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We derive all single-field cosmologies with unit sound speed that generate scale invariant curvature
perturbations on a dynamical attractor background. We identify three distinct phases: slow-roll
inflation; a slowly contracting adiabatic ekpyrotic phase, described by a rapidly-varying equation of
state; and a novel adiabatic ekpyrotic phase on a slowly expanding background. All of these yield
identical power spectra. The degeneracy is broken at the 3-point level: unlike the nearly gaussian
spectrum of slow-roll inflation, adiabatic ekpyrosis predicts large non-gaussianities on small scales.

The observational evidence for primordial density per-
turbations with nearly scale invariant and gaussian statis-
tics is compatible with the simplest inflationary scenar-
ios. But is inflation unique? Are there dual cosmologies
with indistinguishable predictions? Such questions are
critical to our understanding of the very early universe.

Inflation not only generates scale invariant and gaus-
sian density perturbations, it does so on an attractor
background. On super-horizon scales, the curvature per-
turbation on comoving hypersurfaces [1, 2], denoted by ζ,
measures differences in the expansion history of distant
Hubble patches [2]. In single-field inflation, ζ approaches
a constant at long wavelengths. In the strict k → 0 limit,
ζ → δa/a, so the perturbation simply renormalizes the
scale factor of the background solution; such a pertur-
bation can be removed by an appropriate rescaling of
global coordinates. For finite k, the perturbation cannot
be completely removed, but different Hubble patches ex-
perience the same cosmological evolution, up to a shift
of local time coordinates and a rescaling of local spatial
coordinates. See [3] for a detailed discussion.

Achieving both scale invariance and dynamical attrac-
tion in alternative scenarios has proven challenging. The
ζ equation of a contracting, matter-dominated universe is
identical to that of inflation [4], but ζ grows outside the
horizon, indicating an unstable background. The con-
tracting phase in the original ekpyrotic scenario [5–10],
with V (φ) = −V0e

−φ/M , is an attractor [11, 12], but
the resulting spectrum is strongly blue [11–13]. A scale
invariant spectrum can be obtained through entropy per-
turbations [14, 15], as in the New Ekpyrotic scenario [14],
but this requires two scalar fields.

The adiabatic ekpyrotic mechanism [16–20] proposed
recently offers a counterexample: a single-field model for
which the background is a dynamical attractor and gen-
erates a scale invariant ζ. The mechanism obtains for
fairly simple potentials, such as V (φ) = V0(1 − e−φ/M )
with V0 > 0 and M � MPl. Scale invariant pertur-
bations are generated during the transition when ε ≡
−Ḣ/H2 = 3(1 + w)/2 rises rapidly from ε � 1, where
the constant term dominates, to ε ≈ M2

Pl/2M
2 � 1,

where the negative exponential term dominates.

Another counterexample proposed recently relies on a
rapidly-varying, superluminal sound speed cs(τ) [21–23].
See [24, 25] for earlier work. Even though the background

is non-inflationary, ζ is amplified because the sound hori-
zon is shrinking. The growing mode is ζ → constant, and
the resulting 2-point function is scale invariant.

The key lesson of these results is that relaxing some
of the standard assumptions, such as w, cs ≈ constant,
opens up new possibilities for generating perturbations.

In this paper, we derive the most general single-field
cosmologies with cs = 1 that: i) yield a scale invariant
power spectrum for ζ; and ii) are dynamical attractors,
in the sense that ζ → constant is the growing mode solu-
tion. These conditions imply a second-order differential
equation for a(τ) whose exact solutions we classify.

The question of uniqueness is more than academic. If
the Planck mission corroborates the predictions of the
simplest single-field inflationary models, namely scale in-
variance and gaussianity, then the onus will be on theo-
rists to determine whether inflation is unique in making
these predictions. This work is an important first step in
answering this critical and timely question.

We find only three possibilities: inflation, with a(τ) ∼
1/|τ | and ε ≈ constant; the adiabatic ekpyrotic phase [16,
18], with ε ∼ 1/τ2 on a slowly contracting background;
and a novel adiabatic ekpyrotic phase on a background
that first slowly expands, then slowly contracts [19].
At the 2-point level, therefore, the adiabatic ekpyrotic
phases are dual to inflation. The degeneracy is broken at
the 3-point level: adiabatic ekpyrosis generically predicts
strongly scale dependent non-gaussianities, which limits
the range of scale invariant modes that can be generated
within the perturbative regime [18]. Thus, if Planck finds
no deviations from gaussianity, our work will imply that
any alternative theory must either invoke multiple de-
grees of freedom or use an altogether different mechanism
to generate density perturbations.

Any portion of these phases can be used to devise novel
early-universe models. Such scenarios should explain the
observed flatness and homogeneity, either through infla-
tion or through an ekpyrotic phase with ε � 1 [5, 26].
Moreover, a reheating mechanism must be specified. In
cases where the universe is contracting, the Null Energy
Condition must be violated to bounce to an expanding
phase, for instance within 4d effective theories [27].

For the purposes of this paper, however, we are solely
interested in identifying all cosmological phases that gen-
erate, with a single degree of freedom, super-horizon per-
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turbations compatible with observations — the candidate
duals to inflation. The idea of cosmological duals is not
new [4, 11, 28], but we focus here on ζ instead of the
Newtonian potential [11, 28] and specialize to attractor
solutions by demanding that ζ → constant.

I. SET-UP

Our starting point is the quadratic action for ζ, assum-
ing cs = 1:

S = M2
Pl

∫
dτ d3x z2

{
(ζ ′)2 − (~∇ζ)2

}
, (1)

where z ≡ a
√

2ε and primes denote derivatives with re-
spect to conformal time τ . This yields the mode function
equation for the canonically-normalized variable v = z ζ:

v′′k +

(
k2 − z′′

z

)
vk = 0 , (2)

where k is the comoving wavenumber. To generate a scale
invariant spectrum from adiabatic initial conditions, it is
sufficient for z to satisfy

z′′

z
=

2

τ2
. (3)

Indeed, the solution to (2) in this case is

vk =
1√

2kMPl

e−ikτ
(

1− i

kτ

)
, (4)

which implies that k3/2|ζk| =
√

1 + k2τ2/
√

2MPlz|τ |. As
τ → 0, k3/2 |ζk| is independent of k, as desired.

In addition to generating a scale invariant ζk, our back-
ground must be a dynamical attractor. Since ζk ∼ 1/z|τ |
as k → 0, the desired solution to (3) is

z ≡
√

2

m |τ | , (5)

where m is an arbitrary scale. Combining (4) and (5)

yields k3/2 |ζk| = m
√

1 + k2τ2/2MPl, which is both scale
invariant as τ → 0 and constant as k → 0. The observed
amplitude of ζ ∼ 10−5 fixes m ∼ 10−5MPl.

We pause to note that in an inflationary context the
freeze-out or ζ-horizon |τ | is usually identified with the
comoving Hubble horizon, h−1 ≡ 1/aH = a/a′, but that
more generally (e.g., when ε varies rapidly) the Hubble
horizon and the ζ-horizon can differ greatly.

Using the definition z = a
√

2ε, (5) implies

ε =
1

a2m2τ2
. (6)

Moreover, we can rewrite ε = −Ḣ/H2 = dH−1/dt in
terms of the comoving Hubble horizon h−1 = 1/aH as(

h−1 + τ
)′

= ε . (7)

τ

ζhor = |τ |
|h−1|
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FIG. 1: Sketch of |h−1| for the contracting (dotted), expand-
ing (dashed) and apex (thick dashed) branches of solutions.

Combining (6) and (7) then gives a second-order differen-
tial equation for a(τ). Instead, we will cast these as a pair
of coupled first-order equations. By differentiating (6),

(log
√
ε)′ = −τ−1 − h . (8)

Once we specify the signs of h and τ , (7) and (8) become
coupled ODEs for

∣∣h−1
∣∣ and ε. The behavior of (8) will

depend strongly on the relative magnitude of the Hubble
horizon

∣∣h−1
∣∣ and the ζ-horizon |τ |. We will therefore

say that the Hubble horizon is inside the ζ-horizon when∣∣h−1
∣∣ < |τ |, and outside the ζ-horizon when

∣∣h−1
∣∣ > |τ |.

To solve these coupled equations, hfid and εfid must
be specified at some fiducial time τfid < 0. To obtain a
solution for a(τ), we can set afid = 1 by a spatial rescaling
a → λa, τ → τ/λ. The equation of state is of course
invariant, so εfid fixes τfid through (6). In practice, we
will specify not |h−1

fid | but the ratio |h−1
fid |/|τfid|, which is

invariant under the above spatial rescaling.

II. SOLUTIONS

While it is straightforward enough to integrate (7)
and (8) numerically, as we have done, to guide our intu-
ition we also provide a series of simple, analytical argu-
ments that explain the general features of the solutions.
By varying over all possible initial conditions, we find
three families of solutions, each of which is indexed by
a single parameter and has finite duration, τi < τ < τf .
See Fig. 1 for a sketch of the solutions.

A. Contracting Branch

This case obtains if the universe is assumed contract-
ing (hfid < 0) at some fiducial time τfid < 0. Then, as
long as h < 0 and τ < 0, (8) implies (log

√
ε)′ > 1/|τ |,

hence ε increases monotonically. Meanwhile, (7) reduces

to
∣∣h−1

∣∣′ = 1−ε, thus
∣∣h−1

∣∣ increases whenever ε < 1, and
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decreases whenever ε > 1. In fact, the bound from (8)
implies that ε must pass through ε = 1, at which point∣∣h−1

∣∣ hits a global maximum. A global maximum is a
good point to specify a solution, so we denote the fidu-
cial time in this case as τfid → τmax ≡ m−1, where we
set amax = 1 and εmax = 1. All contracting solutions can
therefore be indexed by the single parameter

c ≡ |h
−1
max|
|τmax|

= m|h−1
max| > 0 . (9)

Before τmax, a > 1, so ε < 1/m2τ2; after τmax, a < 1,
so ε > 1/m2τ2. Integrating (7) therefore yields

m
∣∣h−1

∣∣ ≤ f(τ) ≤ c , (10)

where f(τ) ≡ c+2−m |τ |−m−1 |τ |−1
, with the inequal-

ities saturated at τmax. Since m
∣∣h−1

∣∣ ≤ c, this implies
that h cannot change sign for τ < 0. Moreover, since f(τ)
vanishes at mτ± = −(c+2±√c

√
c+ 4)/2, h must diverge

at finite τ in both the past and the future of τmax. Denot-
ing the time of past and future divergences by τi and τf ,
respectively, (10) implies τ+ < τi < τmax < τf < τ− < 0.
Over the interval τi ≤ τ ≤ τf , a(τ) contracts from ∞
to 0, so τf marks a big crunch singularity; from (6), we
conclude that ε grows monotonically from 0 to ∞.

The range of modes thus generated spans a factor of
kmax/kmin = |τi|/|τf | < |τ+|/|τ−|. From the definition
of τ± above, we have |τ+|/|τ−| = (mτ+)2 < (c + 2)2,
hence large values of c are required to generate a suffi-
ciently broad range of scale invariant modes. From (9),
this means that |h−1| must venture far outside the ζ-
horizon, as sketched by the dotted line in Fig. 1. In this
regime, ε ≈ 1/m2τ2 and a ≈ 1, which is recognized as
the adiabatic ekpyrotic phase proposed recently in [16].

Nearly all scale invariant modes are produced while
|h−1| is outside the ζ-horizon. Integrating (7) assuming
ε ≈ 1/m2τ2 gives m|h−1| ≈ f(τ), or

m|h−1| ≈ c+ 2−m |τ | −m−1 |τ |−1
. (11)

For large c, horizon-equality (|h−1| = |τ |) occurs at

τeq+ ≈ −
c

2m
, τeq− ≈ −

1

mc
, (12)

hence this phase generates Nek = log |τeq+|/|τeq−| ≈
2 log c e-folds of modes.

Because |h−1| is outside the ζ-horizon during mode
production, perturbations freeze out while inside the
Hubble horizon and eventually exit Hubble by τeq−, when
|h−1| re-enters the ζ-horizon. If a finite portion of this
solution is used in a broader scenario, then some other
dynamics must push these modes outside Hubble while
maintaining scale invariance. In [16], this is achieved
through an ekpyrotic scaling phase with ε ≈ c2/2� 1.

B. Expanding Branch

Suppose instead that the universe is expanding (hfid >
0) at some fiducial time τfid < 0. It is helpful to

rewrite (7) and (8) in terms of the gap ∆ ≡
∣∣h−1

∣∣ − |τ |
between the Hubble horizon and the ζ-horizon. As long
as h > 0 and τ < 0, (7) implies

∆′ = ε > 0 . (13)

Thus, when
∣∣h−1

∣∣ is inside the ζ-horizon, corresponding
to ∆ < 0, the gap between the horizons narrows; when∣∣h−1

∣∣ is outside the ζ-horizon, corresponding to ∆ > 0,
the gap between the horizons widens. Meanwhile, in this
regime (8) becomes

(log
√
ε)′ = |τ |−1 − (|τ |+ ∆)−1 . (14)

Unlike Case i), the evolution of ε is no longer necessarily
monotonic: when

∣∣h−1
∣∣ is inside the ζ-horizon, corre-

sponding to ∆ < 0, ε decreases; when
∣∣h−1

∣∣ is outside
the ζ-horizon, corresponding to ∆ > 0, ε increases.

It is straightforward to show that all solutions in this
case must have emerged from a big bang singularity
(where |h−1| = 0) a finite time τi < τfid in the past.
In particular, |h−1| is guaranteed to lie within the ζ-
horizon at early times. Whether this remains the case
subsequently depends on initial conditions. Qualita-
tively, if |h−1| remains within the ζ-horizon, the solu-
tion describes a universe that expands forever. This case,
which includes the inflationary solution, is described be-
low. If |h−1| instead exits the ζ-horizon, the expansion
inevitably comes to a halt at τ = 0, and the universe en-
ters a collapsing phase which terminates in a big crunch
singularity. This apex solution is described in Case iii).

Let us now focus on the case where |h−1| stays inside
the ζ-horizon, i.e. ∆ < 0. Since |h−1| < |τ | < |τfid|
for τfid < τ < 0, h cannot change sign as long as
τ < 0, hence a increases monotonically. From the discus-
sion below (14), ε shrinks monotonically. In fact, since
|h−1| < |τ | by assumption,

∣∣h−1
∣∣ must hit zero at some

τf < 0. In other words, this case spans a finite time inter-
val τi ≤ τ ≤ τf , during which a(τ) expands from 0 to ∞,
while ε shrinks from ∞ to 0. When ε = 1,

∣∣h−1
∣∣ reaches

a global maximum, and, as in the contracting case, we
can choose this as our fiducial time: τfid → τmax ≡ m−1,
where amax = 1 and εmax = 1. The solutions can once
again be indexed by c defined in (9).

Unlike the contracting case, c is bounded from above:
|h−1

max| lies inside the ζ-horizon by assumption, hence c <
1. For |h−1| to remain within the ζ-horizon subsequently,
we numerically find a tighter bound c ≤ c0 ≈ 0.52. As c
approaches c0, τf comes arbitrarily close to 0.

In fact, c ≈ c0 is desirable to generate a broad range
of modes, since kmax/kmin = |τi|/|τf |. In this limit, |h−1|
grazes the ζ-horizon, corresponding to ε � 1 and |η| ≡
H−1|d ln ε/dt| � 1. In other words, this case relies on
a phase of slow-roll inflation to generate a broad range
of modes. (Because we focus on exact scale invariance,
this is a special case of slow-roll inflation. In particular,
at linear order ε and η are related in such a way that
ns − 1 = −2ε − η = 0.) The inflationary phase thus
generates Ninf ∼ log(1/m |τf |) e-folds of scale invariant
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modes, whereas mode production prior to the onset of
the inflationary phase is negligible. Since |h−1| < |τ |
throughout, modes exit Hubble before they freeze-out.

C. Apex Branch

In this case |h−1| exits the ζ-horizon at some time
τexit < 0 after the universe emerges from the big bang
singularity. Once this happens, there is no turning back
— ∆ becomes positive, and from (13) the gap keeps on
growing for τ < 0.

From the discussion below (14), ε attains a local
minimum at horizon equality. The exit, defined by
|h−1

exit|/|τexit| = 1, happens only once, so it is a conve-
nient place to set aexit = 1. This family of solutions can
therefore be indexed by a single parameter, εexit > 0.

After horizon equality, the expansion inevitably comes
to a halt at τ = 0, at which time (the “apex”) the uni-
verse enters a phase of contraction. The subsequent evo-
lution can be deduced by noting that (7) and (8) are
manifestly invariant under h → −h, τ → −τ . In other
words, evolving forward in time when h > 0 and τ < 0
is the same as evolving backwards in time when h < 0
and τ > 0. It follows that |h−1| is guaranteed to reenter
the ζ-horizon, after which it will hit zero at finite τf > 0,
corresponding to a big crunch.

To get a broad range of super-Hubble modes, we need
εexit � 1 (corresponding to c ≈ c0). This leads to a slow-
roll inflationary phase, which occurs as before while |h−1|
grazes the ζ-horizon, followed by an expanding adiabatic
ekpyrotic phase [19], during which |h−1| � |τ |, ε ∼ 1/τ2

and a(τ) is slowly expanding. This solution thus includes
two distinct phases of appreciable mode production.

The inflationary phase generates Ninf ∼ ε−1
exit e-folds of

scale invariant modes. Rescaling coordinates to set a = 1
when τ = 0, outside the ζ-horizon h−1 satisfies

mh−1 ≈ −m−1τ−1 −m(1− εexit)τ + ε
−1/2
exit . (15)

Substituting in (7), we see that the ekpyrotic phase with

ε ≈ 1/m2τ2 begins at τek−beg ≈ −m−1ε
−1/2
exit . This

phase ends when Hubble re-enters the ζ-horizon, which
from (15) occurs at τek−end ≈ m−1√εexit.

The apex marks the end of mode generation. For
τ > 0, modes begin to re-enter the ζ-horizon, spoiling
their scale invariance. Modes with kτek−end > 1 end
up not scale invariant. The adiabatic ekpyrotic phase
thus generates Nek = log |τek−beg|/|τek−end| ≈ log ε−1

exit e-
folds of scale invariant, super-Hubble modes. (Arbitrarily
many e-folds can be obtained by ending this phase near
τ = 0 while the modes remain within Hubble, but a sub-
sequent phase would be necessary to push these modes
outside Hubble while preserving their spectrum [19].)

III. NON-GAUSSIANITIES

While the two non-inflationary branches which rely on
a rapidly-varying ε(t) yield power spectra identical to
that of inflation, the degeneracy with inflation is bro-
ken by non-gaussianities. The 3-point amplitude for the
contracting adiabatic ekpyrotic mechanism was calcu-
lated in detail in [18]. The resulting non-gaussianities
are strongly scale dependent and peak on small scales,
with the dominant contribution growing as k2. Since the
3-point calculation of [18] ignored the time-dependence
of the scale factor, to a good approximation the result
applies equally well to the contracting or apex case. For
completeness, we reproduce here the salient points of the
3-point amplitude calculation in the contracting case.

To make contact with the results in [18], we intro-
duce the parameter H0 ≡ −m/c, where c was defined
in (9). To see the physical significance of H0, note
that (11) implies that during the adiabatic ekpyrotic
phase, −c/2m ≤ τ ≤ −2/mc, h−1 is within about a
factor of two of its maximum value, h−1

max = H−1
0 . It

follows that h−1 is nearly constant and

h−1 ∼ H−1
0 (16)

until near the very end of the phase. The parameter H0

is thus the characteristic Hubble parameter during this
phase. Furthermore, the end points of the contracting
adiabatic ekpyrotic phase, τeq+ to τeq−, are given by

τeq+ ≈
1

2H0
; τeq− ≈

1

c2H0
. (17)

Thus the long-wavelength cutoff for our calculations is
τeq+ ∼ H−1

0 . The short-wavelength cutoff is τeq−, which
is suppressed by a factor of 1/c2 � 1 relative to the
long-wavelength scale.

The cubic action for ζ corresponding to a canonical
scalar field with unit sound speed is given by, up to a
field redefinition, [29]

S3 '
∫

dtd3x

{
ε2ζζ̇2 + ε2ζ(~∇ζ)2 − 2εζ̇ ~∇ζ · ~∇χ

+
ε

2
η̇ζ2ζ̇ +

ε

2
~∇ζ · ~∇χ∇2χ+

ε

4
∇2ζ(~∇χ)2

}
, (18)

where spatial derivatives are contracted with the Eu-
clidean metric δij , and χ is defined as ∇2χ = εζ̇. More-
over, following [18] we have ignored the time-dependence
of the scale factor and set a ' 1. At first order in pertur-
bation theory and in the interaction picture, the three-
point function is

〈 ζ(t,k1)ζ(t,k2)ζ(t,k3)〉 =

−i
∫ t0

−∞
dt′〈[ζ(t,k1)ζ(t,k2)ζ(t,k3), Hint(t

′)]〉 ,(19)

where Hint = −L3, up to interactions that are higher-
order in the number of fields, and t0 is chosen to be suffi-
ciently late that all modes of interest have frozen out by
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this time. A natural choice in our case is

t0 = τeq− ≈
1

c2H0
. (20)

As usual it is convenient to express the three-point func-
tion by factoring out appropriate powers of the power
spectrum and defining an amplitude A as follows

〈ζ(k1)ζ(k2)ζ(k3)〉 = (2π)7δ3
(∑

ki

)
P 2
ζ

A∏
j k

3
j

, (21)

where Pζ ≡ k3|ζk|2/2π2 is the power spectrum for the
curvature perturbation.

The three-point function receives contributions from
each interaction term in (18). The dominant contribu-
tions, as shown in [18], are the last two terms in (18),
both of which are O(ε3). The next-to-leading contribu-
tion is the η̇ term. We briefly review the calculation of
these two contributions and refer the reader to [18] for
further details.

The ε3 terms give the combined interaction Hamilto-
nian

Hint = −ε
3

4

∫
d3x

(
∇2ζ

~∇
∇2

ζ̇
~∇
∇2

ζ̇ + 2ζ̇ ~∇ζ
~∇
∇2

ζ̇

)
. (22)

Applying the canonical commutation relations, the three-
point correlation function (19) in this case reduces to

〈ζ(k1)ζ(k2)ζ(k3)〉ε3 = i(2π)3δ3
(∑

ki

)∏
ζki(0)

×
∫ t0

−∞+iε

dt

{
ε3

4

(
k2

1

k2
2

ζ∗k1(t)
dζ∗k2(t)

dt
+ 2

dζ∗k1(t)

dt
ζ∗k2(t)

)
~k2 · ~k3

k2
3

dζ∗k3(t)

dt
+ perm.+ c.c.

}
,

where the small imaginary part at t→ −∞ projects onto
the adiabatic vacuum state. Using the mode functions (4)
and substituting ε(t) ' 1/m2t2, it is easy to show that
the integrand is a total derivative:∫ t0

dt
3− iKt
t4

eiKt = −
∫ t0

dt
d

dt

(
eiKt

t3

)
= −c6H3

0 ,

(23)
where in the last step we have used (20) and taken the
long wavelength limit K � |τeq−|−1 ≈ c2|H0|, which is
appropriate for the modes of interest. Putting everything
together, the three-point amplitude is [18]

Aε3 =
K2

32H2
0

∑
i

k3
i −

∑
i 6=j

kik
2
j + 2k1k2k3

 . (24)

As claimed, the 3-point amplitude is strongly scale de-
pendent and peaks on small scales.

The next-to-leading order contribution comes from the
η̇ vertex in (18):

Hint = −
∫

d3x
1

2
εη̇ζ2ζ̇ . (25)

Using the fact that η̇ ' −2m−1t−2, the three-point am-
plitude is given by, in the long wavelength (K � c2|H0|)
limit, [18]

Aη̇ = −π
8

K

H0

K
2

∑
i

k2
i −

∑
i 6=j

kik
2
j + k1k2k3

 . (26)

This contribution scales as K/|H0| and is therefore sub-
dominant relative to (24) on scales K & |H0|. All
other contributions to the three-point amplitude are sup-
pressed by 1/c2 � 1 relative to (24).

Following standard conventions, the three-point am-

plitude translates into a value for f equil.
NL , defined at the

equilateral configuration:

f equil.
NL ≡ 30

Aki=K/3
K3

' − 5

144

K2

H2
0

. (27)

Unlike the power spectrum, the three-point function is

thus strongly scale dependent: f equil.
NL is . O(1) on the

largest scales (K ∼ |H0|) and grows as K2. Hence, as
advocated, the degeneracy with inflation is badly broken
by non-Gaussianities.

Since the perturbative parameter is fNLζ, with ζ ∼
10−5, perturbation theory breaks down for K &
105/2|H0|. In fact, on even smaller scales, K & 105|H0|,
quantum corrections dominate the classical answer, sig-
naling strong coupling [18]. As argued in [18], how-
ever, these pathologies can be circumvented by modify-
ing the ε ∼ 1/t2 behavior before the dangerous modes
are generated. In that case, the power spectrum for ζ
tilts strongly to the red and then flattens out at an ex-
ponentially smaller amplitude with an acceptable non-
gaussianity (fNLζ � 1) throughout. This results in a
finite window (|H0| . K . 105|H0|) of scale invari-
ant modes, which is sufficient to account for large scale
structure and microwave background observations.

IV. CONCLUDING REMARKS

We have uncovered three distinct cosmological phases
that yield a broad range of scale invariant modes: infla-
tionary expansion, adiabatic ekpyrotic contraction [16],
and adiabatic ekpyrotic expansion [19]. All three phases
generate identical power spectra for ζ, and each is an
attractor background.

The degeneracy is broken at the 3-point level. The
rapidly-varying equation of state characteristic of adia-
batic ekpyrotic phases results in strongly scale-dependent
non-gaussianities [18]. Our results imply that inflation is
the unique single-field mechanism with unit sound speed
capable of generating a broad range of scale invariant and
gaussian modes.

Forthcoming work [19] will extend the analysis to in-
clude a general sound speed cs(τ), the other degree of
freedom at our disposal [25].
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