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The effective approach to quantum dynamics allows a reformulation of the Dirac quantization
procedure for constrained systems in terms of an infinite-dimensional constrained system of classical
type. For semiclassical approximations, the quantum constrained system can be truncated to finite
size and solved by the reduced phase space or gauge-fixing methods. In particular, the classical
feasibility of local internal times is directly generalized to quantum systems, overcoming the main
difficulties associated with the general problem of time in the semiclassical realm. The key features
of local internal times and the procedure of patching global solutions using overlapping intervals of
local internal times are described and illustrated by two quantum mechanical examples. Relational
evolution in a given choice of internal time is most conveniently described and interpreted in a
corresponding choice of gauge at the effective level and changing the internal clock is, therefore,
essentially achieved by a gauge transformation. This article complements the conceptual discussion
in [1].

PACS numbers: 03.65.Sq, 03.65.Pm, 04.60.Ds, 04.60.Kz, 98.80.Qc

I. INTRODUCTION

One of the most pressing issues in the development of a consistent theory of quantum gravity is the problem of
time [2–5]. As a generally covariant theory, its dynamics is fully constrained, without a true Hamiltonian generating
evolution with respect to a distinguished or absolute time. Within the classical treatment, using the conventional
spacetime (manifold) picture, this does not immediately pose a serious problem since there are different notions of
time available in general relativity. The physical notion of time as experienced by a specific observer is supplied in an
invariant and unambiguous manner by the proper time along that observer’s worldline. The second notion appears
in the context of the canonical initial-value formulation, often constructed by introducing a foliation of spacetime
by spatial hypersurfaces. However, the time coordinate that labels these hypersurfaces, in contrast to proper time,
has no invariant physical meaning. It is simply the gauge parameter for orbits of the Hamiltonian constraint and,
classically, these orbits lie entirely within the constraint surface. Evolution along the orbits may be interpreted with
respect to this time coordinate which provides an ordering to physical relations. When quantizing the theory via
the Dirac procedure, however, physical states are to be annihilated by the quantum constraints and are, therefore,
gauge invariant by construction. The gauge flow, along with the gauge parameters of the constraints, is absent in
the physical Hilbert space. In the presence of a Hamiltonian constraint this means that physical states are timeless.
Furthermore, physical observables should be gauge invariant and must thus be constant along classical dynamical
trajectories and commute with the constraints in the quantum theory.1 It appears as if “nothing moves”, or, as if
“dynamics is frozen”.
Change and dynamics, however, can be untangled from this static world by taking the underlying principles of

general relativity seriously, according to which physics is purely relational. Evolution is not measured with respect
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1 The viewpoint that physically observable quantities in parametrized systems should commute with all constraints, including the Hamil-
tonian constraint, has been challenged by Kuchař (and, more recently, by Barbour and Foster [6]). For instance, in [7] he argues
for a difference between conventional gauge systems and parametrized systems, leading to the proposal that states along the orbit of
the Hamiltonian constraint should not be identified since this would stand in contradiction to our every-day experience of the flow of
time. He advocates that, instead, in general relativity physically observable quantities should only commute with the diffeomorphism
constraints, but not necessarily with the Hamiltonian constraint. Nevertheless, in this article we take the conventional standpoint of
requiring that physically observable quantities should commute with all constraints and, consequently, that in this sense no distinction
ought to be made between the Hamiltonian and the other constraints.
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to an absolute external parameter but time can be chosen among the internal degrees of freedom. Evolution is then
interpreted relative to such an internal clock, where internal time is more general than and not necessarily directly
linked to the proper time of any observer. While proper time is practical for describing dynamics in a gravitational
field since it depends on the worldlines of observers and has meaning only after solving the Einstein equations, in
quantum gravity one is rather interested in the dynamics of the gravitational field, for which internal time is useful.
This concept has led to the so-called evolving constants of motion [5, 8], which are relational Dirac observables
measuring physical correlations between the internal clock and other degrees of freedom. Significant progress in
this direction and generalizations of such relational observables have been undertaken in [9–11], and some criticism
concerning their capability of solving the problem of time has been raised in [2, 3, 7, 12]. In the sequel, we will adopt
the relational viewpoint and employ internal clocks as measures of a relational time. (Some interesting real-world
aspects also relevant to internal clocks have been discussed, for instance, in [13].) As regards evolution, the choice
and corresponding notion of time are inherently connected to the choice of the internal clock variable.
Apart from this conceptual issue, the problem of time usually comes with a whole plethora of technical problems

[2–4], of which the ones touched upon in this article may be summarized as follows:

• The multiple-choice problem. Which internal time should one choose as a clock? There is no natural choice
of an internal clock variable and different internal times may provide different quantum theories [2, 3, 14].
Furthermore, one must impose restrictions on the choice of internal time functions, since some choices lead to
inconsistent probabilistic predictions in the quantum theory and time orderings which are not well-defined [12].

• The Hilbert space problem. Which Hilbert space representation is one to choose and how is one to construct a
positive-definite physical inner product on the space of solutions to the quantum constraints?

• The operator-ordering problem. The usual ordering problems arise upon promoting classical constraints to
operator equivalents. The choice of a time variable also plays a role in the ordering problem [2].

• The global time problem. Similarly to the Gribov problem in non-abelian gauge theories, there may exist global
obstructions to singling out good internal clock variables which provide good parametrizations of the gauge
orbits in the sense that each classical trajectory intersects every hypersurface of constant clock time once and
only once [2, 3, 8, 11, 15].

• The problem of observables. It is very difficult to construct a sufficient set of explicit observables for gravitational
and parametrized theories and even the existence of a sufficient set has been questioned [4, 7, 11]. In fact, no
general Dirac observables are known for general relativity. While classically significant progress has been made
in this area [9–11], the problem worsens in the quantum theory due to the previous technical issues since no
general scheme exists for converting such observables — if found at all — into suitable operators.

The relational interpretation of evolution is complicated by the fact that internal clock functions are neither universal
nor perfect. A globally valid choice of internal time is difficult to find and, due to the global time problem, may not
exist. For specific matter systems, such as a free massless scalar field or pressurelss dust, deparameterizations with a
matter clock can be performed, but these models seem rather special. In order to evaluate the dynamics of quantum
gravity and derive potentially observable information from first principles, the various problems of time must be
overcome without requiring specific adaptations.
The imperfect nature of internal clocks does not constitute a problem at the classical level, however, since, in

principle, we can always make use of the gauge parameter along the flow of the Hamiltonian constraint and evolve
in this coordinate time with respect to which the internal clock, say T (x), and the other variables of interest, say
Qi(x), have a given evolution. Comparing the values of the internal clock and the Qi(x) along the coordinate time
then gives a relational evolution. If T (x) fails to be a good global clock, the system will eventually go backwards
in it, the observable correlations Qi(T (x)) will, in general, be multi-valued and, consequently, the evolution of the
correlations Qi(T ) will be “patched up”, where on each patch T will be a good clock. Thus, classically, in principle,
we do not even need to switch clocks if one takes the evolution in some good time coordinate into account which
does not know about non-global clocks and provides an ordering to the patches. With respect to this time coordinate
we can solve a well-defined initial value problem (IVP) (as long as a time direction is given). One can even encode
this relational evolution entirely with physical correlations without referring to any gauge parameter, if one keeps
not only the relational configuration observables but also the relational momentum observables in mind to determine
an orientation in which to evolve even at a turning point of a non-global clock. If a time direction is provided, one
can also impose relational initial data to completely specify a classical solution. The classical solution may then be
obtained by choosing a physical Hamiltonian which moves the surfaces of constant T in phase space. In the case of a
non-global clock, this reconstruction is complicated by the fact that a given trajectory may intersect a constant time
hypersurface more than once or not at all. In this case one will have to choose more than one Hamiltonian but this
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is merely a technical difficulty, not a fundamental problem. We will come back to this point in the main body of this
article.
Due to the quantum uncertainties and the lack of a classical gauge parameter, performing a “patching” as above will

no longer be possible in the full quantum theory and we are forced to employ purely relational information which will
require the switching of non-global clocks. If relational time is defined for only a finite range, a unitary relational state
evolution can not be accomplished and, as we will see, will break down earlier than the corresponding Hamiltonian
evolution in the classical theory.2 While classical evolution in non-global clocks is, in principle, unproblematic, non-
unitary quantum evolution can lead to meaningless results long before the end of a local time is reached and it is not
clear how to define relational quantum observables in this case.
Even though coordinate time may not exist in full quantum gravity at the Planck scale, one would heuristically

expect that on the way to larger scales — in a semiclassical regime which ought to provide the connection to the
classical solutions of general relativity — one can reconstruct a (certainly non-unique) coordinate time (for a discussion
of this within loop quantum cosmology see [16]). Indeed, the notion of a time coordinate and evolution trajectory
should become meaningful for coherent states whose expectation values follow the classical trajectory at least for a
certain range. In a semi-classical regime, the notion of coordinate time should, therefore, make sense and we should
be able to follow a similar strategy here as in the classical situation.
For most applications of quantum gravity related to potential observable effects, semiclassical evolution is sufficient,

or, at least provides a large amount of information. One may then hope that such a situation makes dealing with
the problem of time more feasible since this problem does not play a handicapping role classically; at the very least a
dedicated analysis of semiclassical evolution should provide insights which may help in attacking the problem in full
generality.
This article complements the conceptual discussion in [1] with concrete examples and a concrete discussion of

the general features they exhibit. We use the effective approach to quantum constraints developed in [18, 19] in
the context of the problem of time; truncation at semiclassical order reintroduces some notion of classical gauge
parameters. It is the aim of the present article to sidestep a number of technical issues associated to an explicit Dirac
type approach and to specifically cope with the global time problem, while the other technical problems alluded to
above will automatically be addressed in the course of the discussion. It is our goal to make physical predictions
based on some set of (relational) input data, also in non-deparametrizable systems. We will make use of (local)
deparametrizations in order to locally scan through an a priori timeless physical state, thereby introducing a notion
of quantum evolution. We propose a practical solution employing local, rather than global internal times and adopt
and emphasize the viewpoint that the relational interpretation is, generally, only of local and semiclassical meaning,
as was argued in [1]. For explicit calculations, our methods will lend themselves easily to gauge-fixing techniques,
avoiding complicated derivations of complete observables. In analogy to local coordinates on a manifold, we cover the
evolution trajectories by patches of local time and translate between them in order to evolve through pathologies of
local clocks. The choice of time is best described and interpreted in a corresponding choice of gauge at the effective
level and translating between different local clocks, therefore, requires nothing more than a gauge transformation.
In addition, we find that non-unitarity at the state level translates into complex internal time. To begin with, we
will focus on simple mechanical toy models which we will treat in the classical, effective and for comparison, where
feasible, in a Hilbert-space approach. The first model is deparametrizable, even though we employ a non-global clock
for the relational evolution, while the second model is a true example of a “timeless,” non-deparametrizable system
which has previously been discussed by Rovelli [5, 8].
The rest of the article is organized as follows. Sec. II reviews the effective treatment of a quantum Hamiltonian

constraint and summarizes features of the example of the “relativistic” harmonic oscillator. In Sec. III we study the
first of the two models, discussing its classical and quantum behavior before going through the full effective treatment
truncated using the semiclassical approximation. In this model we opt to use a time variable which is non-monotonic
along every classical trajectory. We find that a consistent effective treatment of this model requires assigning a
complex expectation value to the kinematical time operator. We find an explicit gauge transformation which allows
us to evolve the model of Sec. III through the turning point of the non-global clock. A detailed discussion of general
features of such transformations, as well as of the close relationship between the choice of an internal time variable and
suitable gauge fixing follows in Sec. IVC and Sec. IVD. The second model is studied in Sec. V, where the effective
treatment is performed following the footsteps of Sec. III. Effective evolution relative to a local time is compared to

2 The finite range of a clock and the resulting apparent non-unitarity are what one could call a “classical symptom” and a “quantum illness”
which prevent an acceptable quantum dynamical solution in a conventional sense [17]. The point is, however, that this non-unitarity
in internal time is only the result of a local dynamical interpretation of an a priori timeless system which, in itself is not non-unitary.
These considerations are relevant for quantum gravity, since, from a certain point of view, there might not exist a fundamental notion
of time at the Planck scale which would allow for a meaningful, conventional unitary evolution [5, 8].



4

the (Hilbert space) dynamics obtained using a locally deparametrized version of the constraint, demonstrating good
agreement. This model does not possess a global clock and transformations between local internal times are necessary
for full dynamical evolution. At the effective level these are once again performed using gauge transformations allowing
“patched-up” global evolution. Sec. VI contains several concluding remarks.

II. EFFECTIVE CONSTRAINTS

All examples in this article are quantum systems with a single constraint operator Ĉ playing a role analogous to
that of the Hamiltonian constraint in general relativity. According to the Dirac quantization procedure, physical
states |ψ〉 satisfy the condition Ĉ|ψ〉 = 0. When one solves for specific states represented in a Hilbert space and

attempts to equip the solution space with a physical inner product, spectral properties of the zero eigenvalue of Ĉ are
important: if zero is in the discrete part of the spectrum, physical states form a subspace of the kinematical Hilbert
space in which the quantum constraint equation is formulated; for zero in the continuous part, on the other hand,
a new physical Hilbert space must be constructed for which some methods exist [20]. These methods in practical
applications, however, have a rather limited range of applicability, and so finding physical Hilbert spaces remains a
challenge. For our effective procedures, assumptions about the spectrum of Ĉ need not be made; effective techniques
work equally well for zero in the discrete as well as the continuous part of the spectrum of constraint operators.
Effective descriptions for canonical quantum theories [18, 19] are based on a description of states not in terms of

wave functions (or density matrices) but by using expectation values 〈q̂〉 and 〈p̂〉 and moments

∆(qapb) := 〈(q̂ − 〈q̂〉)a(p̂− 〈p̂〉)b〉Weyl

(ordered totally symmetrically and defined for a + b ≥ 2). (For instance, ∆(q2) = (∆q)2 is the position fluctuation
with only a slight change of the standard notation.)
The state space is equipped with a Poisson structure defined by

{〈Â〉, 〈B̂〉} =
〈[Â, B̂]〉
i~

(1)

for any pair of operators Â and B̂, extended to the moments using the Leibnitz rule and linearity. In the case of
dynamics given by a true Hamiltonian, the Schrödinger evolution of states is equivalent to the evolution of expectation
values and moments generated by the quantum Hamiltonian HQ(〈q̂〉, 〈p̂〉,∆(· · · )) = 〈Ĥ〉 through the Poisson bracket
defined above.
For physical states parameterized by their expectation values and moments, the equation 〈Ĉ〉(〈q̂〉, 〈p̂〉,∆(· · · )) = 0

defines a constraint function on the quantum phase space. In this way, classical techniques for the reduction of
constrained systems can be applied even in the quantum case, one of the key features exploited in this article to
address the problem of time. The quantum nature of the problem is manifest in moment-dependent correction terms
in the function 〈Ĉ〉 as opposed to the classical constraint, as well as the infinite dimensionality of the quantum phase
space even for a system with finitely many classical degrees of freedom. Moreover, since the moments are a priori
independent degrees of freedom, they are restricted by further constraints

Cpol(〈q̂〉, 〈p̂〉,∆(· · · )) := 〈(p̂ol− 〈p̂ol〉)Ĉ〉 = 0

for all polynomials p̂ol in basic operators.3 This set of functions contains infinitely many first-class constraints for
infinitely many variables; the quantum constraint functions, therefore, generate gauge transformations and solving the
constraints does not directly lead to gauge invariance. The latter is only achieved after constructing Dirac observables
on the quantum phase space, which provide the correct number of physical degrees of freedom. In this aspect, the
effective formalism differs from standard Dirac quantization where the physical Hilbert space is devoid of gauge flows.
This may be understood from noting that states in the physical Hilbert space only assign expectation values to Dirac
observables, while in the effective formalism expectation values are a priori assigned to all kinematical variables, which
even at the classical level are not gauge invariant.

For the first-class nature, the ordering of operators in the products p̂olĈ is important, which, as shown explicitly
in the form written above, is not ordered symmetrically. Some of the quantum constraints then take complex val-
ues, which does not cause problems as already shown for deparameterizable systems. This complex nature of the

3 The condition 〈Ĉ〉 = 0 cannot be sufficient to determine the physical state, since the mean value of Ĉ may vanish even if Ĉ|ψ〉 6= 0.
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constrained system is also rooted in the fact that the effective expectation values are assigned to all kinematical
variables. It is not surprising that only some kinematical moments satisfy reality conditions after the constraints are
implemented. Reality will be imposed on the physical expectation values and moments — the Dirac observables of
the constrained system — and contact with the physical Hilbert space is made. We will provide further examples in
this article.
Regarding the construction of Dirac observables for the constrained system defined here, we note that observables

which commute with the quantum constraints translate into Dirac observables for the effective system, Poisson-
commuting with all the quantum constraint functions:

δ〈Ô〉 = {〈Ô〉, 〈(p̂ol− 〈p̂ol〉)Ĉ〉} (2)

=
1

i~

(
〈(p̂ol− 〈p̂ol〉)[Ô, Ĉ]〉+ 〈[Ô, p̂ol](Ĉ − 〈Ĉ〉)〉

)
,

vanishes weakly if Ô is a Dirac observable. By the same token, moments computed for Dirac observables are Dirac
observables in the effective approach.
The set of infinitely many constraints for infinitely many variables is directly tractable by exact means only if

the constraints decouple into finite sets, a situation realized only for constraints linear in canonical variables. More
interesting systems can be dealt with by approximations which reduce the system to finite size when subdominant
terms are ignored. The prime example for such an approximation is the semiclassical expansion, in which moments
of high orders are suppressed compared to expectation values and lower-order moments. Semiclassicality in a very
general form is implemented by the condition ∆(qapb) = O(~(a+b)/2); considering only finite orders in ~ thus allows
one to restrict the infinite set of constraints to a finite one, and physical moments up to the order considered can
be found more easily. When the system of all quantum constraints is reduced to finite size, we call the resulting
constraints “effective,” motivated by the fact that an analogous reduction in quantum-mechanical systems (combined
with an adiabatic approximation) reproduces equations of motion that follow from the low-energy effective action
[21].
Despite the fact that the moments can be varied independently at the effective level, they must, in general, satisfy

an infinite tower of inequalities in order to represent a true quantum state. Namely, in ordinary quantum mechanics,
the values assigned by a state to the various quantum moments are subject to inequalities that follow directly from
the Schwarz inequality of the Hilbert space. In particular, for any two observables represented by Hermitian operators
Â and B̂, we have

〈
(Â− 〈Â〉)2

〉〈
(B̂ − 〈B̂〉)2

〉
≥ 1

4

∣∣∣
〈
−i[Â, B̂]

〉∣∣∣
2

+
1

4

∣∣∣
〈[

(Â− 〈Â〉), (B̂ − 〈B̂〉)
]
+

〉∣∣∣
2

,

where [, ]+ denotes the anticommutator. The well-known (generalized) uncertainty relation follows immediately by

setting Â = q̂ and B̂ = p̂. In the present work we will not assume that all kinematical moments satisfy these
inequalities, or even that their values are real. We will instead impose (order by order in the semiclassical expansion)
these inequalities and reality on the relational observables after the constraint is solved. This is discussed in greater
detail in Sec. III C 4 and in Appendix B. Notice that the generalized uncertainty relation is then the only remaining
inequality at order ~.
The effective formalism provides approximation techniques for the evaluation of quantum dynamics. While it is

motivated by the operator algebras of standard quantum theory, it is not necessarily equivalent to the standard theory.
For instance, an expression such as 〈q̂〉 need not and cannot necessarily be interpreted literally as the expectation
value of a well-defined operator in a Hilbert space with a specifically defined inner product. Especially in the context
of the problem of time, a crucial new feature arises — local internal time and the corresponding local relational
observables, or fashionables [1] — which at present do not have a known analog at the Hilbert-space level. Changing
one’s local time in practice additionally amounts to a gauge transformation (see Sec. IVC), and we shall see later
that different choices of gauge in the effective theory correspond to different, and in general inequivalent, choices of
a Hilbert space for the quantum theory. Eventually, these new notions may be used to arrive at a generalization of
quantum mechanics for situations in which time is not idealized as a monotonic parameter without turning points. If
so, the generalization cannot be fully specified in the current effective framework which makes use of semiclassicality
for explicit evaluations of its equations. But the examples provided in this article should play a key role in exploring
these issues.
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A. Example: “Relativistic” harmonic oscillator

To illustrate the procedure, we consider two copies of the canonical algebra [t̂, p̂t] = i~ = [α̂, p̂α], subject to the

constraint Ĉ = p̂2t − p̂2α− α̂2. This system4 has been treated in a fair amount of detail in [19] and [22], so here we only
provide an outline. We truncate the system at order ~ of the semiclassical expansion. Specifically, this means that
in addition to the terms explicitly proportional to ~

3
2 , we discard all moments of third order and above, products of

two or more second order moments, as well as products between a second order moment and ~. In particular, of the
infinite number of degrees of freedom at this order, we only need to consider fourteen: four expectation values 〈â〉,
four spreads (∆a)2 and six covariances ∆(ab), where a, b can be any of the four basic kinematical variables.

In this model, for example, one of the constraint conditions to be enforced is Cα := 〈(α̂ − 〈α̂〉)Ĉ〉 = 0. Here
we are dealing with low order polynomials and the corresponding condition on expectation values and moments is
straightforward to derive explicitly:

Cα =
〈
(α̂− 〈α̂〉)

(
p̂2t − p̂2α − α̂2

)〉
=
〈
(α̂− 〈α̂〉) p̂2t

〉
−
〈
(α̂− 〈α̂〉) p̂2α

〉
−
〈
(α̂− 〈α̂〉) α̂2

〉
.

This quantity should be expressed in terms of the expectation values and moments, our phase-space coordinates.
In each of the terms in the last expression one needs to replace powers of kinematical operators with corresponding
powers of (Ô − 〈Ô〉). For example, the middle term can be rewritten as

〈
(α̂− 〈α̂〉) p̂2α

〉
=
〈
(α̂− 〈α̂〉) (p̂α − 〈p̂α〉)2

〉
+ 2〈p̂α〉 〈(α̂− 〈α̂〉) (p̂α − 〈p̂α〉)〉+ 〈p̂α〉2 〈α̂− 〈α̂〉〉 ,

where the last term vanishes as 〈(α̂− 〈α̂〉)〉 = 〈α̂〉 − 〈α̂〉 = 0. The remaining terms need to be ordered symmetrically
in order to write them in terms of moments, which can be accomplished with the use of the canonical commutation
relations. Continuing with the example, the above term becomes

〈
(α̂− 〈α̂〉) p̂2α

〉
=
〈
(α̂− 〈α̂〉)(p̂α − 〈p̂α〉)2

〉
Weyl

+ 〈p̂α〉
(
2 〈(α̂ − 〈α̂〉)(p̂α − 〈p̂α〉)〉Weyl + i~

)
,

with
〈
(α̂− 〈α̂〉)(p̂α − 〈p̂α〉)2

〉
Weyl

= 1
3

〈
(α̂− 〈α̂〉)(p̂α − 〈p̂α〉)2 + (p̂α − 〈p̂α〉)(α̂ − 〈α̂〉)(p̂α − 〈p̂α〉) + (p̂α − 〈p̂α〉)2(α̂− 〈α̂〉)

〉
.

Proceeding in this way, one can write the constraint condition using moments as

Cα = 2〈p̂+〉∆(ptα)− 2〈p̂α〉∆(αpα)− i~〈p̂α〉 − 2〈α̂〉(∆α)2 +∆(αp2t )−∆(αp2α) + ∆(α3) .

Evaluating other constraints in this manner and truncating the system at order ~, the infinite set of constraint
functions reduces to just five:

C = 〈p̂t〉2 − 〈p̂α〉2 − 〈α̂〉2 + (∆pt)
2 − (∆pα)

2 − (∆α)2

Ct = 2〈p̂t〉∆(tpt) + i~〈p̂t〉 − 2〈p̂α〉∆(tpα)− 2〈α̂〉∆(tα)

Cpt
= 2〈p̂t〉(∆pt)2 − 2〈p̂α〉∆(ptpα)− 2〈α̂〉∆(ptα)

Cα = 2〈p̂t〉∆(ptα)− 2〈p̂α〉∆(αpα)− i~〈p̂α〉 − 2〈α̂〉(∆α)2
Cpα

= 2〈p̂t〉∆(ptpα)− 2〈p̂α〉(∆pα)2
−2〈α̂〉∆(αpα) + i~〈α̂〉 . (3)

The constraint functions are first-class to order ~ and, therefore, generate gauge transformations through their Poisson
brackets with the expectation values and moments.5 Following [18, 19], we fix the gauge that corresponds to the
evolution of α̂ and p̂α in t̂, by setting fluctuations of the latter to zero

(∆t)2 = ∆(tα) = ∆(tpα) = 0 . (4)

4 This toy model is clearly not relativistic in the standard sense. However, here (and in the remaining models of this work) we are not
interested in the precise physical interpretation of this system (of which there exist both relativistic and non-relativistic ones), but
rather in its structural properties. The constraints considered in the present article, similarly to Hamiltonian constraints in relativistic
cosmology, are all quadratic in momenta.

5 The Poisson brackets between the expectation values and moments generated by two canonical pairs of operators is tabulated in
Appendix A.
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Through reorderings, imaginary contributions in the constraints have arisen, which require some of the moments to
take complex values. For instance, with our gauge choice ∆(tpt) = − 1

2 i~. All these moments refer to t which, when
chosen as (internal) time in this deparameterizable system, is not represented as an operator and does not appear in
physical moments. The gauge-dependence or complex-valuedness of these moments thus is no problem.
Moments not involving time or its momentum, on the other hand, should have a physical analog taking strictly

real values. This is, indeed, the case. With the gauge fixed as above, a single gauge flow remains on the expectation
values and moments evolving in t. (We need just three gauge-fixing conditions for four o(~)-constraints because the
Poisson tensor for the moments is degenerate.) It is generated by the constraint function CH = 〈p̂t〉 ∓HQ with the
quantum Hamiltonian

HQ =
√
〈p̂α〉2 + 〈α̂〉2

(
1 (5)

+
〈α̂〉2(∆pα)2 − 2〈α̂〉〈p̂α〉∆(αpα) + 〈p̂α〉2(∆α)2

2(〈p̂α〉2 + 〈α̂〉2)2

)
.

Solving the Hamiltonian equations of motion for 〈α̂〉(t), 〈p̂α〉(t), ∆(αpα)(t), (∆α)2(t), (∆pα)
2(t) yields the Dirac

observables of the constrained system in relational form, on which reality can easily be imposed just by requiring
real initial values at some t. At this stage, we have arrived at the usual results for a deparameterized system with
time t, in which evolving variables such as 〈α̂〉(t) solving equations of motion with respect to (5) would be considered
physical while no physical operator for time itself exists.
In our framework, it is gauge fixing that distinguishes one of the original variables as time without an operator

analog: Time moments 〈p̂t〉, (∆pt)2, ∆(ptp), ∆(ptα), ∆(tpt) are eliminated using the constraints (3), while (∆t)2,
∆(tα), ∆(tpα) are fixed by the gauge condition (4). Generally, there may be several ways to interpret a given quantum
constraint dynamically with respect to different choices of (internal) time. Collectively, the choice of a time variable,
the associated gauge conditions and the selection of evolving variables within that gauge will be referred to, following
[1], as a Zeitgeist. Usually, the selection of which variable to choose as clock function in which other variables may
evolve relationally does not constitute a gauge choice. The effective formalism as developed here, however, provides a
relationship between (the interpretation of a quantum variable as) time and gauge: we are free to fix the independent
gauge flows in a way that describes and interprets relational evolution in the most convenient way. We will come back
to this issue in detail in Sec. IVC; for now, we warn the reader about an inherent weakness of evolving observables,
which underlies the comparison problem of time: If transformations of internal time variables are allowed, and if they
are essentially implemented by gauge changes, the physical nature of some variables may appear (but is not) gauge
dependent. To avoid apparently contradictory language, we use the term fashionables for local relational observables,
as introduced in [1].

III. A MODEL OF A BAD INTERNAL CLOCK

In this section, through the use of a toy model, we showcase an effective semiclassical solution to the problem of
defining quantum dynamics with respect to a time variable which is non-monotonic along a (classical) trajectory.
We introduce the model together with its classical properties in Sec. III A; its Dirac quantization is briefly discussed

in Sec. III B. In Sec. III C we apply the effective scheme of [18, 19] for solving constraints to define approximate
dynamics; among the many viable choices for internal time, we elect to study the dynamics relative to a variable
that cannot be used for a global deparameterization. Evolution with respect to such a clock variable breaks down
near its turning points and translation to a new clock variable is required. Within the effective approach, the choice
of a clock is practically incorporated by selecting a gauge as in (4) and, therefore, switching a clock is achieved by
a gauge transformation. Another novelty is that the expectation value of the time variable acquires an imaginary
contribution, a feature further discussed in Sec. IV and the second model in Sec. V. The end result of the present
section is an internally consistent approximate method for evolving initial data in a non-global clock variable through
its extremal point on the trajectory, by temporarily switching to a different variable used as internal time.

A. Classical discussion

The model we are interested in possesses a “time potential” λt and is classically determined by the constraint

Cclass = p2t − p2 −m2 + λt . (6)
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We assume λ ≥ 0 for concreteness. This model has been briefly discussed in [19] and structurally resembles a perturbed
free relativistic particle.6 Of particular interest to us is the fact that t exhibits a specific trait of a bad clock, namely
it is not monotonic along a classical trajectory. As regards the parametrization of the flow generated by Cclass, we
infer from

{t, Cclass} = 2pt and {pt, Cclass} = −λ < 0 , (7)

that

t(s) = −λs2 + 2pt0s+ t0 and pt(s) = −λs+ pt0 , (8)

where s is the parameter along the flow αs
Cclass

(x) generated by Cclass. We see that t has an extremum and runs twice
through each value it assumes; therefore globally it is not a good clock function for the gauge orbits generated by
Cclass. Note that both pt and q provide good parametrizations of the gauge orbit and p is an obvious Dirac observable.
Although this model is deparametrizable in either q or pt, we would like to interpret the relational evolution of the
configuration variable q with respect to the non-global clock function t.

q0 q0+
4 I-p0 M pt0

Λ

q

pt0
2

Λ

t

FIG. 1: A typical classical configuration space trajectory is a parabola with the peak value of t dependent on pt0 and the
separation of branches dependent on p0. The orientation of evolution, indicated by the arrows, is consistent with p0 < 0 and
pt0 > 0. We refer to the left branch (solid) as “incoming” or “evolving forward in t”, the right branch (dashed) as “outgoing”
or “evolving backward in t”.

For completeness, we also note that the Dirac observables of this system are easy to find and they themselves form
a canonical Poisson algebra,

Q := q − 2

λ
ppt and P := p, satisfy {Q,P} = 1 . (9)

We will use these observables in Sec. III C 4 to perform important checks on the effective construction.

B. Dirac quantization

Following Dirac’s algorithm for a constraint quantization, one would first quantize the kinematical system in the
usual way, by representing canonical operators on the space L2(R2, dtdq) as

t̂ = t , p̂t =
~

i

∂

∂t
, q̂ = q , p̂ =

~

i

∂

∂q
.

6 Although, again, the system is clearly not relativistic in the standard sense.
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The constraint function (6) can be straightforwardly quantized as Ĉ = p̂2t − p̂2 − m2 + λt̂ and the physical state

condition Ĉψphys = 0 becomes a partial differential equation
(
−~

2 ∂
2

∂t2
+ λt−m2 + ~

2 ∂
2

∂q2

)
ψ(t, q) = 0 . (10)

The operators p̂2 and p̂2t + λt̂ commute and thus can be simultaneously diagonalized. The solution to the constraint
equation can be constructed from their simultaneous eigenstates with equal eigenvalues. The general solution has the
form

ψphys(t, q) =

∫
dk f(k)Ai

[(
λ

~

) 2
3 (
λt− k2 −m2

)
]
e

−ikq

~ , (11)

where Ai[x] is the bounded and integrable Airy-function. As it often happens, none of the solutions are normalizable
with respect to the kinematical inner product and a separate physical inner product must be defined on the solutions.
A common way to proceed in the context of quantum cosmology is to deparameterize the system with respect to a
suitable time variable. The simplest option is to formulate the constraint equation as a Schrödinger equation giving
evolution of wavefunctions of q in the time-parameter pt

i~
∂

∂pt
ψ̃(pt, q) =

1

λ

(
−~

2 ∂
2

∂q2
− p2t +m2

)
ψ̃(pt, q) , (12)

where ψ̃(pt, q) :=
∫
dt ψ(t, q)e−itpt/~. We then define the physical inner product by integrating over q at a fixed value

of pt

〈ψ, φ〉phys :=
∫

pt=pt0

dq
¯̃
ψ(pt, q)φ̃(pt, q) . (13)

For solutions to (10), the result is independent of the value of pt0 and finite. A similar construction, one that is more
complicated due to taking square roots of operators, can be performed if one chooses q to act as time. However, to
our knowledge, there is no exact way to deparameterize this constraint using t. Here we are specifically interested
in the situations where there is no obvious time variable available to perform deparameterization. For that purpose,
in this toy model we choose a time variable which we know to be bad in a particular way and construct an effective
initial value formulation with respect to that variable.
Specifically, we would like to evolve initial data given at a fixed value of t on the incoming branch onto the outgoing

branch (see FIG. 1). In order to do that, one inevitably has to find a way to evolve data through the extremum of
t. Such an evolution can be easily performed in the classical limit and, therefore, should also be well-posed at least
semiclassically.

C. Effective treatment

Following the procedure outlined in Sec. II, we write the constraint functions Cpol = 0 in terms of moments and

truncate the system by discarding terms of order ~
3
2 and higher in the semiclassical approximation. As for the

“relativistic harmonic oscillator”, we have fourteen kinematical degrees of freedom to this order, subject to the five
effective constraints

C = p2t − p2 −m2 + (∆pt)
2 − (∆p)2 + λt = 0

Ct = 2pt∆(tpt) + i~pt − 2p∆(tp) + λ(∆t)2 = 0

Cpt
= 2pt(∆pt)

2 − 2p∆(ptp) + λ∆(tpt)−
1

2
iλ~ = 0

Cq = 2pt∆(ptq)− 2p∆(qp)− i~p+ λ∆(qt) = 0

Cp = 2pt∆(ptp)− 2p(∆p)2 + λ∆(tp) = 0 . (14)

The five effective constraints generate only four linearly independent flows due to a degenerate Poisson structure to
order ~. Consequently, the 14-dimensional Poisson manifold may be reduced to a 5 dimensional surface describing
the five physical degrees of freedom to semiclassical order. Note that both p and, as a result of (2), (∆p)2 commute
with all five constraints and are, therefore, two obvious constants of motion of this effective system. We want to find
the remaining three physical degrees of freedom as relational Dirac observables.
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1. Evolution in complex t and breakdown of the corresponding gauge

Choosing t as our clock function, it is helpful to fix three out of the four independent gauge flows in order to
facilitate explicit calculations and avoid keeping track of three further order ~ clocks7. The system, certainly, does
not single out a particular gauge for us; nevertheless, with our choice of clock we can motivate certain gauges. Once
a choice of time has been implemented, the clock function should not correspond to an operator and, hence, should
not appear in evolving moments; it should be “as classical as possible”, implying that the gauge conditions

φ1 = (∆t)2 = 0

φ2 = ∆(tq) = 0

φ3 = ∆(tp) = 0 (15)

seem reasonable. We will refer to these conditions as t-gauge or the Zeitgeist associated to t. At the state level, this
would be closest in spirit to an inner product evaluated on t = const slices in some kinematical representation. Since
t is not a global time, this would lead to an apparent non-unitarity in the quantum theory, which by analogy suggests
that this gauge should not be globally valid, simply because t is not a global clock. We will come back to this issue
below.
Imposing the gauge conditions renders the combined system of (14) and (15) a mixture of first and second class

constraints. Since there were originally four independent gauge flows, we expect at least one first class constraint
among the eight conditions given by (14) and (15). One additional independent first class constraint may arise,
but this constraint must generate a vanishing flow on the variables which we choose after solving the constraints
and gauge conditions. It is easily verified that the first class constraint with the vanishing flow on the variables
q, p, t, pt, (∆q)

2, (∆p)2,∆(qp) must be directly proportional to Ct in this gauge. Solving this constraint

Ct ≈ 2pt∆(tpt) + i~pt = 0 ⇒ ∆(tpt) = − i~
2
, (16)

implies a saturation of the (generalized) uncertainty relation for t and pt in this system.
The remaining first class constraint with non-vanishing flow on the chosen variables will generate our relational

evolution in t; therefore, we refer to it as the “Hamiltonian constraint” in the t-gauge. It has the form CH ∝ CeV
e,

where V e is the solution to {φi, Ce}V e = 0 and i = 1, 2, 3 and the Ce denote the constraints of (14), except Ct. The
matrix {φi, Ce} is generically of rank 3 from which we infer that there is only one independent CH . The coefficients
of this matrix are given in Tab. I, and, up to an overall factor, we find

CH = C + αCpt
+ βCq + γCp , (17)

where, on the constraint surface, the coefficients read

α = − 1

2pt
, β = 0 and γ = − p

2p2t
. (18)

Four non-physical moments in this gauge may be solved for via Ct, Cpt
, Cq and Cp. Equation (16) gives ∆(tpt), the

rest are given by

(∆pt)
2 = 2p2(∆p)2+i~λpt

2p2
t

, ∆(ptp) =
p(∆p)2

pt

and ∆(qpt) =
i~p+2p∆(qp)

2pt
. (19)

TABLE I: Poisson algebra of gauge conditions (15) with the constraints (14). First terms in the bracket are labeled by rows,
second terms are labeled by columns. Note that these results only hold on the gauge surface defined in (15).

φ1 φ2 φ3

C 2i~ −2∆(qpt) −2∆(ptp)

Cpt 4i~pt −2pt∆(qpt)− 2i~p −2pt∆(ptp)

Cq 0 −2pt(∆q)2 −2pt∆(qp)− i~pt

Cp 0 i~pt − 2pt∆(qp) −2pt(∆p)2

7 Note that this gauge fixing occurs after quantization.
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When these relations are used together with the t-gauge conditions (15), the equations of motion generated by CH

on the remaining variables read (recall that p and (∆p)2 are constants of motion)

ṫ = {t, CH} = 2pt −
2p2(∆p)2

p3t
− i~λ

2p2t
,

ṗt = {pt, CH} = −λ ,

q̇ = {q, CH} = −2p

(
1− (∆p)2

p2t

)
,

˙(∆q)2 = {(∆q)2, CH} = −4∆(qp)

(
1− p2

p2t

)
,

˙∆(qp) = {∆(qp), CH} = −2(∆p)2
(
1− p2

p2t

)
. (20)

These can be solved analytically by

t(s) = −pt(s)
2

λ
− p2(∆p)2

λpt(s)2
− i~

2pt(s)
+ c ,

pt(s) = −λs+ pt0 ,

q(s) = 2
ppt(s)

λ

(
1 +

(∆p)2

pt(s)2

)
+ c1 ,

(∆q)2(s) = 4(∆p)2
(
p2 + pt(s)

2
)2

λ2pt(s)2

+
4
(
p2 + pt(s)

2
)

λpt(s)
c2 + c3 ,

∆(qp)(s) = 2(∆p)2
p2 + pt(s)

2

λpt(s)
+ c2 , (21)

where c, pt0 and {ci}i=1,2,3 are integration constants related to the initial conditions. (These solutions, expressed via
pt, provide relational observables of the system. A comparison with (9) shows that the classical observables receive
quantum corrections via the moments.) In particular, we note that to this order pt experiences no quantum back-
reaction and evolves entirely classically, which is due to the fact that the only constraint function that has non-trivial
bracket with pt is C.
Neither pt, nor t is a Dirac observable and one of them can be eliminated by using C. Combining relations (19)

and the gauge conditions (15) with C = 0, we obtain

0 = p4t −
(
p2 +m2 − λt+ (∆p)2

)
p2t

+
i~λ

2
pt + p2(∆p)2 . (22)

It is not difficult to see that, if we want to keep the variables q, p, (∆q)2, (∆p)2,∆(qp) real (see Sec. III C 4), the above
relation necessarily forces either t or pt to be complex. When we look at the equations of motion (20) and their
solutions (21), the choice is almost obvious. The equation of motion for pt has no imaginary component and hence
equipping it with a constant imaginary part appears somewhat artificial. More importantly, pt features prominently in
the solutions for q, p, (∆q)2, (∆p)2,∆(qp), in order to keep all these real, we are forced to keep pt real and, consequently,
t must be complex-valued.
Let us quantify the imaginary contribution to t. We determine c by substituting both pt(s) and t(s) from (21) into

the constraint (22) which yields the real-valued result

c =
p2 +m2 + (∆p)2

λ
. (23)

The imaginary contribution to the clock t is, therefore, a quantum effect of order ~ and given by

ℑ[t(s)] = − ~

2pt(s)
. (24)
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A more thorough analysis of the complex nature of the effective non-global clocks will be explored in Sec. IV and its
general features have been discussed in [1].
We have previously stated that the gauge defined by the conditions (15) is related to choosing t as time. However,

the equations of motion, as well as their solutions are written in terms of the gauge parameter s that parameterizes
the flow generated by CH . Since t is a complex variable we can relate s to its real and imaginary parts separately. In
FIG. 2, we plot the real and imaginary parts of t(s), deduced directly from (21) and (23).

pt = 0

pt = pDppt = - pDp

s

Re@tD

pt = 0

s

Im@tD

FIG. 2: Schematic plots of the real part of t (top) and the imaginary part of t (bottom) against the flow parameter s.

From the plot we see that away from pt = 0, ℜ[t] is monotonic in s on each of the two branches and, asymptotically
far away from pt = 0, they become proportional. On the forward moving branch, ℜ[t] is increasing with s; on the
backwards moving branch ℜ[t] is decreasing with s. From the plot we can also see that ℜ[t] reaches its peak value at
pt = ±√

p∆p 6= 0. However, at this point we can no longer trust the semiclassical approximation as the small value
of pt in the denominators in the equations of motion (21) will result in values of the moments that no longer satisfy
the assumed drop-off.
Figure 2 also shows that ℑ[t] is monotonic in s in the same regimes. Thus, when it comes to parameterizing dynamics

using t, we have the option of using either ℑ[t] or ℜ[t]. We opt to refer to the real part of t as “time”, for several
reasons: 1) in the classical limit the imaginary part vanishes and it is, indeed, the real part of t that matches the
classical internal time; 2) for large pt or small λ when the time-dependent term in the constraint becomes insignificant,
the imaginary part of t is small and approximately constant; 3) finally, as we will see later, the expectation value that
reproduces ℑ[t] in the case of a free relativistic particle is based on integrating at a fixed value of (parameter) t equal
to precisely the real part of the expectation value.
As one would expect from the classical behavior of t, this gauge is not valid for the whole “quantum trajectory”.

In particular, we noted that pt evolves entirely classically, so that its solution is simply given by (8). As a result pt
passes through zero for a finite value of the evolution parameter s, which immediately implies the breakdown of the
t-gauge: the coefficients in (18) and in (21) become singular, the magnitudes of the moments (∆q)2 and ∆(qp) blow

up, thereby violating semiclassicality. An example of this divergence is shown in FIG. 3 below. Here η :=
√
p2 +m2

provides us with a classical length-scale on the phase space, and the quantum length-scale is set to
√
~ = .01η.

Classical quantities such as p, m, λ are all of order η, while the values of second order moments are initially of order ~.
Qualitative features of the plot are insensitive to the precise values chosen so long as the relative scales are preserved.

Due to the non-global nature of the relational clock t, this breakdown does not come unexpected. In order to evolve
a semiclassical state through the turning point of the clock, we, therefore, need to switch the gauge and — unlike in
the classical case — the clock (see also Sec. IVC on this issue). A more complete discussion of the breakdown of the
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FIG. 3: Top: evolution of moments (∆q)2 (solid) and ∆(qp) (dashed) in t-gauge ((∆p)2 = const). Somewhere after s = 2.3

the spread ∆q :=
√

(∆q)2 becomes comparable to the expectation values, as ∆q/η > .1, and the semiclassical approximation
breaks down in t-gauge. Bottom: corresponding effective trajectory (solid) and the related classical trajectory (dashed); the
effective trajectory quickly diverges after s = 2.3.

gauge and its counterpart on the exact side of the quantum theory will be discussed in the second model in Sec. V,
while the transformation to q-gauge and the evolution through the turning point will be discussed in Sections III C 2
and III C 3 below.

2. Evolution through the extremal point of ℜ[t] in a new gauge

Based on the evidence that the t-gauge (15) fails globally due to the fact that t is a non-global time function, we
can, instead, make use of the fact that, e.g., q is a good clock variable for the entire trajectory. For the evolution
through the t-turning point we could, therefore, simply choose the following q-gauge (“as if we chose q as time”)

φ̃1 = (∆q)2 = 0

φ̃2 = ∆(tq) = 0

φ̃3 = ∆(qpt) = 0 . (25)

This gauge is closest in spirit to choosing a q = const-slicing in an analogous treatment of the model at the Hilbert
space level and since q is a good clock, in this gauge we expect to be able to evolve through the extremum in ℜ[t]
without difficulty. Such a procedure of adapting the gauge to a good local clock should work in general even if no
global clock functions exist, since generically we expect the existence of some degree of freedom which may serve as
a good local clock where other clock degrees of freedom fail. To evolve through the whole trajectory one would in
general need to switch gauges, which we discuss in Sec. III C 3 below.
We immediately notice that this gauge is inconsistent with treating the moments of p̂ and q̂ as independent phase-

space degrees of freedom, since several of them are completely fixed by the gauge conditions. We, therefore, interpret
q as a clock in this gauge (see also Sec. IVC on this issue) and eliminate the remaining moments of p̂ and q̂ through
constraints leaving the free variables t, pt, q, p, (∆t)

2, (∆pt)
2, ∆(tpt). The first class constraint with vanishing flow
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on these variables is now given by Cq. Solving this constraint then implies ∆(qp) = − i~
2 and, together with (25), the

saturation of the uncertainty relation between q̂ and p̂. The “Hamiltonian constraint” of the q-gauge reads

C̃H = C + α̃Ct + β̃Cpt
+ γ̃Cp , (26)

where the coefficients are given on the constraint surface by

α̃ = − λ

4p2
, β̃ = − pt

2p2
and γ̃ = − 1

2p
. (27)

These coefficients are clearly well-behaved along the entire trajectory, as long as the constant of motion p 6= 0. In
addition to ∆(qp), we eliminate the three remaining unphysical moments through constraints

(∆p)2 =
p2t
p2

(∆pt)
2 +

λpt
p2

∆(tpt) +
λ2

4p2
(∆t)2 ,

∆(ptp) =
pt
p
(∆pt)

2 +
λ

2p

(
∆(tpt)−

i~

2

)
,

∆(tp) =
pt
p

(
∆(tpt) +

i~

2

)
+

λ

2p
(∆t)2 . (28)

The dynamical equations generated by this Hamiltonian constraint on the q-gauge surface are

ṫ = 2pt −
2pt(∆pt)

2 + λ∆(tpt)

p2
,

ṗt = −λ ,

q̇ = −2p+
λ2(∆t)2 + 4p2t (∆pt)

2 + 4λpt∆(tpt)

2p3
,

˙(∆t)2 =
4(p2 − p2t )∆(tpt)− 2λpt(∆t)

2

p2

˙∆(tpt) =
4(p2 − p2t )(∆pt)

2 + λ2(∆t)2

2p2
,

˙(∆pt)2 =
2λpt(∆pt)

2 + λ2∆(tpt)

p2
. (29)

As in the t-gauge before, pt evolves classically pt(s̃) = −λs̃+ pt0. The moments evolve according to

(∆t)2(s̃) =
pt(s̃)

2

p2
c̃1 +

4
(
pt(s̃)

2 + p2
)2

λ2p2
c̃2 +

4pt(s̃)
(
pt(s̃)

2 + p2
)

λp2
c̃3 , (∆pt)

2(s̃) =
pt(s̃)

2

p2
c̃2 +

λpt(s̃)

p2
c̃3 +

λ2

p2
c̃1 ,

∆(tpt)(s̃) = −2pt(s̃)
2 + p2

p2
c̃3 −

2pt(s̃)
(
pt(s̃)

2 + p2
)

λp2
c̃2 −

λpt(s̃)

p2
c̃1 . (30)

The above solutions can be substituted into the equations of motion for q(s̃) and t(s̃), which can then be integrated
separately.
Once again, we can eliminate yet another variable. By using C = 0 combined with (28), we obtain an equation for

p,

p4 −
(
p2t −m2 + (∆pt)

2 + λt
)
p2 + p2t (∆pt)

2 + λpt∆(tpt) +
λ2

4
(∆t)2 = 0 . (31)

We see that there is no need to make either p or q complex to satisfy this equation. Nor are there any explicitly
imaginary terms in the equations of motion or their solutions. Nevertheless, in order to consistently switch between
t-gauge and q-gauge, we will require q to carry an imaginary contribution in this gauge analogous to (24)

ℑ[q(s̃)] = − ~

2p
, (32)

which in this case is constant, since p is a constant of motion.
Finally, we note that — as expected — the evolution in this gauge encounters no difficulty near the extremal point

of t when pt = 0. The coefficients in (27) stay finite and we can see from (30) that the moments of p̂t and t̂ remain
well-behaved as we go through pt = 0. In the next section we describe a method for switching between the two gauges.
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3. Switching gauge

The two gauges discussed in Sections III C 1 and III C2 describe evolution of two different sets of degrees of freedom.
If we switch from one gauge to another, for example, to evolve through the turning point of a time function, we need
to be able to translate between the two sets of variables. We recall that the original gauge orbit for the truncated
system of constraints (14) is, in general, four-dimensional. The three gauge-fixing equations of either (15) or (25)
restrict us to a one-dimensional flow on this gauge orbit generated by the remaining first-class constraint (17) or (26),
respectively. In order to ensure that the two sets of variables lie on the same four-dimensional gauge orbit we need to
find a gauge transformation which takes us from the surface defined by (15) to the one defined by (25) and vice versa.
In other words, to transform from t-gauge to q-gauge we need to find a combination of the constraint functions

G =
∑

i ξiCi, such that a (possibly finite) integral of its flow transforms the variables as





(∆q)2 = (∆q)20
∆(tq) = 0

∆(ptq) = ∆(ptq)0

→





(∆q)2 = 0

∆(tq) = 0

∆(ptq) = 0

, (33)

where the subscript 0 labels the value of the corresponding variable prior to the gauge transformation. In general,
one would expect such a transformation to be unique up to the flows generated by CH and C̃H , since they preserve
the corresponding sets of gauge conditions (see Sec. IVD for additional discussion). To get a unique answer, and to
make the transformation induced on the expectation values small, we fix the multiplicative coefficient of C in G to
zero. Below we outline the strategy used for constructing the explicit gauge transformation from t-gauge to q-gauge.
For convenience, we only present and work with the flows generated by the constraint functions rather than display-

ing the generators themselves whose explicit expressions turn out to be rather complicated and less well-behaved than
their flows. The flow generated by a generator G will be denoted by αs

G(x), x ∈ C, where C denotes the constraint
surface and s is the gauge parameter along the flow. Its (finite) action on a quantum phase space function f can be
computed via a derivative expansion

αs
G(f)(x) := f(αs

G(x)) =

∞∑

n=0

sn

n!
{f,G}n(x) , (34)

where {f,G}n := {{f,G}n−1, G} and {f,G}0 = f . The Hamiltonian vector field of the generator G is denoted by XG

and we have XG(f) := {f,G}. The required flows for the transformation may be computed explicitly with the aid of
the table in Appendix A. There is still some freedom in choosing a path for the gauge transformation: as mentioned at
the beginning of Sec. III C, the five constraints generate only four independent flows. Removing C still leaves us with
three independent flows which we can combine. At this point we construct the gauge transformation in two steps.
First we search for a flow that satisfies XG1 (∆(qp)) = XG1 (∆(tq)) = 0 on the constraint surface and re-scale the flow
such that XG1

(
(∆q)2

)
= 1. The second step involves finding the flow that satisfies XG2

(
(∆q)2

)
= XG2 (∆(tq)) = 0

and re-scaling this flow such that XG2 (∆(qp)) = 1. The required gauge transformation will then be given by the

flow8 αs
G(f)(x) := α

−(∆(qp)0+i~/2)
G2

◦ α−(∆q)20
G1

(f)(x) if we can argue that the second and higher derivative terms in the
respective expansion via (34) can be consistently neglected to order ~. Equation (34) implies that to linear order in
the derivative expansion we also have αu

G2
◦αv

G1
= αv

G1
◦αu

G2
for fixed values of u, v. Note that this composition of the

G1 and G2 flows only determines αs
G up to re-scalings of G and, consequently, the value of s where the new q-gauge

is reached, but any such αs
G will be suitable.

For the particular system at hand, the procedure simplifies if we impose, in addition to the constraint functions,
the gauge condition ∆(tq) = 0, which is shared by both t-gauge and q-gauge and is preserved by αG1 and αG2 by

8 This expression might appear surprising at a first glance since gauge parameters are real-valued. However, the flow of G2 can be

understood via α
−(∆(qp)0+i~/2)
G2

= α
−∆(qp)0
G2

◦ α
−~/2
iG2

which directly follows from (34).
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construction; we then find for the other variables

XG1(t) =
λ

4p2
, XG2(t) = − 1

pt
,

XG1(q) = 0 , XG2(q) =
1

p
,

XG1

(
(∆t)2

)
= −p

2
t

p2
, XG2

(
(∆t)2

)
= 0 ,

XG1

(
(∆pt)

2
)
= − λ2

4p2
, XG2

(
(∆pt)

2
)
=
λ2

pt
,

XG1 (∆(tpt)) =
λpt
2p2

, XG2 (∆(tpt)) = −1 .

Noting that p has a vanishing bracket with all constraints and pt with all constraints except for C, whose flow is
neither contained in αG1 nor in αG2 , we see that all of the derivatives are constant, and thus the gauge transfor-
mation is infinitesimal and, indeed, simply given by the terms up to linear order in the derivative expansion (34) of

αs
G(f)(x) := α

−(∆(qp)0+i~/2)
G2

◦ α−(∆q)20
G1

(f)(x). Without this simplification, one may, in general, have to integrate the

flows numerically.9 The initial value for (∆t)2 is zero as we are starting with the t-gauge, initial values of ∆(tpt) and
(∆pt)

2 can be deduced from (16) and (19), respectively. We find the complete transformation of t-gauge variables
into the q-gauge variables to order ~ given by

t = t0 +
i~+ 2∆(qp)0

2pt
− (∆q)20λ

4p2

q = q0 −
i~+ 2∆(qp)0

2p

(∆t)2 = (∆q)20
p2t
p2

(∆pt)
2 =

p2(∆p)20 −∆(qp)0λpt
p2t

+
λ2

4p2
(∆q)20

∆(tpt) = ∆(qp)0 − λ
pt
2p2

(∆q)20 . (35)

No gauge transformations for pt and p are listed since these variables are invariant along the flow of G. The reverse
transformation can be obtained in an identical manner, or simply by inverting (35)

t = t0 −
2pt (i~+ 2∆(tpt)0) + (∆t)20λ

4p2t

q = q0 +
pt (i~+ 2∆(tpt)0) + (∆t)20λ

2ppt

(∆q)2 = (∆t)20
p2

p2t

(∆p)2 =
4p2t (∆pt)

2
0 + 4λpt∆(tpt)0 + λ2(∆t)20

4p2

∆(qp) =
λ

2pt
(∆t)20 +∆(tpt)0 . (36)

9 In general, the Poisson structure of the quantum phase space is such that the Poisson bracket of the o(~)-quantum constraint functions
with a quantum phase space function of a certain order preserves or increases the order in ~, while, for instance, Poisson brackets of
ratios of moments can actually decrease the order in ~. This follows from the Poisson algebra of moments in Appendix A. Now the
rescaling of the flow such that, e.g., XG1

(

(∆q)2
)

= 1 has the consequence that G1 will be of order ~0, consisting of ratios of moments
which, in general, may lead to negative orders of ~ when taking higher derivatives of moments along the flow. It is then not consistent
anymore to neglect the higher derivative terms in the expansion (34) of the flow action even if one multiplies with o(~) values of the
flow parameter. In such situations one must numerically integrate the flow. However, in general, we expect the gauge transformation
between t- and q-gauge to be infinitesimal to order ~.
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In particular, both q and t acquire imaginary contributions during these transformations. We point out that these
contributions exactly cancel out the imaginary terms (24) and (32), so that upon transformation from t-gauge to
q-gauge t becomes real and q acquires the imaginary term (32) and vice versa. Observe that in the case of the global
clock function q in the q-gauge, its imaginary part is a constant of motion and, therefore, does not play any role for
evolution, while in the case of the non-global clock t in the t-gauge, its imaginary part is actually dynamical. We
return to this characteristic in Sec. IVB. For more discussion of gauge switching and an argument for the irrelevance
of the precise instant of the gauge change see Sec. IVC and IVD.
FIG. 4 gives a segment of a semiclassical trajectory that has been evolved through the extremal point of t by

temporarily switching to q-gauge. The initial conditions and the values of parameters used here are identical to
the ones used to generate FIG. 3. We switch to q-gauge before the moments have a chance to become large (at
s = 1.8). The evolution in q-gauge stays semiclassical through the turning point in t and sufficiently far away from
the extremum (s̃ evolved from 0 to 1.4); the reverse gauge transformation yields a semiclassical outgoing state in
t-gauge. Incoming and outgoing trajectories in t-gauge were continued into the region where the q-gauge was used
in order to demonstrate their divergence. We note that, although the quantities q(ℜ[t]) in the t-gauge and t(ℜ[q])
in the q-gauge refer to different pairs of objects (two examples of fashionables in the terminology of [1]) from the
point of view of quantum mechanics, their classical limits correspond to the same correlations between q and t and
plotting one trajectory as following the other (with jumps of o(~) between the trajectories as a consequence of the
gauge changes above) makes sense for a semiclassical state. The resulting composite trajectory agrees extremely well
with its classical counterpart, which is why the latter is not present in the plot.

2.0 2.5 3.0 3.5 4.0

Re@qD

Η
2.1
2.2
2.3
2.4
2.5

Re@tD

Η

FIG. 4: Plot of the semiclassical trajectory evolved past the extremal point in t-gauge (solid part of the trajectory), by
temporarily switching to the q-gauge (dashed part of the trajectory. Dotted vertical lines indicate the points where gauges
were switched.

4. Effective positivity conditions and physical states

In the discussion of dynamics in the t-gauge, we implicitly interpreted the variables q(s), p(s), (∆q)2(s), ∆(qp)(s),
(∆p)2(s) as expectation values and moments of a canonical pair of evolving operators, with t keeping track of the
“flow of (internal) time”. In order to make this interpretation consistent, these variables must have the correct
Poisson algebra, which follows directly from the canonical commutation relation (CCR). The non-trivial brackets of
this algebra are

{q, p} = 1, {(∆q)2, (∆p)2} = 4∆(qp) (37)

{(∆q)2,∆(qp)} = 2(∆q)2, {∆(qp), (∆p)2} = 2(∆p)2 .

In particular, t must have a vanishing bracket with the rest of the above variables. These relations are, of course,
satisfied kinematically simply by construction. However, when we introduce gauge conditions the Poisson bracket
on the gauge surface is defined with the use of the Dirac bracket [23]. It is an important feature of the gauge
conditions (15) that the Dirac brackets between precisely the free variables in the t-gauge are the same as their
kinematical counterparts. For the details we refer the interested reader to [19].
The above result ensures that the dynamics is consistent with that of a pair of operators subject to the CCR.

However, if we are to interpret these operators as self-adjoint (which is required for well-behaved observables), we
have to impose additional conditions on their expectation values and moments:

q, p, (∆q)2, (∆p)2,∆(qp) ∈ R

(∆p)2, (∆q)2 ≥ 0

(∆q)2(∆p)2 − (∆(qp))2 ≥ 1

4
~
2 . (38)
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These conditions, in particular, guarantee similar conditions holding to order ~ for any polynomial constructed out of
symmetrized products of q̂ and p̂ (see Appendix B). There is, of course nothing that would prevent us from imposing
these conditions on the initial values of the variables. However, it is a priori not clear whether such conditions will
be preserved by the dynamics in either gauge or by the gauge transformations. Below we list the specific results that
ensure the consistency of the effective dynamics with the interpretation of the variables we have chosen as observable
expectation values and moments. The details of the calculations may be found in Appendix B. We find that

• the conditions (38) are preserved by the dynamics of the t-gauge,

• the conditions on the expectation values and moments of t̂ and p̂t analogous to (38) are preserved by the
dynamics in the q-gauge,

• if the variables in the t-gauge satisfy (38), then the gauge transformed variables satisfy the q-gauge analog
of (38).

IV. COMPLEX INTERNAL TIME AND RELATIONAL OBSERVABLES

In this section we reflect on some of the general features of the effective analysis performed on the model of Sec. III.
We focus on the interpretation of the imaginary contribution to internal time, transformations between local choices
of clocks (Zeitgeist) and the status of relational observables in a system without global time. Complex internal time
arising in the effective approach to local clocks and in local deparametrizations at the state level has been discussed
in detail in [1], along with general issues related to relational evolution and observables and we refer the interested
reader to that work. However, the results concerning complex internal time are worth summarizing in the context
of the concrete examples provided within the present manuscript, which we do in Sec. IVA. Considerations of this
section are general, and hence equally applicable to the second model studied in Sec. V, for which some of the general
discussions of this section will be helpful.

A. Imaginary contribution to internal time

At this moment, it is useful to pause and ask how meaningful an imaginary contribution to time can be. First,
we would like to acquire some intuition regarding its origin. From a certain point of view this feature is not entirely
surprising — after all, there are old and well-known arguments in quantum mechanics saying that time cannot be a
self-adjoint operator. Otherwise, it would be conjugate to an energy operator bounded from below for stable systems.
Since a self-adjoint time operator would generate unitary shifts of energy by arbitrary values, a contradiction to the
lower bound would be obtained. The result of complex expectation values for local internal times obtained here looks
similar at first sight — a non-self-adjoint time operator could, certainly, lead to complex time expectation values —
but it is more general. In the model of Sec. III, we are using a linear potential which does not provide a lower bound
for energy. The usual arguments about time operators thus do not apply; instead our conclusions are drawn directly
from the fact that we are dealing with a time-dependent potential. (For time-independent potentials, 〈t̂〉 does not
appear in the effective constraints and can consistently be chosen real. The time dependence is thus crucial for the
present discussion.)
Rather, the imaginary contribution to internal time may be regarded in the same vein as the imaginary contributions

to the various unphysical moments (see e.g. Eq. (16)) — as an artifact of assigning expectation values to all kinematical
observables, which typically do not project in any natural way to self-adjoint operators on the physical Hilbert space.
We recall a simple example given in [1] of a physical inner product, which in a deparameterizable system assigns a
complex expectation value to internal time. A free relativistic particle in 1+1 Minkowski spacetime,10 is subject to
the constraint

(
−~

2 ∂
2

∂x20
+ ~

2 ∂
2

∂x21
−m2

)
ψ(x0, x1) = 0 . (39)

10 In this example, t has the usual notion of proper time as experienced by inertial observers in addition to the more general notion of
internal time as a phase-space degree of freedom of the cotangent bundle of Minkowski space. In this context, as in our other examples,
we are interested only in the phase-space notion of internal times.
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The standard inner product used for positive frequency solutions has the form

(φ, ψ) :=i~

∫ ∞

−∞

(
φ̄(x0, x1)

∂

∂x0
ψ(x0, x1)

−
(

∂

∂x0
φ̄(x0, x1)

)
ψ(x0, x1)

)
dx1

∣∣∣∣
x0=t

.

(40)

Evaluating the “expectation value” of the kinematical internal time operator, using a positive frequency solution with
this inner product,11 yields

〈t̂〉 = (φ, x0φ) = t− i~

2

〈
1̂

pt

〉
. (41)

To order ~ the imaginary part is identical to Eq. (24), and, indeed, to the analogous result in Sec. V given in Eq. (85).
The key ingredient in this result is the use of both φ and ∂φ/∂t in the construction of the inner product, which
is ultimately related to the fact that the constraint equation is second order in the time derivative, so that locally
both φ and ∂φ/∂t are independent degrees of freedom. This suggests a generalization of the form of the imaginary
contribution to 〈t̂〉, to all constraints where p̂t appears quadratically. One may then ask whether the effective procedure
supports such a generalization. It was, indeed, demonstrated in [1], that for any constraint of the form

Ĉ = p̂2t − p̂2 + V (q̂, t̂) ,

the imaginary contribution at order ~ is precisely the same in the effective framework, ℑ[t] = −~/2〈p̂t〉.
One choice was made at the beginning of the effective analysis, namely the gauge-fixing of the effective con-

straints. We used the gauge-fixing that worked well for deparameterizable systems, but it may not be suitable for
non-deparameterizable ones. One could then try to change the gauge-fixing conditions and perhaps move the complex-
valuedness to some of the kinematical moments rather than the internal time expectation value. It is, however, unlikely
that this would give a general procedure because the form of the constraints would require gauge-fixing conditions
adapted to the system under consideration, and, in particular, to the potential. The gauge-fixing conditions used
here, on the other hand, work for arbitrary potentials and are specifically motivated by and associated to our choice
of clock and corresponding relational time (see also Sec. IVC).
Finally, there is concrete evidence, that this imaginary contribution is a generic feature associated with local

deparameterizations of a Dirac constraint of the form

(
p̂2t − Ĥ2(t̂, q̂, p̂)

)
ψ(q, t) = 0 , (42)

where Ĥ2 is a positive operator at least on some set of states. For example, such a constraint features in the
Wheeler-DeWitt (WDW) equation in homogeneous and isotropic cosmology. In general, Eq. (42) is not equivalent to
a Schrödinger equation

(
−i~∂τ + Ĥ(τ, q̂, p̂)

)
ψ(q, τ) = 0 , (43)

since the solutions to the latter satisfy

−~
2∂2τψ = Ĥ2ψ + i~∂τ Ĥψ . (44)

The inequivalence formally appears to be of order ~ and is based in part on erroneously identifying the kinematical
operator t̂ of Eq. (42) with the time parameter τ of Eq. (43). In [1] it was shown, however, that Eq. (42) and an
internal time version of Eq. (43) are both solved by the same state (in the sense that their expectation values vanish)
at order ~, if one defines

t̂ = τ̂ − i~

2
p̂−1
τ , (45)

11 Strictly speaking, this is clearly not a true expectation value, since the kinematical internal time operator does not preserve the (physical)
positive frequency Hilbert space. Nevertheless, we can use this inner product as a well-defined bilinear form in this case.
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(for states outside the zero-eigenspace of p̂τ ) where the (continuous) eigenvalues of the kinematical internal time
operator τ̂ assume the role of the parameter τ of the Schrödinger equation. The internal time Schrödinger equation
represents a local deparametrization of Eq. (42) and arises from a kinematical quantization of one of the two factors
of a classical factorization of the quadratic constraint, C = (pτ −H(τ, q, p))(pτ +H(τ, q, p)), where both internal time
τ and pτ are dynamical phase space variables. The result once again agrees with the general form of the imaginary
contribution obtained effectively. This comparison of the quadratic relativistic constraint with a local (internal time)
Schrödinger equation at the state level is demonstrated on a concrete example in Sec. VB 2. We also compare the
corresponding semiclassical dynamics of local deparametrization to the effective evolution in Sec. VC1.

B. Dynamics with a complex relational clock

As we saw in the previous section, the expectation value of internal time can acquire an imaginary contribution
even in the standard treatments of deparameterizable systems. The difference is only that deparameterizable systems
with a global internal time do not force us to include the imaginary part, while systems with local internal times do.
This can also be seen from the shape of the generic imaginary contribution ℑ[t] = −~/2〈p̂t〉: While in the presence of
a “time potential”, pt will fail to be a constant of motion and, consequently, ℑ[t] will actually be dynamical, in the
absence of a “time potential” in the constraint pt is automatically a Dirac observable and, therefore, ℑ[t] a constant
of motion. But a constant imaginary contribution, in contrast to a dynamical one, is not needed in order to avoid
a violation of the constraints since it can be interpreted as an integration constant at the effective level and does
not even appear in the constraints in the absence of a “time potential”. Indeed, the WDW and (the internal time
version of the) Schrödinger equation, Eqs. (42) and (43), are automatically equivalent in this case. The imaginary
contribution to internal time may, therefore, be disregarded altogether for relational evolution in the absence of a
“time potential”, but it cannot be neglected otherwise.
We emphasize that a non-global clock necessarily implies a “time potential,” while a time-dependent potential

does not automatically imply a non-global clock.12 The dynamical imaginary contribution is, therefore, more general
than a pure consequence of non-unitarity following from non-global clocks. Nevertheless, the imaginary contribution
becomes more prominent where the momentum of the clock variable becomes small and is, thus, especially relevant
near turning points of non-global clocks. In fact, the dynamical imaginary contribution, being inversely proportional
to the kinetic energy of the clock variable, can be interpreted as a measure for the quality of the relational clock:
the higher the clock’s momentum, i.e., the further away it is from a turning point where quantum effects restrict its
applicability, the smaller the imaginary term and the better behaved the clock. This coincides with the intuition that,
the faster the clock, the better its time-resolution. The inverse kinetic energy also appears in other discussions of the
qualities of clocks. A brief comparison of this and further references may be found in [1].
Facing a dynamical imaginary part, we ought to make sense out of such a “vector time” with two separate degrees

of freedom. (Relational) time is commonly understood as a single (scalar) degree of freedom and, in principle, we
may choose any (real) phase space function which is reasonably well-behaved. In this light, we appoint the real part
of the clock function for relational time, for several reasons: 1) it gives the correct classical internal time in the
classical limit; 2) for small “time potentials”, or in the absence thereof, the imaginary contribution is approximately,
or exactly constant, respectively; 3) the “expectation value”, Eq. (41), reproducing the specific imaginary term for the
free relativistic particle is based on a constant real parameter time slicing; 4) the Schrödinger regime (obtained from
a local deparametrization of the relativistic constraint) which, at least locally, should give a conventional quantum
time evolution, is based on a real-valued time, and 5) as we will see in an example in FIG. 8 in Sec. VC1 below,
the dynamical imaginary contribution for non-global clocks can fail to be monotonic where the real part serves as a
suitable local clock.

C. Switching clocks is equivalent to changing gauge

From the point of view of the Poisson manifold of the effective framework no variables or gauges are preferred
over others and we could, in principle, choose a q-gauge like (25) and still use t as our clock for relational evolution.
However, as we will see in the second model in Sec. V, the effective evolution in a given τ -gauge is matched by a
Schrödinger type state evolution (43) in internal time τ , where the conventional Schrödinger type inner product is
defined on constant-τ slicings. This Schrödinger regime analog can, thus, only be meaningfully interpreted as local

12 For instance, in a relativistic system governed by a constraint C = p2t −H2(q, p, t), where H2 > 0 ∀ t, the clock t will be global.



21

evolution in τ . Moreover, when nevertheless using, e.g., t as a local clock in the q-gauge in Sec. III C 2, one faces the
undesirable consequence that moments involving t or pt become evolving degrees of freedom, while the moments of our
actual variables of interest, (q, p), are (at least partially) gauge fixed, essentially leaving only an evolution parameter
q. The resulting moments would no longer be associated to a canonical pair, which has an impact on Dirac brackets
and unnecessarily complicates the physical relational interpretation of such moments relative to t. Consequently, it
is unavoidable to switch the local clock in the effective procedure when choosing a new gauge; the choice of gauge is
intimately intertwined with the choice of (internal) time and changing the clock and corresponding time is practically
tantamount to changing gauge and Zeitgeist. Accordingly, certain questions about (physical) correlations of variables
are best described in certain gauges and in each gauge we evolve a different set of relational observables which is
associated to the chosen relational clock.
The peculiar circumstance that the set of degrees of freedom that evolve in relational time appears to depend on

the gauge has its roots in the fact that, by the choice of Zeitgeist, local relational observables considered here describe
the system in partially gauge fixed form. While the physical information computed for the system is, certainly, gauge
independent, its presentation in gauge fixed form depends on the gauge chosen. One can illustrate this feature also
with the standard notions of partial and complete observables. Complete relational observables (invariant under all
gauge flows) can be understood as gauge invariant extensions of gauge restricted quantities [9, 11, 23]; when restricting
a complete observable to certain fixed values of some clock functions (parametrizing the full gauge orbit), it is reduced
to a “partial” observable, evaluated on a gauge-fixing surface. In such a gauge not all correlations between the phase-
space degrees of freedom are accessible and, hence, not all questions about correlations meaningful. (The choice of
clock functions along full gauge orbits, of course, does not constitute gauge fixing.) Evolving partial observables along
the (full) gauge orbits results in complete relational observables that clearly depend on the choice of the relational
clock functions,13 just as the gauge-fixing surfaces corresponding to constant values of (some of) the clock functions
and the associated partial relational observables do.
In the effective framework as well one could gauge invariantly extend the local relational observables of the different

Zeitgeister to complete observables by, apart from the o(~0)-clock t or q, taking three further o(~)-clock functions into
account to keep track of the remaining three gauge flows on quantum phase space.14 However, for practical reasons,
it is advantageous to gauge fix these three o(~)-clocks such that the relational evolution we want to describe in the
o(~0)-clock can be expressed and compared to Hilbert-space approaches in the most convenient way. One possibility
is by using the mentioned relationship of the effective framework with a (local) deparametrization in an internal
time Schrödinger regime. To define a Schrödinger type evolution, one can choose which slicing to employ (where the
constant-t-slicing is the most convenient one when choosing t as internal time and corresponds to the deparametrization
given by (43)). The choice of the slicing and corresponding inner product determines how the spreads of the states
solving the internal time Schrödinger equation are measured. For instance, in standard constant-τ -slicing for (43)
(corresponding to constant-t-slicing and evolution in t in the relativistic system), not all the fluctuations of q̂ can
vanish and the variable appears to be of quantum nature, while τ̂ is projected to the role of a classical parameter
τ since the spreads related to τ̂ will vanish. In constant q-slicing the situation is reversed. Note, however, that
deparametrizations with respect to different internal time variables will, in general, yield different quantum theories
with inequivalent Hilbert spaces.
Alternatively, we could use a tilted slicing that corresponds to neither configuration coordinate. For a concrete

example recall the free relativistic particle, which is subject to (39). This constraint equation is Lorentz–invariant and
we can construct a physical inner product on its solutions of the same form as (40) but evaluated in a different Lorentz
frame on surfaces of constant x′0, where x

′
µ = Λ ν

µ xν are the boosted coordinates; the corresponding multiplicative

kinematical operators will be denoted by x̂′µ. Kinematical expectation values and moments of t̂ and q̂ are linear
combinations of the expectation values and moments of x̂′µ. For instance, by linearity of the expectation values, the

correlation ∆(tq) = Λµ
0Λ

ν
1∆(x′µx

′
ν) = Λ1

0Λ
1
1(∆x

′
1)

2, which is non-zero unless the boost is trivial. (Here the last
equality follows as fluctuations of x̂′0 vanish to order ~, when evaluated in this inner product.) In this tilted slicing
one can construct a local Schrödinger evolution and still use 〈t̂〉 as internal time, though unfamiliar non-vanishing
moments (involving t̂) severely complicate the interpretation of t̂ and q̂ as a relational time reference and an evolving
variable, respectively.
On the other hand, the quantum phase space of the effective framework, being representation independent, must

contain information about a general class of slicings in a (local) deparametrization. This is the reason why unusual
(time) moments such as ∆(qt) do not necessarily vanish in the effective formalism. The three o(~)-clocks do not rep-

13 Different choices of clocks parametrizing the full gauge orbits will yield different parameter families of observables, although still
describing the correlations on the same gauge orbits (albeit along different flow lines).

14 In general, global obstructions may prevent the clock functions from globally parametrizing the full gauge orbit.
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resent true internal coordinates, but parametrize the slicings and thereby the (in general inequivalent) corresponding
Hilbert-space representations. Hence, the three conditions fixing the three o(~)-flows will fix the slicing and Hilbert-
space representation to which the effective relational evolution will correspond. Certainly, when choosing t as the
relational o(~0)-clock, we could choose gauge conditions differing from the t-Zeitgeist; however, these would correspond
to tilted slicings and are, consequently, less convenient for calculations as well as interpretations. Furthermore, the
q-Zeitgeist can be interpreted in terms of slicings parallel to the t-axis and is, thus, not useful for describing evolution
in t.
In the light of the present discussion, one may interpret the evolution generated by the remaining first class

(Hamiltonian) constraint in a given Zeitgeist (e.g., (17) in t-Zeitgeist in Sec. III C 1) which preserves this gauge and
the effective positivity (see Sec. III C 4) as describing an approximate, locally unitary evolution for semiclassical states
in a given (preserved) slicing in a local deparametrization. In addition, the imaginary contribution to internal time
is clearly dependent on the chosen Zeitgeist at the effective level and the slicing in a local deparametrization; when
employing tilted slicings or gauges differing from the Zeitgeist, the imaginary contribution to the internal clock will
take a different form.
In conclusion, certain questions about correlations are best addressed in certain gauges and we are, indeed, evolv-

ing different sets of (partial) relational observables in different Zeitgeister. The presence of additional gauge flows
and slicings also explains the observation that 〈t̂〉(〈q̂〉) and 〈q̂〉(〈t̂〉) are not in one-to-one correspondence, while the
analogous statement (at least locally) holds in the classical system.

D. The moment of gauge and clock change

Here we argue that the precise instant of the gauge change is irrelevant, as long as the semiclassical approximation
is valid before and after the gauge transformation. The instant when to perform the change of the clock then becomes
a matter of convenience.
Let q1 and q2 be two configuration variables, which we use as local clocks, and let C be the constraint surface, G1

the q1-gauge surface and G2 the q2-gauge surface (in C). Denote by αs
CH1

(x) (x ∈ G1) the flow of the “Hamiltonian

constraint” in q1-gauge (i.e., the G1-preserving first class flow) and by αu
CH2

(y) (y ∈ G2) the flow of the “Hamiltonian

constraint” in q2-gauge, where s, u are gauge parameters along the flows. Furthermore, denote by αt
G(x) the flow of

the generator G of some fixed gauge transformation which maps between the q1- and q2-gauge for certain values of t
and which, for the sake of avoiding ordering ambiguities, we assume to be free of caustics (see Secs. III C 3 and VC2
for explicit constructions of such transformations in the examples).
For the moment, assume that both G1 and G2 provide complete submanifolds of C and that there are no global

obstructions to either the q1- or the q2-gauge. Recall that the first class nature of a constraint algebra with n
independent flows ensures that the flows are integrable to an n-dimensional submanifold in C, the gauge orbit g [23].
For simplicity, consider a classical constraint C(q1, q2, p1, p2) on a four-dimensional phase space. Then the quantum

phase space to semiclassical order will be 14-dimensional and governed by five quantum constraint functions which
generate four independent flows [18, 19]. Hence, dim C = 9 and dim g = 4. G1 and G2 are each described by
three independent conditions, thereby fixing three of the four independent flows in g. CH1 (CH2) generates the only
independent gauge flow which preserves G1 (G2), implying dim g ∩ G1 = dim g ∩ G2 = 1, where the sets g ∩ G1 and
g ∩ G2 are the curves αs

CH1
(x) (x ∈ G1) and αu

CH2
(y) (y ∈ G2). Now αt

G(x) ∈ g ∀ t and αt=t∗

G (x) ∈ g ∩ G2 for some

t∗ and x ∈ G1. This map obviously has an inverse, namely α−G, since the flow lines of a single generator form a
congruence in g, and, thus, no point lies on two different such flow lines. Therefore, points along αs

CH1
are mapped

1-to-1 to points along αu
CH2

via αG, and we must have

α
t=t∗1
G ◦ αs

CH1
(x) = αu

CH2
◦ αt=t∗2

G (x) , (46)

for some x ∈ G1, some s, u ∈ R and fixed t∗1, t
∗
2 determined via the conditions α

t=t∗2
G (x) ∈ G2 and α

t=t∗1
G ◦αs

CH1
(x) ∈ G2.

Since the gauge transformation αG maps the points along the CH1 -generated trajectory in G1 bijectively to points
along the CH2 -generated trajectory in G2 we always map between the same two trajectories and, therefore, it does
not matter when precisely the gauge and the clock are switched.
Locally, this argument also holds in systems without global clocks and which suffer from global obstructions to the

q1- and q2-gauges, as long as one works in a regime in which the respective gauges are valid before and after the gauge
transformation and are consistent with the semiclassical approximation. In this regime, it should also be irrelevant
when precisely the gauge and the clock are changed. In Sec. VC3, we numerically demonstrate this argument and
its consistency with the semiclassical approximation in an example.
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E. Relational observables as “fashionables”

As can be seen explicitly in the models studied in the present work, relational observables of the type 〈q̂〉(〈t̂〉) can
be given meaning even if 〈t̂〉 is not used as an internal time throughout the evolution. This feature is implemented
by switching gauges for non-global clocks. Such gauge transformations imply shifts of the order ~ in correlations of
expectation values and moments as one changes clocks. This is not surprising; it merely underlines the fact that
expectation values of the same kinematical variable taken in different Zeitgeister translate into different relational
observables. Semiclassically, however, the differences are only of order ~.
We see that relational observables appear to be only of local nature:15 a Zeitgeist comes with its own set of relational

observables and since a Zeitgeist is typically only temporary, one is forced to use different relational observables to
describe the full evolution. Just as with local coordinates on a manifold, we cover a semiclassical evolution trajectory
by patches of local internal times and translate between them. We, therefore, follow [1] and refer to the correlations of
the evolving expectation values and moments with the (real part of) the expectation value of a local internal clock in
its corresponding Zeitgeist as fashionables. An explicit examples of a fashionable is the correlation of q(s) and ℜ[t(s)]
of Eq. (21) (see FIGs. 3 and 4). These quantities are only defined so long as the corresponding Zeitgeist is valid and
may subsequently “fall out of fashion” when the Zeitgeist changes. By analogy, we also use the term fashionables to
denote the expectation values of operators obtained via local deparametrizations (for example 〈q̂2〉(q1) and 〈p̂2〉(q1)
of Eq. (71)).
It should be noted that the notion of fashionables is, in fact, state-dependent, in contrast to usual operator versions

of quantum relational Dirac observables. Fashionables are associated to a choice of Zeitgeist and different Zeitgeister
are valid for ranges depending on the semiclassical states considered. A fashionable breaks down together with the
corresponding Zeitgeist when it is rendered invalid, e.g., at a turning point of the corresponding clock. Fashionables,
therefore, reflect the local nature of quantum relational evolution and are somewhat closer to a physical interpretation
by being state-dependent. Thereby, they also avoid certain technical and interpretational problems of operator versions
of quantum relational observables, such as non-self-adjointness issues in the presence of a purely local time (see also
the general discussion concerning fashionables in [1]). In practice, the local nature of observables does not prevent one
from computing physically meaningful predictions, as these typically refer to finite ranges of time. Moreover, since
data is consistently transferred between local choices of a clock, one can evolve them through the turning point by
temporarily switching to a new Zeitgeist and employing the old Zeitgeist before and after the turning point.
Apart from being generally of merely local nature, it appears that the standard concept of relational evolution has

only semiclassical meaning and that the standard notion of (locally unitary) relational time evolution breaks down
together with complex relational time in a highly quantum state of a system without a global clock. For a discussion
of this issue, we again refer the interested reader to [1].
Unlike a conventional Hilbert-space representation, the effective approach in its present form does not by itself

rigorously define a quantum theory, but rather provides a tool for evaluating quantum dynamics. In deparameterizable
models, a close relationship between these two formulations has been found and discussed [22]. On the other hand,
when going beyond deparameterizable systems, the effective method can still be used to evaluate quantum dynamics,
while local internal times and fashionables have not been made sense of in the Hilbert-space picture, which indicates
that the effective constructions presented here already go somewhat beyond usual formulations of quantum physics.
At this stage, we are not entitled to formulate effective dynamics as a true alternative to quantum mechanics because
mainly the semiclassical setting has been developed so far. Given the enormous difficulties of dealing with time at
the Hilbert-space level of non-deparameterizable systems, some non-truncated form of effective equations may be a
more suitable setting and eventually be independent of Hilbert-space constructions.

V. A TIMELESS MODEL: THE 2D ISOTROPIC HARMONIC OSCILLATOR WITH FIXED TOTAL

ENERGY

The previous example in Sec. III was deparametrizable, even though one could locally employ a non-global clock
which already revealed a number of consequences of the global time problem, in particular for the effective approach.
Some of these features were subsequently discussed in more generality in Sec. IV, complementing [1]. Now we explore
all this in detail in a truly timeless, non-deparametrizable system comprised of the 2D isotropic harmonic oscillator

15 Relational observables have perhaps been understood as a local concept in the formulations provided before, but so far they have been
made sense of in a quantum setting only in the effective framework as developed in [1]. For a discussion of difficulties in the Hilbert-space
picture, see the comment by Háj́ıček cited in [8].
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with prescribed total energy. This toy model, previously discussed by Rovelli in [5, 8], leads to closed orbits in the
classical phase space and, consequently, does not admit global clocks. The issue of changing clocks/gauges becomes
inevitable. In our discussion we will compare the classical, effective and Hilbert-space approaches to this model.

A. Classical discussion

Classically, the model is governed by the constraint

Cclass = p21 + p22 + q21 + q22 −M (47)

with a constant M . The dynamical equations are given by

{qi, Cclass} = 2pi and {pi, Cclass} = −2qi , (48)

(i = 1, 2) and straightforwardly solved by

q1cl(s) =
√
A sin(2s) , q2cl(s) =

√
M −A sin(2s+ φ) , (49)

p1cl(s) =
√
A cos(2s) , p2cl(s) =

√
M −A cos(2s+ φ) , (50)

where s is the parameter along αs
Cclass

(x) and 0 6 A 6 M , 0 6 φ 6 2π. The canonical pair of Dirac observables φ
and A satisfies

2A =M + p21 − p22 + q21 − q22 , tanφ =
p1q2 − p2q1
p1p2 + q1q2

, (51)

and completely coordinatizes the reduced phase space, which is topologically a sphere and, thus, no cotangent bundle
[8]. The classical system clearly does not possess any global clock functions; indeed, if we choose one of the qi as a
clock, we see that this function will encounter a sequence of turning points along a classical trajectory. The classical
trajectories are ellipses in configuration space, periodic and, therefore closed.
Due to this periodicity of the orbits, states which are related by an integer number of revolutions around such

an ellipse are described by identical phase space information. One could only distinguish these states via the gauge
parameter s which, however, is not a physical degree of freedom. In order to distinguish states related by complete
numbers of revolutions, one would need an extra phase space degree of freedom. Furthermore, the group generated
by this constraint is U(1) which is compact. The number of revolutions around the ellipse, therefore, has no physical
meaning, in spite of the fact that the gauge parameter may run over an infinite interval. We thus identify states
related by complete numbers of revolution.

1. Evolving observables

For the quantization of the model it turns out to be advantageous to use the following over-complete set of Dirac
observables [8]

Lx = 1
2 (p1p2 + q2q1) , Ly = 1

2 (p2q1 − p1q2) ,

and Lz = 1
4

(
p21 − p22 + q21 − q22

)
, (52)

which satisfy the constraint

L2
x + L2

y + L2
z =

M2

16
(53)

and the usual angular momentum (Poisson) brackets. These variables may then be quantized via group quantization.
The observable Ly can be interpreted as the angular momentum of the system which also provides the orbits with an
orientation.
In spite of the a priori timelessness of this model, one can give it a (local) evolutionary interpretation. Given the

timeless initial data φ and A, the classical solution is completely specified and prediction of relational information is
possible. Choose a local clock, say q1, and evolve the other variables of interest, in this case q2 and p2, with respect
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to τ , where τ are the possible values of q1. The relational Dirac observables corresponding to this evolution are,
obviously, double valued, since the orbit is closed and are given by

q±2 (τ) =
√
M/A− 1

(
τ cosφ±

√
A− τ2 sinφ

)
,

p±2 (τ) =
√
M/A− 1

(
−τ sinφ±

√
A− τ2 cosφ

)
. (54)

(where τ is now a parameter). The expressions with index + refer to evolution forward in q1-time, while the expressions
with index − refer to backward evolution in q1 (see Sec. VA2 for additional discussion). The fact that these
correlations are double valued does not constitute a problem, since the value of φ provides an orientation of the orbit.
Starting at a point of the ellipse at a given value of q1, the direction of relational evolution in q1 is provided by the
orientation and one may evolve in this manner around the ellipse without having to switch the clock at the classical
level. Indeed, at the two turning points of q1 the relational momentum observable is non-vanishing and, consequently,
determines the direction of evolution. One can simply switch, for instance, from q+2 to q−2 and change the direction
of τ since the system moves back in q1.

16 This way a consistent relational evolution is obtained along the trajectory
which is entirely encoded within Dirac observables and no use of any gauge parameter is made. For later reference,
it is useful to note that one could arrive at the same predictions of correlations by providing — instead of φ and A
— relational initial data, e.g., q+2 (τ = τ0) and p

+
2 (τ = τ0), plus the orientation of the ellipse which is encoded in the

angular momentum Ly. Notice that the orientation must be specified since, given the values of q1, q2, p2, one can only
solve for p1 up to sign via Eq. (47). This is due to the relativistic/quadratic nature of the constraint and the reason
why, in general, one needs to provide a time direction in which to evolve (or equivalently a Hamiltonian) apart from
the initial data [14], in order to pose a well-defined initial value problem (IVP); purely relational information cannot
coordinatize the space of solutions of systems governed by relativistic constraints.17

We will perform the precise analogue of this local relational evolution in the effective and quantum theory.

2. Local relational evolution generated by physical Hamiltonians

If we interpret Eq. (54) as physical motion in q1, we would like to find a physical Hamiltonian which generates this
motion in the reduced phase space. Such a Hamiltonian is not the constraint, but itself a Dirac observable which
moves a given transversal surface (time level) in phase space [9–11]. Given data on a transversal surface, this data
will be moved onto another transversal surface in a direction determined by the Hamiltonian. More precisely, the
“time direction” is provided by its Hamiltonian vector field. The trouble in the present model is, obviously, that
these transversal surfaces may be intersected twice or not at all by the classical orbit. The two intersections of a
trajectory with given orientation also come with two different evolution directions because the trajectory is closed.
These two opposite directions can, certainly, not both be generated by one and the same physical Hamiltonian, since
it moves the transversal surface in only one direction in phase space. Thus, unlike in systems with global clocks, we
are required to perform a change of Hamiltonian at the turning points of the clock. In order to evolve from the surface
determined by the non-global clock q1, we need two Hamiltonians, one of which generates evolution for q+2 and p+2 in
the positive q1-direction until the turning point of q1 and the second of which then generates evolution for q−2 and p−2
in the opposite direction, away from the turning point. Let us explore this in more detail.
Choosing q1 as local time, we may factorize Eq. (47) classically into a pair of constraints linear in p1,

C = (p1 +H(τ)) (p1 −H(τ)) = C̃+C̃− ,

where H(τ) =
√
M − τ2 − p22 − q22 . (55)

The dynamical equations now read { · , C} = C̃+{ · , C̃−} + C̃−{ · , C̃+}. Away from the turning points in q1-time we
have H(τ) > 0 and, therefore, C = 0 implies that one of the following two possibilities (but not both simultaneously)
is true

C̃+ = 0 ⇔ C̃− = 2p1 < 0 ⇒ q′1 = {q1, C} = 2p1 < 0

and { · , C} ∝ −{ · , C̃+} , (56)

16 Continuation to larger absolute values of τ will produce meaningless complex correlations in Eq. (54) which simply indicates that the
system will never reach such values of the local clock.

17 In non-relativistic parametrized systems, where the momentum conjugate to the time function appears linearly, the time direction is
automatically given.
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or,

C̃− = 0 ⇔ C̃+ = 2p1 > 0 ⇒ q′1 = {q1, C} = 2p1 > 0

and { · , C} ∝ +{ · , C̃−} . (57)

Hence, on the set defined by C̃± = 0 we may use C̃± as evolution generator, but notice that the flow generated

by C̃+ is directed opposite to the one generated by C. Furthermore, since {q1, C̃±} = 1, C̃± and, thus, ±H(τ) are

evolution generators for q2 and p2 in q1-time. In particular, on the part of the constraint surface, where C̃+ vanishes
and, thus, may be used as an evolution generator (whose Hamiltonian vector field points in opposite direction to the
one determined by C), we have q′1 = 2p1 < 0 and, therefore, the system governed by C moves back in q1-time. As a
consequence, while −H(τ) generates evolution for q2 and p2 forward in q1-time, +H(τ) does precisely the opposite.
Note, moreover, that the two Hamiltonians ±H(τ) are themselves relational Dirac observables which generate the
physical equations of motion

q̇2 = ±{q2, H(τ)} = ∓ p2
H(τ)

, (58)

ṗ2 = ±{p2, H(τ)} = ± q2
H(τ)

, (59)

where ˙ denotes a time-derivative w.r.t. τ . As can be easily checked by using Eq. (54), the solution to the equations
of motion generated by +H(τ) will reproduce classically q−2 and p−2 , while the solutions to the equations generated
by −H(τ) will provide q+2 and p+2 . Consequently, in the solutions q+2 and p+2 in (54) τ must run forward, while for
q−2 and p−2 it must run backwards. Care must be taken at the turning point of q1-time, where p1 = H = 0. Here we
have to perform the change from −H(τ) to +H(τ), or vice versa.
The situation here is quite different from the case of the free relativistic particle for two reasons. Firstly, in

the constraint for the free relativistic particle the two momenta come with opposite signs and t′ = {t, Cparticle} =
{t,−p2t + p2} = −2pt, which entails that forward evolution in the clock t is only possible where pt < 0. Secondly, pt is
a Dirac observable which implies that in this model no change of Hamiltonian needs to be performed. Neither of the
two issues occurs in the non-relativistic case, where pt appears linearly and the time direction is automatically given.

B. The quantum theory

The constraint (47), when promoted to a quantum operator in the Dirac procedure, reads

Ĉ = p̂21 + p̂22 + q̂21 + q̂22 −M . (60)

The quantization of this model is straightforward, since zero lies in the discrete part of the spectrum of the constraint.
18 The physical Hilbert space is, therefore, a subspace of the kinematical Hilbert space L2(R2, dq1dq2), where the
physical inner product is identical to the kinematical inner product and simply given by

〈ψ, φ〉phys =
∫ +∞

−∞

dq1dq2 ψ̄(q1, q2)φ(q1, q2) . (61)

The general form of the physical states is

ψphys(q1, q2) =

M/(2~)−1∑

n=0

cnψn(q1)ψM/(2~)−n−1(q2) , (62)

(cn = const) and ψn denotes the n-th eigenstate of the 1D harmonic oscillator. The Dirac observables in Eq. (52)
are also straightforwardly quantized, since there is no factor ordering ambiguity involved. For some aspects discussed
here see also [5, 8].

The inner product may easily be obtained from group averaging, where P =
∫ 2π

0 ds e−iĈs/~, in fact, is a true
projector. The integration range of 2π is due to the constraint being a U(1) generator and compatible with the
classical identification of states on the orbit which are related by integer numbers of revolution.

18 We assume here that M is chosen to the extent that there exist n1, n2 such that 2~(n1 + n2 + 1)−M = 0 and zero actually lies in the

spectrum of Ĉ.
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1. Timelessness

A priori, there should be no time evolution and no IVP since there is no true time. Indeed, in the (q1, q2)-
representation, Eq. (60) provides an elliptic PDE; thus, there is no well-defined IVP for this quantum model, but
rather a boundary value problem. The “initial data” characterizing the quantum solution is in a sense timeless. This
is also highlighted by the inner product (61) which integrates out both configuration variables and, therefore, cannot
be captured by the standard inner products based on constant time slicings. The latter are usually related to the
existence of a well posed IVP.
In spite of this a priori timelessness, we can give a local dynamical interpretation to the quantum theory in analogous

fashion to the classical theory. (The relational evolution to be discussed here is only an emergent local evolutionary
interpretation of a timeless model. Consequently, the apparent non-unitarity in the non-global clock evolution and
possible decoherence effects related to this are an artefact of this emergent interpretation. The model itself is neither
non-unitary nor decohering since there is no true time. For that reason, the issue of “quantum illnesses”, raised, for
instance, in [17], is not directly applicable here.) The ensuing differences between the classical and quantum theory
are, as usual, merely due to the quantum uncertainties; however, these have more severe implications in the absence
of a global clock.
Again, we can give a meaning to orientation in the quantum theory, namely via L̂y, which — being a Dirac

observable — is a well defined operator on Hphys. Its positive and negative eigenspaces distinguish the orientation
which also provides a direction of evolution. By superimposing the two, a superposition of evolution in both directions
is, in principle, possible.
However, owing to the quantum uncertainties, the relational concept of evolution seems to be only of an essentially

semiclassical and certainly local nature when dealing with non-global clocks and even in this regime, quantum effects
have severe consequences. When asking for the value of, say, q2 when a certain value of q1 is realized, one faces the
problem that due to the spread, parts of the state may already be “beyond their turning point” in q1. Classically,
this results in a quite meaningless complex-valued correlation between the two configuration variables (just extend
|τ | beyond A in Eq. (54)) which merely indicates that the system never reaches this point. In the quantum theory,
the correlation of the two variables, thus, loses meaning earlier than in the classical theory; the larger the quantum
uncertainties, i.e., the larger the spread of the state, the earlier the concept of the relational correlation breaks down.
At a given value of the clock q1 part of the system is lost and an apparent non-unitarity shows up. This, certainly,
also applies to semiclassical states and, therefore, one cannot fully reach the classical turning point without changing
the clock beforehand. Here, one cannot simply switch between, e.g., q+2 and q−2 , as one could classically, and as a
consequence relational Dirac observables only have a local meaning.
By the same token, the peak of a coherent physical state may follow a classical trajectory exactly while expectation

values computed in an internal time Schrödinger regime can only do so locally. Such a Schrödinger regime results
from a local deparametrization and is aimed at locally approximating the timeless physical state and the information
contained in it by locally scanning through it, thereby introducing a notion of quantum evolution. The Schrödinger
regime for this model, is explicitly discussed in Sec. VB2 below. For this regime we need an (emergent) inner product
based on constant internal time slicings (for only the part of a coherent physical state which either corresponds
to, e.g., q+2 or q−2 ) and such a slicing becomes troublesome near the classical turning point of the chosen clock
due to the apparent non-unitarity, and eventually breaks down. Since the breakdown occurs earlier the greater the
quantum uncertainties, it becomes apparent that the internal time Schrödinger evolution is only meaningful here in a
semiclassical regime. And even then, an expectation value trajectory cannot completely reproduce the corresponding
classical trajectory near the turning point, even though the peak of the coherent state may do so.
Thus, while the question for what value, say, q2 takes when q1 reads such and such seems to be meaningless if the

state is extremely quantum, it is meaningful for a semiclassical state, where at least locally the expectation value
evaluated in some “emergent” inner product based on constant q1-slicings follows a classical trajectory until close
to the q1-turning point. For highly quantum states in systems without globally valid clock variables, however, the
standard concept of (locally unitary) relational evolution seems to disappear in conjunction with the standard notion
of relational time. For a more detailed general discussion of this feature we refer the interested reader to [1]. The
analysis of the present toy model supplies several general statements in [1] with concrete examples.
Let us, therefore, investigate relational evolution via local deparametrizations and how to reconstruct the informa-

tion of the physical state from it in the semiclassical regime. We refrain from explicitly employing elliptic coherent
physical states here, but in order to visually facilitate the discussion we present an example of such a state for this
model in FIG. 5 (the interested reader may find the recipe for the construction in this particular model in [24]). In
the semiclassical regime it is also reasonable to consider only the solutions to Eq. (60) which consist purely of positive

or negative eigenstates of L̂y such that we avoid superposition of evolution in both directions and are in a position to
essentially repeat the same procedure here as in the classical case.
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FIG. 5: Square amplitude of a coherent solution to the constraint (60), with M = 50~, peaked about a circular configuration
space trajectory.

We now have four methods for investigating the semiclassical regime: the Dirac method, the reduction method,
19 evolution in an approximate local Schrödinger regime or in the effective approach. This issue has been partially
analyzed in the reduction method (which in this simple case turns out to be equivalent to the Dirac method) via group
quantization by Rovelli in [8], therefore, we will focus on the local Schrödinger regime in Sec. VB 2 and the effective
approach in Sec. VC, both truncated at order ~, in this article. We will show that both yield equivalent results.

2. A local internal time Schrödinger regime

Since relational quantum evolution seems feasible for semiclassical states, we would like to locally reconstruct an
internal time Schrödinger regime which reproduces one branch of the timeless physical state. This can be achieved
by simply translating the local relational motion generated by the two Hamiltonians of Sec. VA2 into the quantum
theory and may, therefore, be understood as a local deparametrization with a valid IVP. To construct this Schrödinger
regime, we require q1 (or q2) — in analogy to the parameter τ in (55) — to appear as a parameter rather than as an
operator, and the corresponding states do not exist in the Hilbert space of the previous subsection. We therefore need
a new Hilbert space, with a new inner product, in which we integrate only over q2 at a fixed value of the parameter
q1. The Schrödinger regime using q2 as an internal clock naturally requires a further new Hilbert space, in which the
roles of q1 and q2 are reversed. From the point of view of standard Hilbert-space quantum theory, these Schrödinger
regimes thus constitute different quantizations of the classical theory: that is, they are different and, in general,
inequivalent quantum theories. Even though solutions to the resulting Schrödinger equations violate the quadratic
quantum constraint with self-adjoint clock operator and are not normalizable with (61), they can be considered as
approximations to the original constrained problem by referring to the analysis of [1] summarized in Sec. IVA: the
WDW equation (60) is, in fact, not violated if internal time in this equation allows for an imaginary contribution.
Due to the apparent non-unitarity alluded to above, the local Schrödinger regime will break down on approach to
the classical turning point of the clock, and we can only hope to reconstruct/approximate the full physical state by
switching clocks and deparametrizations prior to the breakdown of the respective clock. The results of this section will
become essential for understanding the effective approach, since the local relational evolution of expectation values,
i.e., of fashionables, obtained in both approaches will prove to be indistinguishable.

19 Since in the reduced phase space quantization the parameter τ survives in the quantum theory, it is the only method in which the
timeless physical inner product (61) may be used in order to compute expectation values at a fixed value τ of q1; otherwise this physical
inner product does not admit a sense of evolution.
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Choosing C̃+ (and, thus, backward evolution in q1) in Eq. (55), standard quantization yields

i~
∂

∂q1
ψ(q1, q2) = Ĥ(q̂2, p̂2; q1)ψ(q1, q2)

=
̂√

M − q21 − p22 − q22 ψ(q1, q2) , (63)

where Ĥ is defined via spectral decomposition. The eigenfunctions of the latter are the harmonic oscillator eigenfunc-
tions ψn with eigenvalues Hn(q1) =

√
M − q21 − ~(2n+ 1), and, consequently, the operator is positive definite on the

lower energetic eigenstates, where the time dependent energy bound is given by M − q21 .
20 In analogy with Eq. (55)

and in contrast to Eq. (60), q1 has been reduced to a parameter here (see also Sec. IVA and [1] on this issue).

We solve Eq. (63) in the standard way — noting that [Ĥ(q̂2, p̂2; q1), Ĥ(q̂2, p̂2; q
′
1)] = 0 — via

ψ(q2; q1) = e
− i

~

∫
q1
q10

dt Ĥ(q̂2,p̂2;t)ψn(q2; q10)

= e−
i
~
En(q1)ψn(q2; q10) , (64)

where

En(q1) =

∫ q1

q10

dtHn(t) =
1

2

(
q1

√
M − q21 − ~(2n+ 1)− q10

√
M − q120 − ~(2n+ 1)

+(M − ~(2n+ 1))

(
arctan

(
q1√

M − q21 − ~(2n+ 1)

)
− arctan

(
q10√

M − q120 − ~(2n+ 1)

)))
.

(65)

In order to better explore the semiclassical regime, let us attempt to construct coherent states. The eigenstates of
Ĥ are given by harmonic oscillator eigenmodes; therefore, it seems reasonable to make the following standard ansatz
for a coherent state21

|z(q10)〉 = e−|z|2/2ezâ
+ |0〉 = e−|z|2/2

∑

n≥0

zn√
n!
|n〉 , (66)

where |n〉 is the n-th eigenstate of the harmonic oscillator,

â =
1

2~
(q̂2 + ip̂2) â+ =

1

2~
(q̂2 − ip̂2) (67)

are the usual annihilation and creation operators of the harmonic oscillator, and

z =
q20 + ip20√

2~
, (68)

where q20 and p20 are the initial positions of the coherent state in phase space.

The coherent state will be evolved with the (local) evolution generator Ĥ. Thus,

|z(q1)〉 = e
− i

~

∫
q1
q10

dt Ĥ(q̂2,p̂2;t)|z(q10)〉

= e−|z|2/2
∑

n≥0

zn√
n!
e−

i
~
En(q1)|n〉 . (69)

Furthermore, the states are normalized 〈z(q1)|z(q1)〉 = 1 with respect to the standard inner product obtained by
merely integrating out q2.
The coherent states of the harmonic oscillator are dynamical coherent states when evolved with the standard

Hamiltonian. Here, however, we are not evolving with the standard Hamiltonian and, therefore, these states are only

20 This energy bound is related to the upper limit of the sum in the physical state (62).
21 For convenience, we shall henceforth employ bra and ket notation.
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initially coherent states for our local Schrödinger regime; the states are not eigenstates of â for all times, as can be
seen from

â|z(q1)〉 = e−|z|2/2
∑

n≥0

zn+1

√
n!
e−

i
~
En+1(q1)|n〉 6∝ |z(q1)〉 , (70)

and the form of Eq. (65).
Expectation values as functions of q1, i.e., fashionables, are now easily calculated

〈q̂2〉(q1) = 〈z(q1)|q̂2|z(q1)〉 = 〈z(q1)|
√

~

2
(â+ â+)|z(q1)〉

= e−|z|2
∑

n≥0

|z|2n
n!

(
q20 cos

(
En+1(q1)− En(q1)

~

)
+ p20 sin

(
En+1(q1)− En(q1)

~

))
,

〈p̂2〉(q1) = 〈z(q1)|p̂2|z(q1)〉 = 〈z(q1)|
√

~

2
i(â+ − â)|z(q1)〉

= e−|z|2
∑

n≥0

|z|2n
n!

(
p20 cos

(
En+1(q1)− En(q1)

~

)
− q20 sin

(
En+1(q1)− En(q1)

~

))
.

(71)

The explicit expressions for the fashionables of the moments (∆q2)
2, (∆p2)

2 and ∆(q2p2) as functions of q1 are given
in Appendix C. The first two equations for 〈q̂2〉 and 〈p̂2〉, certainly, reduce to the standard (classical) equations of
motion for the expectation values of the harmonic oscillator if one replaces En(q1) with the usual eigenvalues of the
harmonic oscillator. Plots of these fashionables for a specific configuration are provided in FIGs. 6 and 7 in Sec. VC1
below, combined with a comparison with the effective results.
As an explicit example of the analysis summarized in Sec. IVA, let us discuss by how much we are violating the

WDW equation (60) due to the fact that q1 is a real parameter here. To this end, we compute

〈z(q1)|Ĉ|z(q1)〉 = 〈z(q1)| − ~
2 ∂

2

∂q21
− Ĥ2|z(q1)〉

= 〈z(q1)|i~(∂q1Ĥ)|z(q1)〉
= 〈z(q1)| − i~q1(Ĥ)−1|z(q1)〉

= −i~ e−|z|2
∑

n≥0

|z|2n
n!

q1√
M − q21 − ~(2n+ 1)

= i~
∂

∂q1
〈z(q1)|Ĥ |z(q1)〉 . (72)

(The last line just demonstrates the Ehrenfest theorem.) Linearizing in ~, one finds a violation of the quadratic
constraint

〈z(q1)|Ĉ|z(q1)〉 = − i~q1√
M − q21

+ o(~2) . (73)

To bridge this discrepancy, we interpret q1 as the operator (45) with expectation value having an imaginary contri-

bution − i~
2〈p̂1〉

to order ~. Due to (∆q1)
2 = 0, one finds 〈q̂21〉 = 〈q̂1〉2 = q21 − i~q1

〈p̂1〉
+ O(~

3
2 ) and, with a little further

calculation, it turns out that the right hand side of Eq. (73) is precisely the imaginary part of 〈q̂21〉. It may thus be
brought to the left hand side and interpreted as the imaginary contribution to the expectation value of the clock q1
in Eq. (60). Then, the quadratic constraint is satisfied to this order and provides an explicit example for the general
derivation in [1].
Similarly, to linear order in ~, Dirac observables of the quadratic constraint are, in general, constants of motion of

the internal time Schrödinger regime only if the expectation value of the clock in the quadratic constraint is complex.
For instance, the quantized Dirac observable A of Eq. (51) is given by 2Â = 2(M − p̂22 − q̂22) + Ĉ. The expectation

value 〈z(q1)|Â|z(q1)〉 is independent of q1 only if the expectation value of Ĉ vanishes to semiclassical order since,
employing Eq. (71) and the expressions in Appendix C, one can easily convince oneself that the expectation value of
p̂22 + q̂22 is q1-independent.
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Finally, let us return to the issue of reconstructing the classical trajectory or even the full physical state from the
results in this Schrödinger regime. The peak of a semiclassical state may follow a classical trajectory almost precisely.
However, the expectation values can only follow the classical trajectory away from the turning point. Due to the
apparent non-unitarity of evolution in q1, the fashionables evaluated in the standard Schrödinger type inner product
with q1 = const slicing must become meaningless on approach to the turning point of q1. Heuristically, this may be
understood by taking the expectation value of the unit operator which may be interpreted as the probability that the
system is at some q2 for a given value of q1. As long as the state is sufficiently semiclassical and the peak is far enough
away from the clock turning region, this expectation value should always give 1. On approach to the turning region,
however, there will be parts of the state which are “beyond their turning point,” precluding meaningful expectation
values. Part of the system is lost which implies that the expectation value of the unit operator cannot give 1 anymore.
Non-unitarity, therefore, implies that the spread in q1 cannot vanish close to the classical turning point, since

(∆q1)
2 = 〈q21〉 − 〈q1〉2 = q21

(
〈1〉 − 〈1〉2

)
, (74)

which is non-vanishing when the expectation value of the unit operator fails to be unity. This provides an analogy in
the internal time Schrödinger regime for why the q1-gauge, which among other conditions enforces (∆q1)

2 = 0, must
break down on approach to the turning point of q1-time in the effective procedure.
As a consequence, in order to reproduce information from the full physical state, we are forced to change from

constant q1- to constant q2-slicing, and thus from q1- to q2-time, prior to the Schrödinger regime in q1-time becoming
invalid. Likewise, we have to switch from q2-time back to q1-time again, prior to the constant q2-slicing subsequently
becoming invalid and so on until we have evolved once around the classical ellipse. In order for the physical state to be
reproduced, it then remains to be shown that the expectation values of the quantum Dirac observables characterizing
the physical state, such as the three angular momentum operators (52), are invariant under the change of slicing.
Since the two slicings used here are orthogonal to each other, one cannot smoothly translate data from one slicing to
the other. In fact, one would expect jumps in the relational correlations when switching the slicing. The necessary
changes in slicing here are directly analogous to the necessary changes between q1- and q2-gauge in the effective
approach in Sec. VC below and underline that fashionables can only locally be made sense of.

C. Effective procedure

To semiclassical order, the constraint (60) translates into the following five constraints in the effective approach

C = p21 + p22 + q21 + q22 + (∆p1)
2 + (∆p2)

2 + (∆q1)
2 + (∆q2)

2 −M = 0

Cq1 = 2p1∆(q1p1) + 2p2∆(q1p2) + 2q1(∆q1)
2 + 2q2∆(q1q2) + i~p1 = 0

Cp1 = 2p1(∆p1)
2 + 2p2∆(p1p2) + 2q1∆(p1q1) + 2q2∆(p1q2)− i~q1 = 0

Cq2 = 2p1∆(p1q2) + 2p2∆(q2p2) + 2q1∆(q1q2) + 2q2(∆q2)
2 + i~p2 = 0

Cp2 = 2p1∆(p1p2) + 2p2(∆p2)
2 + 2q1∆(q1p2) + 2q2∆(q2p2)− i~q2 = 0 . (75)

Again, there are four linearly independent flows generated by these five constraints. The 14 dimensional Poisson
manifold may, therefore, be reduced to five physical degrees of freedom. Dirac observables for this system are easily
obtained by translating either Eqs. (51) or (52) into the quantum theory and taking their expectation values. For
instance, the over-complete set (52) now reads

Lx =
1

2
(p1p2 + q1q2 +∆(p1p2) + ∆(q1q2)) ,

Ly =
1

2
(p2q1 − p1q2 +∆(q1p2)−∆(p1q2)) ,

Lz =
1

4

(
p21 − p22 + q21 − q22 + (∆p1)

2 − (∆p2)
2

+(∆q1)
2 − (∆q2)

2
)

. (76)

Owing to the definition of the effective Poisson bracket (1), also these effective observables satisfy the stan-
dard angular momentum Poisson algebra. Moreover, due to Eq. (2), the moments associated to these variables,
(∆Lx)

2, (∆Ly)
2, (∆Lz)

2,∆(LxLy),∆(LxLz) and ∆(LyLz), will provide the o(~)-observables. Since classically (52) is
an over-complete set, also these nine observables here are, certainly, over-complete. Indeed, to order ~, the constraint
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(53) can easily be translated into four relations among these effective observables, thus leaving us with the five physical
degrees of freedom to this order. The explicit expressions for the moments, as well as the four relations among the full
set of these observables, are rather lengthy and not particularly illuminating. We, therefore, abstain from showing
them here. As regards relational evolution, the angular momentum Ly will provide an orientation to the effective
trajectories.
Due to the symmetry of the model in the indices 1 and 2, we will henceforth work with indices i, j ∈ {1, 2}. In

analogy to Eq. (15), we impose the qi-gauge (or the Zeitgeist associated to qi)

φ1 = (∆qi)
2 = 0

φ2 = ∆(qiqj) = 0

φ3 = ∆(qipj) = 0 . (77)

The remaining first class constraint with vanishing flow on the variables q1, p1, q2, p2, (∆qj)
2, (∆pj)

2, ∆(qjpj) is
directly proportional to Cqi . The solution of this constraint

Cqi ≈ 2pi∆(qipi) + i~pi = 0 ⇒ ∆(qipi) = − i~
2

, (78)

again implies the saturation of the (generalized) uncertainty relation in (qi, pi).
The Hamiltonian constraint reads

CH = C + αCpi
+ βCqj + γCpj

, (79)

where on the gauge surface (77)

α = − 1

2pi
, β =

qj
2p2i

and γ =
pj
2p2i

. (80)

In addition to Eq. (78), we may solve Cpi
, Cqj and Cpj

for the remaining non-physical moments

(∆pi)
2 =

p2j(∆pj)
2 + 2qjpj∆(qjpj) + q2j (∆qj)

2 + i~qipi

p2i
,

∆(pipj) = −2pj(∆pj)
2 + 2qj∆(qjpj)− i~qj

2pi
,

∆(qjpi) = −2qj(∆qj)
2 + 2pj∆(qjpj) + i~pj

2pi
. (81)

Making use of this, the relevant dynamical equations generated by CH simplify on the gauge surface (77) and are
given by

q̇i = {qi, CH} ≈ 2pi −
i~qi
p2i

− 2
p2j (∆pj)

2 + 2qjpj∆(qjpj) + q2j (∆qj)
2

p3i
,

q̇j = {qj, CH} ≈ 2pj + 2
qj∆(qjpj) + pj(∆pj)

2

p2i
,

ṗi = {pi, CH} ≈ −2qi −
i~

pi
,

ṗj = {pj, CH} ≈ −2qj − 2
qj(∆qj)

2 + pj∆(qjpj)

p2i
,

˙(∆qj)2 = {(∆qj)2, CH} ≈ 4
qjpj(∆qj)

2 + (p2i + p2j)∆(qjpj)

p2i
,

˙(∆pj)2 = {(∆pj)2, CH} ≈ −4
qjpj(∆pj)

2 + (p2i + q2j )∆(qjpj)

p2i
,

˙∆(qjpj) = {∆(qjpj), CH} ≈ 2
(p2i + p2j)(∆pj)

2 − (p2i + q2j )(∆qj)
2

p2i
. (82)
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This set of coupled equations is rather complicated to solve analytically, but this is not necessary for our discussion
here.
Although the dynamical equation for pi is not classical in nature, the ~0-order part of pi must still vanish and

pi → o(~) on approach to the turning point of qi-time. In conjunction with Eq. (80), this implies that the qi-
gauge is inconsistent with the semiclassical truncation near the qi turning point as a result of the coefficients of the
o(~)-constraints becoming singular. In addition, we may note that due to the imaginary terms

Cqj −→
pi → o(~)

2pj∆(qjpj) + 2qj(∆qj)
2 + i~pj ≈ 0 ,

Cpj
−→

pi → o(~)
2pj(∆pj)

2 + 2qj∆(qjpj)− i~qj ≈ 0 , (83)

combined with the assumption of real valued qj , pj, (∆qj)
2, (∆pj)

2 and ∆(qjpj) implies a violation of Cqj and Cpj

to semiclassical order at the turning point. But as previously discussed, this collapse of the qi-gauge does not come
unexpected, being related to a non-global clock.
In analogy to Eq. (22), combining Cpi

, Cqj , Cpj
and C yields a further constraint proportional to CH , which on

the constraint surface in the qi-gauge reads

p4i +
(
p2j + q2i + q2j −M + (∆pj)

2 + (∆qj)
2
)
p2i + i~qipi

+p2j(∆pj)
2 + 2qjpj∆(qjpj) + q2j (∆qj)

2 = 0 . (84)

We may use this remaining constraint to discuss the imaginary contributions to the variables we have chosen, as a
result of the i~-term in Eq. (84). For brevity, let us only state the (expected) result here: in complete accordance with
the general result of Sec. IVA and [1], it is inconsistent with the equations of motion and the constraints in qi-gauge
to keep a real-valued clock qi and to push the imaginary contributions to its conjugate momentum pi, while having
real-valued variables associated to the pair (qj , pj). Instead, it is consistent to have both the variables associated to
the pair (qj , pj) and pi real-valued, as well as a complex clock with the standard imaginary contribution, inherent to
non-global clocks,

ℑ[qi] = − ~

2pi
. (85)

A proof of this may be found in Appendix D. Note, however, that it is also possible that both qi and pi are complex
simultaneously.

1. Local evolution and comparison to the internal time Schrödinger regime

Since we are interested in a comparison of the effective approach with the internal time Schrödinger regime, we solve
the system of effective equations (82) numerically in the q1-gauge and compare the results with the ones obtained via
Eq. (71) and the expressions in Appendix C. FIG. 6 shows a comparison of the classical, effective and Schrödinger
regime results for the configuration space ellipse for a specific configuration, whose initial data is given in the caption
of the figure. These curves depict the relational Dirac observable q2(q1) in the classical case, the relationship q2(ℜ[q1])
of expectation values in the effective framework, and 〈q̂2〉(q1) from Eq. (71) in the Schrödinger regime where q1 is a
real parameter.22

The three curves are indistinguishable where valid. Notice that the Schrödinger regime breaks down somewhat
earlier than the curve of effective expectation values, due to the square roots in Eq. (65) which become imaginary for
larger values of q1 and states with higher n. The breakdown of the correlations from the effective and Schrödinger
regime emphasizes the merely local nature of the fashionables. In spite of this, the plot also demonstrates that, at
least locally, one can reconstruct a semiclassical orbit from the effective framework and the Schrödinger regime.
For further — non-trivial — comparison of the Schrödinger regime and the effective framework, we compare the

relational evolution of their respective moments, related to the pair (q2, p2), in q1-time in FIG. 7 for the same
initial data as previously. The curves demonstrate that the relational evolution of the moments of both approaches
agrees perfectly to this order. Since these relational moments are truly quantum in nature, this agreement provides
interesting non-trivial evidence for the equivalence of these two different approaches to semiclassical order. It is also

22 Note that in the effective framework we evolve with respect to the real part of q1, in accordance with the discussion in Sec. IVB and
the one concerning FIG. 8 below. For the effective curve, the axis label q1, therefore, actually refers to ℜ[q1].
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found numerically, that the discrepancies between the results of the two approaches are of o(~2) or even smaller.
Again, due to the square roots in Eq. (65), the Schrödinger regime in constant q1-slicing breaks down earlier than the
q1-Zeitgeist in the effective framework. The eventual divergence of the effective moments in FIG. 7 demonstrates the
breakdown of the latter.
Finally, as regards the effective evolution in q1, FIG. 8 shows the behavior of the real and imaginary parts of q1

with respect to the gauge parameter s of (79) for the same effective configuration. Away from the breakdown of
the q1-Zeitgeist, signified by the divergence in both the real and imaginary parts of q1, the real part of q1 is clearly
monotonic along the flow and may thus be used as a relational clock. On the contrary, the imaginary contribution to
q1 does not behave monotonically and, consequently, is not a useful clock here, underlining the general argument for
employing only the real part of a clock for evolution, as advocated in Sec. IVB. Note that the real part of q1 runs
backwards in the flow parameter, since we have chosen the initial data equivalently to the Schrödinger regime, where
for (63) we had chosen the quantization of C̃+ in Eq. (55), which generates backwards evolution in q1.

-3 -2 -1 1 2 3 q1

-1.0

-0.5

0.5

1.0

q2

FIG. 6: Pictorial comparison of the classical relational Dirac observable q2(q1) (blue dotted curve) with the quantities q2(ℜ[q1])
calculated in the effective theory using the q1-gauge (violet dashed curve) and 〈q̂2〉(q1) in the Schrödinger regime (yellow solid
curve). The initial data match in all three cases: we chose q20 = 0.7 and p20 = −0.7 for the Schrödinger regime, which via
Eq. (C1) yields (∆q2)

2(q1 = 0) = (∆p2)
2(q1 = 0) = ~

2
and ∆(q2p2)(q1 = 0) = 0. We have set M = 10 and, to amplify

effects, ~ = 0.03. We take these values as initial data for the effective formalism as well, and, using Eq. (84), we determine the

initial value for p10 = −2.998 (the minus sign is necessary here, since in Eq. (63) we quantized C̃+ which evolves backwards
in q1). In the effective picture, due to the imaginary contribution to q1 in the q1-gauge, we have set the initial value of the
clock to q1 = − i~

2p10
, but employ ℜ[q1] as relational clock (see also FIG. 8). The initial data for the classical curve has been

chosen accordingly. As regards the axis labels: for the effective framework both q1 and q2 refer to the expectation values of the
corresponding operators (for q1 the real part), while for the internal time Schrödinger regime q2 refers to the expectation value
from Eq. (71) and q1 is the real evolution parameter. Where valid, the three curves agree perfectly. The Schrödinger regime
breaks down earlier than the q1-gauge of the effective framework.

2. Changing time and gauge transformations

Just as in the model of Sec. III we can use flows generated by the constraint functions to perform a gauge transfor-
mation from qi-gauge to qj-gauge. In this way, we can evolve the system through an entire closed orbit by switching
the role of time back and forth between the two configuration space variables. In this section we calculate the
corresponding gauge transformations; evolution through the entire orbit is explored in the following section.



35

-3 -2 -1 0 1 2 3
q1

7 Ñ
15

Ñ

2

8 Ñ
15

17 Ñ
30

HDq2L
2

-3 -2 -1 0 1 2 3
q1

7 Ñ
15

Ñ

2

8 Ñ
15

17 Ñ
30

HDp2L
2

-3 -2 -1 1 2 3
q1

- 3 Ñ
10

- Ñ5

- Ñ10

Ñ

10

Ñ

5

DHq2p2L

a) b) c)

FIG. 7: Comparison of the effective (black dotted curves) and internal time Schrödinger regime results (blue dashed curves) for
the fashionables in q1-time associated to moments: a) (∆q2)

2(q1), b) (∆p2)
2(q1) and c) ∆(q2p2)(q1). The curves agree perfectly

to order ~. As explained in the main text, the Schrödinger regime breaks down earlier than the q1-gauge of the effective
framework. The breakdown of the latter is clearly demonstrated by the divergence of the effective moments near |q1| ≈ 3. The
initial data is identical to the one for FIG. 6.
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a) b)

FIG. 8: Behavior of a) the real and b) the imaginary part of the local clock q1 with respect to the gauge parameter s of CH

for the effective configuration with initial data as given in the caption of FIG. 6. Clearly, while ℜ[q1] is monotonic along the
flow of CH (as long as the q1-gauge is valid) and, therefore, constitutes a useful local clock, ℑ[q1] does not provide a suitable
clock here. The divergence of both near |s| ≈ 0.79 signifies the breakdown of the q1-gauge.

Following the steps used in Sec. III C 3 to construct the gauge transformation between different Zeitgeister, we find
the effect of the flows on the other variables to be given by

XG1(qi) =
piqi − 2pjqj

2pip2j
, XG2(qi) = − 1

pi

XG1(pi) =
pi
2p2j

, XG2(pi) = 0

XG1(qj) =
qj
2p2j

, XG2(qj) =
1

pj

XG1(pj) = − 1

2pj
, XG2(pj) = 0

XG1

(
(∆qi)

2
)
= −p

2
i

p2j
, XG2

(
(∆qi)

2
)
= 0

XG1

(
(∆pi)

2
)
=
qi(2pjqj − piqi)

pip2j
, XG2

(
(∆pi)

2
)
=

2qi
pi

XG1 (∆(qipi)) =
piqi − pjqj

p2j
, XG2 (∆(qipi)) = −1 .

This time the derivatives along the flow are not constant; however, they depend only on expectation values. For
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the variables of interest, all of the derivatives in an expansion of the flow actions of αG1 and αG2 via Eq. (34)
are functions of expectation values only and are thus of classical order ~0. Second and higher derivative terms
are suppressed by second and higher powers of the flow parameter, which is of order ~, since it goes from zero to
−(∆qj)

2
0 or −

(
∆(qjpj)0 +

i~
2

)
. Therefore, to order ~ it is sufficient to take the terms up to first order in derivatives

in the flow expansion via Eq. (34) of αs
G(f)(x0) := α

−(∆(qjpj)0+i~/2)
G2

◦ α−(∆qj)
2
0

G1
(f)(x0), i.e. we have αs

G(f)(x0) =

f0 − (XG1(f))0 (∆qj)
2
0 − (XG2(f))0 (∆(qjpj)0 + i~/2) + o(~2). The transformation to order ~ thus obtained has the

form23 (dropping the α’s for brevity)

(∆qi)
2 =

(pi)
2
0(∆qj)

2
0

(pj)20

(∆pi)
2 =

(pj)
4
0(∆pj)

2
0 + (2(pj)0(qj)0 − 2(pi)0(qi)0)∆(qjpj)0 + (∆qj)

2
0((pi)0(qi)0 − (pj)0(qj)0)

2

(pi)20(pj)
2
0

∆(qipi) =
(∆qj)

2
0((pj)0(qj)0 − (pi)0(qi)0)

(pj)20
+∆(qjpj)0

qi = (qi)0 +
i~(pj)

2
0 + (∆qj)

2
0(2(pj)0(qj)0 − (pi)0(qi)0) + 2(pj)

2
0∆(qjpj)0

2(pi)0(pj)20

pi = (pi)0

(
1− (∆qj)

2
0

2(pj)20

)

qj = (qj)0 −
i~(pj)0 + 2(pj)0∆(qjpj)0 + (qj)0(∆qj)

2
0

2(pj)20

pj = (pj)0

(
1 +

(∆qj)
2
0

2(pj)20

)
.

(86)

These are the explicit expressions for the free variables of qj-gauge in terms of the free variables of the qi-gauge
24.

We note that just as in the model of Sec. III, this transformation precisely cancels out the imaginary part (85) of
the time variable qi, rendering it real in the qj-gauge, while simultaneously giving qj precisely the correct imaginary
contribution expected of a time variable, if its initial value (qj)0 is real. See Appendix B3 for the discussion of
positivity of the gauge transformed state.

3. Evolution around the closed orbit

Finally, let us perform a sequence of gauge and clock changes until we fully evolve around the configuration space
ellipse. As a result of the breakdown of the qi-Zeitgeist near the qi turning point, the changes between the gauges
and q1- and q2-time are required. The breakdown of the gauges and the necessity of gauge changes are precisely the
effective analog of the apparent non-unitarity in the internal time Schrödinger regime in Sec. VB 2 and the ensuing
breakdown of the constant qi-slicing and the resulting obligation to change the slicing and the clock. The jumps
between the correlations which one would obtain when changing slicing in the Schrödinger regime translate into the
jumps in correlations encountered in the gauge changes in Sec. VC2. (As emphasized in Sec. VB, quantum relational
observables valid for all classically allowed values of the chosen clock, therefore, do not exist.)
Apart from such quantum effects, the relational procedure works just as in the classical case. Due to the relativistic

nature of the constraint, we are required to provide a time direction in which to evolve, since imposing only the
relational initial data qj , pj, (∆qj)

2, (∆pj)
2 and ∆(qjpj) at a fixed value of qi does not completely solve the IVP. As

in the classical model and the Dirac approach, providing Ly, being the angular momentum, results in giving the
required orientation to evolution. Using Eq. (81) and the expression for C in Eq. (75), pi is determined up to sign
when providing the relational initial data. The expression for Ly in Eq. (76) then implies that additionally providing
Ly is equivalent to imposing the sign of pi. Note that, unlike in the full quantum theory briefly described in Sec. VB

23 In fact, the flows αG1
and αG2

have a relatively simple form and can also be integrated analytically, yielding identical results to order
~.

24 Not all these variables are free, as pi can be eliminated in the qi-gauge with the use of C. We display its transformation for convenience,
since we are using (pi)0 and (pj)0 within the above expressions.
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and in complete accordance with semiclassicality, there cannot be a superposition of evolution in the two opposite
orientations in the effective framework truncated at order ~.
Given this data, the system (82) can be solved (at least numerically) and we can relate the variables associated to

(qj , pj) to the clock qi and evolve forward in the qi-Zeitgeist in the given direction of evolution. Prior to the breakdown
of this gauge, we translate to qj-gauge and, thus, to a different set of fashionables. Then, just before the subsequent
breakdown of the qj-Zeitgeist, we return to qi-gauge and so forth, until fully evolving around the ellipse. In this way,
the initial data is transported around the orbit independently of the gauge parameters, although employing different
gauges and even different sets of fashionables in the different gauges (see also Sec. IVC).
It should be noted that, just as in Secs. VA2 and VB2, we could generate our physical evolution by a physical

Hamiltonian, which would be obtained by simply linearizing Eq. (84) in pi. The resulting relational evolution would,
obviously, be identical to the one generated by CH . Since the system generated by CH is somewhat simpler to
handle, we focus on Eq. (82) here. Notice also that the effective formalism reintroduces a gauge parameter even in
the quantum theory (the parameter along the flow of CH). Recall from the introduction that this gauge parameter
simplifies a patching solution to the global problem of time in the classical case and that its absence in the quantum
theory is one of the reasons for the difficulties occurring there. Nevertheless, the gauge parameter here is related to
CH which depends on the qi-Zeitgeist. When changing gauge, one necessarily obtains a separate gauge parameter
and since the gauges break down prior to the classical turning points of the clocks, one cannot use the effective gauge
parameters in the classical way to overcome the global problem of time.
As regards reconstructing the full coherent physical state from the Schrödinger regime, it was noted in Sec. VB 2

that one would need to explore whether the quantum versions of the Dirac observables (51) or (52), which characterize
the physical state, are constants of motion in a given constant qi-slicing and whether they are invariant under a change
of slicing. In the present effective case, the answer to this problem is obvious: since the characterizing observables,
for instance, (76) and their moments are complete Dirac observables of the effective system, they are invariant under
the action of the constraints (75) and, therefore, also under the gauge changes of Sec. VC2. Consequently, they
are constant for the given orbit which we are analyzing and, as a result, we are always probing one and the same
physical state. Since the internal time Schrödinger regime corresponds to the effective framework to this order, we
conjecture that also in the Schrödinger regime, these observables remain invariant, although this is more difficult to
prove explicitly.
As a specific example of an effective reconstruction of a semiclassical physical state via gauge switching, we provide

a plot of the configuration space ellipse in FIG. 9a for a configuration whose initial data is provided in the caption
of the figure. We have started in the q1-Zeitgeist and changed gauge four times in the course of evolution, in order
to reach the same gauge after a complete revolution around the ellipse. Since revolution numbers around the ellipse
have no physical meaning in either the classical or the quantum theory, we only evolve once around the ellipse. In
accordance with this, it is found that the discrepancy between the variables in the q1-gauge before and after one
complete revolution are of order o(~2) or smaller. For the particular example of ∆(q2p2)(ℜ[q1]) this is shown in FIG.
9 b); the two curves in the same gauge before and after the complete revolution agree extremely well to order ~,
implying that they describe the same physical state. The jumps between the curves in the two different gauges are
a consequence of the particular form of the gauge changes, as given in Sec. VC2. In agreement with Sec. IVD, it is
also found numerically that the end result does not depend on the precise instants of the intermediate gauge changes,
as long as the two gauges are valid before and after the transformations. This shows consistency of the argument in
Sec. IVD with the semiclassical approximation in this particular example.

Validity of the semiclassical approximation and the new and old gauge has to be checked when performing inter-
mediate gauge changes. This is not problematic as long as the ellipse is reasonably close to a circle. For squeezed
ellipses, however, when the turning points in q1- and q2-time may lie very close to each other, one has to be rather
careful when precisely to carry out the gauge change, since in spite of a semiclassical trajectory, the spread will play a
more restrictive role in this case. Nonetheless, this issue merely constitutes a practical, but not a conceptual problem.

VI. DISCUSSION AND CONCLUSIONS

In this article we have described in two simple toy models the effective approach of [1] to coping with the general
problem of time in the semiclassical regime. A central additional ingredient for the interpretation of this approach is the
relational concept of evolution. By employing an effective framework, one benefits from the advantage of sidestepping
many technical problems associated to the general problem of time, thereby facilitating an explicit investigation of
various of its aspects, as well as their repercussions for the usual Dirac quantization.
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FIG. 9: a) Reconstruction of a semiclassical physical state via gauge switching in the effective framework. The jumps between the
q1-gauge (black dotted and dashed curves) and the q2-gauge (blue solid curves) are a consequence of the o(~) jumps in the gauge
transformations (86). The final evolution in q1-Zeitgeist after the fourth clock change is given by the fat black dashed curve and
coincides to o(~) with the initial evolution in q1-gauge prior to the first clock change. For convenience we have labeled the axes
by q1 and q2. It should be noted that for the curves in qi-gauge, qi actually refers to ℜ[qi]. b) Comparison of ∆(q2p2)(ℜ[q1]) in
q1-gauge before (dashed curve) and after (dotted curve) the complete revolution around the ellipse. The difference between the
two curves is clearly of o(~2) or smaller. Initial data for both a) and b): q10 = − i~

2
, p10 = q20 = p20 = 1, (∆q2)

2
0 = (∆p2)

2
0 = ~

2
.

Furthermore, M = 3 and, to enhance effects, we have set ~ = 0.01. The initial value for ∆(q2p2) follows from Eq. (84).

In particular, the effective approach avoids the Hilbert space problem altogether since no use of representations or
physical inner products has been made at any point of the algebraic construction. The tedious problem of constructing
physical states and inner products, which is often even practically impossible,25 is replaced by evaluating an (infinite)
coupled set of quantum variables which can be consistently truncated to a finite solvable system, for instance, at
semiclassical order; necessary physicality conditions for observables are ultimately imposed just by reality conditions.
At this stage, the effective framework can be implemented numerically and its physical properties can be studied in
detail.
Although we can avoid practical problems in constructing physical Hilbert spaces, we do not intend to suggest

solutions of effective constraints as full substitutes of physical states. Some questions, such as the measurement
problem, can only be addressed with Hilbert-space representations. Effective techniques at present do not provide
a complete description of quantum systems, but they can capture representation-independent information which is
sufficient for many questions of interest.
The multiple-choice problem, furthermore, does not constitute a problem at the effective level, since, from the point

of view of the Poisson manifold of the effective framework, all variables of a given order are treated on an equal footing.
Just as in the classical case, we may choose whichever suitable (quantum) phase space clock function we desire and
deparametrize in this variable. To simplify explicit calculations and interpretations, it is helpful to further impose
gauge conditions on this effective constrained system, which are closely related to the choice of the clock variable
and which fix all but one Hamiltonian gauge flow. Note that this gauge fixing happens after quantization. At this
level, choosing different clocks means choosing different gauges and corresponding Zeitgeister in which to evaluate
the effective system. As explicitly demonstrated in two examples, one can, moreover, translate between the different
choices for internal time by means of gauge transformations. In fact, in the case of systems which admit the global

time problem one is forced to change the local clocks in the course of relational evolution since gauges are, in general,
not globally valid. It should be emphasized that deparametrizations with respect to different choices of internal time

25 Ref. [20] notwithstanding, for the issue of defining physical evolution in the absence of global clocks has not been addressed in these
approaches.
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yield, in general, inequivalent Hilbert-space representations, and thus different gauges at the effective level generally
correspond to different formulations of the quantum theory.
The usual operator-ordering problem is not entirely circumvented in this effective approach since we choose a

particular ordering for the constraint operator before treating it effectively. This specific ordering, however, is not
connected to the choice of a (local) time variable which happens only after the effective system has been constructed.
Of the technical problems briefly described in the introduction, it is only the global time problem and the problem

of observables which are not automatically sidestepped by the effective approach. But by avoiding the other technical
problems, the effective approach greatly facilitates the construction of a sufficient set of explicit fashionables since,
although we face a larger number of degrees of freedom, the problem can be addressed in the usual classical manner
which allowed for simple numerical solutions in the toy models studied in this article. The effective framework is,
thus, amenable to techniques, usually aimed at a solution to the classical problem of observables, such as [9, 11] and
the perturbative expansions of [10]. Moreover, concrete evaluations of the constrained systems are usually done by
employing gauge fixing, for which classical methods such as those of [25] are useful.
Likewise, the effective approach enables us to perform a concrete treatment of the global time problem and suggests

a simple patching solution. As discussed in Sec. V, the relational concept is only of a local and semiclassical nature in
the absence of a global clock and, thus, the problem of relational observables becomes a local one. Global relational
observables valid for all classical values of relational time do not exist in the quantum theory. While in the absence
of global clocks it is not at all clear how to implement the relational concept and explicitly construct relational Dirac
observable operators in a Dirac quantization, some simplification is offered by local deparametrization, resulting in a
local internal time Schrödinger regime. In contrast to this, it is clear how to implement this scenario in a simple way
within the effective semiclassical analysis, which reproduces the results of the local Schrödinger regime. An apparent
non-unitarity leads to the breakdown of a constant time slicing in this procedure and to the failure of the gauge
associated to the choice of local time in the effective framework. This is consistent with the related breakdown of
the relational observables in the reduction and in the Dirac method on approach to a turning point [8]. To achieve
a consistent evolution through turning points of a clock, we are forced to switch to a different clock and a different
set of variables to be evolved, prior to reaching a turning point, which corresponds to switching to a different local
Schrödinger regime and a gauge change in the effective approach. By switching to a good local clock, when another
time variable approaches a turning point, we can consistently transport relational data along and thereby reconstruct
the entire information of a semiclassical physical state via local patches of relational evolution. To our knowledge,
there is no consistent method for explicitly transferring data between different local deparametrizations of one and
the same model at a Hilbert space level. Any such method is likely to be quite involved, to lead to discontinuities
in correlations and to be only applicable for states that are sufficiently semiclassical. On the other hand, the gauge
changes are easily implemented on the effective side, albeit exhibiting jumps of order ~ in correlations, which underline
the merely local nature of relational observables. No sharp instant for the change in time prior to a turning point has
to be selected; the transformation may be performed at any point, as long as the old and new choice of time are valid
before and after the clock change, respectively.
As regards relational Hamiltonian evolution, in the second model we have discussed the peculiarities associated to

the IVP and the issue of time direction in the absence of a global clock. While we may classically keep one and the same
relational time variable and only have to switch the sign of the physical Hamiltonian at the turning point of the clock,
we are required to change the Hamiltonian operator of the internal time Schrödinger regime to a new one adapted
to a new local clock before reaching the classical turning point. On the effective side, we could proceed similarly by
linearizing the Hamiltonian constraint in the momentum conjugate to internal time in the gauge associated to the
chosen clock. Such an effective physical Hamiltonian, obviously, changes together with the Hamiltonian constraint
during necessary gauge changes prior to turning points of non-global clocks.
A final striking consequence of the global time problem is the inevitable appearance of a complex internal time.

We have shown that the particular form of the imaginary contribution to the time variable is a quantum effect
and a generic feature of the effective approach. Similarly, we have collected strong evidence from an expectation
value calculation of the time operator in a Dirac approach to the free relativistic particle and a comparison of the
quadratic Wheeler-DeWitt equation to an associated internal time Schrödinger equation that this particular imaginary
contribution is also a generic feature of standard Hilbert-space quantizations. In particular, the inequivalence between
the Wheeler-DeWitt and Schrödinger equation in the presence of a “time potential” is a result of the assumption that
time is real-valued in both equations. The two equations can be locally reconciled if the expectation value of internal
time is allowed a particular imaginary contribution in the WDW case. By the same token, as shown in the concrete
example in Sec. VB 2, Dirac observables of the system governed by the quadratic constraint are, in general, constants
of motion of the associated Schrödinger regime only if internal time is complex in the Wheeler-DeWitt equation.
Despite the fact that the imaginary contribution to time also appears for globally valid clocks, the imaginary

contribution can be disregarded altogether in this case, since it turns out to be a constant of motion which is not
necessary for the satisfaction of the constraints. For non-global clocks, however, the imaginary contribution turns
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out to be dynamical and cannot at all be ignored. It is, therefore, rather a true non-global feature. When the local
clock eventually needs to be exchanged together with the corresponding gauge at the effective level, the imaginary
contribution is consistently removed from the old clock which subsequently turns into an evolving physical variable
and pushed, accordingly, to the new clock function.
Concerning relational evolution in the presence of a dynamical imaginary contribution to internal time, we encounter

the issue of a “vector time” with two separate degrees of freedom. In this article, however, we argue, in agreement
with common sense, to only employ the real part of the internal clock as relational time, since the imaginary part
causes a number of additional problems, rendering it an even worse clock than the already non-global real part.
In conclusion, the effective approach to the problem of time overcomes a number of technical problems and substan-

tially facilitates the solution to various other problems, while simultaneously providing further insight into standard
Hilbert-space quantizations. In particular, it is possible to master the global time problem at the semiclassical level
and to consistently evolve data through turning points of non-global clocks. In this article and in [1], we have, fur-
thermore, argued that the standard notion of relational time and the concept of relational evolution are, in general,
of merely local and semiclassical nature, which disappear (together with complex relational time) for highly quantum
states of systems without global clock variables.
We emphasize that these results and conclusions are based on a semiclassical analysis in simple toy models. It

is, certainly, dangerous to draw any general conclusions for full quantum gravity from procedures which so far are
only proven to work in simple scenarios. Moreover, further technical problems, specifically related to gravity, such
as, e.g., the spacetime reconstruction problem, require significant advances in the effective formalism before they may
be tackled. Nevertheless, we believe that the present approach is worth pursuing and promises some headway in
evaluating quantum gravity theories and models in a practical way. In this light, we expect certain features, such as
complex internal time, to be of a generic nature in more general models, especially in quantum cosmology.
Owing to the advantage that the effective approach simultaneously avoids the many facets of the problem of time,

it may be viewed as one step in the quest to “defeat the Ice Dragon” of [4], symbolizing the conjunction of the
apparently many faces of the problem of time in quantum gravity.

Appendix A: Poisson algebra

Expectation values satisfy the classical Poisson algebra and have vanishing Poisson brackets with the moments of
all orders. Table II lists the Poisson brackets between second order moments generated by two canonical pairs of
observables. The table has originally appeared in the appendix of [19] and is reproduced here for convenience.

TABLE II: Poisson algebra of second order moments. First terms in the bracket are labeled by rows, second terms are labeled
by columns.

(∆t)2 ∆(tpt) (∆pt)
2 (∆q)2 ∆(qp) (∆p)2 ∆(tq) ∆(ptp) ∆(tp) ∆(ptq)

(∆t)2 0 2(∆t)2 4∆(tpt) 0 0 0 0 2∆(tp) 0 2∆(tq)

∆(tpt) −2(∆t)2 0 2(∆pt)
2 0 0 0 −∆(tq) ∆(ptp) −∆(tp) ∆(ptq)

(∆pt)
2 −4∆(tpt) −2(∆pt)

2 0 0 0 0 −2∆(ptq) 0 −2∆(ptp) 0

(∆q)2 0 0 0 0 2(∆q)2 4∆(qp) 0 2∆(ptq) 2∆(tq) 0

∆(qp) 0 0 0 −2(∆q)2 0 2(∆p)2 −∆(tq) ∆(ptp) ∆(tp) −∆(ptq)

(∆p)2 0 0 0 −4∆(qp) −2(∆p)2 0 −2∆(tp) 0 0 −2∆(ptp)

∆(tq) 0 ∆(tq) 2∆(ptq) 0 ∆(tq) 2∆(tp) 0 ∆(tpt) (∆t)2 (∆q)2

+∆(qp)

∆(ptp) −2∆(tp) −∆(ptp) 0 −2∆(ptq) −∆(ptp) 0 −∆(tpt) 0 −(∆p)2 −(∆pt)
2

−∆(qp)

∆(tp) 0 ∆(tp) 2∆(ptp) −2∆(tq) −∆(tp) 0 −(∆t)2 (∆p)2 0 ∆(qp)

−∆(tpt)

∆(ptq) −2∆(tq) −∆(ptq) 0 0 ∆(ptq) 2∆(ptp) −(∆q)2 (∆pt)
2 ∆(tpt) 0

−∆(qp)
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Appendix B: Discussion of positivity

1. Algebraic positivity

Positivity is understood in the algebraic sense as the condition 〈AA
∗〉 ≥ 0, ∀A ∈ A, where A is some algebra.

It relates directly to the GNS construction of unitary representations for ∗-algebras, and is also necessary for the
measurement theory and probabilistic interpretation of the state. In this appendix we focus on the unital star algebra
A of all finite-order polynomials generated by a single canonical pair q̂ and p̂ subject to

[q̂, p̂] = i~1 and q̂∗ = q̂, p̂∗ = p̂ .

We pose the following question:

• What are the necessary and sufficient conditions one needs to place on a state on A such that positivity holds

to order ~?

By “positivity holding to order ~” we mean that |ℑ[〈AA
∗〉]| ∝ ~

3
2 and ℜ[〈AA

∗〉] ≥ −~
3
2 . The answer turns out to

be simple, in addition to normalization 〈1〉 = 1, we need to impose

q, p, (∆q)2, (∆p)2,∆(qp) ∈ R

(∆p)2, (∆q)2 ≥ 0

(∆q)2(∆p)2 − (∆(qp))
2 ≥ 1

4
~
2 . (B1)

We only outline the demonstration of necessity, as these are standard results in ordinary quantum mechanics:

• We recall that positivity can be used to derive 〈A∗〉 = 〈A〉, where bar denotes the complex conjugate. This
immediately implies q, p, (∆q)2, (∆p)2,∆(qp) ∈ R.

• 〈(q̂ − 〈q̂〉1) (q̂ − 〈q̂〉1)∗〉 ≥ 0 immediately gives (∆q)2 ≥ 0, we similarly get (∆p)2 ≥ 0.

• The uncertainty relation can be obtained by first deriving the Schwartz-type inequality |〈AB
∗〉|2 ≤

〈AA
∗〉〈BB

∗〉, and substituting A = q̂ − q1 and B = p̂− p1.

Before we demonstrate sufficiency, we derive an inequality implied by (B1), which we will use on several occasions
in this section and the following ones:

α2(∆q)2 + β2(∆p)2 + 2αβ∆(qp) ≥ 0 , ∀ α, β ∈ R . (B2)

This follows as

α2(∆q)2 + β2(∆p)2 + 2αβ∆(qp) ≥ α2(∆q)2 + β2(∆p)2 − 2|α||β||∆(qp)|

≥ |α|2(∆q)2 + |β|2(∆p)2 − 2|α||β|
√

(∆q)2(∆p)2 ≥
(
|α|
√
(∆q)2 − |β|

√
(∆p)2

)2
≥ 0 .

To demonstrate sufficiency to order ~, we adopt a rather direct approach. Any finite order polynomial in q̂ and p̂
can be expanded using the symmetrized products (q̂mp̂n)Weyl

f̂ =
∑

m,n≥0

αmn (q̂
mp̂n)Weyl =: f(q̂, p̂) .

Here, f(q̂, p̂) is understood as a map from the algebra to itself; in particular, it keeps track of the ordering, which
we chose to be completely symmetric in this case. In general, αmn ∈ C, for self-adjoint elements αmn ∈ R. We now

expand the polynomial in terms of a different set of elements ∆̂q := q̂ − q and ∆̂p := p̂− p. Evidently

f̂ = f(q̂, p̂) = f(q + ∆̂q, p+ ∆̂p)

= f(q, p) +
∂f

∂q
(q, p)∆̂q +

∂f

∂p
(q, p)∆̂p+

1

2

∂2f

∂q2
(q, p)(∆̂q)2 +

1

2

∂2f

∂p2
(q, p)(∆̂p)2

+
∂2f

∂q∂p
(q, p)(∆̂q∆̂p)Weyl +

(
higher powers of ∆̂q, ∆̂p

)
.
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q and p can be any real numbers, below we set them to the expectation values 〈q̂〉 and 〈p̂〉, which enables us to utilize

semiclassical truncation. Keeping terms of order ~ we find the expectation value of f̂

〈f̂〉 = f(q, p) +
1

2

∂2f

∂q2
(q, p)(∆q)2 +

1

2

∂2f

∂p2
(q, p)(∆p)2 +

∂2f

∂q∂p
(q, p)∆(qp) +O(~3/2) ,

so that, again to order ~, we have

|〈f̂〉|2 = |f |2 + 1

2

[
f

(
∂2f

∂q2

)
+ f̄

(
∂2f

∂q2

)]
(∆q)2 +

1

2

[
f

(
∂2f

∂p2

)
+ f̄

(
∂2f

∂p2

)]
(∆p)2

+

[
f

(
∂2f

∂q∂p

)
+ f̄

(
∂2f

∂q∂p

)]
∆(qp) +O(~

3
2 ) .

We note that since |〈f̂〉|2 ≥ 0, the truncated expression for |〈f̂〉|2, satisfies the inequality to order ~ in the sense

discussed earlier. Now consider positivity of the state evaluated on f̂ :

〈f̂ f̂∗〉 =

〈(
f +

∂f

∂q
∆̂q +

∂f

∂p
∆̂p+

1

2

∂2f

∂q2
(∆̂q)2 +

1

2

∂2f

∂p2
(∆̂p)2 +

∂2f

∂q∂p
(∆̂q∆̂p)Weyl

)

(
f̄ +

∂f

∂q
∆̂q +

∂f

∂p
∆̂p+

1

2

∂2f

∂q2
(∆̂q)2 +

1

2

∂2f

∂p2
(∆̂p)2 +

∂2f

∂q∂p
(∆̂q∆̂p)Weyl

)〉
+O(~3/2)

= |f |2 + 1

2

[
f

(
∂2f

∂q2

)
+ f̄

(
∂2f

∂q2

)]
(∆q)2 +

1

2

[
f

(
∂2f

∂p2

)
+ f̄

(
∂2f

∂p2

)]
(∆p)2

+

[
f

(
∂2f

∂q∂p

)
+ f̄

(
∂2f

∂q∂p

)]
∆(qp) +

∣∣∣∣
∂f

∂q

∣∣∣∣ (∆q)2 +
∣∣∣∣
∂f

∂p

∣∣∣∣ (∆p)2 + 2ℜ
[
∂f

∂q

∂f

∂p

]
∆(qp) +O(~3/2)

= |〈f〉|2 +
∣∣∣∣
∂f

∂q

∣∣∣∣ (∆q)2 +
∣∣∣∣
∂f

∂p

∣∣∣∣ (∆p)2 + 2ℜ
[
∂f

∂q

∂f

∂p

]
∆(qp) +O(~3/2) .

Now |〈f〉|2 ≥ 0, and the next three terms are positive by inequality (B2)

∣∣∣∣
∂f

∂q

∣∣∣∣ (∆q)2 +
∣∣∣∣
∂f

∂p

∣∣∣∣ (∆p)2 + 2ℜ
[
∂f

∂q

∂f

∂p

]
∆(qp) ≥

∣∣∣∣
∂f

∂q

∣∣∣∣ (∆q)2 +
∣∣∣∣
∂f

∂p

∣∣∣∣ (∆p)2 − 2

∣∣∣∣
∂f

∂q

∣∣∣∣
∣∣∣∣
∂f

∂p

∣∣∣∣ |∆(qp)| ≥ 0 .

So that, as claimed earlier, 〈f̂ f̂∗〉 ≥ 0 to order ~.

2. Positivity in the model of Section III

Here we use the explicit form of gauge invariant functions to prove the following statements to order ~ for the
relativistic particle in a λt potential:

• the positivity of a state is preserved by the dynamics in t-gauge,

• it is also preserved by gauge transformation between q-gauge and t-gauge,

• finally it is preserved by the dynamics in q-gauge.

The constraint in this model is

Ĉ = p̂2t − p̂2 −m2
1+ λt̂ .

A complete set of Dirac observables may be constructed from the canonical pair:

Q̂ := q̂ − 2

λ
p̂p̂t and P̂ := p̂, satisfying [Q̂, P̂ ] = i~1 ,

which commute with the constraint [Q̂, Ĉ] = 0 = [P̂, Ĉ]. Below we provide the expectation values and second order
moments of these observables:
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Q = q − 2

λ
(ppt +∆(ptp)) , P = p, (∆P)2 = (∆p)2 , ∆(QP) = ∆(qp)− 2

λ

(
∆(ptpp) + pt(∆p)

2 + p∆(ptp)
)

(∆Q)2 = (∆q)2 − 4

λ
(∆(ptqp) + pt∆(qp) + p∆(ptq)) +

4

λ2
[
∆(ptptpp) + 2pt∆(ptpp) + 2p∆(ptptp) + p2t (∆p)

2

+p2(∆pt)
2 + (2ptp−∆(ptp))∆(ptp)

]
.

Poisson brackets of these functions with constraint functions must vanish to the given order, since the operators that
generate them commute with the constraint operator. Additionally, we note that p = P is a constant of motion, while
pt evolves as pt(s) = −λs + pt0 and is preserved by the transformation between the gauges, therefore, the condition
pt, p ∈ R is preserved in all situations considered here.

a. Dynamics in the t-gauge

Below are the expressions for the same invariants truncated at order ~, evaluated in the t-gauge, with the moments
generated by p̂t eliminated through constraint functions:

Q = q − 2

λ

(
ppt +

p

pt
(∆p)2

)
, P = p ,

(∆Q)2 = (∆q)2 − 2θ∆(qp) + θ2(∆p)2 , (∆P)2 = (∆p)2

∆(QP) = ∆(qp)− θ(∆p)2 ,

where θ =
2(p2t + p2)

λpt
.

We now re-express the gauge dependent moments in terms of these invariants:

(∆q)2 = (∆Q)2 + θ2(∆P)2 + 2θ∆(QP)

(∆p)2 = (∆P)2

∆(qp) = ∆(QP) + θ(∆P)2 .

Assuming that θ is real (which holds provided pt and p are real), one can see that:

• reality of invariant moments implies reality of evolving moments,

• trivially (∆P)2 > 0 =⇒ (∆p)2 > 0,

• (∆q)2 > 0 follows directly from the inequality (B2),

• finally one finds

(∆q)2(∆p)2 − (∆(qp))
2
= (∆Q)2(∆P)2 − (∆(QP))

2 ≥ ~2

4
.

In short, positivity of the observables implies positivity of t-gauge variables, provided θ is real. The converse is
also true: positivity of t-gauge observables (together with pt ∈ R) implies positivity of the invariants. The Dirac
observables are invariant under gauge transformations and, in particular, under the t-gauge dynamics, which must
then preserve positivity of the invariant moments and, therefore, also of the evolving moments.

b. Dynamics in the q-gauge

We now verify the equivalent statement in the q-gauge. In this gauge, the invariant moments to order ~ are given
by:

(∆Q)2 =
1

θν − 1

(
(∆t)2 + θ2(∆pt)

2 + 2θ∆(tpt)
)

(∆P)2 =
1

θν − 1

(
(∆pt)

2 + 2ν∆(tpt) + ν2(∆t)2
)

∆(QP) =
−1

θν − 1

(
(θν + 1)∆(tpt) + θ(∆pt)

2 + ν(∆t)2
)
,
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where θ =
2(p2

t+p2)
λpt

and ν = λ
2pt

, so that 1
θν−1 =

p2
t

p2 . These relations are tricky to invert by hand, but the final result

is exactly symmetrical, it just so happens that the above transformation is its own inverse:

(∆t)2 =
1

θν − 1

(
(∆Q)2 + θ2(∆P)2 + 2θ∆(QP)

)

(∆pt)
2 =

1

θν − 1

(
(∆P)2 + 2ν∆(QP) + ν2(∆Q)2

)
(B3)

∆(tpt) =
−1

θν − 1

(
(θν + 1)∆(QP) + θ(∆P)2 + ν(∆Q)2

)
.

If pt and p are real and if p 6= 0, then 1
θν−1 ≥ 0, with equality only when pt = 0. We can use the same arguments

as before to show that positivity of the invariants implies positivity of the q-gauge moments (for pt = 0 case we
substitute the expressions for θ and ν in terms of pt and p first). In particular,

(∆t)2(∆pt)
2 − (∆(tpt))

2 = (∆Q)2(∆P)2 − (∆(QP))2 ≥ ~2

4
.

We note that, once we enforce pt, p ∈ R, the reality of t in this gauge follows directly from setting 〈Ĉ〉 = 0 and the
reality of the moments of t̂ and p̂t. Eliminating (∆p)2 through other constraints and imposing the q-gauge conditions,

〈Ĉ〉 = 0 gives

t =
1

λ

[
p2 +m2 − p2t +

p2t − p2

p2
(∆pt)

2

+
λpt
p2

∆(tpt) +
λ2

4p2
(∆t)2

]
.

Reality of Q then provides a condition on the imaginary part of q, since in this gauge

Q = q − 2

λ
ppt −

2pt
λp

(∆pt)
2 − 1

p
∆(tpt) +

i~

2p
,

so that Q ∈ R implies ℑ[q] = − i~
2p , which is compatible with the transformation between the two gauges derived in

Sec. III.
We have demonstrated that the positivity of the invariant observables together with pt ∈ R results in the positivity

of the evolving q-gauge observables and yields the imaginary part of q. The converse can also be demonstrated,
namely, starting with the positivity of the q-gauge observables and ℑ[q] = − i~

2p , one discovers that the invariants are

positive (to demonstrate that p ∈ R one needs to select the solution to the constraint functions compatible with the
semiclassical approximation). This shows that positivity is preserved by the dynamics in q-gauge.

c. Gauge transformation

The gauge transformation of the second order moments from t-gauge to q-gauge can be written as

(∆t)2 = (∆q)20
p2t
p2

(∆pt)
2 =

p2

p2t

(
(∆p)20 + µ2(∆q)20 − 2µ∆(qp)0

)

∆(tpt) = ∆(qp)0 − µ(∆q)20 ,

where µ =
λpt
2p2

.

Assuming pt > 0, and that p and λ are real (which also means that µ is real), it follows in a similar way that

• (∆q)20 > 0 =⇒ (∆t)2 > 0,

• once again, (∆pt)
2 > 0 follows from the inequality (B2),
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• one also finds

(∆t)2(∆pt)
2 − (∆(tpt))

2
= (∆q)2(∆p)2 − (∆(qp))

2 ≥ ~2

4
.

So that a positive state in t-gauge transforms to a positive state in q-gauge. The reverse gauge transformation can
be analyzed identically.

3. Positivity in the timeless model of Sec. V

We will not establish the positivity-preserving properties of effective dynamics within this model, instead, we point
out its close relation with a local internal time Schrödinger evolution, which by construction preserves positivity so
long as it remains valid.
We briefly show that the gauge transformation (86) of Sec. VC2 consistently transfers positivity between the two

sets of physical variables to order ~. Firstly, we note that the only initial parameter that has an imaginary part is
(qi)0. The imaginary contribution (85) is of order ~ and leads to the imaginary contributions to the final values of qi,
pi, (∆qi)

2, (∆pi)
2, ∆(qipi) only at order ~2. Hence, to order ~ these variables are real in the qj-gauge. In addition:

• (∆qj)
2
0 ≥ 0 implies (∆qj)

2 ≥ 0,

• (∆pi)
2 ≥ 0 follows once again from the inequality (B2),

• The uncertainty relation follows after some straightforward algebraic manipulations.

Appendix C: Explicit moments for the Schrödinger regime of Sec. VB 2

In Eq. (71), we provided the explicit form of the expectation values for q̂2 and p̂2 as functions of q1, i.e., as
fashionables, in the internal time Schrödinger regime. Below we also provide the explicit form of the moments
associated to these two operators.

(∆q2)
2(q1) = 〈q̂22〉(q1)− 〈q̂2〉2(q1) =

~

2
〈z(q1)|â2 + a+

2
+ 2ââ+ + 1|z(q1)〉 − 〈q̂2〉2(q1)

= e−|z|2
∑

n≥0

|z|2n
n!

(
q2

2
0 − p2

2
0

2
cos

(
En(q1)− En+2(q1)

~

)
− q20p20 sin

(
En(q1)− En+2(q1)

~

))

+
q2

2
0 + p2

2
0

2
+

~

2
− 〈q̂2〉2(q1) ,

(∆p2)
2(q1) = 〈p̂22〉(q1)− 〈p̂2〉2(q1) =

~

2
〈z(q1)| − â2 − a+

2
+ 2ââ+ + 1|z(q1)〉 − 〈p̂2〉2(q1)

= −e−|z|2
∑

n≥0

|z|2n
n!

(
q2

2
0 − p2

2
0

2
cos

(
En(q1)− En+2(q1)

~

)
− q20p20 sin

(
En(q1)− En+2(q1)

~

))

+
q2

2
0 + p2

2
0

2
+

~

2
− 〈p̂2〉2(q1) ,

∆(q2p2)(q1) =
1

2
〈(q̂2 − 〈q̂2〉)(p̂2 − 〈p̂2〉) + (p̂2 − 〈p̂2〉)(q̂2 − 〈q̂2〉)〉 = 〈(q̂2 − 〈q̂2〉)(p̂2 − 〈p̂2〉)〉 −

i~

2

= 〈
√

~

2
(−〈p̂2〉+ i〈q̂2〉)â−

√
~

2
(〈p̂2〉+ i〈q̂2〉)â+ + 〈q̂2〉〈p̂2〉+

i~

2
(a+

2 − â2)〉

= e−|z|2
∑

n≥0

|z|2n
n!

(
(〈q̂2〉(q1)q20 − 〈p̂2〉(q1)p20) sin

(
En+1(q1)− En(q1)

~

)

− (〈p̂2〉(q1)q20 + 〈q̂2〉(q1)p20) cos
(
En+1(q1)− En(q1)

~

)
+
q2

2
0 − p2

2
0

2
sin

(
En(q1)− En+2(q1)

~

)

+q20p20 cos

(
En(q1)− En+2(q1)

~

))
+ 〈q̂2〉(q1)〈p̂2〉(q1) .

(C1)
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Appendix D: Imaginary contributions in the qi-gauge of Sec. VC

Here we want to summarize the analysis, which leads to the standard imaginary contribution (85) to the clock qi
in qi-Zeitgeist.
Linearizing qi = qicl + ~ (1)qi and pi = picl + ~ (1)pi and similarly for qj and pj yields to first order

~
(1)pi = −

(
(∆qj)

2 + (∆pj)
2

2picl
+ ~

2picl(pjcl
(1)pj + qicl

(1)qi + qjcl
(1)qj)

2pi2cl
+
i~qicl
2pi2cl

+
pj

2
cl(∆pj)

2 + qj
2
cl(∆qj)

2 + 2qjclpjcl∆(qjpj)

2pi3cl

)
.

(D1)

Since the coefficients (80) are of zeroth order, it is consistent to replace all qi, qj , pi and pj appearing in terms of
order ~ in (82) by their zero-order (or classical) parts which in (D1) we have denoted by a subscript cl, and whose
solutions are given in (49). To order ~ this does not modify the equations and helps for their solutions. Furthermore,
remembering that all zero-order variables are kept real-valued, (82) and (D1) imply that either (1)pi or

(1)qi or both
must contain imaginary contributions while all variables associated to the canonical pair (qj , pj) are consistently
real-valued as a result of real-valued equations of motion.
Requiring pi to be real, it is obvious that

dℑ[qi]
ds

= −~qicl
pi2cl

. (D2)

Using Eq. (49) and integrating this equation, precisely yields the standard imaginary contribution (85) which is also
consistent with the constraint (D1) and cancels the imaginary term in the equation of motion for pi in Eq. (82).
Requiring qi to be real-valued, however, and repeating the same analysis shows that the solution for ℑ[pi] would not
reproduce the imaginary term −i~qicl/(2pi2cl) in Eq. (D1). It is, hence, inconsistent to keep qi real-valued and push
the imaginary contribution to pi. In accordance with the analysis in Sec. IVA and [1], we, thus, find the generic o(~)
imaginary contribution inherent to all non-global clocks in the effective framework.
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