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Abstract

We present the first search for the decay D+
s → ωe+ν to test the four-quark content of the D+

s

and the ω-φ mixing model for this decay. We use 586 pb−1 of e+e− collision data collected at a

center-of-mass energy of 4170 MeV. We find no evidence of a signal, and set an upper limit on the

branching fraction of B(D+
s → ωe+ν) <0.20% at the 90% confidence level.

PACS numbers: 13.20.Fc

∗ Now at: Pacific Northwest National Laboratory, Richland, WA 99352
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FIG. 1. Feynman diagram representing the four-quark semileptonic decay D+
s → ωe+ν.

I. INTRODUCTION

Multiple observations of exotic charmonium states [1 − 4] have been widely interpreted

as four-quark states [5 − 13]. In this analysis we probe the four-quark content of the D+
s

by searching for the decay D+
s → ωe+ν (charge conjugate states are implied throughout the

article). Assuming that the ω is a pure two-quark state, its valence quarks are distinct from

those of the D+
s , and the decay can proceed through the diagram of Fig. 1, where the (uū) or

(dd̄) come from within the D+
s . The initial valence quarks annihilate while a lepton pair is

produced. Neither Cabibbo-favored, nor Cabibbo-suppressed decays can contribute to this

final state. The study of this specific process was first suggested in Ref. [14], and Ref. [15]

estimates the theoretical branching fraction for the analogous decay B+ → J/ψ ℓ+ν.

Recent work by Gronau and Rosner [16] concludes that any value of the branching fraction

for D+
s → ωe+ν exceeding 2 × 10−4 is unlikely to be explainable by ω-φ mixing and would

provide evidence for non-perturbative effects known as “weak annihilation” (see Ref. [16]

for references). An estimate based on comparing hadronic and semileptonic processes gives

a branching fraction of (0.13± 0.05)%. This is the first search for this decay mode.

We search for a positron candidate and an ω → π+π−π0 candidate, which is the dominant

decay mode with a branching fraction of 89.2% [17]. Cabibbo-favored decays exist in the

same final state, D+
s → ηe+ν and D+

s → φe+ν, with B(η → π+π−π0) =22.73% and and

B(φ → π+π−π0) =15.32% [17]. They can play the role of control samples, which are used
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directly in the analysis in a variety of ways. For example, the effect of certain selection

requirements can be readily estimated from any change in the η and φ populations. The

two control samples are also well measured using the independent final states η → γγ and

φ → K+K−. Therefore, this analysis has good statistical sensitivity, and unusually strong

control samples using CLEO-c data directly.

The remainder of this article is organized as follows. In Sec. II, the detector, data, and

Monte Carlo (MC) samples are described. The data analysis method is described in Sec. III.

The fitting procedure is described in Sec. IV. The determination of the branching fraction

is discussed in Sec. V.

II. DETECTOR, DATA AND MC SAMPLES

The data used in the analysis are e+e− collisions at a center-of-mass energy
√
s =4170

MeV. The data are collected by the CLEO-c detector and correspond to an integrated

luminosity of 586 pb−1, or 0.6× 106 D+
s D

−

s inclusive pairs.

The CLEO-c detector is optimized for physics in the charmonium region and is described

in detail in Ref. [19]. The tracking system consists of a central, low mass drift chamber,

which wraps directly around the beam pipe, and a main drift chamber inside a solenoidal

magnetic field. The particle identification system combines the track information from the

gas chambers (dE/dx) and the associated ring-imaging Cherenkov detector (RICH) data.

The electromagnetic calorimeter consists of CsI crystals, arranged in cylindrical fashion

around the drift chamber, to make a barrel at angles given by | cos θ| < 0.7, with θ being

the angle measured from the interaction point (IP) with respect to the beam axis. The ends

of the cylinder are also instrumented with CsI crystals and are referred to as the end-cap

regions.

MC simulations of the known physics processes [20] and of the CLEO-c detector [21] are

used to estimate backgrounds and calculate signal resolution and efficiencies. The known

charm physics processes are included in the cc̄ MC simulation. All types of charm back-

grounds, dominant in this analysis, are simulated to 20 times the statistics in the data, while

the continuum (u, d, s) backgrounds are simulated to 6.6 times the statistics in the data. In

the following, where MC results are presented, we multiply the continuum MC sample by 3

to obtain a consistent ×20 normalization. By convention, cc̄ MC refers to the charm part
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of the MC, continuum MC is the non-charm part, and MC is the weighted sum of the two.

The signal MC sample consists of 8×105 D+
s → ωe+ν events generated according to

phase space distribution. The same number of events was generated for the D+
s → ηe+ν

and D+
s → φe+ν control samples.

Further samples for dominant sources of backgrounds were generated. A sample of 2×105

D+
s → ωπ+π0 events was separately generated, corresponding to about 23.5 times the num-

ber of such expected decays in the data. In addition, 5000 events (96 times the data) were

generated for the decay chain D+
s → η′e+ν followed by η′ → ωγ.

III. DATA SELECTION

About 95% of the e+e− → D+
s X events are formed through the following exclusive

reactions [18]

e+e− → D+
s D

⋆−
s and e+e− → D−

s D
⋆+
s . (1)

Equal amounts of positive and negative D⋆
s states are produced, and about 95% of them

decay to Dsγ. The analysis described here selects exclusively both final states in Eq. (1).

In the following, we retain both events where the γ is associated with the positive side, the

signal side due to the convention established in Sec. I, and where the γ is associated with

the negative side, or tag side. Several kinematic constraints are available, but only those

that select both reactions in Eq. (1) are used.

First we search for an exclusively reconstructed hadronic D−

s candidate, the tag, and a

photon candidate. Requiring both of these objects, with three kinematic selections applied,

strongly suppresses the backgrounds. The photon candidate, and all tracks and showers

which are daughters of the tag candidate, are not used when searching the rest of the

event, which, due to the exclusive nature of the analysis, must be the signal candidate.

The following are required to form a signal candidate: a positron of opposite charge to

the tag, precisely three charged tracks, a π0 candidate, and net event charge equal to zero.

Furthermore, the missing energy and momentum are required to be in a relation consistent

with the presence of a nearly massless neutrino. Extra showers in the event are ignored.

The selection is described in detail in the remainder of this section.
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A. Charged and neutral particles selection

The criteria for a good track include the requirements that its minimum distance to the

IP does not exceed 5 mm in the plane perpendicular to the beam axis and 5 cm along the

beam axis. Phase space is limited to | cos θ| < 0.93, with θ being the angle with the beam

axis, and momentum 0.05 GeV < p < 2 GeV. Good tracks are then selected as pion or kaon

using dE/dx and RICH data according to the algorithms described in detail in Ref. [22].

Photon candidates are contiguous groups of crystals recording significant energy deposi-

tion. They are required to be unmatched to tracks or noisy crystals, and to have a transverse

profile consistent with expectations from an electromagnetic shower. The minimum cluster

energy is 30 MeV.

Positrons are selected by requiring a good track, and the combined positron probability

of the particle ID system and E/p (the ratio between the shower energy associated with the

candidate electron and its track momentum) to be greater than 0.8. Positron phase space

requirements are | cos θ| < 0.9 and p > 0.2 GeV.

π0 and η candidates are selected by requiring a photon candidate in the barrel or end-

cap, with | cos θ| < 0.93. This photon is combined with a second photon, which must not be

associated with a noisy crystal, and the invariant mass of the two photons must be within

3 standard deviations of the nominal π0 and η masses [17].

K0
S candidates are selected by requiring two oppositely charged tracks. If they are assigned

the nominal π+ mass [17], their invariant mass must be within 12 MeV of the nominal K0
S

mass [17]. A common vertex is calculated, and it is required to be radially displaced from

the IP by at least 3 standard deviations.

B. Tag-candidate selection

Eight tag decay modes are used and listed in Table I, using the particle candidates

selected according to Sec. III.A. In addition, there are several mode-specific criteria. For

D−

s → K−K+π− and D−

s → π+π−π−, the pion momenta are required to be greater than

0.1 GeV. For D−

s → K⋆−K
⋆0
, only the (K0

Sπ
−)(K+π−) channel is considered. The K⋆− and

K
⋆0

candidate masses are required to be within 100 MeV of the nominal value [17]. For the

D−

s → ηρ−(ρ− → π−π0), the ρ− mass must be within 150 MeV of the nominal value [17].
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TABLE I. Definitions of Mtag signal and sideband definitions for the tag modes.

Mode Signal region (GeV) Low sideband (GeV) High sideband (GeV)

K0
SK

− [1.954, 1.983] [1.910, 1.939] [1.998, 2.026]

K+K−π− [1.954, 1.982] [1.911, 1.940] [1.996, 2.025]

K⋆−K
⋆0

[1.953, 1.983] [1.909, 1.938] [1.997, 2.027]

π+π−π− [1.955, 1.982] [1.913, 1.941] [1.996, 2.024]

ηπ− [1.940, 2.001] [1.892, 1.922] [2.019, 2.050]

ηρ− [1.940, 1.998] [1.885, 1.914] [2.021, 2.050]

π−η′(ηπ+π−) [1.944, 1.992] [1.885, 1.933] [2.004, 2.052]

π−η′(ργ) [1.944, 1.992] [1.886, 1.930] [2.002, 2.047]

For D−

s → π−η′(η′ → ργ), ρ0 → π+π−, the η′ mass must be within 20 MeV of the nominal

value [17]. Furthermore, the (π-η′) helicity angle (defined as the angle θH , in the rest frame

of the ρ, between the momentum of the π− and the momentum of the D−

s ) is required to

satisfy | cos θH | < 0.8.

The four-momentum of a tag candidate is defined by (Etag,ptag), with the tag mass

defined by Mtag. The selection further makes use of the recoil mass Mrec, defined as

Mrec =
√

(Eb −Etag)2 − (pb − ptag)2. (2)

Here, (Eb,pb) is the four-momentum of the colliding beams. The Mrec distribution will

peak only for those events where the photon is associated with the signal side, but even

when the photon is associated with the tag side, Mrec is kinematically constrained so that

|Mrec−M⋆| < 55 MeV, where M⋆ is the nominal D⋆
s mass [17]. Only candidates passing this

selection are retained. The signal MC Mrec distribution is shown in Fig. 2. The main tag

selection is obtained from a 2-D fit described below. Because of the complexity of the fit,

the Mtag projection is fitted first, and the fit results used to constrain some of the final 2-D

fit nuisance parameters. The Mtag projection is also best suited for side-band background

subtraction.

The Mtag distribution is fitted with a double Gaussian function, G2, multiplied by the

fitted number of events, N , and a first degree polynomial, A1, to describe signal and back-
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FIG. 2. Signal MC (D+
s → ωe+ν) Mrec distribution. The peaking part of the spectrum corresponds

to events where the the signal is a daughter of the D⋆
s . The flat part of the spectrum corresponds to

events where the tag is a daughter of the D⋆
s . The arrows show the selection cuts for this analysis.

ground

f(Mtag) = NG2(Mtag) + A1(Mtag). (3)

G2 is a probability distribution composed of two Gaussian functions G(x; σ, µ), of unit area,

peaking at µ and with width equal to σ. Here, the peak is set at MDs, which is the nominal

nominal D+
s mass [17], and the two Gaussians have fractional probabilities f1 and (1− f1)

G2(Mtag) = f1G(Mtag; σ1,MDs) + (1− f1)G(Mtag; σ2,MDs). (4)

The quantities σ1 and σ2 are fixed to the value obtained from the fit to the signal MC

data. Having obtained f1 from the fit, we construct the variable σ2
12 = f1σ

2
1 + (1 − f1)σ

2
2.
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TABLE II. Number of D−
s tag candidates Ndata for each mode in the signal region and sidebands

for the one-dimensional fit to Mtag.

Modes Ndata Low Sideband High Sideband

K0
SK

− 5828 ± 92 1231 958

K+K−π− 25990 ± 285 22385 19452

K⋆−K
⋆0

2891 ± 100 2783 2647

π+π−π− 8152 ± 369 56530 43475

ηπ− 3635 ± 160 5727 3379

ηρ− 6877 ± 330 26879 14658

π−η′(ηπ+π−) 2344 ± 70 1040 572

π−η′(ργ) 4451 ± 337 42412 25476

The signal regions are required to be within 2.5σ12 from the peak position for each mode

except for the (ηρ) mode where it is selected within 2σ12.

The Mtag data fit results are listed in Table II. The rest of the peak fit parameters

are listed in Table III. The Mtag distributions for the 8 modes are shown in Fig. 3. The

sidebands in the Mtag distribution are listed, for each mode, in Table I.

Having determined the fit parameters for the Mtag distributions, a second kinematic

constraint can be imposed using the MM∗2 variable defined as

MM∗2 = (Eb − Etag − Eγ)
2 − (pb − ptag − pγ)

2, (5)

where (Eγ ,pγ) is the photon four-momentum. If the final state is given by Eq. (1), MM∗2

should peak at M2
Ds. The MM∗2 mass selection criteria are found by a two-dimensional

(2-D) binned likelihood fit in the (MM∗2,Mtag) space. Each variable is also kinematically

fitted, so that Mtag is the value obtained by constraining MM∗2 to its nominal value, and

vice versa. This procedure improves the signal and also minimizes any correlation between

the two variables.

The 2-D fit is done for each mode separately, and its purpose is to extract the final number

of tags for each mode, Ni, while building on the information obtained in the one-dimensional
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TABLE III. Signal peak parameters for each tag mode derived from cc̄ MC simulation.

Mode f1 σ1 (MeV) σ2 (MeV)

K0
SK

− 0.471 4.05 7.00

K+K−π− 0.725 3.74 8.92

K⋆−K
⋆0

0.771 3.43 10.65

π+π−π− 0.899 4.84 9.88

ηπ− 0.650 9.85 15.56

ηρ− 0.574 10.8 18.3

π−η′(ηπ+π−) 0.590 5.71 13.34

π−η′(ργ) - 9.60 -

Mtag fit. The fitting function is

f(Mtag,MM∗2) = NiG2(Mtag)C(MM∗2)+G2(Mtag)A5(MM∗2)+A1(Mtag)A5(MM∗2). (6)

For each mode, the signal is described by the product of a double Gaussian in the Mtag

projection, defined in Eq. (4) and a Crystal Ball function [23] in the MM∗2 projection,

respectively. The Crystal Ball function C(x|α, n,m, s) is defined as follows. With the

substitutions r = (m− x)/s and y = n/|α|, and K being a normalization constant,

C(x;α, n,m, s) = K











e−r2/2 if α > r

yne−α2/2(y − |α|+ r)−n otherwise.
(7)

One of the background components is the combination of a real tag with a random

γ. This type of background (BG1 in Fig. 4 below, and the second term in Eq. (6)) is

described by the same double Gaussian G2(Mtag) and a 5th degree polynomial A5(MM∗2).

The other background (BG2 in Fig. 4 below, and the third term in Eq. (6)) is due to

fake tags. The PDF here is the product of a 1st order polynomial (Mtag) and a 5th order

polynomial (MM∗2). To simplify the fit, the Mtag projections are fitted using the signal

function obtained in the 1-D Mtag fit, but the background parameters are varied.

TheMM∗2 distributions are shown in Fig. 4. TheMM∗2 signal regions for each mode are

chosen so as to have 95% signal efficiency. The MM∗2 selection is summarised in Table IV.
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FIG. 3. Distribution of Mtag −MDs of D−
s candidates, for the different tags: (a) K+K−π−; (b)

K0
SK

−; (c) ηπ−; (d) π−η′(ηπ+π−); (e) π+π−π−; (f) K⋆−K
⋆0
; (g) ηρ−, and (h) π−η′(ργ). The

fitted background A1, described in the text, is indicated by the dashed-dotted slope. The signal

mass region is indicated by the vertical dotted lines.

Table IV also lists the final number of tags obtained in each tag mode, Ni, as well as the

total number of tags, Ntag, used to extract the final result.

C. Signal selection

The signal is selected by requiring one positron candidate, of charge opposite to the tag

charge, two charged pion candidates, of opposite charge, no extra good tracks, and a good

π0, all selected exclusively of the objects used in the tag. The selection requires a specific

number of tracks, and multiple candidates can arise only due to multiple π0 candidates. In

case of multiple candidates, the π0 is selected as follows. Given the photon-photon mass

Mγγ , and the calculated mass error σγγ , the one with the lowest χ2 = [(Mγγ −Mπ0)/σγγ]
2 is

chosen. Additional candidate photons are ignored.

The positron, charged pions, and π0 are added together to form the four-vector (Es,ps).

The measured neutrino candidate mass squared, MM2, is defined as

MM2 = (Eb −Etag −Eγ − Es)
2 − (pb − ptag − pγ − ps)

2.
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FIG. 4. MM∗2 distributions for the 8 tag modes. Dash-dotted lines are the BG2 background

described in the text. Dashed lines are total background BG1 +BG2. (a) K
+K−π−; (b) K0

SK
−;

(c) ηπ−; (d) π−η′(ηπ+π−); (e) π+π−π−; (f) K⋆−K
⋆0
; (g) ηρ−, and (h) π−η′(ργ).

The MM2 distributions, with Mtag sideband subtraction, of the two control samples ηe+ν

and φe+ν are shown in Fig. 5. Based on the shape of MM2, events with −0.05 GeV2 <

MM2 < 0.05 GeV2 are selected for the final analysis.

The mass of the π+π−π0 combination M3 was not used in the candidate selection, and

provides the spectrum that is fitted to extract the final result. In Fig. 6, the M3 spectrum

is presented, including Mtag sideband contributions. Two peaks are clearly present, at the

η and φ masses, with no sign of a signal in the ω mass region.

In the final part of the analysis, the signal side is completely specified by the distributions

in MM2 and M3. The features of the expected signal are shown in Fig. 7. The M3 peaks in

the signal MC samples are fitted to a Breit-Wigner shape (indicated as BW in the equations),

convoluted with a double Gaussian,

s(x) = K

∫

BW (x1)G2(x− x1)dx1, (8)

where K is a normalization constant. Table V lists the fit results for each of the signal MC

samples generated for this analysis.

The reconstruction efficiency ǫ for the ωe+ν final state is computed by applying the same

requirements to the signal MC events, but correcting for the number of tags found in the
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TABLE IV. MM∗2 selection range and the number of tags in each mode obtained from the two-

dimensional fit. Total number of tags, Ntag is also given. The quoted error is statistical only.

Modes Lower limit ( GeV2) Upper limit ( GeV2) Ni(data)

K0
sK

− 3.7876 3.9539 3442 ± 138

K+K−π− 3.7939 3.9510 15647 ± 271

K⋆−K
⋆0

3.7505 3.9847 1707 ± 94

π+π−π− 3.7701 3.9633 4595 ± 298

ηπ− 3.7662 3.9798 2355 ± 187

ηρ− 3.7698 3.9632 3606 ± 640

π−η′(ηπ+π−) 3.7409 3.9888 1716 ± 142

π−η′(ργ) 3.7875 3.9601 3373 ± 240

Ntag - - 36441 ± 852

TABLE V. M3 signal peak parameters evaluated from signal MC sample. All quantities are defined

in the text.

Decay f1 σ1 (MeV) σ2 (MeV) R.M.S. (MeV)

ηe+ν 0.8844 3.165 19.85 7.37

ωe+ν 0.8783 5.500 22.52 9.40

φe+ν 0.8361 5.940 19.83 9.73

data,

ǫ =
1

Ntag

ΣNiǫi, (9)

ǫi being the signal MC efficiency for tag mode i. The result is ǫ = (5.11± 0.15)%, with the

error due to MC statistics.
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FIG. 5. Control sampleMM2 distributions. (a) solid, D+
s → ηe+ν distribution after Mtag sideband

subtraction, andMtag sideband distribution (dotted). (b) solid, D+
s → ηe+ν distribution afterMtag

sideband subtraction, and Mtag sideband distribution (dotted).

IV. FINAL FIT

Figure 8 shows only the M3 region used in the fit, which contains Nobs = 18 events. The

∆M3 = 250 MeV mass window is centered at the nominal ω mass [17]. In Fig. 8(a), the

data distribution and the fit to the data (described below) are shown. In Fig. 8(b), the MC

distribution is shown.

Three potential sources of background are considered: non-Ds backgrounds, Ds back-

grounds where there are non-resonant final states (which have not yet been observed, and

are not present in the MC simulation), and backgrounds where there is a true ω. Mtag

sideband subtraction only subtracts the first source. A direct fit of a signal and a back-

ground component subtracts the first two. The third source of background is subtracted via

MC simulation, and is discussed below. The signal yield is determined by a one parameter

unbinned likelihood fit [17]. The free parameter is the total number of signal events S.

The background level is constrained by the normalization of the probability. S is multiplied

by a function of unit area s(x), Eq. (8). The final expression of the unbinned likelihood,
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FIG. 6. M3 distribution. Solid: signal selection, after Mtag sideband subtraction. Dotted: Mtag

sideband contribution. The arrow shows the location of the ω nominal mass, Ref. [17].

Lu = ΠiPi, is obtained from the probabilities

P (M3i|S) = Pi = (S/Nobs)s(M3i) + (1− S/Nobs)/∆M3, (10)

which correspond to a signal S, distributed according to s(M3), plus a flat background.

Figure 9 shows the likelihoods obtained for data, without any peaking background sub-

traction, in the S > 0 region. The 90% confidence level (C.L.) is calculated using only the

S > 0 portion of the likelihood. The statistical only upper limit on S at the 90% C.L. is

S90 = 3.78 events.
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FIG. 7. Signal MC (D+
s → ωe+ν). (a) MM2 distribution. (b) M3 distribution.

Unbinned likelihood fits, in one dimension, can be tested for goodness of fit using the

Cramer-Von Mises test [24], where the goodness of fit parameter is

G =

∫ Mmax

3

Mmin

3

[F (M3)− FN(M3)]
2dF (M3). (11)

The integral limits are the limits of the fit interval. F (M3) is the integrated probability

function for best-fit parameters,

F (M3) =

∫ M3

Mmin

3

P (M ′

3, Smax)dM
′

3. (12)

Here Smax = 0, so that F is in fact a straight line. One has F = (M3 −Mmin
3 )/∆M3

and

dF (M3) = dM3/∆M3
. FN is a step function such that FN(M3) = N/Nobs, where N is the

rank of the largest event mass which is less thanM3. The two functions are shown in Fig. 10.

A toy MC program was run to generate an ensemble of 105 unbiased experiments. Fig-

ure 10 shows the distribution of G for the ensemble, also shown is the value of G obtained

in the fit to data. Only 13.1% of the fits to the generated experiments are better than that

to the data. The toy MC program also made it easy to apply the Kolmogorov-Smirnov

(KS) test, which simply computes the maximal difference between F and FN . Only 16.0%

of the unbiased experiments produced a better KS test than the data. The fit to the data

is excellent.
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FIG. 8. M3 distribution in the 250 MeV wide region centered at the nominal ω mass. No Mtag

sideband subtraction was used. (a) comparison of data (points) and best fit according to Eq. (10)

(line). (b) The MC sample, normalized to 20 times the data statistics. Solid: non-resonant

backgrounds. Empty: resonant backgrounds. The arrow shows the location of the ω nominal

mass.

V. DETERMINATION OF BRANCHING FRACTION AND SYSTEMATIC ER-

RORS

The statistical upper limit on the number of events is translated into a statistical only

limit on the branching fraction B90 according to the following equation

B90 =
S90

ǫNtag

. (13)

There are three quantities on the right hand side of Eq. (13), with central values S90 =

3.78, ǫ = 0.0511 and Ntag = 36441, yielding B90 = 0.203%, which is a purely statistical

limit. Ntag has a statistical error of its own, and each of the three quantities in Eq. (13) has

systematic errors which are discussed below.
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FIG. 9. Statistical only likelihood, normalized to unit area over the positive signal region, for the

observed number of signal events in data. The 90% C.L. was computed using only the positive

signal region.

A. Systematic errors

Table VI, first row, contains the relevant parameters of the unbinned likelihood (Fig. 9),

in the form µ±σ. µ is the S value for which Lu is maximal, if one allows also S < 0 values.

It describes the form of the likelihood, but is not used in the determination of the final

result.

Systematic errors to S90 are also listed in Table VI. The error associated with the assumed

mass and width of ω is estimated by varying the central values by the uncertainties given

in Ref. [17].

The greatest source of S90 systematic errors is related to irreducible backgrounds. These

also shift the location of the likelihood peak to lower values. Fig. 8 shows the background

distribution by physical source. All but one of the true ω are due to the decay chain
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FIG. 10. Cramer-Von Mises test of goodness of fit, for the final fit of this analysis. (a) Comparison

of the integrated probability distribution F (dashed) and the step function FN described in the

text (solid). (b) Comparison of the G obtained in this analysis, with a distribution obtained from

105 unbiased toy MC fits.

D+
s → η′e+ν with [B = (1.12±0.35)%], followed by η′ → ωγ, with [B = (3.02±0.33)%] [17].

A dedicated MC simulation for this channel generated 5000 events of which 51 passed all

selections. This corresponds to an irreducible background of (0.53± 0.19) events. Note that

the largest source of error is the semileptonic B error from Ref. [17]. Therefore, this source

of systematics can not be significantly improved with increased simulation statistics.

A second irreducible background comes from Ds → ωX events. Zero events are found in

the MC events from the direct decay D+
s → ωπ+. The cc̄ MC significantly underestimates

the (Ds → ωX) yield, which is 0.6% in the cc̄ MC but 6.1% in data [25]. The decay

D+
s → ωπ+ is in the cc̄ MC, but no other ωn(π) decays. A dedicated MC for D+

s → ωπ+π0,

which was assumed to saturate the 5.5% difference, was run, and zero events were found.

The probability for n background events, given zero MC candidates, is exponential in shape.

The systematic error from this source can be represented as (0.02± 0.02) in Table VI.
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TABLE VI. Summary of statistical and systematic errors of S90. The first block is the statistical

error from the experiment. The second block are errors associated with the quantity S90 of Eq. (13)

and consists of uncertainties due to the mass and width of the omega, and errors in estimating

three irreducible backgrounds as described in the text. The last block are percentage systematic

errors associated with Ntag or ǫ.

Type Cent. val. (evts.) σ (evts.)

Data fit −0.25 2.21

ω mass − 0.04

ω width − 0.006

D+
s → η′e+ν −0.53 0.19

D+
s → ωX −0.02 0.02

Continuum −0.15 0.15

Type Cent. val.(%) σ (%)

Ntag stat. − 2.3

Ntag syst. − 2.0

MC statistics − 2.7

B(ω → 3π) − 0.8

Tracking − 0.9

π0 eff. − 1.0

π0 selection variation − 0.5

Positron eff. − 0.6

MC form factor − 0.5

Extra track selection − 0.04

Particle ID − 0.1

There was one more true ω event which is in the continuum MC sample, corresponding

to one more irreducible background of 0.15± 0.15 events.

Ntag was obtained through a fit, with a statistical error of 2.3%. Systematic errors

can enter the analysis only through the bias in the choice of fitting function. This can
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be quantified by varying the fitting function. For each tag mode, the fitting function for

the signal was changed, first term of Eq. (6). The Crystal Ball function was varied in

two ways, by keeping the n parameter fixed to its MC fitted values and by changing the

(n, α) parameters in Eq. 7 by one σ in a mode specific way. The background was also

varied. Instead of a fifth degree polynomial, the data were fitted with a fourth and a

sixth degree polynomial. The background was also changed by fixing the amount of BG1

background (described in Sec. III.B) to one standard deviation above or below its central

value. Variations of Ntag due to changes in the fitting function were as low as −1.8% and

as high as +1.5%. The assigned systematic Ntag error is 2.0%.

Correlations may affect the fit of the (Mtag,MM∗2) peak, because the fit assumes the two

variables are not correlated. To study this, we have computed the (Mtag,MM∗2) correlation

coefficient in the signal MC sample, by calculating the correlation coefficient in each tag

mode, and then reweighting for the observed number of events in each mode. The result is

ρ = (−1.6± 0.9)%. The fit error due to remnant correlations is of order ρ2 and is neglected.

Finally, there are the systematic uncertainties on the efficiency to be considered. The ω

branching fraction uncertainty is 0.8% [17]. The tracking efficiency error is a 0.3% Gaussian

systematic error per signal track, to be added linearly, totaling 0.9% per event [26].

The π0 reconstruction efficiency error is 1% [27], but depends on the exact selection

criteria. To estimate the size of the systematics induced by changing selection criteria, the

signal MC sample with and without the energy and angular criteria which were used to

select photon candidates. There were 41269 reconstructed events with the criteria, and

41868 without the criteria, a difference of 1.5%. There were 101 events instead of 99 in the

combined η and φ peaks, a difference of 2%. We assumed a further 0.5% systematic error,

listed in Table VI.

The positron reconstruction efficiency is evaluated in a manner similar to Ref. [27].

Positron efficiencies have been investigated by the Collaboration using a variety of well-

known kinematically constrained QED processes. The experimentally measured corrections

are convoluted with the positron momentum distribution to obtain the efficiency uncertainty,

which is 0.6%. The effects of the extra track cuts and of particle ID cuts can be estimated

from the MC sample, by varying or eliminating the cuts. We find errors of 0.04% and 0.1%

for the extra track cut and particle ID cuts respectively.

Finally, a different form factor will change the efficiency, mostly because events with low
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FIG. 11. Final probability distribution for the branching fraction, after convolution of all statistical

and systematic errors, as described in the text.

q2 (the positron-neutrino mass) produce lower energy positrons. The signal MC produce

phase-space distributed events, and therefore a constant form factor. To evaluate this source

of systematics, the form factor was varied by ±20%, by reweighting the signal MC events

according to the weights

w±i(q
2
i ) = 1± 0.2(q2i− < q2 >)

< q2 >
,

with < q2 > being the mean q2 in the signal MC sample. The new efficiencies are 5.08%

and 5.14% respectively, to be compared to the given value of 5.11%. A systematic error of

0.5% is assigned to this systematics.

B. Determination of the branching fraction

To obtain the final result, Gaussian and non-Gaussian errors are convoluted with the

non-Gaussian signal S distribution given by the likelihood (Fig. 9), by means of a toy MC
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program. The procedure is used for three reasons. First, the main source of error, the

unbinned likelihood, is non-Gaussian, whereas the smaller sources of error are mostly Gaus-

sian. Second, some sources of error shift the central value of the likelihood, an effect which

can be treated exactly by shifting the likelihood individually for each simulated experiment.

Finally, the exponential and correlated nature of some of the error sources can be reproduced

exactly by MC simulation.

A total of 25× 106 toy experiments are generated, to obtain the probability distribution

in Fig. 11. The cumulative effect of the systematic errors is to increase the limit, and

the cumulative effect of the irreducible backgrounds is to decrease the limit. Taking into

account the systematic uncertainties and the irreducible backgrounds, the upper limit on

the branching fraction changes from 0.203% (statistical only) to 0.201%.

VI. CONCLUSION

We report the first measurement of an upper limit for the branching fraction B(D+
s →

ωe+ν). We find B(D+
s → ωe+ν) <0.20% at the 90% C.L., which does not exclude that

expected from the model of Ref. [16].

ACKNOWLEDGMENTS

We gratefully acknowledge the effort of the CESR staff in providing us with excellent

luminosity and running conditions. D. Cronin-Hennessy thanks the A.P. Sloan Foundation.

This work was supported by the National Science Foundation, the U.S. Department of

Energy, the Natural Sciences and Engineering Research Council of Canada, and the U.K.

Science and Technology Facilities Council.

[1] S. K. Choi et al. (Belle Collaboration), Phys. Rev. Lett. 91, 262001 (2003).

[2] K. Abe et al. (Belle Collaboration), Phys. Rev. Lett. 98, 082001 (2007).

[3] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 73, 011101 (2006).

[4] Q. He et al. (CLEO Collaboration), Phys. Rev. D 74, 091104 (2006).

[5] F. E. Close and P. R. Page, Phys. Lett. B 578, 219 (2003).

23



[6] M. B. Voloshin, Phys. Lett. B 579, 316 (2004).

[7] N. A. Tornqvist, Phys. Lett. B 590, 209 (2004).

[8] E. S. Swanson, Phys. Lett. B 588, 189 (2004).

[9] E. Braaten and M. Kusunoki, Phys. Rev. D 69, 114012 (2004).

[10] C. Y. Wong, Phys. Rev. C 69, 055202 (2004).

[11] I. Bigi et al., Phys. Rev. D 72, 114016 (2005).

[12] L. Maiani et al., Phys. Rev. D 72, 031502 (2005).

[13] T. W. Chiu et al. (TWQCD Collaboration), Phys. Lett. 646, 95 (2007).

[14] G. Bonvicini, in Transition from low to high Q form factors, Proceedings from the TJNAF

Workshop, edited by G. Strobel and D. Mack, (University of Georgia, Athens, 1999).

[15] F. Gabbiani, J. Qiu, and G. Valencia, Phys. Rev. D 66, 114015 (2002).

[16] M. Gronau and J. .L. Rosner, Phys. Rev. D 79, 074006 (2009).

[17] K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010).

[18] D. Cronin-Hennessy et al. (CLEO Collaboration), Phys. Rev. D 80, 072001 (2009).

[19] Y. Kubota et al. (CLEO Collaboration), Nucl. Instrum. Methods A 320, 66 (1992); D. Pe-

terson et al., Nucl. Instrum. Methods A 478, 142 (2002); M. Artuso et al., Nucl. Instrum.

Methods A 554, (2007).

[20] D. Lange et al., Nucl. Instrum. Methods A 462, 152 (2001).

[21] R. Brun et al., GEANT 3.21, CERN Program Library Long Writeup W5013, unpublished.

[22] S. Dobbs et al. (CLEO Collaboration), Phys. Rev. D 76, 112001 (2007).

[23] M. J. Oreglia, Ph.D Thesis, SLAC-236 (1980), J. E. Gaiser, Ph.D. Thesis, SLAC-255 (1982).

[24] T. W. Anderson, Ann. Math. Statist. 33, 1148 (1962).

[25] J. Y. Ge et al. (CLEO Collaboration), Phys. Rev. D 80, 051102 (2009).

[26] P. Naik et al. (CLEO Collaboration), Phys. Rev. D 80, 112004 (2009).

[27] S. Dobbs et al. (CLEO Collaboration), Phys. Rev. D 77, 112005 (2008).

24


