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Abstract

We study the low transverse momentum (pT ) distribution of the Z-boson at hadron colliders for

pT ∼ ΛQCD using a factorization and resummation formula derived in the Soft Collinear Effective

Theory (SCET). In the region pT ∼ ΛQCD, new non-perturbative effects arise that cannot be

entirely captured by the standard parton distribution functions, and require an additional new

non-perturbative transverse momentum function (TMF). The TMF is field-theoretically defined

in SCET, fully gauge invariant, and captures the non-perturbative dynamics that affects the pT -

distribution in the region pT ∼ ΛQCD. The TMF also reduces to the expected perturbative result

in the region pT ≫ ΛQCD. We develop phenomenological models for these TMFs in the non-

perturbative region, and discuss in detail fits to Tevatron data in which both experimental and

theoretical errors are carefully treated.
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I. INTRODUCTION

The description of the low transverse momentum (pT ) distribution of electroweak gauge

bosons and the Higgs boson has been the subject of extensive study [1–16]. It plays an

important role in the precision measurement of the W -boson mass and Higgs boson searches

while providing an important test of perturbative Quantum Chromodynamics (QCD). In the

region of low transverse momentum pT ≪ M , where M denotes the mass of the electroweak

gauge or the Higgs boson, large logarithms of pT/M spoil the perturbative expansion in the

strong coupling and require resummation.

More recently, the low-pT resummation was studied using a factorization theorem de-

rived [17, 18] in the Soft-Collinear Effective Theory (SCET) [19–21]. The result derived using

SCET can be written entirely in momentum space, avoiding issues arising with the impact-

parameter space present in the standard approach. All objects in the factorization theorem

have well-defined operator expressions. A detailed study of the region ΛQCD ≪ pT ≪ M

was performed for the production of Higgs and electroweak gauge bosons. In this region, the

factorization theorem is given entirely in terms of perturbatively calculable functions and

the standard initial state parton distribution functions (PDFs), and takes the schematic

form

d2σ

dp2T dY
∼ H ⊗ G ⊗ f ⊗ f. (1)

Convolutions between the various objects are denoted by the symbol ⊗, H denotes a hard

function whose renormalization group (RG) evolution sums logarithms of pT/M , G denotes a

perturbative function at the pT -scale and describes the emission of soft and collinear partons

that recoil against the heavy boson, and f ⊗ f denotes the product of the initial state PDFs

which are evaluated at the pT -scale as determined by DGLAP evolution. Resummation of

the large logarithms was performed at the next-to-leading log (NLL) accuracy in Ref. [18]

using renormalization group (RG) evolution in the effective theory. The results for the Z-

boson are in excellent agreement with Tevatron data collected by the CDF [22] and D0 [23]

collaborations.

In this paper, we turn our focus to the region pT ∼ ΛQCD ≪ M where new non-

perturbative effects arise that cannot be captured entirely by the standard PDFs. The

region pT ∼ ΛQCD is sensitive to the transverse momentum distributions of the partons in
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the initial state hadrons and to transverse momentum emissions of order ΛQCD. In this

region, the factorization formula takes the schematic form

d2σ

dp2T dY
∼ H ⊗K, (2)

where the function K is evaluated at the scale µT ∼ pT ∼ ΛQCD. The definition of K is

given in Section III. It is a new non-perturbative function that cannot be described in terms

of the standard PDFs alone. In order to facilitate a smooth transition between Eqs. (2)

and (1) as one increases pT from non-perturbative to larger perturbative values, it is useful

to write K in the form

K ∼ G ⊗ f ⊗ f, (3)

which defines the new transverse momentum function (TMF) G. For phenomenological

purposes, the TMF is modeled in the non-perturbative-pT region with the constraint that it

reduce to the expected perturbative result in Eq. (1) in the high-pT region. For this reason

we use the same symbol G to denote the TMF over the entire pT spectrum. The function

K, or equivalently the TMF G, is universal and depends only on the hadronic initial state.

The region of pT ∼ ΛQCD has been studied extensively in the context of semi-inclusive

deep-inelastic scattering (SIDIS) [24–28], and also within the Collins-Soper-Sterman (CSS)

approach to resummation of low-pT logarithms [29–33]. In SIDIS processes, transverse

momentum dependent parton distribution functions (TMDPDFs) typically arise in order

to describe the order ΛQCD dynamics in the initial hadrons. The TMDPDFs are typically

not gauge invariant under singular gauge transformations, and arriving at a gauge-invariant

definition has been the subject of much research [24–28, 34–39]. In our formalism, it is

instead K that is the fundamental non-perturbative object in the region pT ∼ ΛQCD. It

is fully gauge invariant [17]. We choose to write K in the form of Eq. (3), and view the

TMF (G) and the PDFs (f) as the fundamental objects of interest. Both of these are

manifestly gauge invariant, and have a more intuitive and smoother connection with the

form of the factorization theorem in the region pT ≫ ΛQCD. Furthermore, our formalism

uses a different approach compared to the TMDPDF formalism. In particular, instead

of TMDPDFs, our factorization formula is in terms of Impact-parameter Beam Functions

(iBFs) which correspond to unintegrated PDFs and are fully differential in the momentum

coordinates. These iBFs are interesting objects in their own right and worth further study

due to their implications for the non-perturbative structure of the nucleon and universality.
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The goal of this manuscript is to develop initial models of the TMF that satisfy the

following criteria: they reduce smoothly to the perturbative result as one increases pT , and

they preserve the RG running of K in order to cancel the running of the hard function,

as required by the scale invariance of the cross section. We do so, and present numerical

results for pp̄ initial states by fitting to Tevatron data. The fit discussed here is the first

to incorporate the theoretical errors arising from scale variation in determining the non-

perturbative parameters; this source of uncertainty has been neglected in previous fits within

the CSS formalism [29]. We find that the theoretical error is the single largest source of

uncertainty entering our fit. A global fit to all available data and an analysis of fixed-target

data in order to describe the pp initial state and test the universality of the TMF is reserved

for future work.

The outline of our paper is as follows. In Section II, we review the factorization formu-

las for the perturbative pT region derived in [17, 18] and briefly discuss the various pieces

and notation. In Section III we present the factorization formula for the non-perturbative

pT -region and discuss the issues involved in developing a non-perturbative model. We give

phenomenological models for the TMF G in the non-perturbative pT region and show nu-

merical results in Section IV. We conclude in Section V.

II. THE PERTURBATIVE pT REGION

In this section we briefly review the basic elements of the factorization and resummation

formula for the transverse momentum distribution of the Z-boson in the region ΛQCD ≪

pT ≪ M , as derived in Refs. [17, 18]. Although we focus on the Z-boson, the analysis is

similar for any color-neutral heavy final state. The appropriate effective field theory for this

observable is SCETII, which has both collinear and soft degrees of freedom that can recoil

against the Z-boson with transverse momenta of order pT . The collinear and soft degrees

of freedom have momentum scalings

pn ∼ M(η2, 1, η), pn̄ ∼ M(1, η2, η), ps ∼ M(η, η, η), η ∼
pT
MZ

, (4)

where we have used the notation p = (n · p, n̄ · p, p⊥) to denote the light-cone and

transverse momentum components. The light-cone four-vectors are nµ = (1, 0, 0, 1) and

n̄µ = (1, 0, 0,−1). The pn,n̄ momenta denote collinear momenta with large components
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along the nµ and n̄µ directions respectively. The soft momenta are denoted by ps. The

transverse momentum distribution in the region ΛQCD ≪ pT ≪ M is dominated by these

collinear and soft modes radiated from the initial state partons. In SCETII, these emissions

build up into collinear and soft Wilson lines that dress the Z-production current. The final

factorization and resummation formula for the differential cross-section of the Z-boson as a

function of its transverse momentum and rapidity (Y) is given by

d2σ

dp2T dY
=

π2

N2
c

∫ 1

0

dx1

∫ 1

0

dx2

∫ 1

x1

dx′
1

x′
1

∫ 1

x2

dx′
2

x′
2

× Hq
Z(x1x2Q

2, µQ;µT ) G
qrs(x1, x2, x

′
1, x

′
2, pT , Y, µT )fr(x

′
1, µT )fs(x

′
2, µT ).

(5)

The above formula involves a convolution of three types of objects: the hard function Hq
Z ,

the TMF Gqrs, and the initial state PDFs fr,s. The indices r, s run over the initial partons

and the superscript q denotes the fact that the Z-boson production vertex involves a quark

current. The hard function describes the physics of modes with virtuality p2 ∼ M2 that

are integrated out at the scale µQ ∼ M . The hard function is then evolved down to the

scale µT ∼ pT via its renormalization group equations, summing large logarithms of order

M/pT in the process. The TMF function Gqrs lives at the µT ∼ pT scale and describes the

physics of the soft and collinear emissions in a way that is consistent with the constraints

imposed on the pT and Y of the Z-boson. The initial state PDFs fr,s are evaluated at the

µT scale after DGLAP evolution from the non-perturbative scale, summing logarithms of

order ΛQCD/pT in the process.

The TMF function Gqrs has the form

Gqrs(x1, x2, x
′
1, x

′
2, pT , Y, µT ) =

∫

d2b⊥
(2π)2

J0

[

b⊥pT
]

∫

dt+n dt
−
n̄ In;qr(

x1

x′
1

, t+n , b⊥, µT )

× In̄;q̄s(
x2

x′
2

, t−n̄ , b⊥, µT )S
−1
qq (x1Q− eY

√

p2
T +M2 −

t−n̄
x2Q

, x2Q− e−Y
√

p2
T +M2 −

t+n
x1Q

, b⊥, µT ),

(6)

where the functions In;qr, In̄;q̄s correspond to collinear emissions in the n and n̄ directions

respectively and S correspond to soft emissions. The inverse soft function (iSF) S−1 arises

due to zero-bin subtractions [17, 18, 40–43] necessary to avoid the problem of double-counting

the soft region. The collinear function In;qr is defined through the matching of a nucleon

matrix element called the impact-parameter beam function (iBF) B̃q
n onto the standard
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PDFs as

B̃q
n(x, t, b⊥, µT ) ≡

∫ 1

x

dz

z
In;qr(

x

z
, t, b⊥, µT ) fr(z, µT ), (7)

with an analogous equation for the n̄-sector. For precise field-theoretic definitions of the

iBFs, the iSF, and the hard-function Hq
Z we refer the reader to Refs. [17, 18]. Analogous

nucleon beam functions [44–47] are known to appear in other collider processes. We note that

this SCET formalism accomplishes the resummation of large logarithms differently than the

traditional QCD approach. Logarithms of the matching-scale ratio ln(µQ/µT ) that appear in

the partonic cross section are resummed via the RG evolution of HZ
Q . Upon identifying µQ ∼

M and µT ∼ pT , these become the standard small-pT logarithms. Kinematic logarithms

which directly have ln(M/pT ) appear after integration over the momentum fractions x
′

1,2 in

Eq. (5). It was shown in Ref. [18] that this formalism reproduces the correct logarithms upon

expansion of the resummed result to the fixed order O(α2
s) given our current knowledge of

G in perturbation theory.

We comment briefly on the recent work of Ref. [48] which also uses SCET to address

pT -resummation. We disagree with several aspects of their results. Their analysis is based

on the claim that the emission of soft radiation with transverse momentum of order pT

does not affect the spectrum of the Z-boson. This is in contrast to our effective field

theory (EFT) where both collinear and soft radiation, with transverse momentum of order

pT , play a dynamical role in determining the transverse momentum spectrum. It is well-

known [19–21] that the emission of multiple collinear and soft partons from the initial-state

collinear partons build into eikonal Wilson lines and is a leading order effect in SCETII.

Since Ref. [48] argues against the presence of effects from soft radiation, their factorization

formula does not have the analogue of the iSF. In our formalism the combined RG running

of the two iBFs and the iSF cancels the running of the hard function as required by RG

invariance. The presence of the iSF, which itself has a non-zero anomalous dimension, plays

a crucial role in achieving this RG invariance as was shown in Ref. [17]. Since Ref. [48]

does not have the iSF they do not naturally achieve the required RG invariance. Instead,

RG invariance is implemented by introducing a ‘hidden’ Q2 dependence in their two nucleon

beam functions, which are individually ill-defined. This is done at the expense of losing field-

theoretic operator definitions for the objects in their formula. This hidden Q2 dependence

is argued to arise from a collinear anomaly due to the absence of soft modes. It is further

stated that soft modes have a vanishing contribution if the collinear anomaly is properly
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regularized. Since the presence of the collinear-anomaly already assumes the absence of soft

modes, we do not find this argument compelling. All of these problems are avoided if one

starts with the correct degrees of freedom and includes the effects of both collinear and soft

radiation. SCETII is known to be the appropriate EFT for this purpose.

III. THE NON-PERTURBATIVE pT REGION

In the previous section we reviewed the factorization formula for the region ΛQCD ≪

pT ≪ M . We now consider the pT distribution in the region where pT ∼ ΛQCD. The

factorization theorem is given by

d2σ

dp2T dY
=

π2

N2
c

∫ 1

0

dx1

∫ 1

0

dx2H
q
Z(x1x2Q

2, µQ;µT )K
q(x1, x2, pT , Y, µT ),

(8)

where Kq is defined as

Kq(x1, x2, pT , Y, µT ) ≡

∫

dt+n

∫

dt−n̄

∫

d2b⊥
(2π)2

J0(b⊥pT )B̃
q
n(x1, t

+
n , b⊥, µT )B̃

q̄
n̄(x2, t

−
n̄ , b⊥, µT )

× S−1
qq (x1Q− eY

√

p2T +M2 −
t−n̄
x2Q

, x2Q− e−Y
√

p2T +M2 −
t+n
x1Q

, b⊥, µT ).

(9)

In this case, the iBFs (B̃q
n,n̄) and the iSF (S−1

qq ) are evaluated at the scale µT ∼ pT ∼ ΛQCD

with the hard function Hq
Z evolved via its RG equations down to this same scale. Since

µT ∼ ΛQCD, the iBFs and the iSF are non-perturbative. We note that the iBF depends

both light-cone momentum components and on the transverse spatial coordinate b⊥. The iBF

thus corresponds to a fully unintegrated PDF which is more differential than the TMDPDF.

The iBF can thus be a powerful probe of nucleon structure and can arise in other differential

observables. This expression for Kq was already derived in Ref. [17, 18]. In that work we

focused on the region pT ≫ ΛQCD so that the iBFs and iSF were perturbative and the iBFs

were further matched onto PDFs. In this case, since µT ∼ pT ∼ ΛQCD, the iBFs and iSF are

non-perturbative. A perturbative matching onto PDFs is no longer valid and the final form

of the factorization theorem is given by Eqs. (8) and (9). For phenomenological purposes,

the non-perturbative function Kq must be modeled. When pT ≫ ΛQCD, the scale µT ∼ pT

is perturbative. Kq then becomes a perturbative object and the iBFs can be matched onto

PDFs as in Eq. (7), leading to Eq. (5).
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We model the function Kq by imposing two requirements. First, the model for Kq must

preserve the correct RG evolution properties so that it cancels the running of the hard

function Hq
Z , as required by the scale invariance of the cross section. Second, as one increases

pT from the non-perturbative region to higher perturbative values, Eq. (8) must reduce to

Eq. (5). In order to smoothly transition between the non-perturbative and perturbative

values of pT , we write the the iBFs in Eq. (9) as in Eq. (7), even in the non-perturbative region

where µT ∼ pT ∼ ΛQCD. In this region, Eq. (7) is no longer a perturbative matching equation

but instead defines a new non-perturbative function In;qr. As one increases µT ∼ pT to

perturbative values, the function In;qr corresponds to the perturbatively calculable coefficient

in the matching of the iBF onto the PDF. Similar statements apply to the n̄-sector iBF.

With these conventions, one can write the function Kq as

Kq(x1, x2, pT , Y, µT ) ≡
∑

r,s

∫ 1

x1

dx′
1

x′
1

∫ 1

x2

dx′
2

x′
2

Gqrs(x1, x2, x
′
1, x

′
2, pT , Y, µT )fr(x

′
1, µT )fs(x

′
2, µT ),

(10)

for all values of pT . For perturbative pT -values, the quantity Gqrs is perturbative and

identical to that given in Eq. (6). The expression in Eq. (8) then properly reduces to the

factorization theorem of Eq. (5), valid in the region ΛQCD ≪ pT ≪ MZ . For µT ∼ pT ∼

ΛQCD, G
qrs is non-perturbative, as are all the quantities on the RHS of Eq. (6). In the non-

perturbative-pT region, Gqrs can be interpreted as the non-perturbative TMF controlling the

dynamics of transverse momentum dynamics of order ΛQCD. The modeling of the function

Kq in this region is reduced to the modeling of the TMF Gqrs.

We view Eq. (10) with Kq rewritten in terms of the standard initial state PDFs and a

new TMF function Gqrs as more convenient than the form in Eq. (9). Both ways of writing

Kq are equally valid. In Eq. (9), the iBFs might be associated with TMDPDFs in the

language used for the study of SIDIS processes. These iBFs are invariant under covariant

gauge transformations but are not in general invariant under singular gauge transformations.

However, the full product of the two iBFs and iSF that define Kq is completely gauge

invariant. For a more detailed discussion of this point we refer the reader to Ref. [17]. The

form of Kq in Eq. (10) makes gauge invariance manifest. Since both Kq and the PDFs are

gauge invariant, the TMF Gqrs is also gauge independent. In Eq. (7), the gauge dependence

of the iBF B̃q
n under singular gauge transformations is isolated into the function In;qr. This

situation also applies to the n̄-sector iBF. The gauge dependence of the iBFs then cancels
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in the product that defines Gqrs. In this way, the non-perturbative dynamics in the region

pT ∼ ΛQCD is described in terms of gauge invariant initial state PDFs and the TMF.

IV. TMF MODELS AND NUMERICAL RESULTS

In this section we develop phenomenological models for the TMF function Gqrs in the

non-perturbative region. We require that the model for Gqrs reduces to the perturbatively

calculable result as one increases pT . We write Gqrs in the form

Gqrs(x1, x2, x
′
1, x

′
2, pT , Y, µT ) =

∫ ∞

0

dp′T G
qrs
part.(x1, x2, x

′
1, x

′
2, pT

√

1 + (p′T/pT )
2, Y, µT )

× Gmod(p
′
T , a, b,Λ),

(11)

which is a convolution of the partonic result for the TMF function G
qrs
part. with a model

function Gmod [49–51]. This form is reminiscent of that used in the CSS approach, where

the integrand of the Fourier transform is decomposed according to

W (b) = W (b∗)W
NP (b), b∗ =

b
√

1 + (b/bmax)2
. (12)

W (b) is the perturbative resummed contribution and WNP denotes the non-perturbative

contribution. bmax is a free parameter typically taken to be of order 1GeV−1.

We parametrize our non-perturbative contribution as

Gmod(p
′
T , a, b,Λ) =

23/2−a

Λ

1

Γ(a− 1/2)

(

p′ 2T
Λ2

)a−1

exp
[

−
p′ 2T
2Λ2

]

, (13)

which satisfies the normalization condition
∫ ∞

0

dp′T Gmod(p
′
T , a, b,Λ) = 1. (14)

We note that this function is approximately Gaussian, with a width given by Λ and a peak

position p2T,peak = 2(a− 1)Λ2. By changing a and Λ we can therefore control both the peak

and width of the non-perturbative transverse momentum contribution. We will find later

that both parameters are constrained by data. As a simple check of the flexibility of our

functional form, we have also tried a three-parameter non-perturbative model given by

Gmod(p
′
T , a, b,Λ) =

N

Λ2

(

p′ 2T
Λ2

)a−1

exp
[

−
(p′T − b)2

2Λ2

]

, (15)

9



where N is fixed by the normalization condition in Eq. (14). We found that the new

parameter b was unconstrained by the fit, while the best-fit values for a and Λ were similar

to the two-parameter result. This indicates that the form of Eq. (13) is sufficiently flexible

to describe the considered data sets.

In principle, the model function Gmod can have flavor indices r, s. For the sake of sim-

plicity we will work with a flavor-independent model function Gmod. Different choices of the

parameters a,Λ correspond to different model choices for the non-perturbative TMF Gqrs.

The model function parameters are chosen such that Gmod will peak at p′T ∼ ΛQCD with

an exponential fall off for larger values of p′T . As a result, Gqrs in Eq. (11) receives sizeable

contributions only from the region p′T ∼ ΛQCD. Thus, in the region pT ≫ ΛQCD one can

Taylor expand G
qrs
part. around the limit pT ≫ p′T ∼ ΛQCD. When combined with Eq. (14) this

gives

Gqrs(x1, x2, x
′
1, x

′
2, pT , Y, µT )

∣

∣

∣

pT≫ΛQCD

= G
qrs
part.(x1, x2, x

′
1, x

′
2, pT , Y, µT ) +O(

ΛQCD

pT
).

(16)

In the region of perturbative pT , the function Gqrs properly reduces to its perturbative

limit with all model dependence suppressed by powers of ΛQCD/pT . In this way, the model

dependence is restricted to the non-perturbative region, as expected. The perturbative

region of the pT spectrum remains calculable in a model-independent way to leading order in

ΛQCD/pT . One could consider more sophisticated model functions that contain x-dependence

and that incorporate additional effects, but we restrict ourselves in this initial analysis to

the form of Eq. (13).

The implementation of the model also requires care regarding the choice of the scale

µT . In the perturbative pT region, the scale µT ∼ pT is the appropriate choice. However,

one cannot use µT ∼ pT when pT is of order ΛQCD or smaller. The RG equations for the

evolution of the hard function Hq
Z(x1x2Q

2, µQ;µT ) become non-perturbative in this region,

and G
qrs
part. in Eq. (11) becomes incalculable. A sensible choice for µT that can be applied in

both the perturbative and non-perturbative pT regions is

µ2
T = ξ2 p2T + p2Tmin, (17)

where pTmin ∼> 1 GeV is a low, but still perturbative, scale and can be viewed as another

parameter of the model. It is analogous to the parameter bmax that appears in the CSS
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FIG. 1: The result for the pT -spectrum of the Z-boson for the best fit parameter choices a =

2.50,Λ = 1.43GeV. We have varied µT,Q within the range set by Eq. (18). The data points were

collected by the CDF and D0 collaborations [22, 23].

approach to transverse momentum resummation. ξ is a scale variation parameter we take to

be O(1). The above choice of scale for µT has several useful properties. As pT → 0, the scale

µT → pTmin so that Gqrs
part in Eq. (11) is still evaluated at a perturbative scale. Similarly, the

running of the hard function Hq
Z(x1x2Q

2, µQ;µT ) will freeze at the perturbative scale pTmin

as pT → 0. For larger values of pT ≫ pTmin ∼
> 1 GeV, µT → ξ pT so that the appropriate

choice of µT ∼ pT in the perturbative region is recovered.

A. Details of the TMF fit

We now discuss in detail our fit of the TMF function Gqrs to Tevatron data for the Z-boson

pT spectrum. We perform a chi-squared fit of the parameters a and Λ in Eq.(13) against

CDF and D0 data [22, 23]. Only data from pT bins below 10 GeV is used. Transverse

momenta above 10 GeV are completely insensitive to the values of the non-perturbative
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parameters. We set pT,min = 2 GeV in Eq. (17) for two primary reasons. First, this ensures

that the scale µT at which the PDFs are evaluated always remains at or above the initial

scale Q0 = 1 GeV used in the MSTW fit [54], a criterion pointed out in previous work in the

CSS approach [31]. Second, if pT,min varies within a specified range, the lowest value allowed

will always be returned as the best-fit value, as this choice increases the scale-variation error

and consequently reduces the chi-squared. A value of 2 GeV prevents the error defined by

Eq. (17) from being so large as to remove sensitivity to different models in the low pT region.

Several sources of error enter the TMF fit. We handle them as discussed below.

• Theory error: We define our theoretical error by varying the scales µT and µQ freely

in the ranges

µ2
T = ξ2T p2T + p2Tmin,

µ2
Q = −M2

Z ξ2Q, (18)

with ξT,Q separately varied through the region 1/2 < ξT,Q < 2. The central value

for the hard matching scale µQ is chosen according the the arguments presented in

Ref. [52, 53]. A central value and symmetric error are defined for each bin by taking

the envelope of values arising from the scale variation and computing the midpoint.

The variations of ξT and ξQ are correlated across all pT bins. The theoretical error is

the largest source of uncertainty, with the diagonal entries of the error matrix reaching

nearly 50% for pT ≈ 3−4 GeV. We have considered uncertainties arising from imprecise

knowledge of parton distribution functions, and have found them to be smaller than

the scale error.

• Luminosity error: The luminosity measurement during Run I of the Tevatron was

determined from a combination of the total inelastic cross sections determined by

CDF and D0, together with measurements from other experiments such as E710 and

E811 [55, 56]. This leads to a division of the luminosity error into a component

100% correlated between the two experiments, and an uncorrelated component. A

simple approximation valid for our purposes can be adopted [57]: assign a 4% error

component which is 100% correlated across all bins and all experiments, and add

another 4% component uncorrelated between CDF and D0. This approximates the

luminosity error to an accuracy of 10%, sufficient for our purposes.
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FIG. 2: The ∆χ2 < 1 region for the parameters a, Λ.

• Experimental statistics and other systematics: Both CDF and D0 quote an error on

each pT bin of their data set, which includes both the statistical error and various sys-

tematic effects such as uncertainties due to detector response [22, 23]. The magnitude

of this error varies between approximately 5 − 15% as a function of pT . The corre-

lation matrix for these errors is not given. However, since this error is sub-dominant

to the theory error and since its statistical component is significant, we treat it as

uncorrelated across all bins for simplicity.

With these preliminaries dispensed with, we can proceed to discuss the results of our fit

for the parameters a and Λ. We find the best-fit values for the parameters a = 2.50 and

Λ = 1.43 GeV, with a goodness-of-fit measure χ2
min/d.o.f. ≈ 0.6. The result for these best

fit values, together with the uncertainty arising from the scale variation defined in Eq. (18),

is shown in Fig. 1 along with the CDF and D0 data points. Fig. 1 shows that the TMF

model is flexible enough to give a good description of data in the region pT < 1 GeV where

non-perturbative transverse momentum dynamics becomes important. At the same time, a

good description of the data is also achieved for larger perturbative values of pT where the

result is given in terms of a perturbatively calculable TMF function. It is clear that the
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uncertainty arising from scale variation is large in the low pT region. A further reduction

of this error requires resummation to next-to-next-to-leading logarithmic accuracy, which is

currently underway within our approach [58].

We can define the standard 1 − σ errors for the parameters a, Λ by searching for values

of these quantities for which ∆χ2(a,Λ) ≡ χ2(a,Λ)− χ2
min < 1. Doing so, we find

a = 2.50+2.05
−0.65, Λ = 1.43+0.67

−0.58GeV. (19)

While Λ has an approximately symmetric error, a possesses a tail toward large values,

indicating that the χ2 function deviates from a parabolic form. Pragmatic methods for the

treatment of such errors has been discussed [59], and can be implemented in future studies if

this error must be combined with others. The parameters a and Λ are highly anti-correlated,

as shown in Fig. 2. We note that the allowed ranges of a, Λ are larger than the allowed

regions for the analogous parameters in the CSS approach [29]. This is due in part to the

neglect of uncertainty arising from scale variation in those previous fits; we find that this

effect significantly hinders the extraction of the non-perturbative parameters.

The model dependence introduced by Gmod turns off in the region pT ≫ ΛQCD, as ex-

pected. This is further illustrated in Fig. 3 where we show the predictions of all models

passing the ∆χ2 < 1 constraint for the two scale choices ξT = ξQ = 2 and ξT = ξQ = 1.

We see in Fig. 3 that while the different parameter choices affect the pT -distribution in the

non-perturbative region, there is little effect in the region pT ≫ ΛQCD. This is a reflection

of Eq. (16) which shows that for pT ≫ ΛQCD the model dependence is power suppressed

and the TMF function reduces to the expected partonic result.

Before concluding we comment briefly on the universality of Gmod. We have neglected

the possible flavor dependence of this function in our fit, indicating that we expect the non-

perturbative dynamics of the valence up and down quarks that dominate Z-boson production

at the Tevatron to be the same. However, it remains to be seen whether the valence-sea

scattering which occurs in pp collisions can be described by the same Gmod. For this reason

we refrain from making predictions for LHC production until this universality is tested by a

detailed fit to the available data. We note that WNP in the CSS approach has been found

to satisfy the universality assumption [31].
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FIG. 3: The result of varying the model parameters a and Λ within the region defined by ∆χ2 < 1.

We have made the two scale choices ξT = ξQ = 2 and ξT = ξQ = 1 for illustration. We see that the

variation of the model parameters affects primarily the very low pT region and has a small effect

in the region pT ≫ ΛQCD. The data points are from the CDF and D0 collaborations [22, 23].

V. CONCLUSIONS

In this manuscript we have performed an initial analysis of the Z-boson transverse mo-

mentum distribution in the region pT ∼ ΛQCD using a factorization and resummation the-

orem derived in SCET. Combined with our previous work [17, 18] which focused on the

region ΛQCD ≪ pT ≪ M , a description of the entire pT -spectrum is now achieved in the

framework of SCET. This formalism is free of the Landau poles that arise in the traditional

approach to low-pT resummation in impact-parameter space, and are therefore independent

of ambiguities and numerical difficulties which arise when transforming back to momentum

space. In the region where pT ∼ ΛQCD, the transverse momentum spectrum is affected by

new non-perturbative effects that cannot be described by the standard PDFs alone. A new

transverse momentum function (TMF), fully gauge invariant and defined in SCET, arises in

addition to the standard PDFs. The TMF captures the non-perturbative dynamics associ-

ated with the initial state transverse momentum distributions and with final-state emissions
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having transverse momenta of order ΛQCD. We have devised phenomenological models for

the TMFs in the region pT ∼ ΛQCD. These models are such that the TMF reduces to the

expected perturbative result when pT ≫ ΛQCD. This allows for a smooth transition between

the non-perturbative and perturbative values of pT . The TMF models also have the correct

renormalization group evolution properties built in. We have described in detail a fit of the

TMF model to Tevatron data. Both experimental errors and theoretical errors arising from

scale variation are carefully treated. The results of the fit for the TMF function give a good

description of the CDF and D0 data over the entire pT spectrum.

The work presented here is simply the first step in understanding the non-perturbative

transverse momentum region within SCET. A more global analysis of the available data is

left to future work, as is the modeling of the TMF for pp initial states. In principle, the

TMF is different for pp and pp̄ initial states. The universality of this function remains to be

studied. These questions must be addressed to present predictions for the pT distribution

at the LHC. We look forward to these future investigations.
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