channels with c = 1, and (b)

geometric channeling fraction Pgeometric(E) of Na (solid lines) and I recoils (dashed lines) as a

function of the recoil energy E for T = 293 K in with c = 0 (green/gray) and c = 1 (black), always

without including dechanneling.

II. ANGULAR DISTRIBUTION OF RECOIL DIRECTIONS DUE TO WIMPS

Consider the WIMP-nucleus elastic collision for a WIMP of mass m and a nucleus of

mass M . The 3-dimensional “Radon transform” of the WIMP velocity distribution can be

used to define the differential recoil spectrum as function of the recoil momentum ~q [8]

dR

dER dΩq
=

ρσ0S(q)

4πmµ2
f̂lab

(

q

2µ
, q̂

)

, (2)

where ER is the recoil energy, dΩq = dφd cos θ denotes an infinitesimal solid angle around the

recoil direction q̂ = ~q/q, q = |~q| is the magnitude of the recoil momentum, µ = mM/(m+M)

is the reduced WIMP-nucleus mass, q/2µ = vq is the minimum velocity a WIMP must have

to impart a recoil momentum q to the nucleus, or equivalently to deposit a recoil energy

ER = q2/2M , ρ is the dark matter density in the solar neighborhood, σ0 is the total scattering

cross section of the WIMP with a (fictitious) point-like nucleus, and S(q) is the nuclear form

factor normalized to 1.

We concentrate here on WIMPs with spin-independent interactions, for which σ0 is usu-

ally written in terms of the WIMP-proton cross section σp [9]

σ0 =
µ2

µ2
p

A2σp, (3)

where µp = mmp/(m+mp) is the WIMP-proton reduced mass and A is the atomic number
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of the nucleus. We use the Helm form factor [10]

S(q) = |FSI(q)|2 =
(

3j1(qR1)

qR1

)2

e−q2s2, (4)

where

j1(x) =
sin x

x2
− cos x

x
(5)

is the first kind spherical Bessel function, R1 is an effective nuclear radius, and s is the

nuclear skin thickness. Following Duda, Kemper, and Gondolo [11] we set

R1 =

√

c2 +
7

3
π2a2 − 5s2, (6)

and take s ≃ 0.9 fm, a ≃ 0.52 fm, and c ≃ (1.23A1/3−0.6) fm. These parameters have been

chosen to match the numerical integration of the Two-Parameter Fermi model of nuclear

density [11].

The Maxwellian WIMP velocity distribution with respect to the Galaxy, with dispersion

σv and truncated at the escape speed vesc is given by [8]

fWIMP(v) =
1

Nesc(2πσ2
v)

3/2
exp

[

−(v +Vlab)
2

2σ2
v

]

, (7)

for |v +Vlab| < vesc, and zero otherwise, where

Nesc = erf

(

vesc√
2σv

)

−
√

2

π

vesc
σv

exp

[

−v2esc
2σ2

v

]

. (8)

Here we are assuming the detector has a velocity Vlab with respect to the Galaxy (thus

−Vlab is the average velocity of the WIMPs with respect to the detector). Vlab is defined in

terms of the galactic rotation velocity VGalRot at the position of the Sun (or Local Standard

of Rest (LSR) velocity), Sun’s peculiar velocity VSolar in the LSR, Earth’s translational

velocity VEarthRev with respect to the Sun, and the velocity of Earth’s rotation around itself

VEarthRot (see Appendix B),

Vlab = VGalRot +VSolar +VEarthRev +VEarthRot. (9)

In this paper we take VGalRot either 220 km/s or 280 km/s, as reasonable low and high values

(as done in Ref [12]), which correspond to Vlab either 228.4 km/s or 288.3 km/s, respectively

(see Appendix B for details). Ref. [13] gives 100 km/s as the smallest estimate for the 1D

velocity dispersion, which corresponds to a 3D dispersion
√
3 times larger, i.e. σv = 173

km/s. Thus here we take σv either 173 km/s or 300 km/s [8].
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In order to visualize the arrival directions of WIMPs, we will plot fWIMP(v̂, vq), the

number of WIMPs per solid angle in the direction v̂ in several figures. If we limit ourselves

to the WIMPs with speed higher than vq, then

fWIMP(v̂, vq) =

∫ vmax(v̂)

vq

fWIMP(v)v
2dv. (10)

The upper limit of the integral in Eq. 10 is such that |v +Vlab| = vesc and depends on the

direction v̂, since (v +Vlab)
2 = v2 + 2v v̂.Vlab + V 2

lab,

vmax(v̂) = −v̂.Vlab +
√

(v̂.Vlab)2 −V2
lab + v2esc , (11)

and

fWIMP(v̂, vq) =
exp

(

−V 2

lab

2σ2
v

)

Nesc(2πσ2
v)

3/2

∫ vmax(v̂)

vq

exp

(−v2

2σ2
v

)

exp

(−2v v̂.Vlab

2σ2
v

)

v2dv. (12)

This integral can be solved analytically and the result is in terms of error functions,

fWIMP(v̂, vq) =
exp

(

−V 2

lab

2σ2
v

)

Nesc(2πσ2
v)

3/2

(σv

2

)

{√
2π

[

(v̂.Vlab)
2 + σ2

v

]

exp

(

(v̂.Vlab)
2

2σ2
v

)

[

erf

(

v̂.Vlab + vmax(v̂)√
2σv

)

− erf

(

v̂.Vlab + vq√
2σv

)]

+ (2σv)

[

(v̂.Vlab − vmax(v̂)) exp

(

−vmax(v̂)(2v̂.Vlab + vmax(v̂))

2σ2
v

)

+ (−v̂.Vlab + vq) exp

(

−vq(2v̂.Vlab + vq)

2σ2
v

)]}

. (13)

The maximum of fWIMP(v̂, vq) happens when v̂.Vlab = −Vlab, i.e. in the direction of the

“WIMP wind” average velocity −Vlab. Dividing fWIMP(v̂, vq) by this maximum we obtain

a re-scaled distribution, a dimensionless number between 0 and 1, which we plot in Fig. 2

(see the color scale/grayscale in the figure) on the sphere of velocity directions v̂ using the

HEALPix pixelization [7] (see also Appendix B of Ref. [5]) for all WIMPs, which amounts

to taking vq = 0. We took Vlab = 288.3 km/s, and σv = 300 km/s or σv = 173 km/s for

Fig. 2.a or b respectively.

For a truncated Maxwellian WIMP velocity distribution with respect to the Galaxy,

truncated at the escape speed vesc, the Radon-transform is [8]

f̂lab

(

q

2µ
, q̂

)

=
1

Nesc(2πσ2
v)

1/2

{

exp

[

− [(q/2µ) + q̂.Vlab]
2

2σ2
v

]

− exp

[−v2esc
2σ2

v

]

}

, (14)

if (q/2µ) + q̂.Vlab < vesc, and zero otherwise.
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FIG. 2: (Color online) WIMPs number density per solid angle fWIMP(v̂, vq) (in Eq. 13) for all

WIMPs (namely vq = 0) re-scaled to be a number between 0 (black) and 1 (white) plotted on

the sphere of velocity directions v̂ using the HEALPix pixelization for Vlab = 288.3 km/s and (a)

σv = 300 km/s and (b) σv = 173 km/s. The arrow shows the direction of the average velocity

of the WIMP wind, −Vlab. The North and South celestial poles are also indicated. The color

scale/grayscale shown in the horizontal bar between black and white corresponds to values between

0 and 1 in increments of 0.05.

The presence of q̂.Vlab means that in order to compute the differential rate we need to

orient the nuclear recoil direction q̂ with respect to Vlab.

The maximum of f̂lab(
q
2µ
, q̂) in Eq. 14 happens when q̂.Vlab = −q/2µ, if vq = q/2µ < Vlab

(or in the direction of −Vlab otherwise). Thus, we can re-scale f̂lab to obtain a dimensionless

number between 0 and 1,

f̂ re−scaled
lab =

{

exp

[

− [(q/2µ) + q̂.Vlab]
2

2σ2
v

]

− exp

[−v2esc
2σ2

v

]

}

/(

1− exp

[−v2esc
2σ2

v

])

. (15)

In Figs. 3 and 4 we present side by side the WIMPs velocity distribution, for WIMPs

which can generate a signal of a certain energy E, namely with speed above vq (left panels)

and the Radon transform (right panels) of the recoils of energy E that WIMP collisions

produce.

In Fig. 3.a and b we respectively plot fWIMP(v̂, vq) on the sphere of WIMP velocity
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FIG. 3: (Color online) (a) fWIMP(v̂, vq) (in Eq. 13) re-scaled to be between 0 and 1 plotted on

the sphere of velocity directions v̂ and (b) f̂lab (re-scaled as in Eq. 15) plotted on the sphere of

recoil directions using the HEALPix pixelization for I recoils with ER = 10 keV, m = 30 GeV

(thus vq = 304.6 km/s), Vlab = 288.3 km/s and σv = 300 km/s. The arrow shows the direction

of the average velocity of the WIMP wind, −Vlab. The North and South celestial poles are also

indicated. The color scale/grayscale shown in the horizontal bar corresponds to values between 0

(black) and 1 (white) in intervals of 0.05.

directions v̂ and f̂lab on the sphere of recoil directions (both re-scaled to be a number

between 0 and 1) using the HEALPix pixelization [7] for I recoils assuming Vlab = 288.3

km/s, ER = 10 keV, σv = 300 km/s and m = 30 GeV. Fig. 4.a and b show the same

two distributions but for Na recoils and assuming σv = 173 km/s and m = 60 GeV (other

parameters are the same). The color scale/grayscale plotted on the spheres indicate different

values of the rescaled distributions: between 0 (black) and 1 (white) in intervals of 0.05.

In Fig. 3 the minimum WIMP speed required is vq = 304.6 km/s (I recoils), and since

vq > Vlab, the maximum value of f̂ re−scaled
lab , i.e. the maximum recoil rate, is in the direction

of the “WIMP wind” average velocity, −Vlab, which is shown with an arrow. In Fig. 4

instead, vq = 196.7 km/s (Na recoils) and the maximum value of f̂ re−scaled
lab occurs when

−q̂.Vlab = vq, i.e. when q̂ is at an angle of 47◦ of −Vlab.

8



N

S

N

S

FIG. 4: (Color online) Same as Fig. 3 but for Na recoils and assuming m = 60 GeV (so vq = 196.7

km/s) and σv = 173 km/s (and all other parameters the same).

III. DIFFERENTIAL ENERGY SPECTRUM

Let p(E,ER, q̂)dE be the probability that an energy E is measured when a nucleus recoils

in the direction q̂ with initial energy ER, normalized so that
∫

p(E,ER, q̂)dE = 1. (16)

With our analytic approach we cannot estimate the importance of dechanneling mecha-

nisms, such as the presence of lattice imperfections, impurities or dopants. Thus we disregard

dechanneling, and assume that a recoiling nucleus can only either be channeled, in which

case the measured energy is the whole initial recoil energy E = ER (first term in the fol-

lowing equation) or not channeled, in which case the measured energy is E = QER (second

term),

p(E,ER, q̂) = χ(ER, q̂)δ(E − ER) + [1− χ(ER, q̂)]δ(E −QER). (17)

The first term accounts for the channeled (unquenched) events and the second term for the

unchanneled (quenched) events, and Q is the quenching factor.

Using Eq. 17 the differential energy spectrum,

dR

dE
=

∫

dR

dERdΩq
p(E,ER, q̂)dΩqdER, (18)
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can be written as

dR

dE
=

∫

[

χ(E, q̂)
dR

dERdΩq

∣

∣

∣

∣

ER=E

+ [1− χ(E/Q, q̂)]
1

Q

dR

dERdΩq

∣

∣

∣

∣

ER=E/Q

]

dΩq

=
dR

dE

∣

∣

∣

∣

U

+

∫

[

χ(E, q̂)
dR

dERdΩq

∣

∣

∣

∣

ER=E

− χ(E/Q, q̂)
1

Q

dR

dERdΩq

∣

∣

∣

∣

ER=E/Q

]

dΩq, (19)

where the differential recoil spectrum with subindex “U”, which stands for “Usual” (i.e.

when channeling is not taken into account) is

dR

dE

∣

∣

∣

∣

U

=

∫

1

Q

dR

dERdΩq

∣

∣

∣

∣

ER=E/Q

dΩq =
1

Q

dR

dER

∣

∣

∣

∣

ER=E/Q

. (20)

Defining q̃ ≡
√
2EM and using Eq. 2, the measured differential rate becomes,

dR

dE
=

dR

dE

∣

∣

∣

∣

U

+
ρσ0

4πmµ2

[

S(q̃)

∫

χ(E, q̂)f̂lab

(

q̃

2µ
, q̂

)

dΩq

−S(q̃/
√
Q)

Q

∫

χ(E/Q, q̂)f̂lab

(

q̃

2µ
√
Q
, q̂

)

dΩq

]

. (21)

Inserting σ0 from Eq. 3 in the above equation with the usual value for the mean local halo

density ρ = 0.3 GeV/cm3, we can write the spin-independent detection rate of WIMPs in

general for a crystal that may contain more than one element

dR

dE
=

dR

dE

∣

∣

∣

∣

U

+ 1.306× 10−3 events

kg-day-keV
× σ44

4πmµ2
p

∑

n

CnA
2
n

[

S(q̃)

∫

χn(E, q̂)f̂lab

(

q̃

2µn
, q̂

)

dΩq

−S(q̃/
√
Qn)

Qn

∫

χn(E/Qn, q̂)f̂lab

(

q̃

2µn

√
Qn

, q̂

)

dΩq

]

, (22)

where σ44 is the WIMP-proton cross section in units of 10−44 cm2, µp and m are in GeV

and
∫

f̂labdΩq is in (km/s)−1. The sum is over the nuclear species n in a crystal, and

Cn, χn, Qn and µn are the mass fraction, the channeling probability, the quenching factor

and the reduced WIMP-nucleus mass for the element n, respectively. For example, for

NaI crystals, as used in the DAMA experiment, we have CNa = MNa/(MNa + MI) and

CI = MI/(MNa +MI), where MNa and MI are the atomic masses of Sodium and Iodine

respectively.

The integrals in Eq. 22 cannot be computed analytically. We integrate numerically by

performing a Riemann sum once the sphere of directions has been divided using HEALPix [7]

(see also Appendix B of Ref. [5]). HEALPix provides a convenient way of dividing the surface

of a sphere into equal area sectors, and in our papers [5, 6] we use it for the first time to

compute integrals over directions.
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With the same notation, the usual rate is

dR

dE

∣

∣

∣

∣

U

= 1.306×10−3 events

kg-day-keV
× σ44

4πmµ2
p

∑

n

CnA
2
n

[

S(q̃/
√
Qn)

Qn

∫

f̂lab

(

q̃

2µn

√
Qn

, q̂

)

dΩq

]

.

(23)

IV. DAILY MODULATION IN NAI CRYSTALS

We present here the daily modulation amplitude due to channeling expected in NaI

crystals for several WIMP masses and Na or I recoil energies. We assume that WIMPs have

a truncated Maxwellian velocity distribution as in Eq. 7 with vesc = 650 km/s. We use the

upper bounds to channeling fractions for single channels χi(ER, q̂) given in Ref. [5]. We take

T = 293 K, the temperature of the DAMA experiment.

The spin-independent detection rate of WIMPs given in Eq. 22 has a time dependence

through the Radon transform f̂lab. Notice that f̂lab (see Eq. 14) changes during a day through

the (q̂.Vlab) factor appearing in the exponent and the dependence of Vlab on VEarthRot

(see Eq. 9). The expression showing the time dependence of q̂.Vlab is given in Eq. B13

(in Appendix B). During a day, VEarthRev which is responsible for the annual modulation

changes too. Thus the rate does not return to exactly the same value after one day. For

the cases we present in this paper, this difference is less than 10% of the total modulation

amplitude in a day, and we did not correct for this effect.

A. Relative Modulation Amplitudes

Here we show the signal rate as function of time during a particular arbitrary Solar day

(September 25, 2010). We define the relative signal modulation amplitude As (taking into

account the signal only) in terms of the maximum and minimum daily signal rate Rs as

As =
Rs−max −Rs−min

Rs−max +Rs−min

. (24)

The total relative modulation amplitude AT is defined in terms of the maximum RT−max

and minimum RT−min total daily rates as

AT =
RT−max − RT−min

RT−max +RT−min
. (25)
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The total rate consists of signal plus background, RT = Rs +Rb. Assuming that there is no

daily modulation in the background, RT−max−RT−min = Rs−max−Rs−min, and AT is related

to As as

AT = As(Rs/RT ), (26)

where the average total rate due to signal and background is RT = (RT−max + RT−min)/2

and the average rate due to the signal alone is Rs = (Rs−max +Rs−min)/2.

Exploring the parameter space of WIMP mass and WIMP-proton cross section for dif-

ferent recoil energies we find that the relative modulation amplitudes As can be large, even

more than 10% for some combination of parameters. We explored the range of WIMP masses

from a few GeV to hundreds of GeV for recoil energies between 2 keV and a few MeV. We

show some examples in Fig. 5, where we plot the signal rate (in events/kg/day/keVee) as

function of the Universal Time (UT) during 24 hours. We find that the largest As happen

when the signal is only due to channeling. This happens when there are no WIMPs in the

galactic halo with large enough kinetic energy to provide the observed energy if the recoil

is not channeled. The observed energies for which the rate is only due to channeling de-

pend on the quenching factors Q, which are not well known. The smaller values of Q make

channeling more important so we take QNa = 0.2 [16] for Na and the usual QI = 0.09 for I.

B. Statistical Significance

The detectability of a particular amplitude of daily modulation depends on the exposure

and background of a particular experiment. The former DAMA/NaI and the DAMA/LIBRA

experiments (which we refer collectively as the DAMA experiment) have a very large cu-

mulative exposure, 1.17 ton × year. However even with this large exposure, we find that

the daily modulations we predict are not observable. To observe the daily modulation, the

total number of events NT (Ns signal plus Nb background events) over the duration of the

experiment should be divided into two bins, the “high-rate” bin with NT−max events and the

“low-rate” bin with NT−min events, so that NT = NT−max+NT−min. For the daily modulation

to be observable at, say, the 3σ level one should have

NT−max −NT−min = ATNT > 3σ ≃ 3
√

NT/2, (27)
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FIG. 5: Signal rate (in events/kg-day-keVee) as function of the Universal Time (UT) during 24

hours for m = 10 GeV, 12 GeV and 15 GeV for different energies. The parameters used are

σv = 300 km/s, QNa = 0.2, QI = 0.09, σp = 2× 10−40cm2, c = 1 for temperature effects, a crystal

temperature of T = 293 K and Vlab = 228.4 km/s (top row) or 288.3 km/s (bottom row).

where σ2 ≃ NT/2 because, with a small modulation, on average NT−max ≃ NT−min ≃ NT/2.

In principle there are other errors associated with identifying the “high-rate” and “low-rate”

bins which we do not include here. Thus we are underestimating the errors.

If the detector exposure is MT in kg-day and we take bins of width ∆E in keVee,

then NT−max = RT−maxMT∆E/2, NT−min = RT−minMT∆E/2, NT = RTMT ∆E and

Ns = RsMT∆E, where the rates are in events/kg-day-keVee. Thus (Ns/NT ) = (Rs/RT )

and using Eq. 26, AT = As(Ns/NT ). Thus the condition in Eq. 27 becomes AsNs > 3
√

NT/2

which implies

N2
s /NT > 9/(2A2

s), (28)

or

R2
s/RT > 9/(2A2

sMT ∆E). (29)

The total rate of the DAMA experiment at low energies 4 keVee < E < 10 keVee is

RT ≃ 1 events/kg/day/keVee [14]. This rate is much larger than the signal rates we predict

and is, therefore, dominated by background. With this value of RT , Eq. 29 becomes

R2
sA

2
s >

9

2MT ∆E kg day keVee
. (30)

13



We choose here a bin ∆E ≃ 1 keVee, narrow enough to assume the signal rate to be

constant in it and compatible with the energy resolution of DAMA. The energy resolution

of DAMA is σE(E) = (0.448 keVee)
√

E/keVee + (0.0091)E ≃ 1 keVee at low energies [15].

We consider the significance of the highest signal-to-noise energy bin that we found through

inspection. With the cumulative exposure of DAMA, the condition in Eq. 30 for relative

daily modulation amplitudes As observable at 3σ is

Rs As > 3.2× 10−3 events/kg/day/keVee, (31)

or

Rs−max − Rs−min > 6.4× 10−3 events/kg/day/keVee. (32)

For observability at the nσ level we should multiply the right-hand side of Eq. 32 by (n/3).

Even the largest relative daily modulations we find, shown in Fig. 5, are not observable in

the DAMA data according to Eq. 32.

The examples which we show here are for small WIMP masses and recoil energies. For

large masses the value of σp must be chosen in the region of the cross section and mass plane

where XENON10/100 and CDMS impose σp to be smaller by four orders of magnitude than

for light WIMPs. This amounts to corresponding smaller signal rates and (Rs−max−Rs−min)

differences. For small WIMP masses and large energies, vq is large and there are no WIMPs

with the speed required for Na or I recoils. Thus, only small WIMP masses and recoil

energies result in high modulation amplitudes.

Fig. 5 shows the signal rate during 24 hours for three different WIMP massesm = 10 GeV,

12 GeV and 15 GeV and different energies E between 2 and 15 keVee. The other relevant

parameters are σv = 300 km/s, σp = 2 × 10−40cm2 (close to the DAMA and CoGeNT

regions [16–18]), c = 1, T = 293 K and two values of Vlab, 228.4 km/s (top row) and 288.3

km/s (bottom row). Recent bounds, e.g. those from XENON100 [19], impose smaller values

of σp. In any event, changes in σp are easy to take into account because As is independent

of σp and the rate is just proportional to it, Rs ∼ σp.

We found the relative amplitude As to be as large as 12% in the examples shown in Fig. 5,

but even those large values are not observable according to Eq. 32 (even at the 1σ level).

With the choice of Vlab = 228.4 km/s (top row of Fig. 5) we get a signal rate difference

Rs−max − Rs−min of 0.56 × 10−3 events/kg/day/keVee for m = 10 GeV and E = 10 keVee

(in this case vq = 454.8 km/s and 790.5 km/s for channeled Na and I recoils, respectively),

14



3.17× 10−4 events/kg/day/keVee for m = 12 GeV and E = 12 keVee (which corresponds to

vq = 441.6 km/s and 732.9 km/s for Na and I channeled recoils, respectively), and 4.25×10−4

events/kg/day/keVee for m = 15 GeV and E = 15 keVee (for which vq = 430.6 km/s and

670.6 km/s for Na and I channeled recoils, respectively). With the choice of Vlab = 288.3

km/s (bottom row of Fig. 5), Rs−max−Rs−min is 0.77×10−3 events/kg/day/keVee form = 10

GeV and E = 10 keVee (one of the energies shown), 2.95 × 10−4 events/kg/day/keVee for

m = 12 GeV and E = 12 keVee, and 0.58× 10−5 events/kg/day/keVee for m = 15 GeV and

E = 15 keVee. Because the minimum WIMP speeds vq are large in these examples, a smaller

velocity dispersion of the WIMP distribution leads to smaller rates (since a smaller amount

of WIMPs have velocities larger than vq). So the signal rate difference Rs−max − Rs−min is

even smaller for smaller values of σv.

The left-bottom panel of Fig. 5 shows the signal rate as function of UT for m = 10 GeV

and Vlab = 288.3 km/s for several energies between 2 keVee and 12 keVee. The rate decreases

but As increases with increasing energy and the best conditions for observability happen at

some energy where neither the rate nor As are very small. The rates for low energies between

2 keVee and 6 keVee are dominated by the usual (i.e. non-channeled) rate and the daily

modulation is due purely to the change in WIMP kinetic energy in the lab frame as the

Earth rotates around itself. The rates for energies above 8 keVee (green/gray lines) are

purely due to channeling, i.e. the usual rate is zero. For intermediate energies, 6 keVee to 8

keVee, the usual and channeled rates both contribute and thus the daily modulation is due

to both the channeling effect and the daily change in the usual rate. For E = 2, 4, 6, 8, 10

and 12 keVee, the values of Rs−max −Rs−min given in events/kg/day/keVee are respectively

4.3 × 10−4, 0.5 × 10−3, 0.92 × 10−3, 2.8 × 10−4, 0.77 × 10−3 and 0.52 × 10−3. Notice that

for all the energies shown the difference in rate is similar, but the largest As values happen

at energies above 8 keVee, for which the rate is only due to channeling. The channeling

daily modulation amplitude increases as the ratio of the velocity dispersion to the average

speed of the WIMPs that contribute to the signal (i.e. with v > vq) decreases. This ratio is

small and thus As large for large values of vq. Notice that the phase of the modulation due

to channeling depends on the orientation of the crystal with respect to the Galaxy and the

phase of the modulation in the usual rate does not, which would allow to distinguish both

effects, if they were observable. The case of m = 10 GeV and E = 6 keVee has the largest

rate difference, but is not observable at 3σ according to Eq. 32 (not even at the 1σ level).
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FIG. 6: Signal rate as function of UT during 24 hours for E = 3.8 keVee and m = 5 GeV, with

Vlab = 228.4 km/s, σv = 300 km/s, σp = 2 × 10−40cm2, and QNa = 0.2, QI = 0.09 for (a) c = 1

and (b) c = 0. The daily modulation is not observable in both cases.

Choosing σp = 4×10−40cm2 (still within the DAMA allowed region but not compatible with

the recent XENON100 result) results in a rate difference of 1.84×10−3 events/kg/day/keVee

for this case which would not be observable even at the 1σ level.

Finally, we would like to compare our results with those obtained in Ref. [3] by Creswick

et al. They found a relative daily modulation amplitude As =0.85% (their definition of

amplitude differs by a factor of 2 from ours, so they quote 1.7%) for 5 GeV WIMP mass and

3.8 keVee measured energy (in which case vq = 471.2 km/s and 936.6 km/s for channeled Na

and I recoils, respectively. There are no WIMPs with the speed required for I recoils, thus

only Na recoils are possible). In order to compare our calculation with theirs, we compute

the signal event rate as function of time for c = 1, T = 293 K (temperature corrections are

not included in the calculation of Creswick et al.) and choosing all the other parameters very

close to those used in Ref. [3], i.e. Vlab = 228.4 km/s and σv = 300 km/s. A WIMP mass

of 5 GeV is outside the region of parameter space compatible with the annual modulation

reported by DAMA [17]. Since As does not depend on σp, we choose an arbitrary value of

σp = 2 × 10−40cm2 to plot the signal rate as a function of UT (the upper bound given by

TEXONO and CoGeNT [20] is five times larger, σp < 1 × 10−39cm2). Our result is shown

in Fig. 6.a. We find As =0.16% (Rs−max − Rs−min = 4.4 × 10−6 events/kg/day/keVee).

Even when we consider the extreme choice of c = 0 to compute temperature effects (an

unrealistic value for which the channeling fractions are larger) with the same parameters,

we get As = 0.14%. This case is shown in Fig. 6.b.
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C. Future Prospects for DAMA and other Experiments

The daily modulation might be detectable in other experiments with smaller background

or WIMP halo components with a smaller dispersion such as streams or a thick disk. The

amplitude of the daily modulation increases as the WIMP velocity distribution is narrower

i.e. for larger values of the average velocity and smaller values of the velocity dispersion of

the detectable WIMPs (which is not σv), i.e. those with velocity larger than vq. This is easy

to understand since as the dispersion increases more channels are available for channeling

of the recoiling ions. In the limit in which the velocity distribution would be isotropic with

respect to the detector, the daily rotation would not introduce any difference in the rate

due to channeling. Having a large relative signal modulation amplitude As is not sufficient

for observability. In Eq. 32 what is important is (As Rs) = (Rs−max − Rs−min)/2. However,

the condition in Eq. 32 was derived considering the total rate in the DAMA experiment,

which is dominated by background. For an experiment where the background is negligible,

i.e. RT = Rs + Rb ≃ Rs, we can derive a different observability condition (at the 3σ level)

from Eq. 29,

Rs A
2
s = As (Rs−max − Rs−min)/2 > 9/(2MT ∆E). (33)

This condition might be easier to satisfy in future experiments.

One could ask which is the maximum level of total rate with the current DAMA exposure

that would be needed to make the signal daily modulation observable. Inserting the current

exposure of DAMA (1.17 ton year) in Eq. 29, we have

(As Rs)
2/RT > 1.05× 10−5 events/kg/day/keVee, (34)

which using AsRs = (Rs−max −Rs−min)/2, becomes

RT <
(Rs−max −Rs−min)

2

4.2× 10−5 events/kg/day/keVee
. (35)

Even in the case with the highest rate difference we found, i.e. Rs−max−Rs−min = 0.98×10−3

events/kg/day/keVee (the m = 10 GeV, E = 6 keVee, Vlab = 288.3 km/s example shown in

the bottom-left panel of Fig. 5) observability would require

RT < 0.023 events/kg/day/keVee, (36)

roughly 1/40 of what is now.
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We could ask instead what exposure would be needed with the current total rate

in the DAMA experiment to make the daily modulation observable. Setting RT ≃ 1

events/kg/day/keVee in Eq. 29, we obtain

MT∆E

(events/kg/day/keVee)
>

9

2 (As Rs)
2 =

18

(Rs−max −Rs−min)
2 . (37)

Again, for the case with the highest rate difference we found (m = 10 GeV, E = 6 keVee

and Vlab = 288.3 km/s) and with ∆E ≃ 1 keVee we would require an exposure 40 times

larger,

MT > 51.3 ton year. (38)

We have computed the daily modulation due to channeling in other material such as

Ge, solid Xe and solid Ne, and we find that it will be very difficult to observe. For light

WIMPs the cross section can be larger than for heavier ones without violating experimental

bounds, σp = 10−39cm2 [20] and this favors the detection of the daily modulation. We

find that for a WIMP mass m = 5 GeV the daily modulation due to channeling may be

observable in solid Ne if the signal would be above threshold and assuming no background.

The geometric channeling fraction reaches a maximum at around 10 keV for solid Ne [6],

thus the largest modulation amplitude happens at that energy. For example for a solid Ne

detector operating at 23 K at Gran Sasso, for E = 10 keV, assuming QNe = 0.25 [21], c = 1

and with velocity distribution parameters σv = 300 km/s and Vlab = 228.4 km/s we find

RsA
2
s = 3.68 × 10−5 events/kg/day/keVee. Using Eq. 33 we find that the exposure needed

to observe this modulation at 3σ is MT = 0.33 ton year. For the same parameters but for

m = 7 GeV and σp = 2 × 10−40cm2 (parameters compatible with the possible dark matter

signal found by CoGeNT and with DAMA according to Ref. [22]), we find RsA
2
s = 7.2×10−7

events/kg/day/keVee, and the exposure needed is MT = 17.1 ton year. The usual rate is

zero in both cases, and the modulation is just due to channeling. The signal rate during

24 hours and the required exposures for the two cases are shown in Fig. 7 and Table I,

respectively.

We intend to further explore the observability of a daily modulation in future experiments

for different halo models in future work.
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FIG. 7: Signal rate as function of UT during 24 hours for a solid Ne detector operating at T = 23

K at Gran Sasso for E = 10 keVee, Q = 0.25, c = 1, σv = 300 km/s, Vlab = 228.4 km/s and for (a)

m = 5 GeV and σp = 10−39cm2, and (b) m = 7 GeV and σp = 2× 10−40cm2.

TABLE I: Observability in solid Ne detector

Case σp (cm2) MT (ton year)

m = 5 GeV 10−39 0.33

m = 7 GeV 2× 10−40 17.1
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Appendix A: Crystal Orientation

We need to orient the crystal with respect to the laboratory. We define a reference frame

fixed with the laboratory and orient its axes so that the xy plane is horizontal, the x-axis

points North, the y-axis points West, and the z-axis points to the zenith. We denote its

unit coordinate vectors as N̂ , Ŵ and Ẑ, respectively. We also define the crystal frame with

X, Y, Z cartesian axes fixed with the crystal. The unit coordinate vectors of the crystal

frame are X̂, Ŷ and Ẑ.

We now want to connect the laboratory frame to the crystal frame. Let the standard
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orientation correspond to the configuration in which X̂ = N̂ , Ŷ = Ŵ, and Ẑ = Ẑ. We start

with the crystal in the standard orientation, and we turn it into any other orientation X̂,

Ŷ, Ẑ. In this new orientation, each of the unit coordinate vectors of the crystal frame can

be written in terms of unit coordinate vectors of the lab frame,

X̂ = αX N̂ + βX Ŵ + γX Ẑ,

Ŷ = αY N̂ + βY Ŵ + γY Ẑ,

Ẑ = αZ N̂ + βZ Ŵ + γZ Ẑ , (A1)

where αi, βi and γi are the “direction cosines” between the two sets of cartesian coordinates

of the lab and crystal frames, for i = X, Y, Z. For example, the coordinate vector X̂ of

the crystal has a particular angle with each of the lab frame coordinate vectors N̂ , Ŵ, Ẑ.

Let aX be the angle between X̂ and N̂ , bX the angle between X̂ and Ŵ , and cX the angle

between X̂ and Ẑ . The direction cosines of the unit vector X̂ are given by,

αX ≡ cos aX = X̂ · N̂ ,

βX ≡ cos bX = X̂ · Ŵ,

γX ≡ cos cX = X̂ · Ẑ. (A2)

We can find the direction cosines for Ŷ and Ẑ unit vectors in a similar way. From these

definitions it follows that αi αj + βi βj + γi γj = δij where i, j = X, Y, Z. We prefer using

direction cosines over Euler angles because the direction cosines can easily be measured for

any known orientation of a crystal in a laboratory, whereas it may be difficult to specify the

Euler angles.

Eq. A1 gives the transformation from the lab frame to the crystal frame. We can also

find the lab coordinate vectors in terms of the crystal coordinate vectors,

N̂ = αX X̂+ αY Ŷ + αZ Ẑ,

Ŵ = βX X̂+ βY Ŷ + βZ Ẑ,

Ẑ = γX X̂+ γY Ŷ + γZ Ẑ. (A3)

In the results we show in this paper, we took αX = βY = γZ = 1 and all the other αi, βi

and γi equal to zero. Choosing a different orientation for the crystal does not change the

average rate, but As may change by a factor of 2 for NaI depending on the orientation of

the crystal. The observability condition is still not satisfied.
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1. Lab to equatorial transformation

To connect the laboratory frame to the equatorial coordinate frame, we recall the defini-

tion of the geocentric equatorial inertial (GEI) frame: its origin is at the center of the Earth,

its xe-axis points in the direction of the vernal equinox, its ye-axis points to the point on

the celestial equator with right ascension 90◦ (so that the cartesian frame is right-handed),

and its ze-axis points to the north celestial pole. We denote its unit coordinate vectors as

x̂e, ŷe, and ẑe. We want to find the transformation formulas from the laboratory frame to

the GEI frame.

This transformation can be achieved by two successive rotations. The first rotation is by

an angle of (90◦ − λlab) counterclockwise about the laboratory y-axis to align the new x′y′

plane with the plane of the celestial equator. Here λlab is the latitude of the laboratory in

degrees, with northern latitudes taken as positive and southern latitudes taken as negative.

With this rotation, the new z′-axis points to the north celestial pole. The second rotation is

by an angle (15tlab+180) degrees clockwise about the new z′-axis to bring the x′-axis in the

direction of the vernal equinox. Here tlab is the laboratory Local Apparent Sidereal Time

(LAST) in hours (the LAST is the hour angle of the vernal equinox at the location of the

laboratory). One has

tlab = tGAST + llab/15, (A4)

where tGAST is the Greenwich Apparent Sidereal Time (GAST) in hours and llab is the

longitude in degrees measured positive in the eastward direction (e.g. llab = +110◦ for 110◦

E and llab = −110◦ for 110◦ W).

The current local apparent sidereal time for any specified longitude llab can be

computed online, for example on the website of the US Naval Observatory at

http://tycho.usno.navy.mil/ sidereal.html (accessed Sept 19, 2010). As an alternative, one

can use the following formula [23, 24] for the Greenwich mean sidereal time (which differs

from the Greenwich apparent sidereal time by less than 1.2 seconds, completely negligible

for our purposes),

tGAST = (101.0308 + 36000.770 T0 + 15.04107UT)/15, (A5)

where

T0 =
⌊MJD⌋ − 55197.5

36525.0
. (A6)
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Here UT is the Universal Time in hours, ⌊MJD⌋ is the integer part of the modified Julian

date (MJD), which is the time measured in days from 00:00 UT on 17 November 1858 (Julian

date 2400000.5). Note that T0 is the time in Julian centuries (36525 days) from 12:00 UT on

1 January 2010 to the previous midnight. At 12:00 UT on 1 January 2010, the Julian date

is 2455198, and the MJD is 55197.5. Also the the 15.04107/15 in Eq. A5 corrects from solar

time (UT) to sidereal time. Sidereal day is shorter than Solar day by 3.9 minutes. In this

paper, all our results are computed for the particular arbitrary day of 25 September 2010,

for which T0 = 0.00729637.

Note also that UT is different from coordinated Universal Time (UTC) which is the time

scale usually used for data recording. UTC is atomic time adjusted by an integral number

of seconds to keep it within 0.6 s of UT. For our purposes the difference between UT and

UTC is negligible.

Taking into account the two rotations explained above, one can find the transformation

equations of the unit vectors,

x̂e = − cos(t◦lab)
[

sin(λlab)N̂ − cos(λlab)Ẑ
]

+ sin(t◦lab)Ŵ ,

ŷe = − sin(t◦lab)
[

sin(λlab)N̂ − cos(λlab)Ẑ
]

− cos(t◦lab)Ŵ,

ẑe = cos(λlab)N̂ + sin(λlab)Ẑ, (A7)

where t◦lab = 15tlab is the laboratory LAST converted to degrees.

As a check, for a laboratory on the equator at local sidereal time 0, i.e. λlab = 0◦ and

t◦lab = 0◦, one has x̂e = Ẑ, ŷe = −Ŵ , and ẑe = N̂ ; six sidereal hours later at the same

laboratory, i.e. λlab = 0◦ and t◦lab = 90◦, one has x̂e = Ŵ , ŷe = Ẑ, and ẑe = N̂ ; for a

laboratory at the South Pole (λlab = −90◦), using the direction of the Greenwich meridian

in place of the ”North” axis N̂ so that the local sidereal time at the South Pole by convention

coincides with the Greenwich sidereal time, one has x̂e = N̂ , ŷe = −Ŵ , and ẑe = −Ẑ at

t◦lab = 0◦ and x̂e = Ŵ , ŷe = N̂ , and ẑe = −Ẑ at t◦lab = 90◦ . All of these are correctly given

by Eq. A7.

The formulas in Eq. A7 can be inverted, and the transformation from the equatorial
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FIG. 8: (Color online) Earth’s sphere in the equatorial frame (x̂e,ŷe,ẑe) specified with black arrows.

The laboratory frame (N,W,Z) specified with blue/dark gray arrows is also shown.

frame to the lab frame is achieved:

N̂ = − sin(λlab) [cos(t
◦
lab)x̂e + sin(t◦lab)ŷe] + cos(λlab)ẑe,

Ŵ = sin(t◦lab)x̂e − cos(t◦lab) ŷe,

Ẑ = cos(λlab) [cos(t
◦
lab)x̂e + sin(t◦lab)ŷe] + sin(λlab)ẑe. (A8)

The latitude and longitude of Gran Sasso are λlab = 42.45◦ and llab = 13.7◦, respectively.

Fig. 8 shows the laboratory frame (N̂ , Ŵ, Ẑ) and the equatorial coordinate frame

(x̂e,ŷe,ẑe) plotted on the Earth’s sphere at UT = 0 using Eq. A8.

2. Equatorial to galactic transformation

To connect the equatorial frame to the galactic coordinate frame, we recall the definition

of the galactic coordinate system: its origin is at the position of the Sun, its xg-axis points

towards the galactic center, its yg-axis points in the direction of the galactic rotation, and

its zg-axis points to the north galactic pole.

For the epoch of January 1950.0 the transformation from the equatorial frame (x̂e, ŷe, ẑe)
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to the galactic frame (x̂g, ŷg, ẑg) is given by [25]:

x̂g = x̂e (−0.06699) + ŷe (−0.8728) + ẑe (−0.4835),

ŷg = x̂e (0.4927) + ŷe (−0.4503) + ẑe (0.7446),

ẑg = x̂e (−0.8676) + ŷe (−0.1883) + ẑe (0.4602). (A9)

The transformation from the galactic frame to the equatorial frame is given by

x̂e = x̂g (−0.06699) + ŷg (0.4927) + ẑg (−0.8676),

ŷe = x̂g (−0.8728) + ŷg (−0.4503) + ẑg (−0.1884),

ẑe = x̂g (−0.4835) + ŷg (0.7446) + ẑg (0.4602). (A10)

The change of Eqs. A9 and A10 from the epoch of January 1950.0 to 25 September 2010 is

small and would not affect the final results in this paper.

Appendix B: Laboratory motion

The velocity of the lab with respect to the center of the Galaxy can be divided into four

components (as in Eq. 9): VGalRot, VSolar, VEarthRev and VEarthRot.

We take VGalRot = 220 km/s or 280 km/s [12], VSolar = 18 km/s [26], VEarthRev = 29.8

km/s and VEarthRot = (0.465102 km/s) cosλlab, where λlab is the latitude of the lab. Values of

VGalRot = 220 km/s or 280 km/s results in Vlab = 228.4 km/s or 288.3 km/s, respectively (see

Appendix B.5 for the equation of Vlab). Thus, Vlab is dominated by the galactic rotation

velocity.

We need to compute q̂ · Vlab, where q̂ is given in the crystal reference frame (q̂ =

qX X̂+ qY Ŷ+ qZ Ẑ). Therefore, we need to also write Vlab in the crystal frame. We have,

q̂ ·Vlab = q̂ ·VGalRot + q̂ ·VSolar + q̂ ·VEarthRev + q̂ ·VEarthRot. (B1)

We will compute each term on the right-hand side of Eq. B1 individually.

1. Galactic rotation

The velocity of the galactic rotation VGalRot is defined in the galactic reference frame,

VGalRot = VGalRotŷg, (B2)
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where VGalRot is the galactic rotation speed (i.e. the local circular speed), and ŷg is in the

direction of the galactic rotation. Following Ref. [12] , we take VGalRot = 220 km/s or 280

km/s. Using the conversions in Eq. A9, we can write ŷg in the equatorial reference frame in

terms of (x̂e,ŷe,ẑe). Then, we use Eq. A7 to transform from the equatorial frame to the lab

frame (N̂ , Ŵ , Ẑ), and finally we use Eq. A3 to transform from the lab frame to the crystal

frame (X̂, Ŷ, Ẑ).

Thus, we can use Eq. A3 to write VGalRot in terms of the crystal frame coordinates, and

compute q̂ ·VGalRot,

q̂ ·VGalRot = qXVGalRot,X + qY VGalRot,Y + qZVGalRot,Z. (B3)

We have

q̂ ·VGalRot = VGalRot

{(

[−0.4927 cos(t◦lab) + 0.4503 sin(t◦lab)] sin(λlab) + 0.7446 cos(λlab)

)

(αXqX + αY qY + αZqZ) +

(

0.4927 sin(t◦lab) + 0.4503 cos(t◦lab)

)

(βXqX + βY qY + βZqZ)

+

(

[0.4927 cos(t◦lab)− 0.4503 sin(t◦lab)] cos(λlab) + 0.7446 sin(λlab)

)

(γXqX + γY qY + γZqZ)

}

. (B4)

Eq. B4 has a time dependence through t◦lab and would be responsible for any daily modulation

in the rate.

2. Solar motion

The velocity of the Sun’s motion in the galactic rest frame is,

VSolar = U x̂g + V ŷg +W ẑg, (B5)

where (U, V,W )⊙ = (11.1, 12.2, 7.3) km/s [26]. Using Eq. A9, we can transform from the

galactic frame to the equatorial frame, and using Eq. A7 we can transform from the equato-

rial frame to the lab frame. Then we can use Eq. A3 to write VSolar in terms of the crystal

frame coordinates.
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Thus, we can compute q̂ ·VSolar as

q̂ ·VSolar =

(

[

(1.066 km/s) cos(t◦lab) + (16.56 km/s) sin(t◦lab)
]

sin(λlab) + (7.077 km/s) cos(λlab)

)

(αXqX + αY qY + αZqZ) +

(

− (1.066 km/s) sin(t◦lab) + (16.56 km/s) cos(t◦lab)

)

(βXqX + βY qY + βZqZ) +

(

−
[

(1.066 km/s) cos(t◦lab) + (16.56 km/s) sin(t◦lab)
]

cos(λlab)

+ (7.077 km/s) sin(λlab)

)

(γXqX + γY qY + γZqZ). (B6)

Clearly, Eq. B6 has a time dependence through t◦lab and would be responsible of any daily

modulation in the rate.

3. Earth’s revolution

The velocity of the Earth’s revolution around the sun is given in terms of the Sun ecliptic

longitude λ(t) as [28]

VEarthRev = V⊕(λ(t))[cos β(x) sin(λ(t)− λx)x̂g

+ cos β(y) sin(λ(t)− λy)ŷg + cos β(z) sin(λ(t)− λz)ẑg], (B7)

where V⊕ = 29.8 km/s is the orbital speed of the Earth, V⊕(λ(t)) = V⊕[1− e sin(λ(t)− λ0)],

e = 0.016722, and λ0 = 13◦ + 1◦ are the ellipticity of the Earth’s orbit and the eclip-

tic longitude of the orbit’s minor axis, respectively, and βi = (−5◦.5303, 59◦.575, 29◦.812)

and λi = (266◦.141,−13◦.3485, 179◦.3212) are the ecliptic latitudes and longitudes of the

(x̂g,ŷg,ẑg) axes, respectively.

The Sun’s ecliptic longitude λ(t) can be expressed as (p. 77 of Ref. [27] and Ref. [28]),

λ(t) = L+ (1◦.915− 0◦.0048T0) sin g + 0◦.020 sin 2g, (B8)

where L = 281◦.0298+36000◦.77T0+0◦.04107UT is the mean longitude of the Sun corrected

for aberration, g = 357◦.9258+35999◦.05T0+0◦.04107UT is the mean anomaly (polar angle

of orbit).

Using Eq. A9, we can transform from the galactic frame to the equatorial frame, and

using Eq. A7 we can transform from the equatorial frame to the lab frame (N̂ , Ŵ , Ẑ). Then

we can use Eq. A3 to write VSolar in terms of the crystal frame coordinates.
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Thus, we can compute q̂ ·VEarthRev as

q̂ ·VEarthRev = V⊕(λ(t))

{

[

− cos(t◦lab) sin(λlab)A(t)− sin(t◦lab) sin(λlab)B(t) + cos(λlab)C(t)
]

(αXqX + αY qY + αZqZ) +
[

sin(t◦lab)A(t)− cos(t◦lab)B(t)
]

(βXqX + βY qY + βZqZ)

+
[

cos(t◦lab) cos(λlab)A(t) + sin(t◦lab) cos(λlab)B(t) + sin(λlab)C(t)
]

(γXqX + γY qY + γZqZ)

}

,

(B9)

where

A(t) = (−0.06699) cosβ(x) sin(λ(t)− λx) + (0.4927) cosβ(y) sin(λ(t)− λy)

+ (−0.8676) cosβ(z) sin(λ(t)− λz),

B(t) = (−0.8728) cosβ(x) sin(λ(t)− λx) + (−0.4503) cosβ(y) sin(λ(t)− λy)

+ (−0.1883) cosβ(z) sin(λ(t)− λz),

C(t) = (−0.4835) cosβ(x) sin(λ(t)− λx) + (0.7446) cosβ(y) sin(λ(t)− λy)

+ (0.4602) cosβ(z) sin(λ(t)− λz). (B10)

Eq. B9 has a time dependence through t◦lab and λ(t) and would be responsible for any

daily modulation in the rate.

4. Earth’s rotation

Finally, we want to compute VEarthRot, the velocity of Earth’s rotation around itself. We

have

VEarthRot = −VRotEq cosλlabŴ, (B11)

where VRotEq is the Earth’s rotation speed at the equator, and is defined as VRotEq =

2πR⊕/(1 sidereal day). The Earth’s equatorial radius is R⊕ = 6378.137 km, and one sidereal

day is 23.9344696 hr= 86164 s. therefore VRotEq = 0.465102 km/s.

Using Eq. A3 to write Ŵ in terms of the crystal frame coordinates, we can easily find

q̂ ·VEarthRot as

q̂ ·VEarthRot = −VRotEq cosλlab (βXqX + βY qY + βZqZ) . (B12)

There is no time dependence in Eq. B12, because it is written in the crystal frame, and both

the lab and the crystal are rotating with the Earth.
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5. Total Velocity

Now we can insert Eqs. B4, B6, B9 and B12 into Eq. B1 to compute q̂ ·Vlab. Inserting

the values of V⊕ = 29.8 km/s, ǫ = 23.439◦ and VRotEq = 0.465 km/s, we have (in km/s):

q̂ ·Vlab =

{[

− cos(t◦lab) A(t) + sin(t◦lab) B(t)

]

sin λlab + C(t) cosλlab

}

(αXqX + αY qY + αZqZ)

+

{

sin(t◦lab) A(t) + cos(t◦lab) B(t)− 0.465 cosλlab

}

(βXqX + βY qY + βZqZ)

+

{[

cos(t◦lab) A(t)− sin(t◦lab) B(t)

]

cosλlab + C(t) sin λlab

}

(γXqX + γY qY + γZqZ) ,

(B13)

where

A(t) = 0.4927 VGalRot − 1.066 km/s + (V⊕(λ(t))A(t),

B(t) = 0.4503 VGalRot + 16.56 km/s− (V⊕(λ(t))B(t),

C(t) = 0.7445 VGalRot + 7.077 km/s + (V⊕(λ(t))C(t). (B14)
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