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Abstract

We present an N = 1 supersymmetric multiplet with a vector-spinor field
in three dimensions. We call this the vector-spinor multiplet with the field content
(ψµ, Aµ, λ), where ψµ is a vector-spinor, Aµ is a vector, while λ is a gaugino. Based
on on-shell component field formulation, we can accommodate N = 1 supersym-
metric Dirac-Born-Infeld (SDBI) interactions consistently with supersymmetry. This
is possible even in the presence of the vector-spinor. The ψµ -field equation contains
non-trivial interaction term with Aµ. Moreover, it turns out that in the presence of
mass terms, one physical degree of freedom in the original λ is transferred to that
of ψµ, making the latter propagating. In other words, our model presents non-trivial
rewriting of SDBI interaction in terms of (ψµ, Aµ) instead of (Aµ, λ).
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1. Introduction

In four dimensions (4D), there have been supersymmetric formulations for multiplets

with a vector-spinors ψµ with the minimal spin content (3/2, 1) [1][2]. Here the important

point is that the vector-spinor has no spin 2 superpartner, but has only spin 1 counterpart.

In other words, the system has only global supersymmetry, but no local supersymmetry

or supergravity. One of the ultimate aims is to establish the foundation for more general

supersymmetric higher-spin interactions [3].

However, there have been so far no consistent interactions introduced for the (3/2, 1) mul-

tiplet, at least in terms of component fields. This situation is understandable through the

conventional wisdom that once spin 3/2 is introduced, there should be spin 2 graviton, re-

sulting necessarily in supergravity for consistency. Another technical reasons is that the

auxiliary field structure with off-shell superfields [1][2][4] is so involved that the correspond-

ing formulations in component fields is impractically complicated. This is despite the fact

that off-shell superfield formulation is powerful enough to present interaction lagrangians in

superspace.

This problem appears to be easily solved in superspace. In superspace, the (3/2, 1) mul-

tiplet is represented by a spinor superfield Ψα and a real scalar superfield V [1][2][4]. We

can conjecture, for example, a total action to be I ≡ I1 + I2, where the free action I1 [1]

and the supersymmetric Dirac-Born-Infeld (SDBI) action I2 [5][6] can be written down as

I1 ≡
∫
d8z

[
(DαΨ

.
β)(D .

β
Ψα) +

1
4
(D

.
βΨα)(D .

β
Ψα) +

1
4
(DαΨ .

β
)(DαΨ

.
β) + ΨαWα +Ψ

.
αW .

α

]

+
∫
d6z

(
1
4
W αWα + 1

4
W

.
αW .

α

)
, (1.1)

I2 ≡
∫
d8z

[
1− 1

2
(K +K) +

√
1− (K +K) + 1

4
(K −K)2

]−1

W 2W 2 , (1.2)

where K ≡ 2D2(W 2), and we use the notation in [7]. The two actions I1 and I2 are

invariant under the following Λ, K and Ω-gauge transformations [1]:

δΛ,KΨα = Λα + i∂
α
.
β
D2D

.
βK , δΩV = +i(Ω− Ω) ,

K = K , V = V , D .
α
Λβ = 0 , DαΛ .

β
= 0 , DαΩ .

β
= 0 , D .

α
Ωβ = 0 . (1.3)

However, the drawback here is that unless we write down the explicit component total

lagrangian after eliminating auxiliary fields, we can not easily see the total consistency of

the whole system. There was a superspace lagrangian also proposed by Ogievetsky and
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Sokatchev in [2], but its corresponding component total lagrangian has not been presented,

to our knowledge. Unless we present the explicit component total lagrangian by eliminating

auxiliary fields, we can not easily see the total consistency of the whole system. From this

viewpoint, interaction lagrangians in terms of component fields is not just for curiosity, but

it is for physical significance. We need to seek some supersymmetric system, in which the

role of a vector-spinor is transparent in component language.

In this brief report, instead of addressing the problem directly in 4D, we study an analo-

gous multiplet in three dimensions (3D), taking advantage of simplification of supersymmetry

in 3D. We consider the multiplet (ψµ, Aµ, λ),
3) where ψµ is a vector-spinor, Aµ is a vector,

and λ is a Majorana spinor.

There are two important ingredients about our vector-spinor ψµ in 3D. First, a massless

vector-spinor ψµ has 0 on-shell degree of freedom (DOF), based on the conventional

counting: (D − 3) × 2⌊⌈D/2⌋⌉−1 = (3 − 3) × 20 = 0.4) However, as will be seen, when SDBI

interactions are introduced, the original field equation Rµν
.

=0 for the vector-spinor field

strength Rµν is no longer zero, but modified by SDBI interactions. Second, due to mass

terms present, the counting should be for a massive vector-spinor: (3 − 2) × 20 = 1. We

will see in section 5 how this one DOF of ψµ is accounted for, transferred from our gaugino

field. We will also see that the vector-spinor ψµ for a massive case has one propagating

DOF.

2. Lagrangian and Transformation Rule

As has been mentioned, our multiplet is (ψµ, Aµ, λ), where λ is a Majorana spinor as

the superpartner of Aµ, while ψµ is a vector-spinor in the Majorana representation in 3D.

We start with free-fields with the action I0 ≡
∫
d3xL0, where the lagrangian is:5)

L0 = + 1
2
ǫµνρ(ψµ∂νψρ)−

1
4
(Fµν)

2 − 1
2
(λγµ∂µλ)

− 1
2
m(ψµγ

µνψν)−m(ψµγ
µλ) + 1

4
mǫρστFρσAτ . (2.1)

The first term is the kinetic term for the ψµ in 3D. The second line is for the mass term

and related terms under supersymmetry, including the last Chern-Simons term.

3) From now on, we use the indices µ, ν, ··· = 0, 1, 2 for the 3D space-time indices.
4) Here ⌊⌈D/2⌋⌉ is the Gauss’s symbol for the integer part of the real number D/2.
5) Our metric is (ηµν) ≡ diag. (−,+,+). Accordingly, we have ǫ012 = +1, γµνρ = +ǫµνρ, γµν = +ǫµνργρ,

γµ = −(1/2)ǫµρσγρσ, I = −(1/6)ǫµρσγµρσ.
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Our action I0 is invariant under global N = 1 supersymmetry6)

δQAµ = − (ǫψµ) + (ǫγµλ) , (2.2a)

δQψµ = + 1
2
ǫµ

ρσFρσ = +ǫF̃ µ , (2.2b)

δQλ = − 1
2
(γµνǫ)Fµν = −(γµǫ)F̃ µ . (2.2c)

We use the Hodge-dual quantities, such as

F̃ µ ≡ +1
2
ǫµ

ρσFρσ , R̃µ ≡ +1
2
ǫµ

ρσRρσ , (2.3)

where Rµν ≡ ∂µψν − ∂νψµ is the field strength of the vector-spinor ψµ. Note that there

are two terms in the transformation rule δQAµ, as the non-trivial mixture of ψµ and λ.

We now consider possible interactions for this system. A typical interaction for the vector

field is SDBI interaction [5]. However, in our system, the presence of the vector-spinor makes

the superinvariance of the total action non-trivial. We use the real constant parameter α for

SDBI terms, so that the total action is now I ≡ I0 + Iα ≡
∫
d3xL ≡

∫
d3x (L0 +Lα), where

L0 is the same as (2.1), while Lα gives our new interactions at O(α):

Lα ≡ + 1
4
α(F 2

µν)
2 + αǫµνρ(ψµRνρ)F

2
στ + 4α(ψµR̃

µ)2

+ α(λ∂/λ)(Fρσ)
2 + αF̃µ

[
λγµ∂/(γνλF̃ ν)

]
+ α(λ∂/λ)2 + 1

4
α(λλ)∂2µ(λλ) . (2.4)

The first term is proportional to the usual DBI term (F 4)µ
µ − (1/4)(F 2

µν)
2 [8], because of

the particular feature in 3D.

The total action I is invariant up to O(α2) and O(mα) -terms, under the modified

supersymmetry transformation with the O(α) -terms:

δQAµ = − (ǫψµ) + (ǫγµλ)− 2α (ǫψµ)(Fρσ)
2 − 8α (ǫψµ)(ψνR̃

ν) , (2.5a)

δQψµ = + ǫF̃ µ + 8αψµ(ǫγ
ρ∂σλ)Fρσ + 2αǫ

[
λγµ∂/(γνλF

ν)
]
+ 8αǫ(λ∂/λ)F̃ µ , (2.5b)

δQλ = − 1
2
(γµνǫ)Fµν = −(γµǫ)F̃ µ . (2.5c)

The λ -transformation rule is not modified at O(α).

The field equations for our total action I ≡
∫
d3xL are

δL

δψµ

= + R̃µ −m(γµλ)−m(γµνψν)− 2αǫµρσψρ∂σ(F
2
τλ)
.

=0 , (2.6a)

6) This transformation rule will be modified by interaction terms at O(α) later in (2.5).
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δL

δλ
= − ∂/λ+m(γµψµ)

− 2α(γµλ)∂µ(F̃
2
ν) + 2αF̃ µγ

µ∂/(γνλF̃ ν) + 2αλ(∂µλ)(∂
µλ)

.

=0 , (2.6b)

δL

δAµ
= − ∂νF

µν +mF̃ µ − 4αǫτνρ∂σ
[
F σµ(ψτRνρ)

]

+ ǫµρσ∂ρ
[
+4αF̃ σF̃

2
τ − 4α(λ∂/λ)F̃ σ + 2αλγσ∂/(γ

νλF̃ ν)
]

(2.6c)

.

= − ∂νF
µν +mF̃ µ − 4αǫµρσF̃ ρ∂σ(F̃

2
τ ) + 4α(λγµν∂ρλ)∂νF̃

ρ

+ 4α(∂µλ)(∂νλ)F̃
ν − 4α(λ∂µ∂νλ)F̃

ν +O(α2, αm)
.

=0 , (2.6d)

where O(α2, αm) are either the terms with α2 or αm. The latter is ignored, because we

have confirmed our action invariance only up to O(α2) or O(αm) -terms.

The expression (2.6c) is directly from the lagrangian variation, while (2.6d) is simpli-

fication by using field equations. These are equivalent to each other up to field equations

at O(α,m). In other words, they are ‘on-shell’ equivalent up to O(α2, αm) -terms. For

example, the R -term in the first line (2.6c) with α in front is essentially at O(α2, αm),

because Rµν
.

=O(α,m). The O(α0) -field equations that can be used for the α -terms are

such as

∂⌊⌈µF̃ ν⌋⌉
.

=O(α,m) , ∂/λ
.

=O(α,m) , Rµν
.

=O(α,m) . (2.7)

3. Consistency of Interactions

As the consistency confirmation of our total system, we first investigate the supersym-

metry transformations of ψµ and λ -field equations (2.6a) and (2.6b).

The supersymmetric variation of the vector-spinor field equation is

0
?
= + δQ

(
δL

δψµ

)
= δQ

[
+Rµ −m(γµλ)−m(γµνψν)− 2αǫµρσψρ∂σ(F

2
τλ)
]

.

= + ǫµρσ∂ρ
[
ǫF̃σ +mǫF̃σ + 8αψσ(ǫγ

τ∂λλ)Fτ
λ + 2αǫλγσ∂/(γνλF̃

ν)
]
+ 4αǫµρσ(ǫF̃ρ)∂σ(F̃

2
τ )

− 4αǫµρσψρ [∂σ(−2ǫγτ∂λλ)]F
τλ − 4αǫµρσψρ(−2ǫγτ∂λλ)∂σF

τλ +O(α2, αm) . (3.1)

Here we have used the field equations (2.7) up to O(α2, αm) -terms. For the Aµ -field

equation used for the fist term in (3.1), we have to include O(α0), O(α) and O(m) -terms

in (2.6d), while for other terms with α, we need only the field equations (2.7) at O(α0).

After these manipulations, we get all the remaining terms cancel each other, as desired.
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In a similar fashion, we can confirm the vanishing of the supersymmetry transformation

of the λ -field equation:

0
?
= − δQ

(
δL

δλ

)

.

= δQ
[
{∂/λ−m(γµψµ)}+ 2α(γµλ)∂µ(F̃

2
ν )− 2αF̃ µγ

µ∂/(γνλF̃ν)− 2αλ(∂µλ)(∂
µλ)

]
(3.2)

.

= +
[
− 4α(γρ

σǫ)F̃ ρ∂σ(F̃
2

τ ) + 4α(γµǫ)(∂µλ)(∂νλ)F̃
ν − 4α(γµǫ)(λ∂µ∂νλ)F̃

ν

+ 4α(γµǫ)(λγµν∂ρλ)∂
νF̃ ρ

]

+
[
+ 2α(γρσǫF̃ρ)∂σ(F̃

2
τ )− 2αǫF̃ µ∂µ(F̃

2
ν ) + 4α(γµǫ)(λ∂

µ∂νλ)F̃
ν − 2αǫ(λγµ∂νλ)∂µF̃ν

+ 2α(γρǫ)(λγ
µρ∂νλ)∂µF̃

ν + 2α(γµǫ)(λ∂νλ)∂µF̃
ν
]

+
[
+ 2α(γρσǫ)F̃ρ∂σ(F̃

2
τ ) + 2αǫF̃ µ∂

µ(F̃ 2
ν )− 4α(γµǫ)(∂µλ)(∂νλ)F̃

ν

− 2α(γµǫ)(∂νλ)(∂
νλ)F̃ µ

]

+
[
+ 2α(γµǫ)(∂νλ)(∂

νλ)F̃µ − 2α(γµǫ)(λ∂νλ)∂
νF̃ µ

+ 2α(γρǫ)(λγνρ∂µλ)∂
µF̃ ν + 2αǫ(λγµ∂νλ)∂µF̃

ν
]
+O(α2, αm) , (3.3)

where there are four pairs of square brackets, each of which represents the variation of the

four terms in (3.2), respectively. (The ‘first’ term implies the pair of braces.) After using the

O(α0) -field equations (2.7), we see that all the terms in (3.3) cancel each other. A useful

lemma here is

δQFµν
.

= − 2(ǫγ[µ∂ν⌋⌉λ) +m(ǫγµνλ) + 2m(ǫγ⌊⌈µψν⌋⌉) +O(α2, αm) , (3.4)

without O(α) -term. In other words, the δQ -transformation of Fµν has no O(α) modifi-

cation. This feature is useful, because essentially the transformation structure of the λ -field

equation is exactly the same as the conventional N = 1 SDBI system [5].

We next study the consistency of Aµ and ψµ -field equations with divergences, i.e.,

∂µ(δL/δAµ)
?
= 0 and ∂µ(δL/δψµ)

?
= 0. The former is just the U(1) -gauge invariance, while

the latter is similar to the gravitino field equation consistency for supergravity [9]. For the

former, we use (2.6d):

0
?
= ∂µ

(
δL

δAµ

)
.

= + ∂µ
[
− ∂νF

µν +mF̃ µ − 4αǫµρσF̃ ρ∂σ(F̃
2

τ )

+ 4α(∂µλ)(∂νλ)F̃
ν − 4α(λ∂µ∂νλ)F̃

ν + 4α(λγµν∂ρλ)∂νF̃
ρ +O(α2)

]

.

= − 4αǫµρσ(∂µF̃ ρ)∂σ(F̃
2

τ )
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+ 4α(∂2µλ)(∂νλ)F̃
ν + 4α(∂µλ)(∂

µ∂νλ)F̃
ν + 4α(∂µλ)(∂νλ)∂

µF̃ ν

− 4α(∂µλ)(∂
µ∂νλ)F̃

ν − 4α(λ∂2µ∂
νλ)F̃ ν − 4α(λ∂µ∂νλ)∂

µF̃ ν

+ 4α(∂µλ)γ
µν(∂ρλ)∂νF̃

ρ + 4α(λγµν∂µ∂ρλ)∂νF̃
ρ +O(α2, αm) . (3.5)

After using O(α0) -field equations (2.7), we see that all the terms in (3.5) cancel each other,

leaving only O(α2, m) -terms.

For the consistency of the ψµ -field equation, we have a simpler structure:

0
?
= ∂µ

(
δL

δψµ

)
= + ∂µ

[
+R̃µ −m(γµλ)−m(γµνψν)− 2αǫµρσψρ ∂σ(F̃

2
τλ)
]

.

= + 2αǫµρσRµρ ∂σ(F̃
2
τ )
.

= O(α2, αm) , (3.6)

where due to Rµν
.

=O(α,m), all the terms are eventually at O(α2, αm), as desired.

Note that the vector-spinor field equation (2.6a) has a non-trivial interaction term which

does not vanish on-shell by itself, but it satisfies the consistency condition (3.6). Before the

discovery of supergravity [9], the possible inconsistency for such divergences was known as

Velo-Zwanziger disease [10]. From this viewpoint, it is quite non-trivial that our vector-spinor

field equation (2.6a) explicitly satisfies the consistency conditions without local supersym-

metry.

In supergravity in 3D [11][12], even though the massless gravitino or graviton field has

no physical DOF in 3D, their field equations still play important roles, when coupled to

matter multiplet [11][12]. In a similar fashion, our vector-spinor field plays a significant role,

when coupled to the vector and gaugino, accompanied by SDBI interactions. This situation

is further elaborated due to the presence of mass terms, as we will see in section 5.

4. SDBI Interaction in Terms of Vector-Spinor

We have so far not counted the real DOF for the vector-spinor. When a vector-spinor is

massless, its physical DOF is (3− 3)× 1 = 0, since three components for the index µ is to

be subtracted. This is because not only the usual 2 longitudinal components, but also the

γ -trace component should be subtracted.

However, for a massive vector-spinor, the counting should be (3 − 2) × 1 = 1. Hence,

there must be one physical degree of freedom carried by ψµ. We can understand this in
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terms of ψµ and λ -field equations (2.6a) and (2.6b). We first multiply (2.6a) by γµ or

applying ∂µ, getting two equations

+ (γµR̃
µ)− 3mλ− 2m(γνψν)

.

=O(α) , (4.1a)

+m(∂/λ) +m(γµR̃µ)
.

=O(α) . (4.1b)

From these equations, we can eliminate (γµR̃
µ), as

+ (γµR̃
µ)
.

= − (∂/λ) +O(α) , (4.2a)

+ (∂/λ) + 3mλ+ 2m(γµψµ)
.

=O(α) . (4.2b)

Adding (4.2b) to (2.6b), we get

+ λ
.

= − (γµψµ) +O(α) . (4.3)

Thus the λ -field is expressed entirely in terms of the vector-spinor ψµ. Actually, (4.3)

is also consistent with supersymmetry transformation (2.5b) and (2.5c). In other words, it

is no longer the λ -field that is fundamental, but ψµ becomes the fundamental field.

Combining (4.3) with (4.2b), we get

+ (∂/λ) +mλ
.

=O(α) . (4.4)

Namely, λ
.

= − (γµψµ) is one propagating DOF. Relevantly, (4.3) with (2.6a) implies that

R̃µ
.

= −mψµ +O(α) , (4.5)

the divergence of which leads to

0 ≡ ∂µR̃
µ +m∂µψ

µ .=O(α,m) =⇒ ∂µψ
µ .=O(α) . (4.6)

Eq. (4.6) is analogous to ∂µA
µ .=0 for the massive vector field equation ∂νF

µν−m2Aµ
.

=0.

All of these equations mean that our vector-spinor is now massive and propagating with

(3− 2)× 1 = 1 DOF, instead of the massless case (3− 3)× 1 = 0. Originally, the fields in

our multiplet (ψµ, Aµ, λ) have respectively (0, 1, 1) DOF. However, when the mass term

is added, the one DOF of λ is transferred to the vector-spinor ψµ, making it massive and

propagating.

The crucial aspect of our model is that the conventional SDBI action in terms of the vector

multiplet (Aµ, λ) has been completely re-written in terms of the new multiplet (ψµ, Aµ, λ).
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In particular, the vector-spinor field satisfying the consistency condition without any problem

with N = 1 supersymmetry.

Moreover, we can rewrite λ = −(γµψµ) +O(α) everywhere in the field equations (2.6),

still maintaining supersymmetric covariance of these field equations. To put it differently,

we can present SDBI interaction entirely in terms of the multiplet (ψµ, Aµ), instead of the

conventional (Aµ, λ).

5. Concluding Remarks

In this brief report, we have shown how to introduce non-trivial interaction to the mul-

tiplet (ψµ, Aµ, λ) with a vector-spinor in 3D. We have seen that the SDBI terms can be

accommodated into the multiplet consistently with global N = 1 supersymmetry.

We have seen highly non-trivial structure for the supersymmetry transformations of

ψµ and λ -field equations, that are all consistent with all other field equations under

N = 1 supersymmetry (2.5). We have also confirmed the divergence of the Aµ and ψµ -field

equations, and they vanish up to O(α2, m) -terms, as desired. The latter confirmation is

well known for the gravitino field equation in supergravity (local supersymmetry). However,

we have established similar consistency for our vector-spinor, without local supersymmetry.

It has been well-known that a massless vector-spinor has no DOF in 3D by simple count-

ing (3−3)×1 = 0. However, as supergravity theories in 3D indicates [11], the gravitino field

equation plays important role, when it is coupled to matter fields. By the same token, our

vector-spinor field equation plays an important role, when coupled to the vector and gaugino

with non-trivial SDBI interactions. This feature is crystalized in the non-trivial coupling in

the ψµ -field equation (2.6a).

We have shown moreover that the original system can be re-expressed only in terms of

(ψµ, Aµ), because of the on-shell relationship λ
.

= − (γµψµ) + O(α), when mass terms are

present. In other words, the original 1 DOF of λ is transferred to that of ψµ. This is

consistent with the counting (3−2)×1 = 1 for a massive vector-spinor in 3D. Consequently,

the conventional SDBI interactions in terms of (Aµ, λ) can be re-expressed in terms of

(ψµ, Aµ), including the vector-spinor ψµ.

Our non-trivial interaction of the vector-spinor is to be emphasized, because the con-

ventional wisdom tells us that once a vector-spinor (spin 3/2) is introduced into a system,

supergravity or local supersymmetry with graviton (spin 2) is inevitable. Even though our

9



success might be attributed to the special feature of 3D, we can also regard that our re-

sults indicate the encouraging aspect of 3D, where we can study the non-trivial couplings of

vector-spinor without introducing a graviton or spin 2 field.

Our system in 3D can serve as the testing ground for the study of non-trivial interactions

of spin (3/2, 1) multiplet in 4D [1][2], where auxiliary field structure in component language

is considerably involved.

This work is supported in part by Department of Energy grant # DE-FG02-10ER41693.
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