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I. INTRODUCTION

The total energy E12 of two static disjoint objects may be decomposed as,

E12 = E0 +ΔE1 +ΔE2 +ΔE12, (1)

where E0 is the energy of the vacuum (medium) without objects, ΔE1 and ΔE2 are (self)-energies required to
create the objects individually in isolation, and ΔE12 is the change in energy due to their interaction. The interaction
energy ΔE12 is finite for disjoint objects if it is mediated by an otherwise free quantum field whose interaction with the
objects is described by local potentials. It is the only contribution to the total energy that depends on the position
and orientation of both objects and determines the forces between them. Casimir found that the electromagnetic
force between two parallel neutral metallic plates does not vanish [1] and that the associated Casimir energy ΔE12

may be interpreted as arising from changes in the zero-point energy due to boundary conditions imposed on the
electromagnetic field by the metallic plates. Zero-point energy contributions to the energies ΔEi of individual objects
in general diverge but the change ΔE12 due to the presence of two disjoint objects is finite.
Reliable extraction of finite Casimir energies for a long time appeared to be restricted to very special geometries,

like parallelepipeds [2–4], spheres [5, 6], and cylinders [7]. A multiple scattering formulation for computing Casimir
energies of smooth objects was developed by Balian and Duplantier [8, 9] but it relied heavily on idealized boundary
conditions. Kenneth and Klich only recently observed [10] that ΔE12 may be computed independent of single-body
contributions to the energy and is always finite for disjoint objects. This two-body interaction energy is compactly
expressed [10, 11] in terms of the free Green’s function, G0, and transition operators, T1, T2, associated with the
individual objects,

ΔE12 =
1

2

∫ ∞

−∞

dζ

2π
Tr ln

[
1−G0T1G0T2

]
=

1

2

∫ ∞

−∞

dζ

2π
Tr ln

[
1− T̃1T̃2

]
, (2)

where we have defined partly amputed transition operators T̃i = G0Ti, i = 1, 2. For potential scattering the interaction
energy may equivalently be expressed [12] in terms of the potentials Vi and the corresponding Green’s functions Gi

satisfying GiVi = G0Ti.
In deriving Eq. (2) one formally subtracts divergent self-energies and avoids the question of whether these divergences

have any physical significance. One in particular circumvents the issue raised in [13, 14] of how they should be treated
in the context of gravity, a problem that has so far only been considered for parallel plates [15–17]. Although it does not
address such conceptual points, the irreducible contribution of Eq. (2) suffices to explain experimental measurements
of Casimir forces between two disjoint objects. Since the interaction energy for disjoint objects is finite, errors due
to numerical or other approximations to Eq. (2) can be controlled. This has now been demonstrated by explicit
calculations for a number of geometries and physical situations [18–21].
In this article we examine a recently proposed extension of these ideas to more than two bodies. It was shown in

[22] that the irreducible N -body part of the total energy remains finite if the N objects have no common intersection.
We here explicitly evaluate the irreducible three-body part, ΔE123, of the total energy,

E123 = E0 +ΔE1 +ΔE2 +ΔE3 +ΔE12 +ΔE23 +ΔE31 +ΔE123, (3)

in several cases and verify that ΔE123 remains finite even as irreducible two-body contributions diverge. The formal
expression for ΔE123 given in [22] is considerably more involved than Eq.(2),

ΔE123 =
1

2

∫ ∞

−∞

dζ

2π
Tr ln

[
1 +X12

{
T̃1T̃2T̃3X23 + T̃1T̃3T̃2X32 − T̃1T̃2T̃1T̃3 − T̃1T̃3T̃2T̃3X23 − T̃1T̃2T̃3T̃2X32

}
X13

]
, (4)

where the Xij ’s are solutions to the integral equations,

[
1− T̃iT̃j

]
Xij = 1. (5)

We here obtain and evaluate alternate expressions for irreducible Casimir energies that do not involve a logarithm.
The article is organized as follows. In Section II we derive Faddeev-like equations for the scattering matrix associated
with N -objects and extract their irreducible N -body parts. The associated N -body Green’s functions are expressed in
terms of one-body transition matrices describing scattering off each object individually. The procedure is illustrated
for N = 2, and N = 3, for which explicit solutions are obtained. The method is generalizable to higher N . The
general solutions of Section II are used to obtain the Green’s functions for two and three semitransparent plates in
Section III. The irreducible three-body contribution to the Green’s function for three semitransparent plates is found
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to exactly cancel the two-body interaction of the outer plates when Dirichlet boundary conditions are imposed on the
central plate.
In Section IV we express the irreducible N -body contribution to the Casimir energy in terms of the N -body part of

the transition matrix. This avoids the computation of the logarithm of an integral operator, but requires one to solve
a set of linear Faddeev-like integral equations for the N -body transition matrix. In Section V we use this formalism to
obtain irreducible two–and three-body contributions to the Casimir energy of two and three semitransparent plates.
The three-body contribution again cancels the two-body interaction from the outer plates when Dirichlet boundary
conditions are imposed on the central plate.
In Section VI, we specialize to the case when two of the three potentials are weak. For point-potentials we prove

that the irreducible two-body Casimir energy is always negative whereas the irreducible three-body contribution
is positive. The proof immediately generalizes to any form of the weakly interacting potentials. We also derive
expressions for irreducible two–and three-body contributions to the Casimir energy when the weak potentials have
translational symmetry and the third potential represents a Dirichlet plate parallel to the symmetry axis. Some of the
expressions for the irreducible two-body contributions appear to not have been noted in earlier studies. We obtain the
irreducible three-body contribution to the Casimir energy in this semiweak approximation, and verify independently
that it is positive and finite.
In Section VII we use these results to investigate the irreducible three-body Casimir energy of a weakly interacting

wedge placed atop a Dirichlet plate forming a waveguide of triangular cross-section. The potentials forming the
triangular waveguide overlap and the irreducible two-body contributions to the vacuum energy diverge. However,
the irreducible three-body Casimir energy is well defined as long as the supports of the three potentials have no
common overlap. The irreducible three-body Casimir energy is minimal (and vanishes) when the shorter side of the
wedge is perpendicular to the Dirichlet plate. Inspired by the study in [23], we investigate the dependence of the
irreducible three-body Casimir energy on the cross-sectional area and perimeter of the triangular waveguide. To
emphasize that the finiteness of the irreducible three-body Casimir energies is not only due to the subtraction of
corner divergences, we, in Section VIII, consider a waveguide with weakly interacting sides of parabolic cross-section
that touch a Dirichlet plate. The conclusions for weak triangular-wedges generalize to parabolic-wedges with only
minor changes in interpretation.
The explicit calculations in this article support the general results of [22]. The irreducible three-body contribution

to the Casimir energy in the examples considered here is always positive. It furthermore is continuous (and in this
sense is analytic in the corresponding parameter) when two of the bodies approach each other and intersect.
Many-body effects can give significant corrections to two-body contributions. The three-body correction for the

interaction of an atom with a bilayer, discussed in [24], can amount to 15% [22]. Further, it is possible to envision
scenarios in which all two-body contributions are nullified [25] and many-body interactions dominate. This could be
of interest for precision experiments that seek to minimize extraneous influences.

II. MANY-BODY GREEN’S FUNCTIONS

The free Green’s function of a massless scalar field in Euclidean space-time satisfies the partial differential equation

[−∇2 + ζ2]G0(x,x
′) = δ(3)(x− x′), (6)

where ∇2 is the Laplacian of flat three-dimensional space. It is related to the corresponding free Green’s function
of Minkowski space-time by a Euclidean (Wick) rotation. The “one-body” Green’s function, Gi, associated with the
time-independent potential, Vi(x), describing the interaction with the i-th object satisfies

[
−∇2 + ζ2 + Vi(x)

]
Gi(x,x

′) = δ(3)(x− x′). (7)

The two-body Green’s function Gij solves a similar equation with the potential (Vi + Vj) associated with a pair of
objects, Gijk denotes the three-body Green’s function to the potential (Vi+Vj +Vk), etc. The potentials Vi(x) of this
model [26, 27] are proportional to δ-functions that simulate the interaction of the scalar field with classical objects.
Infinitely strong δ-function potentials enforce Dirichlet boundary conditions at the surface of the objects.
One obtains a formal solution to Eq. (7) by considering the differential operator as an integral kernel, and manip-

ulating the kernels as if they were matrices. To emphasize the correspondence between integral kernels and matrices,
we replace: [−∇2

x + ζ2] δ(3)(x − x′) → G−1
0 , Vi(x) δ

(3)(x − x′) → Vi, and δ(3)(x − x′) → 1. Using ordinary matrix
algebra one obtains the formal solution to Eq. (7) in the form

Gi = G0 −G0TiG0, (8)
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where the transition matrix Ti is given by

Ti = Vi(1 +G0Vi)
−1 = (1 + ViG0)

−1Vi = Vi − ViG0Vi + ViG0ViG0Vi − . . . . (9)

The second term in Eq. (8) is interpreted as due to scattering off the i-th object. It corresponds to the integral
operator,

G0TiG0 →
∫
d3x1

∫
d3x′

1 G0(x− x1)Ti(x1,x
′
1)G0(x

′
1 − x′). (10)

In the following, symbolic equations often are more compactly written1 in terms of partly amputated operators.
Equations for the physical operators are obtained by replacing every partly amputated Greens-function G̃i, potential
Ṽi, and scattering matrix T̃i, by,

G̃i → GiG
−1
0 , Ṽi → G0Vi, and T̃i → G0Ti. (11)

A. Many-body scattering theory

The partly amputated N -body Green’s function satisfies the equation[
1 + Ṽ1 + Ṽ2 + . . .+ ṼN

]
G̃1...N = 1. (12)

The numbers in the subscript of G̃1...N relate to the respective potentials. We may treat the sum of potentials in
Eq. (12) as a single potential and thus proceed as for a single-body. The solution may again be written in the form

G̃1...N = 1− T̃1...N , (13)

where the N -body transition matrix T̃1...N satisfies the equation[
1 + (Ṽ1 + Ṽ2 + · · ·+ ṼN )

]
T̃1...N = (Ṽ1 + Ṽ2 + · · ·+ ṼN ). (14)

The solution to Eq. (14) is an infinite series similar to the one in Eq. (9), whose terms can be regrouped into

components T̃ ij
1...N , that begin with the i-th potential and end with the j-th potential. For N potentials we have

N2 such components representing transitions from the i-th to the j-th object. This decomposition of the N -body
transition matrix is of the form,

T̃1...N =

N∑
i=1

N∑
j=1

T̃ ij
1...N = Sum

[
T̃1...N

]
, (15)

where the symbol Sum[A] stands for the sum of all elements of the matrix A. The matrix form of the N -body
transition operator is,

T̃1...N =

⎛
⎜⎜⎜⎜⎜⎜⎝

T̃ 11
1...N T̃ 12

1...N · · · T̃ 1N
1...N

T̃ 21
1...N T̃ 22

1...N · · · T̃ 2N
1...N

...
...

. . .
...

T̃N1
1...N T̃N2

1...N · · · T̃NN
1...N

⎞
⎟⎟⎟⎟⎟⎟⎠

, (16)

where each component is an integral operator.
Inserting Eq. (15), and introducing Kronecker-δ integral operators, Eq. (14) is equivalent to the following set of

integral equations ∑
k

[
δik + Ṽi

]
T̃ kj
1...N = Ṽiδij . (17)

1 This is like setting G0 = 1.
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In matrix notation this set of equations is[
1+ Ṽdiag + Θ̃V

1...N

]
· T̃1...N = Ṽdiag, (18)

where we have introduced general matrix symbols

ΘA
1...N =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 A1 A1 · · · A1

A2 0 A2 · · · A2

A3 A3 0 · · · A3

...
...

...
. . .

...

AN AN AN · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, Adiag =

⎛
⎜⎜⎜⎜⎜⎜⎝

A1 0 0 · · · 0

0 A2 0 · · · 0

0 0 A3 · · · 0

...
...

...
. . .

...

0 0 0 · · · AN

⎞
⎟⎟⎟⎟⎟⎟⎠

. (19)

Using these definitions with Eq. (9) we write,[
1+ Ṽdiag

]
· T̃diag = Ṽdiag and

[
1+ Ṽdiag

]
· Θ̃T

1...N = Θ̃V
1...N , (20)

and use in Eq. (18) to derive [
1+ Θ̃T

1...N

]
· T̃1...N = T̃diag. (21)

The set of linear integral equations of Eq. (21) are often referred to as Faddeev’s equations [28, 29] for nuclear many-
body scattering, but apparently have been known [30, 31] in the context of “optical models” for atomic nuclei since
the 1950’s and may have been used in earlier optical studies. The closely related approach in [32, 33] is known as
Martin-Schwinger-Puff many-body theory.
Eq. (13) relates the N -body Green’s function G̃1,...N to the N -body transition matrix T̃1,...N satisfying Eq. (14).

Faddeev’s equations of Eq. (21) reduce the problem of solving Eq. (14) for the N -body transition matrix to that of

inverting
[
1+Θ̃T

1...N

]
by solving a set of N linear integral equations. Remarkably, ΘT

1...N depends only on single-body

transition operators. The norm of ΘT
1...N is less than unity (because the norm of single-body transition matrices is)

and Faddeev’s equations can, at least in principle, be solved by (numerical) iteration [29].

B. N = 2: Two-body interaction

Using Eq. (12) the Green’s function equation for N = 2 has solution given by Eq. (13), where the transition matrix
is obtained by inverting the Faddeev’s equation in Eq. (21) to yield

T̃12 =
[
1+ Θ̃T

12

]−1 · T̃diag =

[
X12 0
0 X21

] [
T̃1 −T̃1T̃2

−T̃2T̃1 T̃2

]
. (22)

The integral operators Xij in Eq. (22) satisfy Eq. (5). Summing the components of T̃12 we obtain the total transition
matrix as,

T̃12 = Sum
[
T̃12

]
=
[
1−X12G̃1

]
+
[
1−X21G̃2

]
. (23)

The total two-body transition matrix T̃12 can be decomposed into its irreducible one–and two-body parts,

T̃12 = T̃1 + T̃2 +ΔT̃12, (24)

with

T̃1 =

[
T̃1 0
0 0

]
, T̃2 =

[
0 0

0 T̃2

]
, ΔT̃12 =

[
X12 0
0 X21

] [
T̃1T̃2T̃1 −T̃1T̃2

−T̃2T̃1 T̃2T̃1T̃2

]
. (25)

The irreducible two-body transition matrix ΔT̃12 includes all contribution with scattering off both potentials. Eq. (24)
and the definition in Eq. (13) imply the following decomposition of the partly amputated two-body Green’s function

G̃12 = 1− T̃1 − T̃2 −ΔT̃12, (26)

where ΔT̃12 = Sum
[
ΔT̃12

]
. Summing the four independent two-body transitions of Eq. (25), the irreducible two-body

transition operator in terms of the single-body transition matrices T̃1 and T̃2 is,

ΔT̃12 = Sum
[
ΔT̃12

]
= (1−X12)G̃1 + (1 −X21)G̃2. (27)
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C. N = 3: Three-body interaction

One proceeds similarly for three bodies. In this case the formal solution to the Faddeev’s equation, of Eq. (21), is

T̃123 =

⎡
⎢⎣
X1[23] 0 0

0 X2[31] 0

0 0 X3[12]

⎤
⎥⎦
⎡
⎢⎣

T̃1 −T̃1G̃3T̃2X32 −T̃1G̃2T̃3X23

−T̃2G̃3T̃1X31 T̃2 −T̃2G̃1T̃3X13

−T̃3G̃2T̃1X21 −T̃3G̃1T̃2X12 T̃3

⎤
⎥⎦ , (28)

where the G̃i’s are related to T̃i’s by Eq. (8) and the two-body effective Green’s functions, Xij , (i �= j), solve Eq. (5).
The three-body effective Green’s functions, Xi[jk], (i �= j �= k), satisfy the equation

Xi[jk]

[
1− T̃iT̃jk

]
= Xi[jk]

[
1− T̃iG̃j T̃kXjk − T̃iG̃kT̃jXkj

]
= 1. (29)

The total transition matrix in this case is

T̃123 = Sum
[
T̃123

]
=
[
1−X1[23]G̃1

]
+
[
1−X2[31]G̃2

]
+
[
1−X3[12]G̃3

]
. (30)

The transition matrix may again be decomposed into irreducible parts

T̃123 = T̃1 + T̃2 + T̃3 +ΔT̃12 +ΔT̃23 +ΔT̃31 +ΔT̃123, (31)

where

ΔT̃12 +ΔT̃23 +ΔT̃31 =

⎡
⎢⎣
X12T̃1T̃2T̃1 +X13T̃1T̃3T̃1 −X12T̃1T̃2 −X13T̃1T̃3

−X21T̃2T̃1 X21T̃2T̃1T̃2 +X23T̃2T̃3T̃2 −X23T̃2T̃3

−X31T̃3T̃1 −X32T̃3T̃2 X31T̃3T̃1T̃3 +X32T̃3T̃2T̃3

⎤
⎥⎦ (32)

is obtained using the N = 2 expressions of Eq. (25). The new irreducible three-body part is,

ΔT̃123 =

⎡
⎢⎣

(1−X12 −X13 +X1[23])T̃1 [T̃1X21 −X1[23]T̃1G̃3X23]T̃2 [T̃1X31 −X1[23]T̃1G̃2X32]T̃3

[T̃2X12 −X2[31]T̃2G̃3X13]T̃1 (1 −X23 −X21 +X2[31])T̃2 [T̃2X32 −X2[31]T̃2G̃1X31]T̃3

[T̃3X13 −X3[12]T̃3G̃2X12]T̃1 [T̃3X23 −X3[12]T̃3G̃1X21]T̃2 (1−X31 −X32 +X3[12])T̃3

⎤
⎥⎦ . (33)

The decomposition of Eq. (31) carries over to the decomposition of the Green’s function

G̃123 = 1− T̃1 − T̃2 − T̃3 −ΔT̃12 −ΔT̃23 −ΔT̃31 −ΔT̃123. (34)

Summing the nine independent three-body transitions in Eq. (33) we find that,

ΔT̃123 = Sum
[
ΔT̃123

]
= −(1−X12−X13+X1[23])G̃1−(1−X23−X21+X2[31])G̃2−(1−X31−X32+X3[12])G̃3. (35)

Although not quite as obvious as for two-body scattering, closer inspection reveals that each component of ΔT̃123

indeed involves scattering off all three bodies. A similar procedure can be used to obtain scattering matrices and their
irreducible parts for more than three bodies.

III. GREEN’S FUNCTIONS FOR PARALLEL SEMITRANSPARENT δ-PLATES

We now apply this formalism to derive the Green’s functions for parallel semitransparent plates of infinite extent
described by δ-function potentials

Vi(x) = λiδ(z − ai), (36)

where ai specifies the position of the i-th plate on the z-axis, and λi > 0 is the coupling parameter. In the limit
λi → ∞ the potential of Eq. (36) simulates a plate with Dirichlet boundary conditions. The translation symmetry in
the x-y plane can be exploited and Eq. (7) written in terms of the dimensionally reduced Green’s function, gi(z, z

′),
defined by

Gi(x,x
′; ζ) =

∫
d2k

(2π)2
eik⊥·(x−x′)⊥gi(z, z

′;κ), (37)

where x⊥ is the component of x in the x-y plane. k⊥ is the corresponding Fourier component, and κ2 = ζ2 + k2
⊥,

k2
⊥ = k2x + k2y. Since the potentials of Eq. (36) do not depend on the transverse dimensions, the Green’s functions

G1...N for N parallel plates also correspond to dimensionally reduced g1...N .
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A. N = 1: Green’s function for a single semitransparent plate

When substituted in Eq. (7), Eq. (37) implies that gi(z, z
′) solves a one-dimensional ordinary inhomogeneous second

order differential equation with a δ-function potential that can be solved explicitly, to obtain,

gi(z, z
′) =

1

2κ
e−κ|z−z′| − λ̄i

1 + λ̄i

1

(2κ)2
e−κ|z−ai|e−κ|z′−ai|, (38)

where λ̄i = λi/2κ, and κ was defined after Eq. (37). We also arrive at this solution by starting from Eq. (8), which
for the dimensionally reduced Green’s function reads

gi(z, z
′) = g0(z − z′)− ri(z)tiri(z

′), (39)

where g0(z, z
′) is the dimensionally reduced free Green’s function, and ri(z) = g0(z − ai). Eq. (6) implies that

g0(z, z
′) =

1

2κ
e−κ|z−z′|, ri(z) =

1

2κ
e−κ|z−ai|. (40)

It will be convenient to define,

r̄i(z) = 2κ ri(z) = e−κ|z−ai|, and r̄ij = e−κ|ai−aj | = e−κaij , (41)

where for notational convenience we have defined aij = |ai − aj |. The dimensionally reduced transition matrix in
Eq. (39) is found by summing the series in Eq. (9). Translational invariance in transverse directions and the δ-function
potential render all integrals trivial and the series can be re-summed to give

ti(z, z
′) = 2κ t̄i δ(z − ai)δ(z

′ − ai), t̄i =
λ̄i

1 + λ̄i
. (42)

In the Dirichlet limit (λi → ∞) the transition matrix simplifies further to t̄Di = 1. Inserting the dimensionally reduced
transition matrix of Eq. (42) in Eq. (39) reproduces the explicit solution of Eq. (38).

B. N = 2: Green’s function for parallel semitransparent plates

The previous procedure is readily extended to compute the Green’s function of N semitransparent plates located
at z = ai, i = 1, 2, . . . , N , and described by potentials of the form given by Eq. (36) with associated strengths λi.
Generalization of Eq. (39) in particular gives the relation

g1...N (z, z′) = g0(z − z′)− r(z)T · t1...N · r(z′), (43)

between the dimensionally reduced Green’s function g1...N (z, z′) and the corresponding components of the dimension-
ally reduced transition matrix. The vector r(z) constructed out of the dimensionally reduced free Green’s function
originating or ending at a plate is given by

r(z)T = [r1(z), r2(z), . . . , rN (z)] =
1

2κ

[
e−κ|z−a1|, e−κ|z−a2|, . . . , e−κ|z−aN |

]
. (44)

An advantage of this approach is that the Faddeev integral equations, Eq. (21), collapse to algebraic equations for
the dimensionally reduced transition matrix t1...N due to the translational symmetry and the δ-function potentials.
The transition matrix decouples from the r-vector, which leads to considerable simplification in the evaluation of the
Green’s function. A similar simplification occurs for concentric cylinders and concentric spheres.
The dimensionally reduced two-body transition matrix can be read out from Eq. (22) once the corresponding Xij

has been evaluated. With the single-body transition matrices of Eq. (42) all integrals evaluate trivially and the
solution of Eq. (5) for Xij is

Xij = Xji =
1

Δij
, Δij = 1− t̄ir̄ij t̄j r̄ji = 1− t̄i t̄j e

−2κaij . (45)

Using Eq. (22), the dimensionally reduced transition matrix for two plates is,

tij =
2κ

Δij

[
t̄i −t̄ir̄ij t̄j

−t̄j r̄ji t̄i t̄j

]
. (46)
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aij ajk

i j k

FIG. 1. Three parallel plates. Plates i and k are separated by distances aij and ajk from the center plate j.

Eq. (46) inserted in Eq. (43) gives the Green’s function for two semitransparent parallel plates. In the Dirichlet limit,
t̄i → t̄Di = 1, we have Δij → ΔD

ij = (1 − e−2κaij ), and the transition matrix for two Dirichlet plates simplifies to,

tDij =
κ

sinhκaij

[
eκaij −1
−1 eκaij

]
. (47)

From Eq. (24) we similarly obtain the irreducible two-body part of the dimensionally reduced transition matrix as

Δtij = −2κ

⎡
⎣ t̄i

{
1− 1

Δij

}
t̄i

r̄ij
Δij

t̄j

t̄j
r̄ji
Δji

t̄i t̄j

{
1− 1

Δij

}
⎤
⎦ =

2κ

Δij

[
t̄ir̄ij t̄j r̄ji t̄i −t̄ir̄ij t̄j

−t̄j r̄ji t̄i t̄j r̄ji t̄ir̄ij t̄j

]
, (48)

which in the Dirichlet limit simplifies to

ΔtDij =
κ

sinhκaij

[
e−κaij −1
−1 e−κaij

]
. (49)

The two-plate Green’s function has been obtained previously [18] in a more direct manner. We reproduced it using
the multiple scattering method because this approach readily generalizes to more than two plates.

C. N = 3: Green’s function for three parallel semitransparent plates

The three semitransparent plates i, j, and k, of infinite extent and parallel to the xy-plane are described by potentials
of the form given in Eq. (36). Without loss of generality we assume that ai < aj < ak (see FIG. 1). In the previously
introduced notation this implies that aij + ajk = aik. The vector r(z) in Eq. (44) now has three components.
The dimensionally reduced three-body transition matrix is obtained by solving Eq. (29) for Xi[jk] using the Xij of

Eq. (45). For three semitransparent parallel plates one finds that,

Xi[jk]Xjk =
1

Δijk
, Δijk = 1− t̄ir̄ij t̄j r̄ji − t̄j r̄jk t̄k r̄kj − t̄kr̄ki t̄ir̄ik + 2t̄ir̄ij t̄j r̄jk t̄k r̄ki. (50)

Using Eq. (50) in Eq. (28) we obtain

tijk =
2κ

Δijk

⎡
⎢⎣

t̄iΔjk −t̄ir̄ij[k] t̄j −t̄ir̄ik[j] t̄k

−t̄j r̄ji[k] t̄i t̄jΔki −t̄j r̄jk[i] t̄k

−t̄k r̄ki[j] t̄i −t̄k r̄kj[i] t̄j t̄kΔij

⎤
⎥⎦ , (51)

where

r̄ij[k] = r̄ij − r̄ik t̄kr̄kj . (52)
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It is apparent from the solutions for the N = 2 and N = 3 case that terms contributing to the transition matrix in the
multiple scattering expansion depend exponentially on the length of the path of propagation. Expanding the inverse
determinants Δij and Δijk gives all paths contributing to the scattering operator. This is particularly transparent in
our essentially 1-dimensional example.
From Eq. (33) the dimensionally reduced, irreducible, three-body transition matrix is similarly evaluated as,

Δtijk = 2κ

⎡
⎢⎢⎢⎢⎣
t̄i

{
1− 1

Δij
− 1

Δik
+

Δjk

Δijk

}
t̄i

{
r̄ij
Δij

− r̄ij[k]

Δijk

}
t̄j t̄i

{
r̄ik
Δik

− r̄ik[j]

Δijk

}
t̄k

t̄j

{
r̄ji
Δji

− r̄ji[k]

Δijk

}
t̄i t̄j

{
1− 1

Δji
− 1

Δjk
+ Δik

Δijk

}
t̄j

{
r̄jk
Δjk

− r̄jk[i]

Δijk

}
t̄k

t̄k

{
r̄ki

Δki
− r̄ki[j]

Δijk

}
t̄i t̄k

{
r̄kj

Δkj
− r̄kj[i]

Δijk

}
t̄j t̄k

{
1− 1

Δki
− 1

Δkj
+

Δij

Δijk

}

⎤
⎥⎥⎥⎥⎦ . (53)

It is interesting to consider the situation when Dirichlet boundary conditions hold on the j-th plate between the
other two plates. Taking the limit t̄j → t̄Dj = 1, the determinant for three parallel plates is found to factorize into a
product of two-body determinants,

Δi∞k = Δi∞Δk∞ = (1− t̄i e
−2κaij )(1− t̄k e

−2κajk), (54)

where replacing the subscript of a plate by ∞ denotes Dirichlet boundary conditions on that plate. In this situation,
r̄ik[∞] = (1 − t̄Dj )r̄ik = 0, r̄i∞[k] = eκaijΔk∞, r̄k∞[i] = eκajkΔi∞, and Eq. (51) simplifies to

ti∞k = 2κ

⎡
⎢⎢⎣

t̄i
1

Δi∞ −t̄i
r̄ij
Δi∞ 0

− r̄ji
Δ∞i

t̄i
1

Δi∞ + 1
Δk∞

− 1 − r̄jk
Δk∞

t̄k

0 −t̄k
r̄kj

Δk∞
t̄k

1
Δk∞

⎤
⎥⎥⎦ . (55)

This leads to the observation that

ti∞k = ti∞ + tk∞ − tDj = ti + tDj + tk +Δti∞ +Δtk∞. (56)

Comparing Eq. (56) with the decomposition of the three-body transition matrix into irreducible one–and two-body
parts in Eq. (31) this implies

Δti∞k +Δtik = 0, (57)

which confirms the notion that modes in the two half-spaces on either side of a Dirichlet plate are independent and
that correlations between them must vanish. The irreducible three-body correlations in this limit therefore must
cancel irreducible two-body correlations between objects on opposite sides of the plate. Taking the Dirichlet limit on
the central plate in Eq. (53) this is verified explicitly,

Δti∞k = 2κ

⎡
⎢⎢⎢⎢⎣
t̄i

{
1− 1

Δik

}
0 t̄i

r̄ik
Δik

t̄k

0 0 0

t̄k
r̄ki

Δki
t̄i 0 t̄k

{
1− 1

Δki

}

⎤
⎥⎥⎥⎥⎦ = −Δtik, (58)

where we have used Eq. (48).
Let us finally consider the case when Dirichlet boundary conditions are imposed on all three plates. The three-body

determinant again factorizes, ΔD
ijk = ΔD

ijΔ
D
jk = (1− e−2κaij )(1 − e−2κajk), and

tDijk = 2κ

⎡
⎢⎢⎢⎢⎢⎢⎣

eκaij

2 sinhκaij
− 1

2 sinhκaij
0

− 1

2 sinhκaij

eκaij

2 sinhκaij
+

eκajk

2 sinhκajk
− 1 − 1

2 sinhκajk

0 − 1

2 sinhκajk

eκajk

2 sinhκajk

⎤
⎥⎥⎥⎥⎥⎥⎦
= tDi + tDj + tDk +ΔtDij +ΔtDjk, (59)

in the limit of three Dirichlet plates. This implies ΔtDijk +ΔtDik = 0, and is explicitly verified by Eq. (53) or Eq. (58),

ΔtDijk = − κ

sinhκaik

⎡
⎣ e−κaik 0 −1

0 0 0
−1 0 e−κaik

⎤
⎦ = −ΔtDik, (60)

using Eq. (49).
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IV. MANY-BODY CASIMIR ENERGIES

Casimir energies are finite parts of the vacuum energy that describe its dependence on configurations of macroscopic
objects. The interaction of classical objects with quantized fields at low energies can be described by background
potentials. It is known [14, 22, 34–36] that such a semiclassical description for the interaction with a quantized field
suffers of (local) ultraviolet divergences. A proper treatment of the interaction at high energies requires modeling of
the quantum fluctuations associated with the objects. One fortunately sometimes is able to isolate parts of the vacuum
energy that depend only on global changes of the system and can be reliably computed in semiclassical approximation.
In the following we systematically determine irreducible parts of the vacuum energy for a given number of classical
objects. These irreducible N -body Casimir energies diverge only if all N potentials describing the classical objects
have a region of common support [22].
Let E0 be the (infinite) vacuum energy associated with zero-point fluctuations of a massless scalar field in the

absence of all background potentials, Vi(x). The change in vacuum energy in the presence of N objects associated
with the background potential, V =

∑
i Vi, can be derived using field theory techniques, for example in [18, 27], to be

E1...N − E0 = −1

2

∫ ∞

−∞

dζ

2π
2ζ2 Tr (G1...N −G0) = −1

2

∫ ∞

−∞

dζ

2π
Tr ln G̃1...N = −1

2

∫ ∞

−∞

dζ

2π
Tr ln(1 − T̃1...N ). (61)

These expressions have recently been dubbed the Trace-G-formula and Trace-Log-G-formula respectively. For fre-
quency independent potentials, the relation between them is established by differentiating Eq. (7),

− d

dζ2
G = GG, (62)

and ignoring a boundary term.
To proceed further we generalize Eqs. (26) and (34) and decompose a Green’s function involving N potentials into

irreducible N -body parts,

G1...N = G0 +
∑
i

ΔGi +
∑
i<j

ΔGij + . . . . (63)

Using Eq. (62), the irreducible one–two–and three-body parts of the Green’s functions can be written in the form
(i �= j �= k)

ΔGi = Gi −G0 = − d

dζ2
ln

Gi

G0
, (64a)

ΔGij = Gij −ΔGi −ΔGj = − d

dζ2
ln

GijG0

GiGj
, (64b)

ΔGijk = Gijk −ΔGij −ΔGjk −ΔGki −ΔGi −ΔGj −ΔGk = − d

dζ2
ln

GijkGiGjGk

GijGjkGkiG0
, (64c)

which is a (cascading) recursive definition that can be extended to higher N .
Eqs. (61) and (63) imply a corresponding decomposition of the vacuum energy into irreducibleN -body contributions,

E1...N = E0 +
∑
i

ΔEi +
∑
i<j

ΔEij + . . . , (65)

where

ΔE1...N = −1

2

∫ ∞

−∞

dζ

2π
2ζ2 TrΔG1...N . (66)

As shown in [22], and as will be explicitly verified in examples below, the irreducible N -body contribution to the
vacuum energy diverges only if all N potentials have a common support. One-body vacuum energies thus are generi-
cally divergent, whereas two-body Casimir energies diverge only if the two bodies intersect (and thus could be viewed
as one). More interestingly though, three-body Casimir energies diverge only when all three objects have a common
intersection–the three bodies need not be mutually disjoint and could, for instance, be arranged to form a triangle.
Eq. (13) relates the irreducible N -body contribution of the Green’s functions to the irreducible N -body transition

matrix,

TrΔG1...N = −TrΔT1...NG0G0 = TrΔT1...N
d

dζ2
G0. (67)
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The support of delta-function potentials Vi is restricted to the surface Si of the i-th object and components of the
transition-matrix at most have support on the union of two such surfaces. It is therefore convenient to formally define
a vector R(x), and a matrix R, with components

Ri(x) := G0(x− y)
∣∣
y∈Si

, Rij := G0(x− y)
∣∣
x∈Si
y∈Sj

. (68)

Using these definitions in Eq. (62) we have

− d

dζ2
R =

∫
d3xR(x) ·R(x)T . (69)

Writing the irreducible N -body transition operator in Eq. (67) in matrix notation and using Eq. (69), we express the
irreducible N -body contribution to the vacuum energy of Eq. (66) in the form

ΔE1...N = −1

2

∫ ∞

−∞

dζ

2π
2ζ2 Tr

[
ΔT1...N · d

dζ2
R

]
. (70)

The trace in the last expression is over matrix indices and includes integrals over the lower dimensional surfaces of the
associated objects. Note also that Eq. (70) involves the irreducible N -body transition matrix, T1...N , not its partly

amputated cousin T̃1...N .

V. CASIMIR ENERGIES FOR PARALLEL SEMITRANSPARENT δ-PLATES

We illustrate this formalism by evaluating the irreducible (scalar) Casimir energy for semitransparent parallel plates
described by potentials of the form given in Eq. (36). Exploiting translational invariance parallel to the plates in
Eq. (70), the irreducible N -body Casimir energy per unit area is described by dimensionally reduced quantities

ΔE1...N

LxLy
= − 1

6π2

∫ ∞

0

κ4dκTr

[
Δt1...N · d

dζ2
r

]
, (71)

where Lx and Ly are the (infinite) lengths of the plates in x and y direction, respectively. The integrals on ζ, kx,
and ky , are performed using polar variables, which effectively amounts to replacing ζ2 → 2κ2/3, where κ was defined
after Eq. (37). The dimensionally reduced transition matrices, Δt1...N , for N = 2 and N = 3 are, respectively, given
by Eqs. (48) and (53). The derivative of the dimensionally reduced free Green’s function in this case is the matrix

− d

dζ2
r =

∫ ∞

−∞
dz r(z) · r(z)T =

2

(2κ)3

⎡
⎢⎢⎢⎢⎣

1 (1 + κa12) e
−κa12 · · · (1 + κa1N ) e−κa1N

(1 + κa21) e
−κa21 1 · · · (1 + κa2N ) e−κa2N

...
...

. . .
...

(1 + κaN1) e
−κaN1 (1 + κaN2) e

−κaN2 · · · 1

⎤
⎥⎥⎥⎥⎦ , (72)

where aij is the distance between the i-th and j-th parallel plate defined previously.

A. N = 1, 2: Irreducible one–and two-body Casimir energy for semitransparent plates

The irreducible one-body vacuum energy per unit area associated with the i-th plate diverges. Eq. (71) gives it as
the integral

ΔEi

LxLy
=

1

12π2

∫ ∞

0

κ2dκ t̄i, (73)

with t̄i defined in Eq. (42). The one-body vacuum energies are ultra-violet divergent at any non-vanishing coupling,
but do not depend on the relative position of the plates and therefore do not contribute to forces between them.
The irreducible two-body Casimir energy per unit area associated with plates i and j is obtained by inserting

Eqs. (48) and (72) (for N = 2) in Eq. (71),

ΔEij

LxLy
= − 1

12π2

∫ ∞

0

κ2dκ

[
1

Δij
− 1

] [
2κaij + (1− t̄i) + (1− t̄j)

]
, (74)
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where the two-body determinant is given by Eq. (45). Eq. (74) for the Casimir interaction energy of two semitrans-
parent plates was obtained previously in [27]. In the Dirichlet limit, t̄i → 1, Eq. (74) simplifies to the well known
Casimir energy for a massless scalar field satisfying Dirichlet boundary conditions on a pair of parallel plates,

ΔED
ij

LxLy
= − 1

12π2

∫ ∞

0

κ2dκ
2κaij

e2κaij − 1
= − π2

1440

1

a3ij
. (75)

Eqs. (74) and (75) are finite and negative for two disjoint plates.

B. N = 3: Three-body Casimir energy for three parallel plates

The irreducible three-body Casimir energy of three plates is similarly obtained by inserting Eqs. (53) and (72) (for
N = 3) in Eq. (71),

ΔEijk

LxLy
=

1

12π2

∫ ∞

0

κ2dκ

[
t̄i

{
1− 1

Δij
− 1

Δik
+

Δjk

Δijk

}
+ 2(1 + κajk)

{
1

Δjk
− 1

}{
1− r̄jk[i]e

κajk
Δjk

Δijk

}

+t̄j

{
1− 1

Δji
− 1

Δjk
+

Δik

Δijk

}
+ 2(1 + κaik)

{
1

Δik
− 1

}{
1− r̄ik[j]e

κaik
Δik

Δijk

}

+t̄k

{
1− 1

Δki
− 1

Δkj
+

Δij

Δijk

}
+ 2(1 + κaij)

{
1

Δij
− 1

}{
1− r̄ij[k]e

κaij
Δij

Δijk

}]
. (76)

When Dirichlet boundary conditions are imposed on the central j-th plate, the relation between irreducible two–
and three-body transition matrices noted in Eq. (57) implies a corresponding relation between two–and three-body
Casimir energies,

ΔEi∞k +ΔEik = 0. (77)

This is explicitly verified by using the factorization of the three-body determinant in Eq. (54) and the Dirichlet limits
for r̄ij[k] given after Eq. (54) in Eq. (76), and identifying the irreducible two-body energy of Eq. (74) in the result.
In the Dirichlet limit for all three plates the irreducible three-body Casimir energy cancels the well-known two-body

interaction between the outer Dirichlet plates,

ΔED
ijk

LxLy
=

π2

1440

1

a3ik
= −ΔED

ik

LxLy
, (78)

where aik is the distance between the outer plates.
This cancellation is to be expected on physical grounds and serves to check the calculation. For semitransparent

plates the cancellation is not complete and the irreducible three-body contribution to the total Casimir energy can
be significant for parallel plates. Note that the sign of the irreducible N -body contribution to the scalar Casimir
energy alternates. Although not apparent from the expression of Eq. (76), this irreducible three-body contribution to
the Casimir energy is positive for any positive couplings λ1, λ2, λ3 and any relative position of the three plates. For
parallel semitransparent plates we thus verify the more general result obtained in [22]. Also, as discussed in [22] and
noted previously, the three-plate Casimir energy diverges only if all three plates coincide.
In the following we will see that these generic results for the sign and analyticity of the three-body scalar Casimir

energy hold in the limit where two of the three potentials are weak and need only be accounted for to leading order.

VI. THREE-BODY SCALAR CASIMIR INTERACTION FOR SEMIWEAK COUPLING

We now consider irreducible vacuum energies for three bodies when two of the three potentials, V1 and V2, are weak
and need only be taken to leading order. No restriction is imposed on the potential V3 describing the third body. To
the leading order we thus approximate T1 ∼ V1 and T2 ∼ V2 in Eq. (9). The three-body transition matrix of Eq. (28)
in this semiweak approximation simplifies to

T̃W
123 =

⎡
⎣ 1 0 0
0 1 0
0 0 XW

3[12]

⎤
⎦
⎡
⎣ Ṽ1 −Ṽ1(1 − T̃3)Ṽ2 −Ṽ1(1− Ṽ2 + T̃3Ṽ2)T̃3

−Ṽ2(1 − T̃3)Ṽ1 Ṽ2 −Ṽ2(1− Ṽ1 + T̃3Ṽ1)T̃3

−T̃3(1 − Ṽ2)Ṽ1 −T̃3(1− Ṽ1)Ṽ2 T̃3

⎤
⎦ . (79)
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Here XW
3[12] satisfies Eq. (29), which to leading semiweak approximation is solved by

XW
3[12] = 1 + T̃3(1 − Ṽ1)Ṽ2 + T̃3(1 − Ṽ2)Ṽ1 + T̃3Ṽ1T̃3Ṽ2 + T̃3Ṽ2T̃3Ṽ1. (80)

The transition matrix in semiweak approximation of Eq. (79) may again be decomposed into its irreducible one–two–
and three-body parts, leading to the semiweak version of Eq. (31). From Eq. (25) the irreducible two-body transition
matrices in semiweak approximation are,

ΔT̃W
12 =

[
0 −Ṽ1Ṽ2

−Ṽ2Ṽ1 0

]
, ΔT̃W

i3 =

[
0 −ṼiT̃3

−T̃3Ṽi T̃3ṼiT̃3

]
, (81)

with i = 1, 2. Similarly approximating Eq. (33), the three-body transition matrix in semiweak approximation becomes,

ΔT̃W
123 =

⎡
⎣ 0 Ṽ1T̃3Ṽ2 Ṽ1G̃3Ṽ2T̃3

Ṽ2T̃3Ṽ1 0 Ṽ2G̃3Ṽ1T̃3

T̃3Ṽ2G̃3Ṽ1 T̃3Ṽ1G̃3Ṽ2 −T̃3Ṽ1G̃3Ṽ2T̃3 − T̃3Ṽ2G̃3Ṽ1T̃3

⎤
⎦ , (82)

where G̃3 = 1− T̃3.
Casimir energies in the semiweak approximation are obtained using Eqs. (66) and (67). Inserting Eq. (81) in

Eq. (67) we have to this approximation,

−TrΔGW
12 = Tr

[
ΔTW

12 · d

dζ2
R

]
=

d

dζ2
Tr
[
G0V1G0V2

]
, (83a)

−TrΔGW
i3 = Tr

[
ΔTW

i3 · d

dζ2
R

]
=

d

dζ2
Tr
[
G0ViG0T3

]
, (i = 1, 2). (83b)

The corresponding irreducible three-body contribution using Eq. (82) in Eq. (67) is

−TrΔGW
123 = Tr

[
ΔTW

123 ·
d

dζ2
R

]
= − d

dζ2
Tr
[
G0V1G0T3G0V2 +G0V2G0T3G0V1 −G0T3G0V1G0T3G0V2

]
. (84)

Inserting Eq. (83) in Eq. (66), and integrating by parts, the irreducible two-body Casimir energies in semiweak
approximation are

ΔEW
12 = −1

2

∫ ∞

−∞

dζ

2π
Tr
[
G0V1G0V2

]
, (85a)

ΔEW
i3 = −1

2

∫ ∞

−∞

dζ

2π
Tr
[
G0ViG0T3

]
, (i = 1, 2), (85b)

verifying results reported in [12]. The corresponding irreducible three-body contribution to the Casimir energy in
semiweak approximation using Eq. (84) in Eq. (66) is

ΔEW
123 =

1

2

∫ ∞

−∞

dζ

2π
Tr
[
G0V1G0T3G0V2 +G0V2G0T3G0V1 −G0T3G0V1G0T3G0V2

]
. (86)

In the following we evaluate Eqs. (85) and (86) for some special cases.

A. Weak point potentials

Weak point potentials of the form,

Vi(x) = λiδ
(3)(x− xi), (87)

for i = 1, 2, allow one to explicitly perform the integrals in Eqs. (85) and (86). In this case we have

ΔEW
12 = −λ1λ2

2

∫ ∞

−∞

dζ

2π

[
G0(x1 − x2)

]2
< 0, (88)
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and, using Eq. (8) in Eq. (85b),

ΔEW
i3 = −λi

2

∫ ∞

−∞

dζ

2π

{
G0(0)−G3(xi,xi)

}
< 0, (i = 1, 2), (89)

because the integrand in braces is positive for positive V3. The irreducible two-body contributions to the vacuum
energy thus are negative for weak point potentials. We similarly obtain that the irreducible three-body correction to
the vacuum energy,

ΔEW
123 =

λ1λ2

2

∫ ∞

−∞

dζ

2π

{[
G0(x1 − x2)

]2 − [G3(x1,x2)
]2}

> 0, (90)

in this case is positive for any (positive) potential V3. Note that the irreducible three-body Casimir energy in semiweak
approximation diverges only if x1 = x2 is in the support of V3.
The pattern in the sign of the irreducible N -body contribution is consistent with the findings of [22]. Furthermore,

since any positive potential is a (positive) superposition of point potentials, this pattern of the signs of irreducible
N -body contributions extend to any shape of the objects in semiweak approximation. This is explicitly verified by
the following examples.

B. Weak potentials with translational symmetry parallel to a Dirichlet plate

We consider a Dirichlet plate and weak potentials that do not depend on the Cartesian coordinate x,

Vi = Vi(y, z), for i = 1, 2; and V3 = λ3 δ(z − a3), with λ3 → ∞. (91)

To evaluate Eqs. (85) and (86) for such potentials we require the operator G0T
D
3 G0 for a Dirichlet plate. In order to

exploit the translational symmetry in x-direction we write the solution to Eq. (6) for the free Green’s function in the
form

G0(|x1 − x2|; ζ) =
∫

d2k

(2π)2
eik·(x1−x2)⊥ e−κ|z1−z2|

2κ
=

∫ ∞

−∞

dkx
2π

eikx(x1−x2)
K0(κ̄ d12)

2π
=

e−|ζ||x1−x2|

4π|x1 − x2|
, (92)

where d12 =
√
(y1 − y2)2 + (z1 − z2)2 is the projected distance in the x1 = x2 plane, and κ̄2 = k2x + ζ2. K0(x) is

the modified Bessel function of zero order. Note that κ defined after Eq. (37) satisfies κ2 = κ̄2 + k2y. Using the first
equality of Eq. (92) and the dimensionally reduced transition matrix of a Dirichlet plate given in Eq. (42) one can
show that

−ΔGD
3 (x1,x2; ζ) = [G0T

D
3 G0](x1,x2; ζ) = G0(|x1 − x̄2|; ζ) =

∫ ∞

−∞

dkx
2π

eikx(x1−x2)
K0(κ̄ d̄12)

2π
, (93)

where x̄2 = (x2, y2,−z2 + 2a3), and d̄12 is the length of the shortest path between x1 and x2 in the (x1 = x2)-plane
that reflects off the Dirichlet plate. For a Dirichlet plate at z = a3, this distance is given by d̄212 = (y1 − y2)

2 + (|z1 −
a3| + |z2 − a3|)2. A geometrical interpretation of d12 and d̄12 is shown in FIG. 2. Substituting Eq. (93) in Eq. (8)
leads to

GD
3 (x1,x2; ζ) = G0(|x1 − x2|; ζ)−G0(|x1 − x̄2|; ζ), (94)

which is anti-symmetric under reflection about the Dirichlet plate. Note that if x1 and x2 are on opposite sides of
the plate, d̄12 = d12, and GD

3 vanishes.

Substituting Eq. (92) for the free Green’s functions, and Eq. (93) for the irreducible Green’s function of a Dirichlet
plate in Eqs. (85) and using the identity

∫ ∞

0

κ̄ dκ̄K0(κ̄x) =
1

x2
, (95)



15

y

z

x

Dirichlet plate

z = a3

(y2, z2)

(y1, z1)

(y2,−z2 + 2a3)

d12

d̄ 1
2

FIG. 2. The distances d12 and d̄12. The effective distance d̄12 is the shortest distance between the two points for a path that
reflects off the Dirichlet plate at z = a3. It also is the shortest distance between (y1, z1) and a mirror image of the point (y2, z2)
with respect to the z = a3 line.

the irreducible two-body Casimir energies per unit length in semiweak approximation for potentials with translational
symmetry are

ΔEW
12

Lx
= − 1

32π3

∫
d2r1

∫
d2r2

V1(r1)V2(r2)

d212
, (96a)

ΔEW
i3

Lx
= − 1

32π2

∫
d2r

Vi(r)

|z|2 , (i = 1, 2). (96b)

The Casimir energy in Eq. (96a) for two weakly interacting objects with translational symmetry was previously
obtained in [37]. The Casimir energy for a Dirichlet plate weakly interacting with an object possessing translational
symmetry was obtained in [12], but was given as a series involving modified Bessel functions. The expression in
[12] generally is much harder to evaluate than Eq. (96b). The simplification in Eq. (96b) was achieved by using the
effective Green’s function for a Dirichlet plate in Eq. (93). For many potentials, the evaluation of the Casimir energy
by Eq. (96b) is immediate. We can for example calculate the two-body Casimir energy for a cylinder of radius a,
described by the weak potential Vcyl = λ δ(r − a), interacting with a Dirichlet plate positioned at z = R > a. From
Eq. (96b) one readily finds,

ΔEW
Cyl-DP

Lx
= − 1

32π2

∫ ∞

0

rdr

∫ 2π

0

dθ
λδ(r − a)

|r sin θ − R|2 = − λa

16π

1

R2

[
1− a2

R2

]− 3
2

, (97)

which reproduces the expression in [12]. A similarly simplified evaluation is expected for an arbitrary surface with
translational symmetry weakly interacting with a Dirichlet plate parallel to the symmetry axis.
The irreducible three-body Casimir energies for translationally invariant weak potentials and a Dirichlet plate can

be similarly evaluated using Eq. (86). The first two terms in Eq. (86) involve the product of the free Green’s function,
G0, with the irreducible Green’s function for a Dirichlet plate given in Eq. (93). The last term requires the product
of two irreducible one-body Green’s functions. A useful identity for the product of two modified Bessel functions of
zeroth order is ∫ ∞

0

κ̄ dκ̄K0(κ̄x)K0(κ̄y) =
1

x2 − y2
ln

(
x

y

)
x→y−−−→ 1

2x2
. (98)

Inserting Eqs. (92) and (93) in Eq. (86) to write the Green’s functions in terms of modified Bessel functions, and then
using Eq. (98), we obtain

ΔEW
123

Lx
=

1

32π3

∫
d2r1

∫
d2r2

V1(r1)V2(r2)

d̄212
Q

(
d212
d̄212

)
, (99)

where the distances d12 and d̄12 were introduced earlier and are shown in FIG. 2. The function

Q(x) = − 2 lnx

1− x
− 1 (100)
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FIG. 3. Weakly interacting triangular-wedge on a Dirichlet plate. The objects are of infinite extent in the x-direction. The
weakly interacting sides of the wedge (in red) have finite length.

is bounded by 1 ≤ Q(x) ≤ 1 − 2 lnx in the relevant domain 0 < x =
d2
12

d̄2
12

< 1. This implies that the three-body

Casimir energy of Eq. (99) is always positive and bounded by

1

32π3

∫
d2r1

∫
d2r2

V1(r1)V2(r2)

d̄212
≤ ΔEW

123

Lx
≤ 1

32π3

∫
d2r1

∫
d2r2

V1(r1)V2(r2)

d̄212

[
1− 2 ln

(
d212
d̄212

)]
. (101)

d̄12 is the distance between a point on the first object and another point on the reflected image of the second object
(see FIG. 2). It vanishes only at points where the two weak objects and the Dirichlet plate are concurrent. The
irreducible three-body Casimir energy in the semiweak approximation of Eq. (99) thus is finite if the three objects
have no point in common. This contribution in particular does not diverge as the objects approach the plate or each
other, corroborating the findings in [22]. Note that the lower bound in Eq. (101) is the two-body Casimir energy
between weak potentials of Eq. (96a), but with the reflected object (d12 → d̄12) and of opposite sign. The irreducible

three-body Casimir energy approaches the lower bound for
d2
12

d̄2
12

∼ 1 and thus partially cancels the irreducible two-body

energy if one or both objects approach the Dirichlet plate. In fact, if the two weakly interacting objects are entirely
on opposite sides of the Dirichlet plate, the lower bound is achieved because d̄12 = d12 and the three-body Casimir
energy cancels the two-body interaction energy between them precisely.
The following examples demonstrate the finiteness, sign, and analyticity, of three-body contributions to Casimir

energies for cases in which irreducible one–and two-body contributions to the vacuum energy diverge.

VII. TRIANGULAR-WEDGE ON A DIRICHLET PLATE

We first consider a triangular-wedge with two sides described by weak potentials atop a Dirichlet plate at z = 0,
forming a waveguide of triangular cross-section:

V1(y, z) = λ1δ(−z +mα(y − a)) θ1, with θ1 ≡ θ(y −min[0, a]) θ(max[0, a]− y), (102a)

V2(y, z) = λ2δ(−z +mβ(y − b)) θ2, with θ2 ≡ θ(y −min[0, b]) θ(max[0, b]− y), (102b)

V3(z) = λ3δ(z), with λ3 → ∞. (102c)

The sides of the wedge have slopes mα = − cotα and mβ = − cotβ, and lengths
√
h2 + a2 and

√
h2 + b2, respectively.

The constraint mαa = mβb = −h forces the sides to intersect at (y = 0, z = h), where h is the height of the triangle.
The base of the triangle formed then measures |b − a|. Note that the Dirichlet plate at z = 0 is of infinite extent.
This triangular-wedge on a Dirichlet plate is depicted in FIG. 3. Suitable parameters for describing the triangular
waveguide are (h, α, β), or (h, ã = a/h, b̃ = b/h). Without loss of generality we measure all lengths in multiples of
the height h. The triangle then has height h = 1 and the parameter space for the triangle is −∞ < a, b < ∞, or,
equivalently, −π/2 < α, β < π/2.

Observe that all irreducible two-body Casimir energies in Eq. (96) diverge due to ultra-violet contributions from the
corners of the triangle where pairs of potentials overlap. More precisely, the integrand ΔEW

12 diverges when d12 ∼ 0
near the vertex of the wedge. The integrand of ΔEW

i3 diverges when zi ∼ 0 near the corner with the Dirichlet plate.
The irreducible three-body Casimir energy, ΔEW

123, in Eq. (99) on the other hand is finite because d̄12 never vanishes
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in the integration region. Substituting the potentials of Eq. (102) for the semiweak triangular waveguide in Eq. (99)
and evaluating the z-integrals gives,

E(α, β) = ΔEW
123

Lx

[
λ1λ2

32π3

]−1

= |ã b̃|
∫ 1

0

∫ 1

0

du1du2

ū2
12

Q

(
u2
12

ū2
12

)
, (103)

where we have rescaled the integration variables, y1 = |a|u1 and y2 = |b|u2 by the respective lengths. All distances
have been expressed in units of h: d12 = hu12 and d̄12 = hū12, with

ū2
12 = (ãu1 − b̃u2)

2 + [|1− u1|+ |1− u2|]2, (104a)

u2
12 = (ãu1 − b̃u2)

2 + (u1 − u2)
2. (104b)

With the function Q(x) defined in Eq. (100) the three-body interaction energy of Eq. (103) is finite and can be
evaluated numerically. In FIG. 4 we plot E(α, β) as a function of the angles α and β. The three-body interaction
energy is always positive and vanishes (and is minimized) only for α = 0, or β = 0. It is minimal when the shorter
side of the wedge is perpendicular to the Dirichlet plate. Wedges with angles β < 0 < α or α < 0 < β are energetically
preferred over wedges with angles α, β > 0 or α, β < 0. The three-body Casimir-energy diverges only when all three
sides of the triangle have a point in common, i.e. when α = β, or α = −β = ±π/2.

Abalo, Milton, and Kaplan, recently [23] investigated the dependence of the Casimir energy on the area and perime-
ter of triangular waveguides on which Dirichlet boundary conditions were imposed. Although only interior modes were
taken into account and divergences associated with corners and single-body vacuum energies were removed ad hoc,
they found that the dimensionless Casimir energy of their triangular wave guides closely follow a universal function
of the dimensionless ratio (P 2/A) of the perimeter P and area A of the cross-section. This would imply that the
Casimir energy of triangular wave guides depends on just one, rather than two, dimensionless parameters. Although
we cannot expect a similar dependence, the universal behavior observed in [23] prompted us to also investigate the
dependence of the semiweak three-body Casimir energy on the dimensionless perimeter p̃ = (P/h) and dimensionless
area s̃ = (A/h2) of the triangular waveguide. It is also of interest to inquire for what configuration the energy of a
triangular waveguide is minimized if the cross-sectional area is kept fixed. The dimensionless area s̃ and perimeter p̃
of the triangular wedge are given by,

A

h2
= s̃ =

1

2
|b̃− ã|, (105a)

P

h
= p̃ = |b̃− ã|+

√
1 + ã2 +

√
1 + b̃2. (105b)

The parameter space of a triangular-wedge in this case is s̃ ≥ 0, and p̃ ≥ 2s̃ + 2
√
1 + s̃2 ≥ Max(2, 4s̃). See FIG. 6.

The inequality, p̃ > 4s̃, is a consequence of the triangle inequality.
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|b̃ − ã| = 2

0.5-0.5-1.5-2.5

b̃ = 0 ã = 0
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FIG. 5. E(ã, b̃) as a function of ã for fixed area, A = h2. The irreducible three-body Casimir energy is minimal when the shorter

side of the wedge is perpendicular to the Dirichlet plate (ã = 0 or b̃ = 0). The maximum in the intermediate region corresponds

to the unstable equilibrium of an isosceles triangle. The dashed curves are the approximation E(ã, b̃) ∼ |ãb̃| obtained by
replacing the integrals in Eq. (103) with unity. The dotted curves are reflections about the E = 0 line.

In FIG. 5 we plot the energy as a function of ã for fixed area: A = h2, or |b̃ − ã| = 2, or | tanβ − tanα| = 2. The
three-body Casimir energy for a waveguide of given cross-sectional area is minimal when the shorter side of the wedge
is perpendicular to the Dirichlet plate (α = 0 or β = 0 [α = tan−1(−2)]). In the intermediate region the energy is

extremal for an isosceles triangle (−ã = b̃ = 1) with E(−1, 1) = 0.893112 . . .. The dashed curve in FIG. 5 represents

the approximation E(ã, b̃) ∼ |ãb̃| obtained by setting the dimensionless integral in Eq. (103) to 1. Remarkably, this
extremely simple expression for the irreducible three-body energy is accurate to better than ten percent everywhere.
We also show reflections of the curves to illustrate that the discontinuities in the slope are entirely due to the absolute
value in the pre-factor |ãb̃| and the integral itself is analytic.
We rewrite the irreducible three-body Casimir energy as a function of the cross-sectional area and perimeter by

inverting Eqs. (105) to obtain

ã =

{
±μ̃− s̃, if b̃ > ã,

±μ̃+ s̃, if b̃ < ã,
(106a)

b̃ =

{
±μ̃+ s̃, if b̃ > ã,

±μ̃− s̃, if b̃ < ã,
(106b)

where

μ̃ =
1

2p̃

(p̃− 2s̃)

(p̃− 4s̃)

[
p̃(p̃− 4s̃)

{
p̃(p̃− 4s̃)− 4

}] 1
2

. (107)

Substituting Eqs. (106) in Eq. (103), the three-body Casimir energy as of function of perimeter and area is

E(s̃, p̃) = |μ̃2 − s̃2|
∫ 1

0

∫ 1

0

du1du2

ū2
12

Q

(
u2
12

ū2
12

)
, (108)

where the rescaled distances in terms of area and perimeter are given by

ū2
12 = [μ̃(u1 − u2) + s̃(u1 + u2)]

2 + [|1− u1|+ |1− u2|]2, (109a)

u2
12 = [μ̃(u1 − u2) + s̃(u1 + u2)]

2 + (u1 − u2)
2. (109b)

In FIG. 6 the irreducible three-body contribution to the vacuum energy of a semiweak wedge is plotted as a function
of dimensionless area and perimeter of the cross-section. The energy now is minimal along the curve

p̃ = 1 + 2s̃+
√
1 + 4s̃2 =

{
2 + 2s̃+O(2s̃)2 2s̃ < 1,

1 + 4s̃+O
(

1
2s̃

)
2s̃ > 1,

(110)
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FIG. 6. Irreducible three-body Casimir energy of a semiweak triangular waveguide as a function of the cross-sectional area and
perimeter. This energy vanishes and is minimal along the line p̃ = 1 + 2s̃+

√
1 + 4s̃2.

which corresponds to right-angled triangles. The energy diverges along the line p̃ ≥ 2, s̃ = 0, which corresponds to the
two sides of the wedge coinciding (α = β). In FIG. 6 the curve p̃ = 1 + 2s̃+

√
1 + 4s̃2 for s ≥ 0 corresponds to right

triangles of minimal energy, and the boundary of the parameter space at p̃ = 2s̃ + 2
√
1 + s̃2 for s̃ ≥ 0 is associated

with isosceles triangles.
We do not observe that E(s̃, p̃) is a function of p̃2/s̃ only. The rather good approximation obtained by ignoring the

dependence on the integral in Eq. (108), suggests that the energy approximately is given by

E(s̃, p̃) ∼ |μ̃2 − s̃2| =
∣∣4(p̃− 2s̃)2 − p̃2(p̃− 4s̃)2

∣∣
4p̃(p̃− 4s̃)

, (111)

a somewhat involved function of the perimeter and area.

VIII. PARABOLIC-WEDGE ON A DIRICHLET PLATE

To explicitly verify that not just corner divergences have been subtracted in the irreducible three-body contribution
to the vacuum energy [22], we also consider a weakly interacting parabolic-wedge on a Dirichlet plate. It is described
by the potentials

V1(y, z) = λ1δ(−z + α(y − a)2) θ1, with θ1 ≡ θ(y −min[0, a]) θ(max[0, a]− y), (112a)

V2(y, z) = λ2δ(−z + β(y − b)2) θ2, with θ2 ≡ θ(y −min[0, b]) θ(max[0, b]− y), (112b)

V3(z) = λ3δ(z), with λ3 → ∞. (112c)

The parameters α and β here give the foci of the parabolas and have dimensions of inverse length. The constraint
αa2 = βb2 = h implies that the two parabolas intersect at (y = 0, z = h). See FIG. 7. As in the case of the wave
guide with triangular cross-section, the base has length |b− a| and the height of the wedge above the Dirichlet plate
is h. The parameter regions are: −∞ < a, b < ∞, or, equivalently, 0 ≤ α, β < ∞. We measure lengths in multiples
of h and use parameters (h, ã = a/h, b̃ = b/h) to describe it.

We proceed exactly as for the triangular-wedge and find that the three-body Casimir energy of a parabolic-wedge
is also given by Eq. (103), except that the distances now are given by

ū2
12 = (ãu1 − b̃u2)

2 + [(1− u1)
2 + (1− u2)

2]2, (113a)

u2
12 = (ãu1 − b̃u2)

2 + [(1− u1)
2 − (1− u2)

2]2. (113b)



20

z=
α
(y

+
a
)2

z =
β(y− b)2

(−a, 0) (b, 0)

(0, h)
y

z

x

FIG. 7. Weakly interacting parabolic-wedge on a Dirichlet plate.

1.0

2.0

3.0

−1.0

−2.0

−3.0

ã
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FIG. 8. Irreducible three-body Casimir energy for a parabolic waveguide of given cross-sectional area. See FIG. 5 for description.

The three-body Casimir energy of a parabolic-wedge on a Dirichlet plate also is minimized when either ã = 0, α = ∞,
or b̃ = 0, β = ∞. Due to the constraint, αa2 = βb2 = h, the shorter side of the parabolic wedge in this case degenerates
to a straight line perpendicular to the Dirichlet plate. Most of the analysis of the waveguide with two sides of parabolic
cross-section is the same as for a triangular one with only minor changes in interpretation. We note that the rescaled
area and perimeter of the parabolic wedge are

s̃ =
1

3
|b̃− ã|, (114a)

p̃ = |b̃ − ã|+ ã

2

[
ã2

2
sinh−1 2

ã2
+

√
1 +

4

ã4

]
+

b̃

2

[
b̃2

2
sinh−1 2

b̃2
+

√
1 +

4

b̃4

]
. (114b)

The three-body Casimir energy of a semiweak parabolic-wedge is shown in FIG. 8. The approximation of replacing
the integral by unity is not very accurate in this case, but the overall dependence of the irreducible three-body energy
of a parabolic waveguide on the parameters ã and b̃ is qualitatively similar to that of a triangular one.

IX. DISCUSSION

In Casimir studies one generally is interested in dependence of the vacuum energy of massless quantum fields on the
presence of objects whose interaction with the quantum fields is treated semiclassically, with quantum fluctuations
of the fields describing the objects themselves being disregarded. This leads to an effective action with ultraviolet
divergent contributions associated with geometrical properties of the objects reflected by the coefficients [38, 39] in
the asymptotic expansion of the heat kernel [34, 40, 41]. The corresponding ultra-violet divergences in the vacuum
energy are proportional to the spatial volume, surface areas, curvatures, as well as number and type of corners or
intersections of the objects. They depend only on local geometric properties of the system.
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Fortunately, there also are non-local contributions to the vacuum energy that do not depend on the high energy
description of the model and can be reliably obtained in semiclassical approximation. The best known of these is
the force between disjoint classical objects due to vacuum fluctuations, first obtained for parallel metallic plates by
Casimir [1]. It has since been shown that this force is always finite [10] and that the associated finite contribution
to the vacuum energy may be computed for arbitrary objects in terms of the single-body scattering matrices with
Eq. (2). The investigation of generalized pistons in [42, 43] suggested that one may isolate finite parts of the vacuum
energy that describe the forces between objects even if these are not mutually disjoint. These ideas were formalized
in [22] where irreducible N-body contributions to the vacuum energy were defined recursively and shown to be finite
unless the N-bodies have a common intersection. For a scalar field whose interaction with N-objects are semiclassically
described by positive local potentials, the irreducible contribution to the vacuum energy furthermore was found to be
positive for an odd, and negative for an even, number of objects.
We have here put these general considerations on a much more practical and concrete footing and developed a

formalism to extract and compute irreducible N -body contributions from the single-body transition matrices. Starting
from Faddeev’s equations in Eq. (21), the irreducible parts of the N -body scattering matrix were extracted recursively.
We used this formalism to compute several examples of irreducible two–and three-body Casimir energies. All our two-
body results have been obtained previously, but we were able to reproduce some of them in a much simpler and direct
manner. Our three-body results for irreducible Casimir energies are new. The irreducible three-body contributions
to the Casimir energy of parallel semitransparent plates was obtained analytically and indeed remains finite when
two of the three plates overlap. We showed explicitly how the irreducible three-body contribution precisely cancels
the irreducible two-body Casimir energy of the outer plates when Dirichlet boundary conditions are imposed on the
central plate–providing a raison-d’être for both, the existence and sign, of the three-body contribution to the force.
For semitransparent plates the cancellation is not complete but can be sizable.
In Section VI we analyze the irreducible three-body interaction in semiweak approximation. In this approximation

we are able to compute the irreducible three-body Casimir energy for objects that are not mutually disjoint and
whose irreducible two-body contributions diverge. The irreducible three-body contributions to the vacuum energy of
a waveguide constructed by placing a weakly interacting triangular–or parabolic-wedge on top of a Dirichlet plate
was found to be finite and computable without intermediate regularization. Our examples demonstrate that not only
corner divergences, but also divergences related to curvature are subtracted by this procedure. We also explicitly
verified that the irreducible three-body contribution to the vacuum energy of a massless scalar field is positive.
To develop a better understanding in a non-perturbative setting, we are currently investigating the irreducible

three-body vacuum energy of a triangular waveguide formed by imposing Dirichlet boundary conditions on three
intersecting infinite planes (the geometry is similar to that of FIG. 3, but with sides of infinite extent). In the limit of
an extremely flat triangular cross-section, we intend to compare the numerical results with analytic calculations. We
further wish to extend these methods to the physically relevant electromagnetic case. Although irreducible three-body
contributions to the vacuum energy are expected to remain finite, we so far have no rigorous statements about their
sign for vector fields. They may be responsible for catalytic dissociation of van der Waals molecules near conducting
surfaces. In [44] the interaction of two objects in the presence of conducting walls is analyzed and nonmonotonic
behavior of the Casimir force is observed. The analysis has been extended to situations where the two objects are
immersed in fluids to attain repulsive effects [45]. The scalar analog of this setup for two weakly interacting point-
potentials near a Dirichlet plate was illustrated in [25] using Eqs. (88) and (90) of Section VIA. Interestingly, it is
at least conceptually feasible to directly measure irreducible electromagnetic three-body contributions to the vacuum
energy by balancing off irreducible two-body parts [25].
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