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The maximum entropy method is used to compute the dressed-quark spectral density from the
self-consistent numerical solution of a rainbow truncation of QCD’s gap equation at temperatures
above that for which chiral symmetry is restored. In addition to the normal and plasmino modes, the
spectral function also exhibits an essentially nonperturbative zero mode for temperatures extending
to 1.4 − 1.8-times the critical temperature, Tc. In the neighbourhood of Tc, this long-wavelength
mode contains the bulk of the spectral strength and so long as this mode persists, the system may
fairly be described as a strongly-coupled state of matter.
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I. INTRODUCTION

It is believed that a primordial state of matter has been
recreated by the relativistic heavy-ion collider (RHIC)
[1]. This substance appears to behave as a nearly-perfect
fluid on some domain of temperature, T , above that re-
quired for its creation, Tc [2]. An ideal fluid has zero
shear-viscosity: η = 0, and hence no resistance to the
appearance and growth of transverse velocity gradients.
A perfect fluid with near-zero viscosity is the best achiev-
able approximation to that ideal. Graphene might pro-
vide a room temperature example [3]. From Newton’s
law for viscous fluid flow; viz., dv/dz = (1/η)(F/A), it
is apparent that in near-perfect fluids a macroscopic ve-
locity gradient is achieved from a microscopically small
pressure. Strong interactions between particles consti-
tuting the fluid are necessary to achieve this outcome.
Hence the primordial state of matter is described as a
strongly-coupled quark gluon plasma (sQGP).
Quantum chromodynamics (QCD) produces the bulk

of the mass of normal matter. At T = 0 it is characterised
by confinement and dynamical chiral symmetry breaking
(DCSB), phenomena that are represented by a range of
order parameters which all vanish in the sQGP. Under-
standing the sQGP therefore requires elucidation of the
behaviour and properties of quarks and gluons within
this state. Perturbative techniques have been developed
for use far above Tc; viz., the hard thermal loop (HTL)
expansion [4, 5], which has enabled the computation of
gluon and quark thermal masses mT ∼ gT and damping
rates γT ∼ g2T , with g = g(T ) being the strong running
coupling. It also suggests the existence of a collective
plasmino or “abnormal” branch to the dressed-quark dis-
persion relation, which is characterised by antiparticle-
like evolution at small momenta [6].
Owing to asymptotic freedom, the running coupling in
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QCD increases as T → T+
c . Therefore, a simple interpre-

tation of the HTL results suggests the plasmino should
disappear before Tc is reached because γT increases more
rapidly than mT and γT /mT ∼ 1 invalidates a quasi-
particle picture. On the other hand, lattice-regularised
quenched-QCD suggests that the plasmino branch per-
sists in the vicinity of Tc [7]. It is necessary to resolve
the active degrees of freedom in the neighbourhood of
Tc because the spectral properties of the dressed-quark
propagator are intimately linked with light-quark con-
finement [8] and it is the long-range modes which might
produce strong correlations.
When addressing issues concerning the dressed-quark

propagator it is natural to employ the gap equa-
tion, which is one of QCD’s Dyson-Schwinger equations
(DSEs) [9–11]. Equations of this type are ubiquitous
in physics, and in QCD the DSEs are distinguished by
their ability to unify the analysis of confinement and
DCSB within a single nonperturbative, Poincaré covari-
ant framework. Extensive work within this approach has
shown in the chiral limit that: below Tc dressed-gluons
and -quarks are confined and chiral symmetry is dy-
namically broken [10, 11]; and deconfinement and chiral
symmetry restoration occur via coincident second-order
phase transitions [12–16]. Herein we use the DSEs to
elucidate the active fermion quasiparticles for T & Tc.

II. GAP EQUATION

On the domain T > Tc the chiral-limit dressed-quark
propagator can be written

S(iωn, ~p) = −i~γ · ~p σA(ωn, ~p
2)− iγ4ωnσC(ωn, ~p

2) , (1)

where ωn = (2n + 1)πT , n ∈ Z, is the fermion Mat-
subara frequency. There is no Dirac-scalar part because
chiral symmetry is realised in the Wigner mode but this
does not mean that nonperturbative phenomena are ex-
cluded, as is apparent, for example, in the discussion
of novel Wigner-mode solutions to the gap equation in
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Refs. [17, 18]. The retarded real-time propagator is found
by analytic continuation

SR(ω, ~p) = S(iωn, ~p)|iωn→ω+iη+ (2)

and from this one obtains the spectral density

ρ(ω, ~p) = −2ℑSR(ω, ~p) . (3)

Equations (2) and (3) are equivalent to the statement:

S(iωn, ~p) =
1

2π

∫ +∞

−∞

dω′ ρ(ω′, ~p)

ω′ − iωn
. (4)

NB. If one requires a nonnegative spectral density, then
Eq. (4) is only valid for T > Tc; i.e., on the deconfined do-
main [12]. Furthermore, including a light current-quark
mass does not materially affect our primary conclusions.
For an unconfined dressed-quark propagator of the

form in Eq. (1), the spectral density can be expressed

ρ(ω, ~p) = ρ+(ω, ~p
2)P+ + ρ−(ω, ~p

2)P− , (5)

where P± = (γ4 ± i~γ · ~up)/2, ~up · ~p = |~p|, are operators
which project onto spinors with a positive or negative
value for the ratio H := helicity/chirality: H = 1 for a
free positive-energy fermion. The spectral density is in-
teresting and expressive because it reveals the manner by
which interactions distribute the single-particle spectral
strength over momentum modes; and the behaviour at
T 6= 0 shows how that is altered by a heat bath. As with
many useful quantities, however, it is nontrivial to eval-
uate ρ(ω, |~p|). Nonetheless, if one has at hand a precise
numerical determination of the dressed-quark propaga-
tor in Eq. (1), then it is possible to obtain an accurate
approximation to the spectral density via the maximum
entropy method (MEM) [19].
In the MEM the entropy functional of the spectral

function is defined as

S[ρ] =

∫ +∞

−∞

dω

[

ρ(ω)−m(ω)− ρ(ω) log
ρ(ω)

m(ω)

]

, (6)

where m(ω) is the “default model” of the spectral func-
tion. We adopt the typical form

m(ω) = m0θ(Λ
2 − ω2) , (7)

which is a uniform distribution with no a priori struc-
ture assumption. It should be borne in mind that one
can only claim a reliable result from the MEM if the
spectral function produced is insensitive to m0 and Λ.
One must therefore test for sensitivity to these quanti-
ties. Our numerical analysis shows that the sensitivity to
m0 is uniformly weak. However, on a material domain,
the sensitivity to Λ is strong. Nevertheless, with persis-
tence one finds that, for any given temperature, there is
always a value Λ above which a stable spectral function
is obtained. This is illustrated in Fig. 1.
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FIG. 1. (Color online) Dependence of the spectral density
on the cutoff, Λ, in the default MEM model, Eq. (7), at T =
1.1 Tc (upper panel) and T = 3.0 Tc (lower panel), where Tc

is discussed in Eq. (15).

We obtain the chiral-limit dressed-quark propagator
from the gap equation (F = A,C)

S(iωn, ~p)
−1 = ZA

2 i~γ · ~p+ Z2iγ4ωn +Σ′(iωn, ~p) , (8)

Σ′(iωn, ~p) = i~γ · ~pΣ′
A(iωn, ~p) + iγ4ωnΣ

′
C(iωn, ~p) ,(9)

Σ′
F (iωn, ~p) = T

∑

l

∫

d3q

(2π)3
g2Dµν(ωn−ωl, ~p−~q)

×
1

3
trDPF γµS(iωl, ~q)Γν(ωn, ωl, ~p, ~q), (10)

where: PA = −ZA
1 i~γ ·~p/~p 2, PC = −Z1iγ4/ωn; Dµν is the

dressed-gluon propagator; Γν is the dressed-quark-gluon
vertex; and Z1,2, Z

A
1,2 are, respectively, the vertex and

quark wave function renormalisation constants [12, 20].

The gap equation is determined once the kernel is spec-
ified. Herein we work at leading-order in the symmetry-
preserving truncation scheme of Ref. [21] and employ a
phenomenologically-efficacious one-loop renormalisation-
group-improved interaction [20]. Namely:

g2Dµν(ωn − ωl, ~p− ~q)Γν(ωn, ωl, ~p, ~q)

= [Pµν
T (kΩ)DT (kΩ) + Pµν

L (kΩ)DL(kΩ)]γν , (11)
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where kΩ := (Ω, ~k) = (ωn − ωl, ~p− ~q);

Pµν
T (kΩ) =







0, µ and/or ν = 4 ,

δij −
kikj
k2

, µ, ν = 1, 2, 3 ,
(12)

with Pµν
L + Pµν

T = δµν − kµΩk
ν
Ω/k

2
Ω; and

DT (kΩ) = D(k2Ω, 0), DL(kΩ) = D(k2Ω,m
2
g) , (13)

D(k2Ω,m
2
g) = 4π2D

sΩ
ω6

e−sΩ/ω2

+
8π2γm

ln[τ+(1+sΩ/Λ2
QCD)

2]
F(sΩ) , (14)

with F(sΩ) = (1−exp(−sΩ/4m
2
t )/sΩ, sΩ = Ω2+~k 2+m2

g,

τ = e2 − 1, mt = 0.5GeV, γm = 12/25, and Λ
Nf=4

QCD =
0.234 GeV. For pseudoscalar and vector mesons with
masses. 1GeV, this interaction provides a uniformly
good description of their T = 0 properties [22] when
ω = 0.4GeV, D = (0.96GeV)2. In generalising to T 6= 0,
we have followed perturbation theory and included a De-
bye mass in the longitudinal part of the gluon propagator:
m2

g = (16/5)T 2. NB. Whilst for T 6= 0 6= µ it is gener-
ally true that DT 6= DL, there are indications [23] that
for T < 0.2GeV, the domain with which we are primar-
ily concerned and upon we expose novel effects, it is a
reasonable approximation to treat DT ∼ DL.
A justification of the kernel is readily provided. At

T = 0 it reproduces the results of perturbative QCD
for p2 & 2GeV2, so any model-dependence appears only
in the infrared, and provides a unified description of
light-vector and -pseudoscalar mesons. It also predicts
a momentum dependence for the dressed-quark propaga-
tor that is qualitatively in agreement with results from
numerical simulations of lattice-QCD [24]. The exten-
sion to T > 0 preserves the agreement with perturbative
QCD at large spacelike momenta. Finally, in employing
the kernel we obtain coincident second-order deconfine-
ment and chiral symmetry restoring transitions for two
massless flavors at

Tc = 0.14GeV , (15)

which is 10% smaller than that obtained in Ref. [25].
One insufficiency of the interaction defined above is

that D, the parameter expressing its infrared strength, is
assumed to be T -independent. Since the nonperturbative
part of the interaction should be screened for T & Tc, we
remedy that by writing D → D(T ) with

D(T ) =

{

D , T < Tp ,
a

b+ ln[T/ΛQCD]
, T ≥ Tp

, (16)

where Tp is a “persistence” temperature; i.e., a scale be-
low which nonperturbative effects associated with con-
finement and dynamical chiral symmetry breaking are
not materially influenced by thermal screening. Loga-
rithmic screening is typical of QCD and with a = 0.028,
b = 0.56 our numerical solutions yield mT = 0.8T for
T & 2Tc; viz., a thermal quark mass consistent with
lattice-QCD [7]. We usually take Tp = Tc herein.
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FIG. 2. (Color online) Left panel – Temperature-dependence
of the dressed-quark thermal masses. Notably, spectral
strength is associated with a massless-mode. Right panel –
T -dependence of the residue associated with that zero mode.

III. DISCUSSION OF RESULTS

We have computed the spectral density by employing
the MEM in connection with the solution of our gap equa-
tion. Notably, the behaviour changes qualitatively at Tc.
Indeed, employing a straightforward generalisation of the
inflexion point criterion introduced in Refs. [11, 26], one
can readily determine that reflection positivity is violated
for T < Tc. This signals confinement. On the other hand,
the spectral function is nonnegative for T > Tc.
In Fig. 2 we depict the T > Tc-dependence of the loca-

tions of the poles in ρ(ω, ~p = 0); i.e., the thermal masses.
We anticipated that spectral strength would be located at
ω+(~p = 0) and ω−(~p = 0) = −ω+(~p = 0), corresponding
to the fermion’s normal and plasmino modes at nonzero
temperature. However, it is striking that on a measur-
able T -domain, spectral strength is also associated with
a quasiparticle excitation described by ω0(~p = 0) = 0.
The appearance of this zero mode is an essentially non-
perturbative effect. It is an outgrowth of the evolution
in-medium of the gap equation’s T = 0 Wigner-mode
solution and analogous to this solution’s persistence at
nonzero current-quark mass in vacuum [17]. This feature
is stable for sufficiently-large Λ in Eq. (7), as evident in
Fig. 1.
The spectral density possesses support associated with

this zero mode on T ∈ [0, Ts]. In fact: all the Wigner-
phase spectral strength is located within this mode at
T = 0; it is the dominant contribution for T & Tc; and,
while it is dominant, it is the system’s longest wavelength
collective mode. On the other hand, as evident in the
right panel of Fig. 2, the mode’s spectral strength dimin-
ishes uniformly with increasing T and finally vanishes at
Ts ≈ 1.35Tc. Then, for T > Ts the quark’s normal and
plasmino modes exhibit behavior that is broadly consis-
tent with HTL calculations. This is apparent in Fig. 2
and in a comparison between the upper and lower panels
of Fig. 3. Given these observations, we judge that the
system should be considered a sQGP for T ∈ [Tc, Ts],
whereupon it contains a long-range collective mode.
We observe that the HTL approach is perturbative and
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FIG. 3. (Color online) Upper panel, left – Quasiparticle dis-
persion relations, ω±,0(p), at temperature T = 1.1Tc. The
diagonal dotted line is the free-fermion dispersion relation at
this T . Upper panel, right – The residues associated with
these quasiparticle poles. Lower panel – Same information
for T = 3Tc, whereat the zero mode has vanished.

only applicable for T ≫ Tc. Hence it could not have
predicted the zero mode’s existence. Numerical simula-
tions of lattice-QCD, on the other hand, are nonpertur-
bative. However, it is practically impossible in contempo-
rary computations to exactly preserve chiral symmetry.
This can plausibly explain the absence of the zero mode
in lattice simulations because any source of explicit chiral
symmetry breaking heavily suppresses the mode [17].
The upper-left panel of Fig. 3 depicts the dispersion

relations for all dressed-quark modes that exist for T <
Ts and the behavior of their associated residues. On this
sQGP domain the dispersion relations are atypical, with

ω±(|~p|)
p∼0
= mT

−0.2 |~p| ,
+0.3 |~p| ,

(17)

ω0(|~p|)
p∼0
= 0.80 |~p| . (18)

Notwithstanding this, all realise free-particle behaviour
for |~p| ≫ T . We note and emphasise that the usual
spectral sum rules are satisfied. Indeed, the identity

〈ω〉 :=
Z2
2

ZA
2

∫ ∞

−∞

dω′

2π
ω′ρ±(ω

′, |~p|) = |~p| (19)

assists in understanding the momentum-dependence in
the upper-left panel of Fig. 3. The upper-right panel dis-
plays the momentum-dependence of the pole residues:
spectral support is located completely in the normal
mode for |~p| ≫ T ; i.e., on the perturbative domain.

<
ω

>
 [
G

e
V

]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

p [GeV]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Numerical: T=1.1 T
c

Numerical: T=3.0 T
c

<ω> = p

FIG. 4. Numerical check of the momentum sum rule in
Eq. (19): the curves would be indistinguishable with a per-
fect reconstruction of the spectral density.

The lower panel of Fig. 3 characterises the behaviour of
ρ(ω, |~p|) on the high-T domain. In agreement with HTL
analysis [5], expected to be valid thereupon, we find only
normal and plasmino modes, with

ω±(|~p|)
p∼0
= mT ± 0.33|~p| . (20)

The plasmino dispersion law exhibits the expected min-
imum, in this case at |~p|/T ≃ 1; and both ω±(|~p|) ap-
proach free-particle behaviour at |~p| ≫ T , with that of
the plasmino approaching this limit from below. The
lower-right panel shows that the contribution to the spec-
tral density from the plasmino is strongly damped and
contributes little for p > 2T . These results are in-line
with those obtained via simulations of lattice-QCD [7].
It is anticipated from HTL analyses that T 6= 0 prop-

agators exhibit branch cuts whose appearance can be
attributed to the opening of scattering channels that
are absent at T = 0 [27]. We find, however, that
such branch cuts do not materially contribute to our
nonperturbatively-determined spectral density. This is
plausible because a branch point is a lower-order nonan-
alyticity than a pole; i.e., in numerical studies, poles are
features with large height, small width and significant
spectral strength, whilst branch points are low, broad
features with lesser spectral strength. Thus, compared
with poles, branch points can be invisible to a numerical
procedure. Uncovering them requires fine tuning within
the MEM, or any other method.
We have nevertheless checked whether our numerical

result omits significant spectral strength. For example,
we have verified that, to a high degree of accuracy, our
spectral density satisfies the textbook relation:

Z2

∫ +∞

−∞

dω′

2π
ρ±(ω

′, p) ≈ Z2

∑

Q=0,+,−

ZQ ≈ 1 (21)

where ZQ are our quasiparticle residues. We have also
checked other, more demanding sum rules, such as that
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in Eq. (19), with the result depicted in Fig. 4. These tests
indicate that we have not overlooked a large contribution
to the dressed-quark’s spectral strength in our applica-
tion of the MEM.

Equation (16) is a model and it is natural to enquire
after its influence. None of our results are qualitatively
altered by varying Tp but, as one would expect, the width
of the sQGP domain expands slowly with increasing Tp;
e.g., a 50% increase in Tp produces a 30% increase in Ts.

Whilst we used the MEM to compute ρ(ω, |~p|) from the
completely self-consistent numerical solution of a rainbow
truncation of QCD’s gap equation, the appearance of a
third and long-wavelength mode in the dressed-fermion
spectral density on a material temperature domain above
Tc has also been observed in one-loop computations of the
fermion self-energy, irrespective of the nature of the bo-
son which dresses the fermion [28]. This mode appears
for T > mG, where mG is an infrared mass-scale associ-
ated with the boson, and persists for fermion bare masses
. 0.2mG [29]. (NB. In our case, mG ≈ 0.17GeV, hence
0.2mG ≈ 34MeV, appreciably greater than the light-
quark current-masses.) Where a comparison is possible,
the dependence of our spectral density on (ω, |~p|, T ) is
similar to that seen in the one-loop analyses of model
gap equations. In analogy with a similar effect in high-
temperature superconductivity [30], that behaviour has
been attributed to Landau damping, an interference phe-
nomenon known from plasma physics. Indeed, Landau
damping is typical of in-medium self-energy corrections
when the thermal energy of the fermion is commensurate
with the mass-scale which characterises the dispersion
law of the dressing boson.

A feature that unifies our study and Refs. [28, 29] is the
strictly nonperturbative phenomenon of DCSB. Whilst
Refs. [28, 29] extract spectral densities via one-loop es-
timates in Nambu–Jona-Lasinio- or Yukawa-like models,
the couplings are tuned to mimic a world in which chi-
ral symmetry is dynamically broken. In this connec-
tion we reemphasise that the zero mode appears only
when the strength of the interaction is capable of pro-
ducing DCSB in-vacuum; viz., when the gap equation’s
T = 0 kernel has sufficient support at infrared momenta.
Hence, it is an essentially nonperturbative phenomenon.
Furthermore, given the qualitative differences between
Refs. [28, 29] and our study, the similarity between re-
sults suggests the possibility that the appearance of zero
modes is model-independent.

It is notable that we find a coupling to meson-like cor-
relations in the gap equation is not a precondition for
the appearance of the zero mode because such corre-

lations are absent in the rainbow truncation [13]. On
the other hand our gap equation’s kernel is characterised
by an interaction that features an infrared mass-scale
mG & Tc and supports dynamical chiral symmetry break-
ing at T = 0. We anticipate that the zero mode will
markedly affect colour-singlet vacuum polarisations on
T ∈ [Tc, Ts]. This could be explicated using the methods
of Refs. [31].

IV. EPILOGUE

Experiment has presented us with the fascinating pos-
sibility that a near-perfect fluid might have been a key
platform in the universe’s evolution. We have sought to
provide new insights into this possibility via the Dyson-
Schwinger equations, a framework used in many branches
of physics, which in QCD provides a nonperturbative tool
that unifies the treatment of confinement, dynamical chi-
ral symmetry breaking and observable phenomena.
In pursuing this aim, we solved self-consistently a rain-

bow truncation of the gap equation for massless 2-flavour
QCD, employing a kernel whose temperature-dependence
is constrained by T = 0 hadron physics phenomenology
and T 6= 0 lattice-QCD results, and found that chiral-
symmetry restoration and deconfinement occur together
at a temperature Tc = 140MeV. We subsequently com-
puted the quark spectral density from the gap equation’s
solution for T > Tc using the maximum entropy method,
thereby demonstrating its potential when based on accu-
rate input.
Remarkably, on a significant domain T/Tc ∈ [1, 1+∆],

∆ ≃ 0.4 − 0.8, the self-consistently determined Wigner
phase supports a zero mode, despite the absence of
meson-like correlations in our gap equation’s kernel. This
mode contains the bulk of the spectral strength for
T & Tc and so long as this mode persists, the system
may reasonably be described as a strongly-interacting
state of matter. If, as we argued, the existence of this
long-wavelength mode is model-independent, then it is
natural to anticipate that a strongly-interacting state of
matter should precede the QCD phase transition.
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