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Abstract

We investigate the prospects for the discovery of massive color-octet vector bosons at the CERN

Large Hadron Collider with
√
s = 14 TeV. A phenomenological Lagrangian is adopted to evaluate

the cross section of a pair of colored vector bosons (colorons, ρ̃) decaying into four colored scalar

resonances (hyper-pions, π̃), which then decay into eight gluons. We include the dominant physics

background from the production of 8g, 7g1q, 6g2q, and 5g3q, and determine the masses of π̃ and ρ̃

where discovery is possible. For example, we find that a 5σ signal can be established for Mπ̃ . 495

GeV (Mρ̃ . 1650 GeV). More generally we give the reach of this process for a selection of possible

cuts and integrated luminosities.
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I. INTRODUCTION

With the LHC beginning to accumulate data, we look forward to a new era of high-energy

physics where we explore multi-TeV energy scales. In addition to the search for the Higgs

boson to complete the Standard Model, many new physics scenarios have been considered as

potential discoveries. Often, the discovery potential provided by the LHC’s unprecedented

collision energies is somewhat mitigated by the prevalence of jets from Standard Model

processes. New physics which proceeds through weak interactions, such as Higgs production,

must be carefully separated from large, strong-force produced backgrounds via judicious

selection cuts.

It is also possible that new physics will manifest itself through the strong force. If new

strongly interacting colored particles exist at TeV scales, they will be discovered through

decays into jets. One generic possibility is a massive vector boson in the color-octet represen-

tation. Such a particle has been dubbed a coloron and several theories of physics beyond the

Standard Model give rise to colorons. These include Kaluza-Klein excitations of the gluon

in extra-dimensional models [1, 2], new states in top-color assisted technicolor [3], as well as

models where the standard color group is a remnant of broken SU(3)×SU(3) [4]. In Ref. [5],

Kilic, Okui, and Sundrum showed how colorons, as well as a scalar octet, can emerge as the

low energy states of an effective theory arising from a simple model of new, strongly inter-

acting fermions. In this paper we follow their analysis, as well as the subsequent treatment

found in Ref. [6].

Briefly, we suppose that there exists a new, strongly coupled force, termed hypercolor,

which becomes confining at higher energies than the QCD strong force. Fermions which

carry hypercolor will form bound states which are hypercolor singlets but which may carry

standard model charges. In particular, if these “hyperquarks” are also triplets of QCD

then the lightest bound states will be color octets. Analogously to the breaking of chiral

symmetry in the standard model, this model will produce relatively light hyper-pions as

pseudo-Goldstone bosons, as well as colorons as bound states in the color octet representa-

tion.

This work assumes that the LHC will achieve its design center of mass energy of 14

TeV and accumulate data at that energy, and with high luminosity, over several years. In a

separate paper, we have analyzed this coloron model for an energy of 7 TeV with an assumed
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1 fb−1 or 5 fb−1 of total integrated luminosity [8]. We found that there is a chance of early

detection from this early data set for hyper-pions up to a mass of 250 GeV.

In Section II we give some details of the explicit model we use. The colorons and octet

scalars have an interesting phenomenology which we describe in Sec. III. In particular,

we give some results for resonant ρ̃ production branching to two π̃ which decay into four

jets. However, we argue that a more promising channel for coloron detection is coloron pair

production followed by decay to four π̃ and then to eight jets. We show the results for this

signal in Sec. IV and for the eight jet background in Sec. V. In Sec. VI we combine the

signal and background to find a range of values of Mρ̃ (Mπ̃) where the ρ̃ could be discovered.

In Sec. VII we summarize and conclude.

II. A MODEL WITH COLORED VECTOR BOSONS AND SCALARS

As in Ref. [5], we assume there is a new SU(N) gauge group, hypercolor, acting on a new

set of fermions which also carry Standard Model color charges. We expect this new force to

become confining at a scale ΛHC , resulting in a set of exotic mesons. Here one can consider an

analogy with the breakdown of chiral symmetry in the Standard Model. If we neglect quark

masses for the light quarks, there is a global SU(3)L × SU(3)R × U(1)L × U(1)R symmetry

among the up, the down, and the strange quarks. Strong QCD interactions generate a

quark-antiquark vacuum condensate which spontaneously breaks this symmetry down to

SU(3)×U(1). In this simple picture one would expect 9 Goldstone bosons from the 9 broken

currents, arranged in a flavor octet and a singlet. Realistically, the unequal quark masses and

electric charges make these symmetries only approximate, especially when considering the

relatively heavy strange quark. Rather than massless particles, we have pseudo-Goldstone

bosons with the familiar pions as a light isospin triplet and somewhat heavier kaons and

etas filling out the nonet. This division within the nonet is due primarily to the strange

quark. The isospin singlet is also heavier than the pions due to a non-vanishing anomaly

in the isosinglet-gluon-gluon diagram, meaning this current is not conserved in QCD. These

scalars also have heavier, spin-1 counterparts in the ρ, K∗, ω, and φ mesons.

For the hypercolor model a similar analysis applies. Massless hyperquarks would have

a global left-right flavor symmetry which is spontaneously broken by a hypercolor-driven

condensate. In the Standard Model case there is an approximate remaining flavor symmetry
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due to the lightness of the up, down, and strange quarks. In the present example, however,

this role is filled by the SM gauged SU(3) color symmetry which remains exact. Hence the

left-right flavor breaking should preserve a color nonet of pseudo-Goldstone bosons, assuming

that any mass terms for the hyperquarks are suitably below the scale of symmetry breaking.

This nonet can be decomposed as a massive color octet and a singlet. Similarly to the

isospin singlet mentioned above, the color singlet will have a non-vanishing anomaly with

two hyper-gluons and we do not expect it to be as light as the octet. The lightest new states

in the effective theory are thus a color octet of scalars, which are designated “hyper-pions”

(π̃) in reference to their standard model analogues. These states should have a set of spin-1

excitations which fill out a massive color octet of vector bosons. These “hyper-rhos” (ρ̃) are

called colorons in the naming convention we follow.

Based on this model of chiral symmetry breaking, the authors of Ref. [5] derive the

following effective Lagrangian:

Leff = −1

4
Ga

µνG
aµν + q̄iD/q − g3ǫρ̃

a
µq̄γ

µT aq

+
1

2
(Dµπ̃)

a(Dµπ̃)a −Mπ̃
2π̃aπ̃a − 1

4
ρ̃aµν ρ̃

aµν +
M2

ρ̃

2
ρ̃aµρ̃

aµ

−igρ̃π̃π̃f
abcρ̃aµ(π̃bDµπ̃

c)− 3g3
2ǫµνρσ

16π2fπ̃
Tr[π̃GµνGρσ]

+iχg3Tr[Gµν [ρ̃
µ, ρ̃ν ]] + ξ

2iα3

√
NHC

M2
ρ̃

Tr[ρ̃µν [G
ν
σ, G

σµ]] . (1)

For simplicity, we assume only one flavor of hyper-quark, Q so that we have only one

pseudo-Goldstone boson π̃ and one QQ̄ bound state, ρ̃. In the above equation Gµν and

q are Standard Model gluon and quark fields, while a is a color index. SU(NHC) is the

the symmetry group of the hypercolor gauge interaction and we will take NHC to be 3 for

simplicity. Based on this assumption, Kilic et al. have derived most of the parameters in

terms of a single variable, Mρ̃. They find ε ≃ 0.2, gρ̃π̃π̃ ≃ 6, Mπ̃ ≃ 0.3Mρ̃, and fπ̃ ≃ fπ
Mρ̃

mρ

where fπ = 92 MeV, the standard pion decay constant, and mρ is the mass of the ordinary

ρ meson [6, 7].

The first line of the Lagrangian contains Standard Model QCD, plus the potential for

quarks to couple to the ρ̃. The second line contains kinematic and mass terms for the π̃ and

ρ̃ with Dµ representing the SM covariant derivative. The third line contains the couplings of

the ρ̃ to two π̃’s and the coupling of π̃ to two gluons which provide the primary decay routes of

interest to us because of the large coupling strength gρ̃π̃π̃ and the relatively suppressed pion-
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gluon-gluon coupling. The last two terms of equation (1) give additional gluon couplings

to the ρ̃. They contain the parameters χ and ξ, which cannot be extrapolated from the

Standard Model analogy as they would vanish in the Abelian case. Other models, such as

the topcolor model require χ = 1 and ξ = 0. Further these are the only values for which

any model is unitary. After we compare the cross section pp → π̃π̃+X for a few values of ξ

and the cross section pp → ρ̃ρ̃ +X for a few values of χ we will set ξ and χ to the unitary

values for the rest of the paper (Sec. IV A and beyond).

III. GENERAL PHENOMENOLOGY

Based on the model outlined above, the hyper-pion couples to gluons via an anomalous

term which we may think of as a triangular loop involving hyper-quarks. This is similar to

the decay of the Standard Model π0 into two photons. The hyper-pion decay width is given

by

Γπ̃→gg =
15α2

sM
3
π̃

256π3f 2
π̃

. (2)

The π̃s will thus appear as a decay into two jets and can potentially be produced singly

via gluon fusion. The ρ̃, on the other hand, couples to quarks through coloron-gluon mixing,

as well as to gluons for non-zero values of ξ. However, its dominant decay mode is into two

π̃s due to the large coupling gρ̃π̃π̃. Thus for a large range of parameters the observable

coloron decay is four jets arising from two hyper-pion resonances. For ξ = 0 the ρ̃ decay

width, as a function of Mρ̃, is

Γρ̃ ≃ 0.19Mρ̃, (3)

with a branching fraction to π̃s of B(ρ̃ → π̃π̃) ≃ 95%. One can see that the decay width for

the ρ̃ relative to its mass is quite broad, while that for the π̃ is narrow.

The dijet decay modes of both the scalar and the vector octets provide possible constraints

on the model because of the dijet resonance exclusion bounds from the Tevatron Run-II

data [9, 11]. However, for the coloron, the branching ratio to dijets is small (less than 5

percent), suppressing the signal below existing bounds. This would not be true without the

strongly coupled pion decay mode, as can be seen in Fig. 1. In this figure the solid black

line shows the bound for dijet decays of a coloron-like particle at the CDF detector [9]. The

dashed (red) curve represents the total cross section for pp → ρ̃ → jj +X in the absence of
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FIG. 1: CDF exclusion limits (black solid line) for dijet-decaying color octets, compared to pre-

dicted pp → ρ̃ → jj+X cross sections computed with π̃ decays (blue dot-dashed line) and without

π̃ decays (red dashed line) for
√
s = 1.96 TeV.

the pion decay mode. The dot-dash (blue) line indicates the total dijet cross section with

this mode taken into account. One can see that without the large pion contributions to the

ρ̃ width, colorons would be ruled out below about 1 TeV. As shown in Fig. 2 the LHC early

searches for exotic dijet resonances [10] are not yet competitive with the CDF bound [9].

Hence, it will be difficult to observe a signal for the coloron via this dijet mode.

A natural channel to search for the coloron is the resonant ρ̃ production branching to

two π̃’s which decay into four jets. This mode has been studied for the Tevatron in Ref. [5]

and for the LHC in Ref. [6]. For comparison we present our results for the production cross

section pp → π̃π̃ +X as a function of Mπ̃ in Fig. 3. In addition, Fig. 4 shows the possible

enhancement of the signal with a non-zero value for ξ. We note that our results appear to

be smaller than those shown in the equivalent figure of Kilic et al. by approximately a factor

of two.

However, as pointed out in Ref. [6], if our goal is to distinguish the primary coloron

resonance, this mode presents some difficulties, particularly at the LHC. Although the π̃

resonances should be clear for accessible mass ranges, this may not be the case for the

coloron. While the hyper-pion decay width is quite small compared to its mass, leading to a
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FIG. 2: CMS exclusion limits (black solid line) for dijet-decaying color octets, compared to pre-

dicted pp → ρ̃ → jj+X cross sections computed with π̃ decays (blue dot-dashed line) and without

π̃ decays (red dashed line) for
√
s = 7 TeV.

sharp peak in the pair invariant 2-jet mass distribution, the ρ̃ has a large width (∼ 0.2Mρ̃)

leading to a broad peak. Moreover, there are important alternate modes of hyper-pion pair

production in this model, which do not involve the coloron, as shown in Fig. 5.

The first graph of Fig. 5, A, is negligible owing to the smallness of the g − g − π̃ vertex

but the others comprise a significant part of the two-π̃ signal. These contributions derive

from two initial gluons, thus they are especially important at the LHC.

The importance of non-resonant diagrams can be seen in Fig. 6. This plot was produced

for Mρ̃ = 750 GeV (Mπ̃ = 225 GeV) for
√
s = 14 TeV. Only minimal cuts were applied; all

jets were required to have pT > 15 GeV and |η| < 2.5 and all pairs of jets were required

to be separated by ∆R > 0.5. We consider the signal pp → ρ̃ → π̃π̃ → 4g + X and apply

a Gaussian smearing routine to outgoing momenta. There are 3 ways of pairing up the 4

final jets and we require that at least one such pairing results in two pair masses within 50

GeV of each other. The solid (blue) curve represents the invariant mass of a pair of jets.

This curve shows the average mass obtained thereby and one can clearly see the hyper-pion

peak. (If more than one arrangement allows two nearby pair masses, we average over these

as well.) The signal reconstruction away from the main peak can be reduced by narrowing

the 50 GeV window.
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FIG. 3: The cross section of pp → π̃π̃+X from gg and qq̄ as a function of Mπ̃. We compare cross

sections for two sets of parton distribution functions, CTEQ6L1 and CTEQ6L. [14]

The dashed (red) curve shows the 4−jet invariant mass constructed from the sum of the

final state momenta. The peak is not located at the 750 GeV region; in fact the ρ̃ mass

appears as only a broad local maximum. It is difficult to improve the coloron detection in

this channel without foreknowledge of the π̃-ρ̃ mass relation.

For this reason we focus in this paper on an alternate detection channel. We investigate

the possibility of pair-produced colorons at the LHC, pp → ρ̃ρ̃ → 4π̃ → 8g + X . Pair

production of ρ̃’s receives contributions from both gg and qq̄ initial states. More importantly,

the presence of two identical massive resonances allows us a better chance of distinguishing

them by correlating 4-jet invariant masses. Fig. 7 was calculated from the four hyper-pion

signal at the LHC. Similarly to the hyper-pion signal represented in Fig. 6, we simulate events

and reconstruct an average mass for two pairs of hyper-pions with invariant masses within

100 GeV of each other. The peak, shown with a solid (blue) or a dashed (red) curve, is broad

but it is clearly located at the chosen ρ̃ mass of 750 GeV or 1500 GeV, even though we have

not made any assumptions to influence that value in our reconstruction. Despite the fact that

the calculated signal, pp → 4π̃ +X includes hundreds of graphs without any intermediate

ρ̃s, only those which do have intermediate ρ̃s are likely to contribute significantly to the

correlated signal. The peak at the correct mass should improve with a narrower window,
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FIG. 4: The cross section of pp → π̃π̃ + X from gluon initial states, as a function of Mπ̃, for

ξ = 0, 1, and 3.
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FIG. 5: Feynman diagrams of gg → π̃π̃.

but we must be careful not to restrict it too much. The inherently broad width of the ρ̃,

compounded by the resolution limitations of a real detector caution against killing our signal

with over-fine mass searches.
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FIG. 6: Invariant mass distribution of two jets (Mjj) or four jets (M4j) from pp → ρ̃ → π̃π̃ →

4g +X.

FIG. 7: Invariant mass distribution of two π̃’s for pp → 4π̃ +X with
√
s = 14 TeV.

IV. SIGNAL SIMULATION

Our chosen signal is pp → ρ̃ρ̃ → 4π̃ → 8g +X . In order to run Monte-Carlo simulations

of events we make use of MadGraph II [15, 16] to generate the squared matrix elements. We
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have built the coloron model into the MadGraph/MadEvent4 code using the available “user

model” framework. However, to implement the full model we have made some modifications

to the underlying code for generating color factors and we have added some additional

routines to the HELAS library [17] used by MadGraph. This is necessitated by the non-

Standard-Model vertices which facilitate some of our interactions. The g− ρ̃− ρ̃ vertex, for

example, is similar to the Standard Model 3-gluon interaction, but contains a χ dependence

for the terms involving the gluon momentum.

The authors of refs [5] and [6] implemented the model in the AMEGIC matrix element

generator which is used by the SHERPA event generator. We have chosen to build the model

into MadGraph so as to have an independent calculation of the relevant cross sections. We

calculate our backgrounds with SHERPA.

In the case of the pp → 8g+X decay chain, we had to make some modifications to handle

the very large terms which arise in the color factors. The complete pp → 8g + X matrix

element with all permutations of virtual particles is beyond the powers of MadGraph4 to

generate due to the large number of graphs. Fortunately, the π̃ has a very small width relative

to its mass, making it an excellent candidate for the Narrow Width Approximation (NWA).

This small width means that interference terms between different arrangements of virtual

hyper-pions are small compared to the resonant contributions. Thus we are able to generate

the matrix element pp → (ρ̃ → (π̃ → gg)(π̃ → gg))(ρ̃ → (π̃ → gg)(π̃ → gg)) +X including

the π̃ width. This should be an excellent approximation to the complete calculation, and

checking the pp → 2ρ̃ → 4π̃ + X matrix element with on-shell hyper-pion decays we do

find very good agreement. Thus the NWA for the π̃s is valid and we make use of it for our

signal generation. The width of the ρ̃ on the other hand makes the NWA unsuitable for that

particle and we keep its width and interference terms throughout.

To further check our MadGraph results we have done an independent analytic calculation

of the gg → 2ρ̃ → 4π̃ matrix element, including the χ and width dependence. Tested

with realistic momenta, we have near-perfect concordance of numerical results from the two

computations.

For completeness we present here our analytic formula for the square of the matrix element

gg → ρ̃ρ̃, summed over polarizations and colors, as a function of χ. We neglect the coloron
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width as it would make for a substantially longer expression.

∑

pol

|T |2 =
Y 2(1− z2)2

(1− β2z2)2
E4

M4
ρ̃

[

12− 12Y + (5 + z2)Y 2
]

+
Y 2(1− z2)

(1− β2z2)2
E2

M2
ρ̃

[

16(1 + 3z2)− 2(11 + 18z2)Y + (5 + 9z2 + 3z4)Y 2
]

+
1

(1− β2z2)2

[

8

(

16 + 3
M4

ρ̃

E4

)

− 256Y + (160 + 16z2 + 36z4)Y 2

−(32 + 22z2 + 24z4)Y 3 + (2 + 5z2 + 4z4 + 2z6)Y 4

]

+
1

1− β2z2

[

− 6

(

16 + 4
M2

ρ̃

E2
+

M4
ρ̃

E4

)

+ 140Y − (58 + 24z2)Y 2

+3(1 + 4z2)Y 3 − z4Y 4

]

+ 28 + 6
M2

ρ̃

E2
− 3(1− β2z2)− 16Y + 4Y 2 , (4)

where E is the gluon c.m. energy, z is the cosine of the scattering angle, β2 = 1−M2
ρ̃/E

2,

and Y = 1− χ.

It is interesting to compare this to another calculation of coloron pair production in a

somewhat different model, given in Ref. [4]. In that model, colorons arise from the spon-

taneous breaking of an SU(3)I × SU(3)II gauge symmetry to the familiar SU(3)color. ( In

the topcolor model, the SU(3)I couples to the first two families of the SM fermions, while

the SU(3)II couples to the 3rd family.) This results in a set of massive partners to the SM

gluons through a Higgs mechanism, and these colorons are similar to the ones we discuss.

However, they do not have the χ dependence shown above and we have checked that our

formula is equivalent for the case χ = 1. Recall that in the model we consider, the colorons

are not the product of a broken gauge symmetry, but are composite particles (QQ̄) of the

hyper-quarks. In the limit where χ → 1 the ρ̃s couple to gluons in exactly the same fashion

as other gluons, so perhaps it is not too surprising that they then mimic the “hyper-gluons”

of the model of Ref. [4].

Only for χ = 1 is the theory given in Eq. (1) explicitly unitary for gg → ρ̃ρ̃. This can

be seen in Eq. (4) above where the first lines grow with energy unless Y = 0. In general

the coloron model we consider is only an effective theory which results from integrating

out heavy, strongly-interacting hyper-quarks. The Lagrangian includes non-renormalizable

terms and does not include any explicit hyper-color gauge fields, nor does it explain the
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origin of hyper-quark masses. Thus as a theory of massive vector bosons we do not expect it

to preserve unitarity to all energies. In the χ = 1 case, however, the ρ̃s have gluon couplings

equivalent to the colorons of spontaneously broken SU(3)I × SU(3)II . In that model we

think of the longitudinal components of the massive bosons as coming from ‘eaten’ Higgs

fields, and in the high-energy limit unitarity is restored by the Goldstone Boson Equivalence

theorem and the underlying gauge invariance, just as in the case of W+W− scattering.

In Fig. 8 we show the total two-ρ̃ production cross section as a function of the coloron

mass. We include the prediction for χ = 0, 1, and 3 to demonstrate the effect of this pa-

rameter. This figure may be compared to the results shown in Ref. [6]. Our estimates are

broadly consistent. However, for some parameters their predicted cross section appears to

be as much as twice our result. The discrepancy is more pronounced at high values of Mρ̃

and for non-unitary values of χ. Henceforth we will use χ equal to one.

FIG. 8: The cross section of pp → ρ̃ρ̃+X, as a function of Mρ̃, for χ = 1, 0, and 3.

The parameter ξ, which scales the g−g− ρ̃ vertex, can enhance the signal if it has a non-

zero value. This vertex derives from a non-renormalizable term in the effective Lagrangian,

which is the lowest order term allowing a direct gluon-ρ̃ coupling. Its effect on the two ρ̃

signal is shown in Fig. 9 for ξ = 1 (dotted, green), ξ = 3 (dot-dash, black) and ξ = 10

(dashed, blue) compared to ξ = 0 (solid, red). Order one values of ξ would significantly

enhance the signal in the lower mass range. The effect is insensitive to the sign of ξ. (The
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four-jet, single-ρ̃ channel would also be enhanced, with potentially better resolution of the

ρ̃ resonance since ξ does not contribute to the non-resonant pion-pair graphs.)

FIG. 9: The cross section of pp → ρ̃ρ̃+X, as a function of Mρ̃, for ξ = 0, 1, 3, and 10 at the LHC

with
√
s = 14 TeV.

On the other hand, increasing ξ also affects the dijet signal and potentially runs afoul of

the Tevatron exclusion bound, as shown in Fig. 10. For ξ = 1 (dash, red) the dijet prediction

is virtually the same as for ξ = 0 (solid, blue). However if ξ is allowed to be as large as 10

(dotted, green), then the current bounds require Mρ̃ to be greater than a few-hundred GeV.

For the remainder of the paper we will set ξ = 0, the most conservative choice.

A. Signal Selection

We proceed to generate signal samples using our MadGraph-generated matrix elements

and decaying the hyper-pions via the NWA. These are convoluted with the CTEQ6L1 parton

distribution functions. For the signal we have followed the prescription that we use the mass

of the pair produced particle as the factorization and renormalization scale, i.e. µF = µR =

Mρ̃. We take the K-factor to be one. We apply a Gaussian smearing routine to the outgoing

momenta based on ATLAS specifications [18]
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FIG. 10: The cross section of pp → ρ̃ → jj+X for ξ = 0, 1, and 10, compared to exclusion bounds

at the Tevatron CDF detector.

∆E

E
=

0.60
√

E(GeV)
⊕ 0.03 . (5)

In all cases we require that the final gluons are within −2.5 < η < 2.5 and separated from

one another by ∆R > 0.5, so we assume they are reconstructed as eight jets. These jets

should have a high pT distribution in general due to boosts from the heavy ρ̃ and π̃ decays.

Ordered by pT , the outgoing gluon pT profiles present a succession of peaks, as shown in

Fig. 11. We find that the leading pT gluon typically peaks around
Mρ̃

2
≃ 1.5Mπ̃. Particularly

for high coloron masses, high pT cuts on the leading jets provide strong discrimination

against the background.

Aside from transverse momentum requirements, our primary tool for reducing background

is selection for invariant masses. We have pursued two different cut algorithms for this

purpose.

B. Relative Mass Windows

For relative mass cuts we require that there is an arrangement of the 8 gluons into 4 pairs

such that the largest and smallest invariant masses of these pairs are within a given window
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FIG. 11: Transverse momentum (pT ) distributions of the eight signal gluons for Mπ̃ = 200 GeV

(top) and Mπ̃ = 400 GeV (bottom).

of one another (∆Mij). We then require that these candidate hyper-pions can be arranged

into pairs such that the two pion-pair (4-gluon) invariant masses are within a window ∆M4j .

A successful arrangement of the gluons into candidate hyper-pions and colorons must satisfy

both mass window requirements simultaneously. For example, a set of gluons 1, . . . , 8 which

passes the pion cut with the arrangement (12)(34)(56)(78) can pass the rho cut with 4-masses

such as (1234)(5678) but not with (1235)(4678).

Fig. 12 shows a plot of the signal for Mπ̃ = 225 GeV and Mρ̃ = 750 GeV based on relative

window mass cuts with ∆Mij = 50 GeV and ∆M4j = 100 GeV. Minimal momentum cuts of

pT > 15 GeV are applied. The solid (blue) line shows the average of candidate hyper-pion

masses which pass the cuts, and it is sharply peaked at the hyper-pion mass. The dashed

(red) line shows the average candidate coloron mass which is peaked at the coloron mass

as expected. The equivalent lines corresponding to physical masses Mπ̃ = 450 GeV and
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Mρ̃ = 1.5 TeV are shown with solid (blue) and dashed (red) curves respectively.

FIG. 12: Invariant mass distribution of two jets or four jets for pp → ρ̃ρ̃ → 4π̃ → 8g +X.

C. Fixed Mass Windows

For fixed mass cuts we require a suitable arrangement of gluons into candidate π̃s and

ρ̃s as above. But rather than requiring that the reconstructed masses are each within some

window of one another, we require that they all fall within a window around a set mass.

That is, we require all four Mijs to satisfy |Mij − Mπ̃| < ∆Mij and the 4-gluon invariant

masses corresponding to pairs of candidate hyper-pions to satisfy |M4j −Mρ̃| < ∆M4j for a

chosen value of Mπ̃ or Mρ̃.

The advantage of the relative mass scheme is that it requires no prior assumptions about

the π̃ or ρ̃ masses. It is based only on correlations between the invariant masses within an

experimental data set. On the other hand it is effectively sampling across all possible masses

so it is not as efficient as we might like for eliminating backgrounds. The fixed mass scheme

will perform better against background if the parameters Mπ̃ and Mρ̃ are chosen close to

the actual physical masses of the particles. Probable values for these parameters can, for

example, be read off a plot similar to Fig. 12 derived from a relative mass window analysis.

Or we may imagine that the hyper-pion mass is established by sliding a fixed pair-invariant-

mass window to find signal over background excesses in the 8-jet or 4-jet channels. One

could then test choices of Mρ̃ for a fixed value of Mπ̃.
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V. BACKGROUND SIMULATION

The background for our signal is 8 jets coming from Standard Model QCD pro-

cesses. Obviously it is quite large and complex before pT and invariant mass cuts. Mad-

Graph/MadEvent4 cannot simulate more than 5 outgoing gluons with all terms included.

Instead we rely on the SHERPA 1.2.2 [19] event generator. SHERPA makes use of the

COMIX [20] matrix element calculator, which applies color-dressed Berends-Giele recursion

relations [21]. For numerical calculations of high-multiplicity tree-level diagrams this seems

to be the most efficient method currently available [22]. We again use CTEQ6L1 PDFs but

with the renormalization and factorization scales set to
√

〈p2T 〉, the root mean transverse

momentum squared. We take the K factor to be one. Cuts are applied as described for the

signal.

The dominant backgrounds we consider are QCD processes for pp → 8j+X from gg → 8g,

gq → 7g1q, gg, qq → 6g2q, and gq → 5g3q, where q may be a quark or an antiquark. We

expect these to account for the bulk of the background since diagrams with higher numbers

of quarks have relatively suppressed color factors and fewer graphs. Of the backgrounds

we compute, which process dominates depends on the cuts we choose and the mass of the

hyper-mesons. This behaviour can be seen in Fig. 13.

At low masses where we generally consider lower pT cuts, the gg → 8g (dash, red) channel

tends to be largest, followed by gq → 7g1q (solid, green) and gg → 6g2q (dash-dot, magenta).

As we move to higher masses and pT requirements, valence quarks in the initial state become

more important since they are favored when the kinematics require a large fraction of the

incoming proton’s momentum. Thus gq → 7g1q becomes the largest contribution for much

of our range while gg → 8g, gq → 5g3q (dash, blue), and qq → 6g2q (dash-dot, black) are

subdominant with comparable values and gg → 6g2q becomes an increasingly small fraction

of the total. For very high masses and cuts, qq → 6g2q becomes the largest background since

it is the only one which can have two up or two down quarks in the initial state. We have

found that the background qq → 8g is consistently smaller than the dominant processes by

more than an order of magnitude and we neglect it in our results.

We also include the next two possibly significant backgrounds in the figure, qq → 4g4q

(dot, black) and gg → 4g4q (solid, cyan). They remain well below the dominant channels

for observable Mπ̃ and we do not include them in the background estimates.
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FIG. 13: Individual background channels for pp → 8j+X, calculated with fixed mass window cuts

and pT (j1) > 1.5Mπ̃ , pT (j2) > 1.2Mπ̃, pT (j3) > Mπ̃, pT (j4) > 0.8Mπ̃, pT (j5, j6, j7, j8) > 50GeV.

VI. DISCOVERY POTENTIAL AT THE LHC

Our results for the signal and background at the LHC with
√
s = 14 TeV are presented

in Fig. 14, 15 and 16. To estimate the discovery potential at the LHC we include curves that

correspond to the minimal cross section of signal (σs) required by our discovery criterion

described in the following. We define the signal to be observable if the lower limit on the

signal plus background is larger than the corresponding upper limit on the background [23]

with statistical fluctuations

L(σs + σb)−N
√

L(σs + σb) ≥ Lσb +N
√

Lσb (6)

or equivalently,

σs ≥
N

L

[

N + 2
√

Lσb

]

. (7)

Here L is the integrated luminosity, σs is the cross section of the coloron signal, and σb is the

background cross section. The parameter N specifies the level or probability of discovery.

We take N = 2.5, which corresponds to a 5σ signal. For σb ≫ σs, this requirement becomes

similar to

NSS =
Ns√
Nb

=
Lσs√
Lσb

≥ 5 ,
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where Ns is the signal number of events, Nb is the background number of events, and NSS =

the statistical significance, which is commonly used in the literature. If the background has

fewer than 25 events for a given luminosity, we employ the Poisson distribution and require

that the Poisson probability for the SM background to fluctuate to this level is less than

2.85× 10−7.

FIG. 14: The cross section for pp → ρ̃ρ̃ → 4π̃ → 8g +X as a function of Mπ̃. We have applied all

kinematic cuts and two sets of relative mass cuts: (a) ∆M2j < 30 GeV and ∆M4j < 60 GeV [red

dot-dashed line], or (b) ∆M2j < 50 GeV and ∆M4j < 100 GeV [blue dot-dot-dashed line]. Also

shown are the cross section for the dominant SM background with relative mass cut (a) [magenta

dotted line] or (b) [green dashed line] as well as the minimal signal cross section that is required

by a 5 sigma criterion with relative mass cut (a) [magenta (lower) dotted line] or (b) [green (lower)

dashed line].

Fig. 14 shows the results for the relative mass window scheme with (∆Mij =

30GeV,∆M4j = 60GeV) and (∆Mij = 50GeV,∆M4j = 100GeV). We have used the

ordered pT cuts, pT (j1, . . . , j8) > 320, 250, 200, 160, 125, 90, 60, 40 GeV. These are the mo-

mentum cuts used for the low mass example in Ref. [6]. They are optimized for a π̃ mass

around 225 GeV. With the cuts described above and an integrated luminosity of 30 fb−1

we can look for detection of hyper-pion masses out to 440 GeV (Mρ̃ = 1460 GeV) with the

∆Mij/∆M4j = 50/100 GeV window or out to Mπ̃ = 400 GeV (Mρ̃ = 1333 GeV) with the

30/60 GeV windows.
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Figs. 15 and 16 show our results for the fixed mass window scheme. We include two

choices of pT cuts and two mass window sizes as follows: (a)fixed mass windows with

∆Mij = 0.10Mπ̃ and ∆M4j = 0.15Mρ̃, or (b)fixed mass windows with ∆Mij = 0.15Mπ̃

and ∆M4j = 0.20Mρ̃. For Fig. 15 we apply the ordered pT cuts as used above for the rel-

ative mass cuts, pT (j1, . . . , j8) > 320, 250, 200, 160, 125, 90, 60, 40 GeV. For Fig. 16 we use

ordered cuts that scale as the hyper-pion mass for the four leading jets, pT (j1, . . . , j4) >

1.5Mπ̃, 1.2Mπ̃, 1.0Mπ̃, 0.8Mπ̃, and pT (j) > 50 GeV for the four lowest pT jets.

FIG. 15: The cross section for pp → ρ̃ρ̃ → 4π̃ → 8g + X (blue dot-dashed line) as a function of

Mπ̃ with acceptance cuts on pT , η, and ∆R. We have applied two sets of fixed mass cuts: (a)

|M2j −Mπ̃| < 0.10Mπ̃ and |M4j −Mρ̃| < 0.15Mρ̃, or (b) |M2j −Mπ̃| < 0.15Mπ̃ and |M4j −Mρ̃| <

0.20Mρ̃. The pT cuts used were pT (j1, . . . , j8) > 320, 250, 200, 160, 125, 90, 60, 40 GeV. Also shown

are the SM background cross section (σb)(red dotted line) and the minimal signal cross section that

is required by a 5 sigma criterion (green dashed line) with an integrated luminosity of 30 fb−1.

The scaled pT cuts approximately capture the behaviour of the pT distribution peaks for

the leading jets in the model. At high masses the background could be further reduced by

increasing the lower four pT thresholds with relatively small reduction of the signal. However,

above hyper-pion masses ∼ 450 GeV both the signal and the background are too small to

make detection of either likely with 30 fb−1 of integrated luminosity. At low masses these

could be lowered to capture more of the signal without drastically enhancing the background.

In general the pT cuts could be tailored to reduce the background below signal for the entire

mass range shown, but we do not want to be overly reliant on the model parameters we have

chosen or to reduce the signal below practical detection limits. These cuts are a compromise
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FIG. 16: The cross section for pp → ρ̃ρ̃ → 4π̃ → 8g + X (blue dot-dashed line) as a func-

tion of Mπ̃ with acceptance cuts on pT , η, and ∆R. We have applied two sets of fixed mass

cuts: (a) |M2j − Mπ̃| < 0.10Mπ̃ and |M4j − Mρ̃| < 0.15Mρ̃, or (b) |M2j − Mπ̃| < 0.15Mπ̃

and |M4j − Mρ̃| < 0.20Mρ̃. This figure differs from Fig.15 in that the pT cuts used here are

pT (j1) > 1.5Mπ̃ , pT (j2) > 1.2Mπ̃, pT (j3) > Mπ̃, pT (j4) > 0.8Mπ̃ , pT (j5, j6, j7, j8) > 50GeV. Also

shown are the SM background cross section (σb)(red dotted line) and the minimal signal cross

section that is required by a 5 sigma criterion (green dashed line) with an integrated luminosity of

30 fb−1.

to demonstrate the potential discrimination of signal from background due to the boost of

massive decaying particles.

The fixed mass windows scale as the masses to capture the similarly scaling width of

the coloron and the energy resolution of a real detector. Windows of ∆Mij = 0.1Mπ̃ and

∆M4j = 0.15Mρ̃ will require excellent resolution to be fully efficient. As in the relative

window plots, we include a dashed line to estimate the discovery potential.

VII. SUMMARY AND CONCLUSIONS

Colorons, massive vector bosons in the color-octet representation, are a generic possibility

for exotic physics which could be detected at the LHC. Both colorons and a set of scalar

color-octet partners may emerge as the low energy phenomena of a generic new gauge group

which becomes confining at high energy scales. This has the interesting consequence that

relatively light colorons may evade dijet detection bounds by decaying first to a pair of
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hyper-pions, each of which decays into a pair of gluons. Based on analogy with the chiral

symmetry breaking interpretation of the Standard Model light mesons, the parameters of

the theory can be determined in terms of a single unknown variable, Mρ̃, at least for the

case where the new hyper-color gauge group is SU(3). Further, the phenomenology of the

model should be fairly general even if we relax these assumptions.

We have implemented this model in the MadGraph framework and checked the resulting

code against analytical computations, finding good agreement. Using this we have analyzed

the signal pp → ρ̃ρ̃ → 4π̃ → 8g +X at the LHC. In this channel we can reconstruct both

the coloron and hyper-pion resonances better than in the single coloron channel by using

correlations between invariant masses.

We have simulated both the signal and background using two mass cut schemes, a relative

window scheme which requires no foreknowledge of the relevant masses, and a fixed window

scheme which demonstrates the power to discriminate against the background for specific

choices of candidate masses. We find that with 30 fb−1 of integrated luminosity we can

potentially detect such particles up to Mπ̃ ≃ 495 GeV and Mρ̃ ≃ 1650 GeV. For other

integrated luminosities the reach in Mρ̃, for one choice of cuts, is shown in Table I.

TABLE I: Discovery reach in the coloron mass, using the fixed mass cuts of Fig. 15(a), for several

values of integrated luminosity.

Integrated Luminosity(fb−1): 1 10 30 100 1000

Discovery Reach in Mρ̃(GeV): 1250 1515 1650 1780 2080

In general, of course, we are sensitive to the choice of scales at tree level and a full pre-

dictive calculation would need to include effects of hadronization and jet reconstruction.

Nonetheless, for a considerable range of parameters the signal can easily exceed the back-

ground even allowing for correction factors of order one. Our prospects improve significantly

for increased jet energy resolution, leading to better reconstruction of invariant masses.

For the variety of related models with a similar phenomenology to the one we have con-

sidered, the fact that the hyper-mesons can be strongly produced once their mass thresholds

are obtained, while avoiding the current dijet exclusion bounds, means they could be copi-

ously produced at the LHC. As we gain experience with this collider, we have an excellent

chance of discovering hyper-mesons or similar particles, if they exist, with masses up to
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approximately 2 TeV.
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