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Abstract

The chromoelectric dipole moment of the top quark is calculated in a model with a vector like

multiplet which mixes with the third generation in an extension of the MSSM. Such mixings

allow for new CP violating phases. Including these new CP phases, the chromoelectric dipole

moment that generates an electric dipole of the top in this class of models is computed. The

top chromoelectric dipole moment operator arises from loops involving the exchange of the

W, the Z as well as from the exchange involving the charginos, the neutralinos, the gluino,

and the vector like multiplet and their superpartners. The analysis of the chromoelectric

dipole moment operator of the top is more complicated than for the light quarks because

the mass of the external fermion, in this case the top quark mass, cannot be ignored relative

to the masses inside the loops. A numerical analysis is presented and it is shown that the

contribution to the top EDM could lie in the range (10−19 − 10−18) ecm consistent with the

current limits on the EDM of the electron, the neutron and on atomic EDMs. A top EDM

of size (10−19 − 10−18) ecm could be accessible in collider experiments such as at the LHC

and at the ILC.
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1 Introduction

The electric dipole moment (EDM) of elementary particles provide an important window to

possible new sources of CP violation (For recent reviews see[1]). This is so because in the

Standard Model the EDM of an elementary particle is rather small. Thus for the top quark

the EDM in the Standard Model is estimated to be less than 10−30 ecm[2, 3, 4] and outside the

realm of experiment in the foreseeable future (For a review of CP violation in top physics see

[5]). However, much larger EDMs for elementary particles can arise in new physics models.

One such model considered recently was where one has extra vector like generations which can

mix with the third generation[6, 7, 8]. Extra vector like generations can arise in many unified

theories of particle physics[9, 10] and if their masses lie in the TeV range they could mix with

the third generation and produce observable effects. Such mixings are consistent with the

current precision electroweak data[11] and thus the implications of such vector like multiplets

have been analyzed in a number of works[12, 13, 14, 15, 16, 17, 18, 19, 20]. In [8] an analysis

of the electric dipole operator for the top quark was given arising from the exchange of the

extra vector like generations in the loops and it was found that a significantly larger EDM

than in the Standard Model can arise for the top quark from such exchanges. In this work we

analyze the contribution to the chromoelectric dipole operator (CEDM) from the exchange of

the vector like generations in the loops. Our analysis is done in an extension of the minimal

supersymmetric standard model (MSSM) including the extra vector like multiplets. The

analysis shows that a top EDM as large as (10−19−10−18) ecm can arise from a constructive

interference between the electric dipole moment and the chromoelectric dipole moment. A

top EDM of this size lies within the realm of future experiment [21, 22, 23, 24]. The role of

EDMs in a variety of processes such as e+e− → tt̄, γγ → tt̄ and other phenomena have been

investigated by a number of authors [22, 25, 26, 27, 27, 28, 29] and thus the EDM of the top

is of significant interest.

The outline of the rest of the paper is as follows: In Sec.(2) we define the chromoelectric

dipole moment of the quark and its connection with the electric dipole moment. In Sec.(3)

we give an analysis of the EDM of the top allowing for mixing between the vector like

multiplet and the third generation quarks in the underlying model discussed in [8]. These

mixings contain new sources of CP violation. Here we compute the loops involving the

exchanges of the W and the Z, of the charginos, of the neutralinos, of the gluino as well as

exchanges involving the vector like multiplets and their superpartners. In Sec.(4) we discuss
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the parameter space of the model and list the new CP violating phases that enter in the

analysis. A numerical analysis of the size of the EDM of the top is given in Sec.(5). In this

section we also display the dependence of the top EMD on the CP phases arising from the

mixings of the third generation quarks with the extra vector like generations. Conclusions

are given in Sec.(6).

2 Chromoelectric dipole moment of the top quark

The chromoelectric dipole moment d̃C is defined in the effective dimension 5 operator

LI = − i
2
d̃C q̄σµνγ5T

aqGµνa, (1)

where T a are the SU(3) generators and Gµνa is the gluon field strength. The contribution

of this operator to the EDM of quarks can be computed using dimensional analysis[30].

This technique can be expressed using the “reduced” coupling constant rule. Thus the

contribution of chromoelectric dipole moment operator to the EDM of the quarks is given

as follows

dC =
e

4π
d̃C , (2)

The alternative technique to estimate contributions of the chromoelectric operator is to use

the QCD sum rules[31]. We note that the analysis of the top EDM is more complicated

relative to EDM of the light quarks and of the light leptons (see e.g.,[32, 33]) because we

cannot ignore the mass of the external fermion (i.e., of the top quark in this case) compared

to the masses that run inside the loops. So the form factors that enter the analysis of the

top EDM are more complicated relative to the form factors that enter the EDM of the light

quarks, since for the case of the top the loop integrals are functions of more than just one

mass ratio.

3 Top CEDM from exchange of vector like multiplets

Using the formalism of [8], one can compute the contributions to the chromoelectric dipole

moment of the top quark. There are several contribution to it arising from the exchange of

the charginos, of the neutralinos, of the gluinos and of the W and Z boson. CP violation in

these diagrams enters via the mass matrices involving the third generation and their mirrors

and similarly via the mass matrices involving their superpartners and via the interaction
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Figure 1: Left: One loop contribution to the chromoelectric dipole moment of the top quark
from the exchange of the chargino and from the exchange of sbottoms and mirror sbottoms.
Right: Same as the left diagram except that one has chromoelectric dipole moment arising
from the exchange of the neutralinos and from the exchange of stops and mirror stops.

vertices. A full description of the CP phases and the dependence of CEDM on them is given

in Sec.(4). We discuss now the various contributions to the CEDM of the top.

3.1 Chargino exchange contribution

The chargino exchange contribution to the chromoelectric dipole moment of the top quark

arises through the left loop diagram of Fig.(1). The relevant part of Lagrangian that gener-

ates this contribution is given by

−Lt−b̃−χ+ =
2∑

k=1

2∑
i=1

4∑
j=1

t̄k[ΓLkjiPL + ΓRkjiPR]χ̃+
ib̃j +H.c. (3)

where

ΓLkji = −g[V ∗i2κtD
t∗
R1kD̃

b
1j −Dt∗

R2kV
∗
i1D̃

b
4j +Dt∗

R2kκBV
∗
i2D̃

b
2j],

ΓRkji = g[Ui1D
t∗
L1kD̃

b
1j −Dt∗

L1kκbUi2D̃
b
3j −Dt∗

L2kκTUi2D̃
b
4j], (4)

where D̃b is the diagonalizing matrix of the 4× 4 sbottom mixed with scalar mirrors mass2

matrix as defined in the appendix of [8]. These elements contain CP violating phases can

also contribute to the chromoelectric dipole moment of the top. The couplings κf are defined

as

(κT , κb) =
(mT ,mb)√
2MW cos β

, (κB, κt) =
(mB,mt)√
2MW sin β

. (5)
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Here U and V are the matrices that diagonalize the chargino mass matrix MC so that

U∗MCV
−1 = diag(m+

χ̃1
,m+

χ̃2
). (6)

Using the above interaction, we get from the left loop diagram of Fig.(1) the contribution

d̃C(χ+) =
gs

16π2

2∑
i=1

4∑
j=1

mχ+
i

m2
b̃j

Im(ΓL1jiΓ
∗
R1ji)I3(

m2
χ+
i

m2
b̃j

,
m2
t1

m2
b̃j

), (7)

where I3(r1, r2) is given by

I3(r1, r2) =

∫ 1

0

dx
x− x2

1 + (r1 − r2 − 1)x+ r2x2
, (8)

We note that the limit of I3(r1, r2) for r2 ∼ 0 is the well known form factors B(r1) in the case

of light quarks [33]. While our analysis is quite general we will limit ourselves for simplicity

to the case where there is mixing between the third generation and the mirror part of the

vector multiplet. The inclusion of the non-mirror part is essentially trivial as it corresponds

to an extension of the CKM matrix from a 3 × 3 to a 4 × 4 matrix in the standard model

sector and similar straightforward extensions in the supersymmetric sector. In the rest of

the analysis we will focus just on the mixings with the mirrors which is rather non-trivial.

3.2 Neutralino exchange contribution

The neutralino exchange contribution to the chromoelectric dipole moment of the top quark

through the right loop diagram of Fig.(1). The relevant part of Lagrangian that generates

this contribution is given by

−Lt−t̃−χ0 =
4∑

k=1

4∑
i=1

2∑
j=1

t̄j[CLjkiPL + CRjkiPR]χ̃0
it̃k +H.c., (9)

where

CLjki =
√

2[αtiD
t∗
R1jD̃

t
1k − γtiDt∗

R1jD̃
t
3k + βT iD

t∗
R2jD̃

t
4k − δT iDt∗

R2jD̃
t
2k],

CRjki =
√

2[βtiD
t∗
L1jD̃

t
1k − δtiDt∗

L1jD̃
t
3k + αT iD

t∗
L2jD̃

t
4k − γT iDt∗

L2jD̃
t
2k]. (10)

The matrix D̃t is the diagonalizing matrix of the 4× 4 stop mixed with scalar mirrors mass2

matrix as defined in the appendix of [8]. The couplings that enter the above equations are
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given by

αtj =
gmtX4j

2mW sin β
, βtj =

2

3
eX

′∗
1j +

g

cos θW
X

′∗
2j(

1

2
− 2

3
sin2 θW ),

γtj =
2

3
eX

′

1j −
2

3

g sin2 θW
cos θW

X
′

2j, δtj = −
gmtX

∗
4j

2mW sin β
. (11)

Here

αTj =
gmTX

∗
3j

2mW cos β
, βTj = −2

3
eX

′

1j +
g

cos θW
X

′

2j(−
1

2
+

2

3
sin2 θW ),

γTj = −2

3
eX

′∗
1j +

2

3

g sin2 θW
cos θW

X
′∗
2j, δTj = − gmTX3j

2mW cos β
, (12)

where

X ′1j = (X1j cos θW +X2j sin θW ), X ′2j = (−X1j sin θW +X2j cos θW ), (13)

and where the matrix X diagonlizes the neutralino mass matrix so that

XTMχ̃0X = diag(mχ0
1
,mχ0

2
,mχ0

3
,mχ0

4
). (14)

Using the above interaction, we get from the right loop diagram Fig.(1) the neutralino

contributions to the top chromoelectric dipole moment to be

d̃C(χ0) =
gs

16π2

4∑
i=1

4∑
k=1

mχ0
i

m2
t̃k

Im(CL1kiC
∗
R1ki)I3(

m2
χ0
i

m2
t̃k

,
m2
t1

m2
t̃k

). (15)

3.3 Gluino exchange contribution

The gluino contribution to the chromoelectric dipole moment of the top comes from the two

loop diagrams of Fig.(2). The relevant part of Lagrangian that generates this contribution

is given by

−Ltt̃g̃ =
√

2gs

8∑
a=1

3∑
j,k=1

2∑
n=1

4∑
m=1

T ajk t̄
j
n[KLnmPL +KRnmPR]g̃at̃

k
m +H.c. (16)

where

KLnm = e−iξ3/2[Dt∗
R2n

D̃t
4m −Dt∗

R1n
D̃t

3m],

KRnm = eiξ3/2[Dt∗
L1n
D̃t

1m −Dt∗
L2n
D̃t

2m], (17)
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Figure 2: Left: One loop contribution to the chromoelectric dipole moment of the top quark
from gluino exchange and from the exchange of stops and mirror stops. Here the external
gluon line connects to the stops and mirror stops in the loop. Right: Same as the left
diagram except that the external gluon line connects to gluinos in the loop, i.e., one has a
gluino-gluino-gluon vertex in this case.

where ξ3 is the phase of the gluino mass.

The above Lagrangian gives a contribution

d̃C(g̃) =
gsαs
12π

4∑
j=1

mg̃

m2
t̃j

Im(KL1j
K∗R1j

)I5(
m2
g̃

m2
t̃j

,
m2
t1

m2
t̃j

), (18)

where I5(r1, r2) is given by

I5(r1, r2) =

∫ 1

0

dx
x+ 8x2

1 + (r1 − r2 − 1)x+ r2x2
. (19)

We note that the limit of I5(r1, r2) for r2 ∼ 0 is the well known form factors 3C(r1) in the

case of light quarks [33].

3.4 W and Z exchange contributions

The W boson exchange contribution to the chromoelectric dipole moment of the top quark

arises through the left loop diagram of Fig.(3). The relevant part of Lagrangian that gener-

ates this contribution is given by

LCC = − g√
2
W+
µ

∑
i

∑
j

t̄jγ
µ[Dt∗

L1jD
b
L1iPL +Dt∗

R2jD
b
R2iPR]bi +H.c. (20)

where i, j run over the set of quarks and mirror quarks including those from the third

generation and from the vector multiplet, t1 is the physical top quark, and Dt,b
L,R are the
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Figure 3: Left: One loop contribution to the chromoelectric dipole moment of the top quark
from W+ exchange and from the exchange of the bottom quark and from the mirror bottom.
Right: Same as the left diagram except that one has chromoelectric dipole moment arising
from Z exchange and from the exchange of the top and from the mirror top.

diagonalizing matrices defined in the appendix of [8]. These matrices contain phases, and

these phases generate the chromoelectric dipole moment of the top quark. Using the above

interaction, we get from the left loop diagram of Fig.(3), the contribution

d̃C(W+) =
gs

16π2M2
W

2∑
i=1

mbiIm(Γtbi )I1(
m2
bi

M2
W

,
m2
t1

M2
W

). (21)

Here Γtbi is given

Γtbi =
g2

2
Dt∗
L11D

b
L1iD

t
R21D

b∗
R2i, (22)

and I1(r1, r2) is given by

I1(r1, r2) =

∫ 1

0

dx
(4 + r1 − r2)x− 4x2

1 + (r1 − r2 − 1)x+ r2x2
. (23)

Finally we consider the right loop of Fig.(3) which produces the chromoelectric dipole mo-

ment of the top quark through the interaction with the Z boson. The relevant part of

Lagrangian that generates this contribution is given by

LNC = −Zµ
2∑
i=1

2∑
j=1

t̄jγ
µ[SLjiPL + SRjiPR]ti, (24)

where

SLji = − g

6 cos θW
[−3Dt∗

L1jD
t
L1i + 4 sin2 θW (Dt∗

L1jD
t
L1i +Dt∗

L2jD
t
L2i)],

SRji = − g

6 cos θW
[−3Dt∗

R2jD
t
R2i + 4 sin2 θW (Dt∗

R1jD
t
R1i +Dt∗

R2jD
t
R2i)]. (25)
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Using the above interaction, we get from the right loop of Fig.(3), the contribution

d̃C(Z) =
gs

16π2M2
Z

2∑
i=1

mtiIm(SL1iS
∗
R1i)I1(

m2
ti

M2
Z

,
m2
t1

M2
Z

). (26)

The total chromoelectric dipole moment of the top in the model is then given by the sum of

the contributions computed in this section so that

d̃C = d̃C(χ+) + d̃C(χ0) + d̃C(g̃) + d̃C(W+) + d̃C(Z). (27)

4 Parameter space of the model and CP phases

The mass matrices for quarks and mirrors including their mixings are diagonalized using

bi-unitary transformations Db
L and Db

R for the bottom quarks and mirrors and Dt
L and Dt

R

for the diagonalization of the top quarks and mirrors. We parametrize Dt
L and Dt

R as follows

Dt
L =

(
cos θL − sin θLe

−iχL

sin θLe
iχL cos θL

)
, Dt

R =

(
cos θR − sin θRe

−iχR

sin θRe
iχR cos θR

)
. (28)

Thus the mixing between t and T is parameterized by the angles θL, θR, χL and χR where

the angles θL, θR are given by

tan 2θL =
2|mth

∗
5 −mTh3|

m2
t + |h3|2 −m2

T − |h5|2
, tan 2θR =

2| −mth3 +mTh
∗
5|

m2
t + |h5|2 −m2

T − |h3|2
,

(29)

and χL and χR are the CP violating phases defined by

χR = arg(−mth3 +mTh
∗
5), χL = arg(mth

∗
5 −mTh3). (30)

Similarly Db
L and Db

R are given by

Db
L =

(
cos θL − sinφLe

−iξL

sinφLe
iξL cosφL

)
, Db

R =

(
cosφR − sinφRe

−iξR

sinφRe
iξR cosφR

)
, (31)

where the mixing between b and B is parametrized by the angle φL, φR, ξL and ξR. Here

the angles φL and φR are given by

tan 2φL =
2|mbh

∗
4 +mBh3|

m2
b + |h3|2 −m2

B − |h4|2
, tan 2φR =

2|mbh3 +mBh
∗
4|

m2
b + |h4|2 −m2

B − |h3|2
(32)
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Figure 4: (Color online) Left: An exhibition of the dependence of dt on αB when tanβ = 5, mT = 250, |h3| =70, |h4| =80,
mB =120, |h5| =90, m0 =220, |A0| =200, m̃1 = 50, m̃2 = 100, µ = 150, m̃g = 350, χ4 =0.3, χ5 = −0.8, αT =0.4, and χ3 =0.4.
(The six curves correspond to the contributions from the Z, W, neutralino, chargino, gluino and total CEDM. They are shown
in ascending order at αB = 0). Here and in subsequent figures all masses are in GeV and all angles are in rad. Right: An
exhibition of the dependence of dt on αT when tanβ = 25, mT = 200, |h3| =85, |h4| =75, mB =150, |h5| =85, m0 =200,
|A0| =200, m̃1 = 50, m̃2 = 100, µ = 150, m̃g = 400, χ4 =0.5, χ5 =0.7, χ3 =0.8, and αB =0.2. (The six curves correspond to
the contributions from the neutralino, Z, chargino, W, total CEDM and gluino. They are shown in ascending order at αT = 0).

and the phases ξL,R arise from the couplings h4 and h3 through the relations

ξR = arg(mbh3 +mBh
∗
4), ξL = arg(mbh

∗
4 +mBh3). (33)

For the case of top and bottom masses arising from hermitian matrices, i.e., when h5 = −h∗3
and h4 = h∗3 we have θL = θR, φL = φR, χL = χR = χ and ξL = ξR = ξ. Further, here

we have the relation ξ = χ + π and thus the W-exchange and the Z-exchange terms in the

EDM for the top vanish. However, more generally the top and the bottom mass matrices

are not hermitian and they generate non-vanishing contributions to the EDMs. Thus the

input parameters for this sector of the parameter space are mt1,mT , h3, h5,mb1,mB, h4 with

h3, h4 and h5 being complex masses with the corresponding CP violating phases χ3, χ4 and

χ5. For the sbottom and stop mass2 matrices we need the extra input parameters of the susy

breaking sector, M̃q, M̃B, M̃b, M̃Q, M̃t, M̃T , Ab, AT , At, AB, µ, tan β. The chargino, neutralino

and gluino sectors need the extra parameters m̃1, m̃2 and mg̃. We will assume that the only

parameters that have phases in the above set are AT , AB, At and Ab with the corresponding

phases given by αT , αB, αt and αb.
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Figure 5: (Color online) Left:An exhibition of the dependence of dt on χ3 when tanβ = 10, mT = 150, |h3| =75, |h4| =90,
mB =180, |h5| =80, m0 =300, |A0| =300, m̃1 = 50, m̃2 = 100, µ = 150, m̃g = 400, χ4 =0.7, χ5 = −0.4, αT =0.2, and
αB =0.7. (The six curves correspond to the contributions from the Z, neutralino, W, chargino, gluino and total CEDM. They
are shown in ascending order at χ3 = 0). Right:An exhibition of the dependence of dt on χ4 when tanβ = 15, mT = 350,
|h3| =80, |h4| =70, mB =200, |h5| =100, m0 =400, |A0| =400, m̃1 = 50, m̃2 = 100, µ = 150, m̃g = 300, χ3 =0.6, χ5 =0.8,
αT =0.7, and αB =0.2. (The six curves correspond to the contributions from the Z, neutralino, chargino, W, total CEDM and
gluino. They are shown in ascending order at χ4 = 0).
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Figure 6: (Color online) An exhibition of the dependence of dt on χ5 when tanβ = 20, mT = 300, |h3| =90, |h4| =85,
mB =250, |h5| =95, m0 =100, |A0| =200, m̃1 = 50, m̃2 = 100, µ = 150, m̃g = 300, χ4 = −0.6, χ3 =0.4, αT =0.7, and
αB =0.4. (The six curves correspond to the contributions from the W, Z, neutralino, chargino, gluino and total CEDM. They
are shown in ascending order at χ5 = 0).

5 Numerical estimate of the CEDM of the top

To simplify the analysis further we set some of the phases to zero, i.e., specifically we set αt =

αb = 0. With this in mind the only contributions to the chromoelectric dipole moment CEDM
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of the top quark arises from mixing terms between the scalars and the mirror scalars, between

the fermions - and the mirror fermions and finally among the mirror scalars themselves. Thus

in the absence of the mirror part of the lagrangian, the top CEDM vanishes and so we can

isolate the role of the CP violating phases in this sector and see the size of its contribution.

The 4 × 4 mass2 matrices of stops and sbottoms are diagonlized numerically. Thus the CP

violating phases that would play a role in this analysis are

χ3, χ4, χ5, αT , αB. (34)

To reduce the number of input parameters we assume M̃a = m0, a = q, B, b,Q, T, t and

|Ai| = |A0|, i = T,B, t, b. In the left panel of Fig(4), we give a numerical analysis of the top

EDM and discuss its variation with the phase αB. We note that the only component that

varies with this phase is the chargino component. This is expected since αB enters the scalar

bottom mass2 matrix and the chargino contribution to the EDM is controlled by D̃b which

depends on αB while the other contributions are independent of this phase. Further, the

chargino component exhibits a minimum where the different terms of it can have destructive

cancellation. In the right panel of Fig(4), we study the variation of the different components

of dt on the phase αT . We observe that the components that vary with this phase are the

neutralino and the gluino contributions while the W, Z and chargino contributions have no

dependence on this phase. The reason for the above is that αT enters the scalar top mass2

matrix and the EDM arising from W, Z and chargino exchanges are independent of D̃t.

However, the neutralino and the gluino contributions are affected by it. It is clear that we

see here the cancellation mechanism[32, 33, 34, 35]. working since the components are close

to each other with different signs, so we have the possibility of a destructive cancellation.

In the left panel of Fig(5), we show the behavior of the different components of the

chromoelectric dipole moment contributions to the top EDM as a function of the phase χ3.

We note that χ3 enters Dt, Db, D̃t and D̃b and as a consequences all diagrams in Fig.(1),

Fig. (2) and Fig. (3) that contribute to the top EDM have a χ3 dependence. Further, the

various diagrams that contribute to the top EDM may add constructively or destructively

as shown in the Z, W, neutralino and chargino contributions. In the case of destructive

interference, we have large cancellations again reminiscent of the cancellation mechanism for

the EDM of the electron and for the neutron[32, 33, 34, 35]. Of course the desirable larger

contributions for the top EDM occur away from the cancellation regions. In the right panel

of Fig(5), we study the variation of the different components of dt as the magnitude of the
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phase χ4 varies. The sparticle masses and couplings in the bottom sector and thus the top

EDM arising from the exchange of the W and the charginos are sensitive to χ4 and thus only

these two contributions to the top EDM have dependence on this parameter. In Fig(6), we

study the variation of the different components of dt as the phase χ5 changes. This phase

enters the top quark mass matrix and the scalar top mass2 matrix and consequently the

matrices Dt
L,R and D̃t. Thus the contributions to the EDM of the top arising from the W, Z,

neutralino, chargino and gluino exchanges all have a dependence on χ5 as exhibited in Fig(6).

A comparison between the contributions of the chromoelectric dipole moment operator

of the top EDM and that of the electric dipole moment operator[8], shows that they could be

the same order of magnitude with like or unlike signs. That would provide an extra element

for constructive or destructive interference of EDM components. To exhibit this, we give

in Table 1 the values of EDM for the top quark coming from the electric dipole moment

operator and the chromoelectric dipole moment operator. The first entry of Table 1 shows

a destructive interference between the electric and the chromoelectric dipole moments while

the last two entries show a constructive interference. With constructive interference a value

of the top EDM as large as ∼ 6 × 10−19 ecm in magnitude (see the middle entry) can be

gotten. It is very possible that a full search of the parameter space of phases can lead to a

top EDM of size O(10−18) ecm.

Table 1: Electric and chromoelectric dipole operator contributions.
χ3(rad) χ4 χ5 αT αB dEt e.cm dCt e.cm

.3 −.5 1.0 .8 −.4 8.04× 10−19 −9.8× 10−19

.8 .4 −1.5 −.6 .3 −1.57× 10−19 −4.6× 10−19

−.3 1.5 .1 .5 −1.2 −1.73× 10−19 −9.4× 10−20

Table caption: A sample illustration of the electric and chromoelectric dipole operator con-

tributions to the electric dipole moment of the top quark. The inputs are: mT = 350,

|h3| =100, |h4| =175, mB =100, |h5| =190, m0 =200, |A0| =200, m̃1 = 50, m̃2 = 100,

µ = 150, m̃g = 450 and tan β = 5 (top row), 30 (middle row), 40 (bottom row). All masses

are in units of GeV and all angles are in radian.

Constraints on the top chromo EDM have been obtained using the combined CDF and

DØ data and the CMS and ATLAS data on the total tt̄ pair production cross section in

[36, 37]. Further, it is shown in [38, 39] that with 10fb−1 of data at
√
s = 14 TeV at the
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LHC a 5σ statistical sensitivity to a top quark chromo electric dipole moment of about

5× 10−18gs.cm can be reached.

6 Conclusion

Currently the physics at the TeV scale is largely unknown and it is hoped that the LHC

will provide us with an insight in this energy regime. It is fully conceivable that this energy

regime contains extra anomaly free vector like quark multiplets which can mix with the third

generation. In this work we analyze the effect of this mixing on the chromoelectric dipole

moment of the top quark. In this case one finds that there are contributions that arise from

the exchange of the extra vector like multiplets in the loops. We specifically focus on the

exchange of the mirrors since their exchange can produce more dramatic contributions. Sev-

eral sets of diagrams were computed for this analysis. These include the chargino exchange,

the neutralino exchange, the gluino exchange as well as exchange of the W and the Z boson

bosons. In the analysis new sources of CP violation enter. They arise from the complex

mixing parameters of the third generation with the mirrors and from the soft parameter

involving interactions of the third generation with the mirrors. Numerical analysis shows

that an EDM as large as 10−18 ecm can be obtained for the top quark from the electric

and chromoelectric dipole contributions. An EDM of this size could be accessible in future

experiments such as at the ILC.
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