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Abstract

We consider both velocity-dependent and velocity-independent contributions to spin-dependent

(SD) and spin-independent (SI) nuclear scattering (including one-loop corrections) of WIMPless

dark matter, in the case where the dark matter candidate is a Majorana fermion. We find that spin-

independent scattering arises only from the mixing of exotic squarks, or from velocity-dependent

terms. Nevertheless (and contrary to the case of MSSM neutralino WIMPs), we find a class of

models which cannot be detected through SI scattering, but can be detected at IceCube/DeepCore

through SD scattering. We study the detection prospects for both SI and SD detection strategies

for a large range of Majorana fermion WIMPless model parameters.

PACS numbers: 14.65.Jk, 13.85.Rm, 95.35.+d
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I. INTRODUCTION

WIMPless dark matter [1, 2] is a versatile scenario in which the dark matter candidate is

a hidden sector particle whose mass is at the hidden sector soft SUSY-breaking scale. The

central feature of this scenario is that the dark matter candidate is a thermal relic which

naturally has approximately the correct relic density to explain cosmological evidence of dark

matter. This is a very robust result which is essentially determined by dimensional analysis,

and does not depend on the details of the hidden sector. WIMPless dark matter models

thus provide a wealth of detection signatures which differ significantly from typical WIMP

models, spanning a wide range of dark matter masses (for either a bosonic or fermionic dark

matter candidate).

WIMPless dark matter couples to Standard Model matter multiplets through Yukawa

couplings to a 4th generation multiplet, yielding signals observable by direct detection ex-

periments, through indirect detection, and at colliders. A variety of interesting signatures

of WIMPless dark matter have been studied in the case where the candidate is a scalar [3–

8], with a particular focus on the limit of low mass and large spin-independent scattering

cross-section (σSI), i.e., the region of parameter-space nominally preferred by the data from

the DAMA, CoGeNT and CRESST experiments [9]. These include signatures from direct

detection experiments [3, 5, 8], hadron colliders [6], neutrino detectors [4], gamma ray mea-

surements [3], measurements of invisible Υ-decays at B-factories and new contributions to

b− s mixing [5].

But there are other interesting examples of WIMPless dark matter that provide very

different detection signatures which will soon be probed by experiments. One of the most

interesting cases is when the WIMPless dark matter candidate is a Majorana fermion. In

this case, the tree-level scattering cross-section can have both spin-dependent (σSD) and

spin-independent (σSI) components. While it is possible for scattering to be entirely spin-

dependent, it cannot be entirely spin-independent.

Dark matter detection experiments can be sensitive to σSI and/or σSD. The best exper-

imental sensitivity to both types of scattering is for dark matter mass mX ∼ O(100) GeV.

For this mass scale, direct detection experiments like SuperCDMS, XENON 100/1T and

LUX are expected to provide the best sensitivity to σSI, while neutrino experiments like

2



IceCube/DeepCore are expected to have the best sensitivity to σSD
1. Typically, direct de-

tection experiments are much more sensitive to σSI, due to the A2 enhancement arising from

coherent nuclear scattering. As a result, current bounds on σSI are roughly 4 orders of mag-

nitude tighter than those for σSD, and future experimental sensitivity to σSI is expected to

far exceed sensitivity to σSD. Indeed, experimental sensitivity to even velocity-suppressed

spin-independent couplings can rival sensitivity to spin-dependent couplings [10]. For many

dark matter models, this implies that σSI is most relevant for detection.

For the MSSM, a scan of parameters (without the assumption of gaugino mass unifica-

tion) has found models for which σSD can potentially be measured, but for which velocity-

independent contributions to σSI are too small to be detected with current or future ex-

periments [11]. However, such models tend to be focused at low-mass; the scan in [11] did

not find any such models with mX
>∼ 200 GeV. Since the couplings of the MSSM dictate

the relative contribution of Higgs, Z, squark and axion exchange to neutralino-nucleon scat-

tering, it is difficult to entirely decouple spin-dependent couplings from spin-independent

couplings. Moveover, MSSM models that exhibit spin-dependent scattering will also exhibit

velocity-dependent spin-independent scattering; models which can be detected through spin-

dependent scattering at current direct detection experiments can also be detected through

even velocity-suppressed spin-independent scattering at direct detection experiments oper-

ating now or in the near future [10].

But for WIMPless dark matter, potential dark matter-nucleon interactions are more lim-

ited (exchange of a 4th generation multiplet). For Majorana fermion WIMPless models, the

spin-dependent and spin-independent interactions can be decoupled for a wide range of dark

matter mass. Since these models can have very small or vanishing σSI, it is quite possible

that for many such models, the key to detection is spin-dependent scattering. Detection

prospects for Majorana fermion WIMPless dark matter thus depend sensitively on the in-

terplay between spin-dependent and spin-independent contributions to dark matter-nucleus

scattering.

In this paper, we consider the detection prospects for Majorana fermion WIMPless dark

matter through both spin-dependent and spin-independent scattering. In section II, we

1 The sensitivity of neutrino detectors to dark matter annihilation products depends, of course, on the

branching fractions to different Standard Model final states.
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describe the interactions of Majorana fermion WIMPless dark matter, in section III we

review current and future experimental sensitivity to dark matter-nucleon scattering, in

section IV we describe detection prospects for Majorana fermion WIMPless dark matter,

and we conclude in section V.

II. INTERACTIONS OF MAJORANA FERMION WIMPLESS DARK MATTER

The WIMPless dark matter candidate is a hidden sector particle (X) at the hidden sector

soft SUSY-breaking scale. The main feature of these models is that g2X/mX ∼ g2weak/mweak,

where gX is the hidden sector gauge coupling, and mX is the dark matter mass. Since

〈σann.v〉 ∝ (g4/m2), the WIMPless dark matter candidate has roughly the same annihilation

cross-section as a WIMP, implying that the WIMPless candidate has approximately the

correct relic density. A simple implementation of this model arises in gauge-mediated SUSY-

breaking2, where both the hidden sector and MSSM sector receive the effects of SUSY-

breaking from a common SUSY-breaking sector. Both the MSSM and hidden sector soft

scales are related to their gauge couplings by the vevs of the same spurion field, 〈Φ〉 =

M + θ2F , through the relation

g2X
mX

,
g2weak
mweak

∝ M

F
. (1)

The case where the dark matter candidate is a Majorana fermion has previously been

discussed in [13]. Majorana fermion WIMPless dark matter couples to Standard Model

quarks through the Yukawa couplings

V = λLi(X̄PLqi)ỸL + λRi(X̄PRqi)ỸR + h.c. (2)

where qi are MSSM quarks and i is a flavor index. The WIMPless dark matter candidate,

X, is neutral under Standard Model symmetries; it is charged only under the hidden sector

symmetry that stabilizes it (for simplicity, this symmetry is assumed to be discrete). The

ỸL,R are exotic scalar connector particles which are charged under both the MSSM and the

hidden sector symmetry. Gauge-invariance thus implies that the Ỹ1,2 are in a 4th generation

quark multiplet.

2 WIMPless models can also be constructed in the context of anomaly-mediated supersymmetry-

breaking [12].
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The ỸL,R need not be mass eigenstates. In general, the mass eigenstates Ỹ1,2 are related

to ỸL,R, through the mixing angle, α;

ỸL = Ỹ1 cosα + Ỹ2 sinα

ỸR = −Ỹ1 sinα + Ỹ2 cosα. (3)

If the dark matter candidate is a Majorana fermion, then the above Yukawa couplings

permit scattering from Standard Model quarks via tree-level s- or u-channel exchange of

the 4th generation squarks, ỸL,R. The dark matter candidate, X, can also annihilate to

Standard Model particles through exchange of a 4th generation multiplet.

In [13], it was assumed that the 4th generation squarks ỸL and ỸR did not mix, but this

need not be true. Assuming mỸ1
< mỸ2

, dark matter-nucleon scattering is mediated by the

effective operator

O = α1i(X̄γ
µγ5X)(q̄iγµqi) + α2i(X̄γ

µγ5X)(q̄iγµγ
5qi) + α3i(X̄X)(q̄iqi)

+α4i(X̄γ
5X)(q̄iγ

5qi) + α5i(X̄X)(q̄iγ
5qi) + α6i(X̄γ

5X)(q̄iqi), (4)

with

α1i =

 |λ2Li|
8

 cos2 α

m2
Ỹ1
−m2

X

+
sin2 α

m2
Ỹ2
−m2

X

− |λ2Ri|
8

 cos2 α

m2
Ỹ2
−m2

X

+
sin2 α

m2
Ỹ1
−m2

X


α2i =

|λ2Li|
8

 cos2 α

m2
Ỹ1
−m2

X

+
sin2 α

m2
Ỹ2
−m2

X

 +
|λ2Ri|

8

 cos2 α

m2
Ỹ2
−m2

X

+
sin2 α

m2
Ỹ1
−m2

X


α3i,4i =

Re(λLiλ
∗
Ri)

4
(cosα sinα)

 1

m2
Ỹ1
−m2

X

− 1

m2
Ỹ2
−m2

X


α5i,6i =

ıIm(λLiλ
∗
Ri)

4
(cosα sinα)

 1

m2
Ỹ1
−m2

X

− 1

m2
Ỹ2
−m2

X

 (5)

where we have used the notation of [14]. As shown there, α2 is the coefficient of a pseudovec-

tor coupling which mediates spin-dependent scattering, while α3 is the coefficient of a scalar

coupling which mediates spin-independent scattering. These are the only couplings which

are not velocity-suppressed. α4 and α5 are the coefficients of spin-dependent couplings which

are also velocity-suppressed and will not be relevant for the detection prospects studied here.

However, α1 and α6 are the coefficients of spin-independent couplings which are velocity-

suppressed; though suppressed, the greater sensitivity of direct detection experiments to

spin-independent couplings may make them relevant for detection purposes.
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The dark matter-nucleus scattering cross-sections can then be written as

σSI = σ
(1)
SI + σ

(3)
SI + σ

(6)
SI

σSD = σ
(2)
SD, (6)

with

σ
(1)
SI =

4m2
r

π

[
Z(

∑
i

α1iB
p
i ) + (A− Z)(

∑
i

α1iB
n
i )

]2
v2

2

σ
(3)
SI =

4m2
r

π

[
Z(

∑
i

α3iB
p
i ) + (A− Z)(

∑
i

α3iB
n
i )

]2

σ
(6)
SI =

4m2
r

π

[
Z(

∑
i

α6iB
p
i ) + (A− Z)(

∑
i

α6iB
n
i )

]2
m2
rv

2

2m2
X

σ
(2)
SD =

16m2
r

π

[∑
i

α2i(∆
(p)
i 〈Sp〉+ ∆

(n)
i 〈Sn〉)

]2
J + 1

J
. (7)

Note that σ
(6)
SI is suppressed by an additional factor (mr/mX)2, which is always less than 1.

The integrated nuclear form factors are

Bp
u = Bn

d ' 12 Bp
d = Bn

u ' 6 Bp,n
s ' 4 (8)

and we take the spin form factors to be [15]

∆(p)
u = ∆

(n)
d = 0.84 ∆

(p)
d = ∆(n)

u = −0.43 ∆(p,n)
s = −0.09 . (9)

If dark matter couples largely to heavy quarks, then its scattering is largely spin-independent.

Henceforth, we will focus on the case where the dark matter couples largely to the light

quarks. We assume that the dominant couplings are to first generation quarks, and for

simplicity, we will also assume λRu = λRd = λR.

The ratio of spin-independent to spin-dependent couplings is bounded from above by

α3

α2
≤ 1

2
, where the inequality is saturated in limit of real couplings with λL = λR, maximal

mixing (α = π
4
) and mỸ2

→ ∞. This maximum value of σSI/σSD is obtained only outside

the range of σSI and σSD considered here.

The analysis of [13] corresponds to the case where α1,3,6 = 0. The dominant spin-

independent coupling arises from α3, and there are four limits in which α3 → 0 :

• λL = 0 (or λR = 0)

• α = 0

6



• mỸ1
= mỸ2

• maximal CP-violation (arg(λLλ
∗
R) = ±π

2
)

For the remainder of this work, we will focus on the case of real Yukawa couplings, i.e. no

CP-violation. In these limits, spin-independent scattering is necessarily velocity-suppressed.

But even these velocity-dependent terms can be made arbitrarily small. For example, in the

limit

α→ 0 and
|λ2L|

(m2
Ỹ1
−m2

X)
=

|λ2R|
(m2

Ỹ2
−m2

X)
(10)

one would have α1,3,6 → 0. In this limit, scattering detection prospects must rely entirely

on detectors sensitive to σSD. As one deviates from these limits, detectors sensitive to σSI

can become relevant.

A. One-loop corrections

One should also consider one-loop scattering diagrams which could potentially generate

spin-independent scattering. However, we shall find that in the case of Majorana fermion

WIMPless dark matter these are not relevant to direct detection prospects.

We consider the limit where α→ 0, since terms involving squark-mixing will yield spin-

independent scattering even at tree-level. The only relevant one-loop scattering diagrams we

can write involve s- or u-channel exchange of a squark, along with exchange of a photon or Z

between the Standard Model fermion lines. Since we are considering models that couple to

1st generation quarks, the h, H and A exchange diagrams are highly suppressed. Assuming

the squark exchanged is ỸL, the matrix element for the relevant one-loop diagrams is of the

form

M ∝ g2λ2L

∫ d4p

(2π)4
〈Xf |[X̄PL(/p+mf )γ

µf ][f̄γµ(/p−mf )PRX]|Xf〉f0(p), (11)

where the factor f0(p) contains the momentum dependence of the propagators in the loop

diagram. Note that the terms proportional to g2m2
f will be heavily suppressed compared to

the tree-level terms, and can be dropped. Furthermore, the matrix element will be of this

form regardless of whether a photon or Z is exchanged; an additional γ5 factor at one or

more interaction vertices will not change the matrix element except by an overall sign, since
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γ5PL,R = ±PL,R. We then find

M ∝ g2λ2L〈Xf |(X̄PLγνγµf)(f̄γµγνPRX)|Xf〉

= g2λ2L〈Xf |(X̄PLf)(f̄PRX)|Xf〉 − 2g2λ2L〈Xf |(X̄σµνPLf)(f̄σµνPRX)|Xf〉. (12)

After a Fierz transformation, the second term in brackets can be shown to vanish. The first

term in brackets is a pseudovector coupling, and therefore corresponds to a loop-correction

to σSD, which is irrelevant for our purposes. We thus see that there are no relevant one-loop

contributions to σSI, and spin-independent scattering arises only from squark-mixing and

velocity-suppressed contributions.

III. CURRENT AND PROSPECTIVE BOUNDS ON σSI AND σSD

We now briefly review some of the detectors which are relevant to current and future

bounds on (sensitivities to) σSI and σSD. These detection bounds arise from direct detection

experiments, neutrino experiments, and also from colliders. Direct detection experiments

measure the energy of a nucleus recoiling from a dark matter interaction, whereas neutrino

experiments search for the neutrino flux produced when two dark matter particles annihi-

late. Direct detection experiments are sensitive to both σSI and σSD. Although neutrino

experiments are also sensitive to σSI, their sensitivity does not rival that of direct detection

experiments, whose sensitivity to σSI is enhanced by coherent scattering of the heavy nuclei

of the detector. But the sensitivity of neutrino experiments to σSD is very competitive with

that of direct detection experiments.

The current leading bounds on σSI at mX = 100 GeV are set by CDMS-II (Cryogenic Dark

Matter Search II) [16] and XENON100 [17]. CDMS-II utilizes germanium (∼ 4.4 kg) and

silicon (∼ 1.1 kg) detectors, and measures both ionization and phonon energy to distinguish

signal events from background. XENON100 utilizes liquid xenon (62 kg fiducial mass),

and similarly measures both ionization and scintillation yield to distinguish signal from

background. Current bounds from XENON100 have been set using 11 days of data. At the

time of publication, XENON100 is collecting data, and an upgrade to ∼ 1000 kg fiducial

mass (XENON1T) [18] is expected to begin operating around 2014. Meanwhile, SuperCDMS

is expected to begin operation in 2013-2015, using a germanium detector with a target mass

of 100 kg [19].
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GeODM 1.5T (Germanium Observatory for Dark Matter) will detect ionization and

phonons in a ∼ 1500 kg fiducial mass germanium target [20], and is expected to begin

operating in 2017-2021.

The LUX (Large Underground Xenon) experiment is also a liquid xenon-based detector,

with a 350 kg fiducial mass [21]. This detector is expected to begin operation in 2011. In

conjunction with ZEPLIN (Zoned Proportional scintillation in LIquid Noble gases), upgrades

to a fiducial mass of 3000 kg (LUX-ZEP 3T) and, finally, 20000 kg (LUX-ZEP 20T), are

planned for the next several years [21].

The DEAP/CLEAN family of detectors are purely liquid-phase noble gas scintillation

detectors utilizing either neon or argon. MiniCLEAN (Cryogenic Low Energy Astrophysics

with Noble gases) runs with either ∼ 100 kg fiducial mass of liquid argon or ∼ 85 kg fiducial

mass of liquid neon as the target [22]. It is expected to be installed at SNOLAB this year.

DEAP-3600 (Dark matter Experiment in Argon using Pulse-shape discrimination) is a liquid

argon detector with ∼ 1000 kg fiducial mass, also expected to be installed at SNOLAB this

year [23].

LUX-ZEP 20T would have the greatest sensitivity to σSI obtainable from a zero-

background direct detection experiment (∼ 10−12 pb). For smaller cross-sections, neutrino-

nucleus scattering becomes a significant and irreducible background [24].

Significant bounds on spin-dependent scattering are obtained from both direct detection

experiments and from neutrino detectors searching for dark matter annihilation in the sun.

The best current bound on σpSD from a direct detection experiment at mX = 100 GeV is

from SIMPLE (Superheated Instrument for Massive ParticLe Experiments) [25], which con-

sists of superheated droplet detectors made of C2ClF5 droplets in a gel matrix. COUPP

(Chicagoland Observatory for Underground Particle Physics) [26], which uses a bubble cham-

ber filled with 3.5kg of CF3I to search for dark matter nuclear recoils while rejecting electron

recoil events, is also competitive. The best current bound on σnSD from a direct detection

experiment at mX = 100 GeV comes from XENON10 [27], the precursor to XENON100.

Improved bounds on σpSD are possible with DMTPC (Dark Matter Time Projection Cham-

ber), a CF4 gas scintillator. DMTPC currently operates with a 10 L fiducial volume [28],

but it is anticipated that DMTPC will be upgraded to a 1 m3 fiducial volume (DMTPC-ino),

with a further possible upgrade to Large DMTPC with 102 − 103 kg fiducial mass [28, 29].

Super-Kamiokande is a 22.5 kT water Chernekov detector and can detect charged-current
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interactions of neutrinos arising from dark matter annihilation in the Sun [30]. It has ac-

cumulate over 3000 live-days of data already. Similarly, IceCube uses ∼ 1 km3 of deep and

ultra-transparent Antarctic ice as a Cherenkov detector of neutrinos [31]. The DeepCore

extension to IceCube includes a denser array of digital optical modules, whose installation

was completed in January 2010. This denser array allows IceCube/DeepCore to be sensitive

to lower-mass dark matter (mX > 35 GeV). One should note that the sensitivity of neu-

trino detectors to σSD is somewhat model-dependent, and in particular depends on the dark

matter annihilation channel. The Super-Kamiokande bound assumes dark matter annihi-

lation to b-quarks. The prospective IceCube/DeepCore sensitivity cited here is the “hard”

channel reported by IceCube/DeepCore, which is the assumption of annihilation entirely to

τ leptons for mX < 80 GeV, and annihilation to W bosons for mX > 80 GeV (although the

bounds found in [13] are tighter than those reported in [31]), for 1800 live-days of data. The

prospective bounds from these neutrino detectors are only relevant here if the dark matter

candidate has a significant annihilation branching fraction to heavy particles. This is cer-

tainly reasonable, as the WIMPless candidate is a Majorana fermion, so the cross section

for annihilation to light fermions is chirality suppressed.

Collider experiments, such as the Tevatron and Large Hadron Collider (LHC) can also

constrain the dark matter-nucleon scattering cross section [32, 33]3. The effective operators

in eq. 4 allow two quarks to annihilate to dark matter, which contributes to the process

pp̄(pp)→ XX + jets, where the jets arise from initial state radiation. Collider searches for

this process can thus constrain the operator coefficients αi.

CDF has performed monojet searches with 1 fb−1 of data [34]. The search looks for

events with missing pT > 80 GeV, a leading jet with pT > 80 GeV, and the constraints

that a second jet (if present) must have pT < 30 GeV and that there be no other jets

with pT > 20 GeV. This search bounds the new physics contribution to this signature at

σNP < 0.664 pb at the 2σ-confidence level. If one assumes that only α3 is non-zero, the CDF

bound on α3 corresponds to a bound on σSD (for mX ∼ 100 GeV, similar constraints on

the effective operators contributing to spin-independent scattering are not competitive with

3 Note that the analysis of [33] assumes that the pseudovector coupling of dark matter is flavor-independent,

whereas we are considering WIMPless models which couple only to first generation quarks. We expect

that the coupling of dark matter to second and third generation quarks has a negligible effect on collider

sensitivity to the pseudovector coupling.
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bounds from direct detection experiments). Tevatron bounds on this pseudovector exchange

effective operator are quite stringent [33].

In [33], the ability of the LHC to probe the pseudovector exchange scattering operator

with 100 fb−1 of data was also studied. This studied assumed a signal of jets and missing

pT > 500 GeV, where the background was determined from [35]. The sensitivity of the

LHC to this operator will be very competitive with that from direct detection and neutrino

experiments.

However, as with neutrino experiments, the bounds from collider experiments are also

somewhat model-dependent. In particular, these bounds assume the validity of the effective

operator analysis at collider energies. These bounds are strictly valid in the limit where

the exotic squark masses mỸ 1,2 are much larger energy of the hard scattering process; if the

squark masses are comparable to collider energies, these bounds can be weakened.

IV. DETECTION PROSPECTS

In this section, we present the results of a WIMPless dark matter parameter space scan,

followed by an analysis of the three limits described in Section II in which σSI → 0 (neglecting

the limit of maximal CP-violation).

Figure 1 shows σSI and σSD for a scan of the parameter space of Majorana fermion

WIMPless dark matter, where the parameters scanned over are

0 ≤ α ≤ π/4

0 ≤ λL,R ≤
√

4π

300 GeV < mỸ1
< 2 TeV

mỸ1
< mỸ2

< 2 TeV (13)

and we take mX = 100 GeV. The scan includes 2 × 105 model points, though a significant

fraction lie at larger σSI than is shown in Fig. 1. For the velocity-dependent terms in the

cross-section, we approximate v = 220 km/s. In a more detailed calculation, one would

convolve the cross-section against a velocity distribution to determine an event rate at any

given experiment, which in turn would determine the sensitivity at that experiment. Our

approximation is sufficient for the purpose here, and allows us to determine the sensitivity of
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any given experiment to Majorana fermion WIMPless dark matter using publicly available

bounds.

We note that the priors for this scan are linear in α, λL,R and mỸ1,2
. The current limits and

projected sensitivities of direct detection experiments for σSI are shown as vertical lines, and

those for σSD are shown as horizontal lines. The region of the plane above the horizontal solid

blue line is currently excluded by non-observation of spin-dependent scattering on neutrons

by XENON10 (the limit on σpSD from SIMPLE is shown in red), while the region of the plane

to the right of the vertical solid red line is excluded by non-observation of spin-independent

scattering by CDMS-II and XENON10. Spin-(in)dependent cross sections above (to the

right of) a particular sensitivity will be probed by the corresponding experiment.

Because of the greater sensitivity to σSI of detectors such as SuperCDMS, XENON1T

and LUX, most models in this scan either have already been excluded, or can be detected

through spin-independent scattering by future searches. The dominant contribution to spin-

independent scattering is the velocity-independent term σ
(3)
SI . The velocity-dependent terms

σ
(1,6)
SI are suppressed by ∼ 6 orders of magnitude, and only become relevant to detection

prospects in regions of parameter space where σ
(3)
SI ∼ 0. Nevertheless, there are some models

which cannot be detected through σSI with currently planned detectors, but can be detected

through σSD at IceCube/DeepCore, or at the LHC4. These models lie above the cyan dashed

IceCube/DeepCore sensitivity line (or the cyan dotted LHC sensitivity line), and at very low

σSI. Note, however, that the collider bounds from the Tevatron and the LHC (dotted lines)

are only strictly valid in the limit where the squark mass is much larger than the collider

energy scale. This will be true for models mỸ1,2
∼ 2 TeV, but some of these collider bounds

can be substantially weakened if the squarks are lighter.

In Fig. 2, we present the behavior of σSI and σSD as we relax each of the three cases in

which σSI → 0. We can parameterize each of these limits by a small parameter, which goes

to zero as σSI → 0. These small parameters are λR, α, and δ = (mỸ2
− mỸ1

)/mỸ1
. As a

benchmark, we consider mX = 100 GeV, and mỸ1
= 500 GeV (mỸ1

< mỸ2
).

In the top panels of Fig. 2, we examine the limit λR → 0, for maximal mixing, δ = 0.01,

and λL = 0.44. For these parameter choices, λR <∼ 0.065 pushes σSI below the current

4 Sensitivities of neutrino and collider experiments to σSD are shown as dashed and dotted lines, respectively,

in Figs. 1-3.
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bounds, while σSD is still large enough that the LHC might be sensitive to it. For λL = 0.6

however, and all other parameters fixed, one obtains σSD large enough to be detected by

IceCube for λR >∼ 0.08, but all λR >∼ 0.04 are already excluded by non-observation of spin-

independent scattering. For a model to be visible at IceCube but to have evaded the current

constraint on σSI, λL >∼ 0.605, for these parameters, including maximal mixing. If the mixing

is not maximal and α < π/4, viable models may have smaller λL and larger λR.

From the top right panel of Fig. 2, as from the shape of the contour in the left panel, it is

clear that both σSI and σSD increase with λR, though σSI is more sensitive to changes in λR

for small λR. Both σSI and σSD are sensitive to λL as well; σSI is approximately proportional

to λ2L, but σSD ∝ λ4L for λL � λR and is dominated by λR for λR � λL.

Turning to the middle row of panels in Fig. 2, we examine the dependence on the mixing

angle, α, for δ = 0.01 and λL = λR = 0.44. In both panels in the middle row it is clear that

σSD is independent of α. From equation 4, we see that σSD is independent of α for λL = λR

and/or mỸ1
= mỸ2

, both of which are satisfied for the choice of parameters here. σSI, by

contrast, changes rapidly at small mixing angles. Again, increasing the Yukawa couplings

increases both σSD and σSI. For the particular parameter choices here, the current bound

on σSI is evaded for α <∼ 0.08.

In the bottom row of panels in Fig. 2, we assume maximal mixing (α = π/4) and λL =

λR = 0.1, and examine the departure from degeneracy of the squark masses (assuming

δ > 0). For this choice of parameters, we see from the bottom panel on the left that

δ <∼ few × 10−2 is necessary to evade current bounds on σSI; however σSD is very small for

Yukawa couplings in this range and will not be probed, even at the LHC. In the right panel,

one can see that the primary effect of increasing δ is to increase σSI, while σSD decreases

slightly. It is possible to have much larger σSD and σSI if the Yukawa couplings are much

larger than λL = λR = 0.1. When the Yukawa couplings are increased, it is still possible to

have σSI below current bounds, but a much smaller value of δ is required; for λL = λR = 0.35,

σSD is within the IceCube sensitivity, but a squark mass non-degeneracy of δ <∼ few× 10−3

is necessary so that σSI is not already excluded.

In Figure 3, we examine the possibility that there is no squark mixing (α = 0). In

this case, the spin-independent elastic scattering cross section is due entirely to the velocity-

suppressed contributions σ
(1)
SI and σ

(6)
SI . Since we have assumed real Yukawa couplings, σ

(6)
SI =

0. We see from the figure that even for λL ≈ λR ≈ 1, σSI is well below the current constraints,
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while σSD is quite large5. For ε > 0, both σSD and σSI increase with ε, though only σSI → 0

rapidly as ε → 0. Here, ε <∼ 0.008 will result in dark matter that will be evident only

through its spin-dependent scattering. All other parameters fixed, models can be visible at

both IceCube and LUX/ZEP 20T with λL as small as 0.421, with ε > 0.045 (λR > 0.412).

Finally, returning to the parameter scan in Fig. 1, of great interest are the regions of

parameter space in which a discovery may be made by IceCube/DeepCore or the LHC,

but which would evade all searches for spin-independent scattering on nuclei, namely those

points with σSD >∼ 10−6 pb and σSI <∼ 10−12 pb. These points are characterized by large

mỸ1
and mỸ2

(>∼ 1500 GeV, near the edge of our range), one large Yukawa coupling (>∼ 2),

and one small Yukawa coupling (<∼ 0.2), or very nearly degenerate squark masses (δ ≈ 0)

and two relatively large Yukawa couplings, or a combination of near-degeneracy of squark

masses and large-ish Yukawa couplings. In the latter cases, small-ish α can also help induce

a small σSI without reducing σSD due to the degeneracy of the squark masses. In the first

case, if the small Yukawa is very small (<∼ 10−2), the the lighter squark can be as light as

∼ 1 TeV, and the larger Yukawa does not necessarily have to be larger than 2.

This result is not unexpected; in the limit of small α and δ, α3

α2
∝ (λR/λL)2αδ, so a scan

with linear priors will favor the region of parameter-space with large Yukawa couplings and

masses. Logarithmic priors would instead favor all mass and coupling scales equally. Given

linear priors and the suppression needed to evade upcoming bounds on σSI, the points we

have generated which may be detected by spin-dependent scattering but which will evade

detection by spin-independent scattering occur when at least two of the σSI → 0 criteria are

approximately satisfied.

In this analysis, we have restricted the WIMPless dark matter mass to be mX = 100 GeV

due to the wealth of direct dark matter searches sensitive to this mass, however a similar

analysis may be carried out for any mX . Both σSD and σSI decrease for smaller mX , but

the changes to Fig. 1 are minor, with the exception of the relevant constraints. Indeed, the

qualitative conclusions drawn from Figs. 2 and 3 are valid for any mX .

5 Note that σSD is only mildly dependent on ε, as evident in the right panel of Fig. 3. For the parameter

choices in the left panel, none of the σSD experimental sensitivities are visible, though the range of σSD

plotted here lies just below the Tevatron sensitivity (shown as a horizontal green dotted line in Fig. 1)

and well-above the sensitivity of Large DMTPC and IceCube/DeepCore (shown as grey solid and cyan

dashed lines, respectively, in Fig. 1).
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V. CONCLUSION

We have considered the detection prospects for Majorana fermion WIMPless dark mat-

ter at current and near future dark matter detectors, using both spin-independent and

spin-dependent scattering. We have found that although Majorana fermion WIMPless dark

matter always exhibits spin-dependent nuclear scattering, spin-independent scattering con-

tributions are always either velocity-dependent or dependent on mixing of exotic 4th gener-

ation squarks. One-loop corrections do not generate spin-independent contributions which

could potentially be detected at upcoming experiments.

A scan of models shows that the majority of models which could be detected by

IceCube/DeepCore (with 1800 live-days of data) or at the LHC can also be detected

through spin-independent scattering by detectors such as SuperCDMS, XENON100 and

DEAP/CLEAN (as well as the first generation LUX detector) over a comparable time frame.

However, a significant fraction of models detectable at IceCube/DeepCore or the LHC would

not be detected through spin-independent scattering until major future upgrades are made,

if at all. Unlike the case of MSSM neutralino WIMPs, it is possible for WIMPless Majorana

fermions which have evaded detection even through velocity-suppressed spin-independent

scattering to nevertheless be detected by current detectors through spin-dependent scatter-

ing.
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FIG. 1: Possible values of σSI and σSD for 0 ≤ λL, λR ≤
√

4π, 0 ≤ α ≤ π
4 and 300 GeV < mỸ1

< 2

TeV, and mỸ1
< mỸ2

< 2 TeV (mX = 100 GeV). The dark (black) points represent viable models,

the light (grey) points represent models that are ruled out by direct detection experiments. Also

shown are the current limits and projected sensitivities of direct detection experiments for σSI

(vertical lines) and σSD (horizontal lines). Constraints on σSI are (from right to left): the current

limit from CDMS II [16] and XENON100 [17] (red solid); mini-CLEAN [37] (blue solid); the

approximate sensitivity of SuperCDMS 100kg at SNOLAB [19], DEAP-3600 [37], XENON100

upgraded [17], and LUX with 300 days of exposure [36] (grey band); XENON1T [18] with 3 years

of exposure (green solid), and LUX/ZEP 20T [37] (cyan solid). Constraints on σSD from direct

detection experiments are shown as the solid lines (from top to bottom): the current limit from

SIMPLE [25] (red solid) for scattering on protons; the current limit from XENON10 [27] (blue solid)

for scattering on neutrons, and the projected sensitivity of Large DMTPC [29] (grey solid). Indirect

constraints on σSD from neutrino experiments are shown as dashed lines: Super-Kamiokande [30]

(green dashed); and the projected sensitivity of IceCube/DeepCore [31] with 1800 days of data

(cyan dashed). The sensitivity to σSD of collider experiments, assuming contact interactions, is

shown as dotted lines: the Tevatron [33] with 1 fb−1 of data (green dotted); and the projected

sensitivity of the LHC [33] with 100 fb−1 of data (cyan dotted).
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FIG. 2: Departures from the limiting cases where σSI → 0, as labeled in the upper right corner

of the left panels (vertical and horizontal lines denote the same experimental sensitivities used in

Fig. 1). In the left panels, we show the evolution in the (σSI, σSD) plane as the small parameter

(λR, α, and δ, from top to bottom) is increased. The color coding indicates the value of the small

parameter; 0 to 0.005 (magenta), 0.005 to 0.01 (red), 0.01 to 0.02 (orange), 0.02 to 0.04 (yellow),

0.04 to 0.07 (green), and 0.07 to 0.1 (blue). In the right panels, we show σSD (dashed curves) and

σSI (solid curves) individually as functions of the small parameter.
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FIG. 3: Departure from the limiting cases where σSI → 0 due only to velocity-dependent terms (no

squark mixing), as in Fig. 2. Again, horizontal lines denote the experimental sensitivities used in

Fig. 1. In the left panels, we show the evolution in the (σSI, σSD) plane as ε, the spilitting between

|λ2L| and |λ2R|, is increased. The color coding indicates the value of ε; 0 to 0.005 (magenta), 0.005 to

0.01 (red), 0.01 to 0.02 (orange), 0.02 to 0.04 (yellow), 0.04 to 0.07 (green), and 0.07 to 0.1 (blue).

In the right panel, we show σSD (dashed curves) and σSI (solid curves) individually as functions of

ε.
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