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Abstract

We consider non-Abelian semilocal strings (vortices, or vortex-strings)
arising in N = 2 supersymmetric U(N) gauge theory with Nf = N +
Ñ matter hypermultiplets in the fundamental representation (quarks),
and a Fayet–Iliopoulos term ξ.
We present, for the first time ever, a systematic field-theoretic derivation
of the world-sheet theory for such strings, describing dynamics of both,
orientational and size zero modes. Our derivation is complete in the
limit (lnL) → ∞ where L is an infrared (IR) regulator in the transverse
plane. In this limit the world-sheet theory is obtained exactly. It is
presented by a so far unknown N = 2 two-dimensional sigma model,
to which we refer as the zn model, with or without twisted masses.
Alternative formulations of the zn model are worked out: conventional
and extended gauged formulations and a geometric formulation. We
compare the exact metric of the zn model with that of the weighted
CP(Nf−1) model conjectured by Hanany and Tong, through D-branes,
as the world-sheet theory for the non-Abelian semilocal strings. The
Hanany–Tong set-up has no parallel for the field-theoretic IR parame-
ter and metrics of the weighted CP(Nf − 1) model and zn model are
different. Still their quasiclassical excitation spectra coincide.
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1 Introduction

The exact results obtained in the mid 1990s transformed a class of N = 2 supersymmet-
ric gauge theories into powerful benchmark models allowing one to study, to an extent,
non-perturbative physics of real QCD [1, 2]. In the last decade we witnessed an enormous
progress in the study of supersymmetric solitonic objects in the same type of theories [3–6].
While one usually constructs solitons in a weakly coupled (Higgsed) regime, it is possible
to use supersymmetry to infer the role of solitons at strong coupling. For example, Seiberg
and Witten proved that confinement in pure N = 2 supersymmetric QCD (SQCD) slightly
deformed by a mass term of the adjoint field is due a dual Meissner effect (dual supercon-
ductivity): the chromoelectric charges are confined by flux tubes which form due to the
monopole condensation [1, 2, 7]. This mechanism was anticipated by Nambu, ’t Hooft and
Mandelstam in the mid 1970s [8–10].

Certainly, the most interesting discovery in this range of questions is the non-Abelian
string (also referred to as vortex-string, or just vortex) [11–14], see also [3–5,15] for a review.
It generalizes the long-known Abrikosov–Nielsen–Olesen (ANO) string [16,17]: internal mod-
uli describing the orientation of the chromomagnetic flux in the non-Abelian group appear
on the string world sheet. Thus, the non-Abelian strings are the bridge that connects solitons
appearing in the Coulomb phase with those present in the Higgs phase. Moreover, they pro-
vide a physical explanation [13,14] of remarkable correspondences between two-dimensional
sigma models and four-dimensional gauge theories observed previously [18–20].

Non-Abelian strings were first discovered in N = 2 SQCD with the gauge group U(N)
and Nf = N flavors of fundamental matter hypermultiplets (quarks) [11–14]. Internal dy-
namics of the orientational zero modes of the non-Abelian string supported by this theory
is described by two-dimensional N = (2, 2) supersymmetric CP(N − 1) model living on
the string world sheet [11–14]. This result was obtained both by a straightforward field-
theoretic derivation and D-brane-based arguments, see [3] for a review. More recently, simi-
lar non-Abelian strings were constructed and studied in a more general class of theories [21],
including SO(N) and Usp(N) gauge theories [22], and models with arbitrary matter con-
tent [23]. Moreover, non-Abelian vortices have been useful in the study of non-Abelian
monopoles [24, 25].

When one considers theories with a large number of flavors (i.e. Nf = N + Ñ > N),
the non-Abelian strings one deals with are essentially of the semilocal type: in addition to
translational and orientational moduli, they acquire some moduli related to their physical
size. Semilocal strings are interesting because they interpolate between the ANO-type strings
(at vanishing size) and sigma-model lumps (at large sizes) [26–30]. Revealing low-energy
dynamics of the semilocal strings we are able to understand their role in non-perturbative
physics of the bulk theory. For example, arbitrary thickness of the semilocal strings may be
responsible for lost confinement [31]. This issue is related to the semilocal string stability,
a property which is not ensured by topology. One has to carefully check this stability
explicitly [27, 32, 33].

Derivation of the low-energy effective theory on (non-Abelian) semilocal strings was car-
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ried out in the past in the framework of string theory, through a D-brane set-up [11, 14].
The effective theory was identified as a particular type of a linear gauged sigma model with
an appropriate matter content, namely two-dimensional CP(Nf − 1) with N positive and
Ñ negative charges (the so-called weighted CP model). The latter seems to be a natural
generalization of the CP(N − 1) model appearing on the world sheet at N = Nf to the case
Nf > N [11, 14, 34, 35].

This construction, known as the Kähler quotient, is similar to the well-known Atiyah–
Drinfeld–Hitchin–Manin (ADHM) construction for instantons [36]. Unfortunately, contrary
to the instanton case, the Kähler quotient construction for strings is unable, in principle, to
describe the correct metric on the moduli space. This is the reason why an honest and direct
derivation from field theory per se is not only desirable, but, in fact, necessary.

This program started in 2006 [31], with further advances ensuing shortly, in [37, 38], by
virtue of a more general formalism known as moduli matrix. In these two works the problem
was addressed in the limit of the large vortex size, in which the differential BPS equations
are reducible to an algebraic system.

In this paper, we undertake a new field-theoretic calculation of the low-energy effective
action for a single non-Abelian semilocal string, describing dynamics of both, orientational
and size zero modes. Our derivation is complete in the limit (lnL) → ∞ where L is an
infrared (IR) regulator in the transverse plane. In physical terms L is implemented through
the (s)quark mass difference, L = |∆m|−1. In this limit the world-sheet theory is obtained
exactly. It is presented by a so far unknown N = 2 two-dimensional sigma model, to which
we refer as the zn model, with or without twisted masses. The bosonic part of the action of
the N = (2, 2) zn model (without twisted masses) is

Seff =

∫

d2x

{

|∂k(zjni)|2 +
4π

g2

[

|∂kni|2 + (n∗
i ∂kni)

2
]

}

, (1.1)

where i = 1, ..., N , while j = 1, ..., Ñ . The complex fields ni are subject to the constraint

N
∑

i=1

n∗
ini = 1 .

The latter is familiar from the CP(N − 1) models. The additional complex fields zj , descen-
dants of the size moduli, are unconstrained. As we will see later, this novel model has rich
dynamics.

Alternative formulations of the zn model are worked out: conventional and extended
gauged formulations as well as a geometric formulation. En route, we clarify the disagreement
between two works mentioned above [31,33]. We also explicitly calculate, for the first time,
corrections to the metric in inverse powers of the vortex size.

Needless to say, the effective action (1.1) collects only terms quadratic in derivatives. As
such, it is valid for low-energy excitations. At energies on the world sheet ∼ |∆m| higher-
derivative terms will become important. We will always limit ourselves to the two-derivative
terms.

3



The leading term in the metric contains an infrared divergence

lnL
√

ξ, (1.2)

regularized by an IR cutoff L, where ξ is the Fayet–Iliopoulos (FI) parameter [39]. The log-
arithmic divergence above is due to long-range tails of the semilocal string which fall off as
powers of the distance from the string axis (in the perpendicular plane) rather than exponen-
tially. The fact that the size zero modes of the Abelian semilocal strings are logarithmically
non-normalizable was noted long ago [40–42]. In the non-Abelian semilocal strings both the
size and orientational moduli become logarithmically non-normalizable [31]. One possibility
is to replace an infinite-length string by that of a finite length. This will also regulate the
spread of the string in the transverse plane [43]. As was mentioned a more convenient and
natural IR regularization, which will maintain the BPS nature of the solution, can be pro-
vided by a mass difference ∆m 6= 0 of the (s)quark masses [31]. In this paper we will keep
in mind the latter option, using L as an auxiliary parameter at intermediate stages, which,
eventually, will be traded for 1/|∆m|, so that (1.2) becomes

ln

√
ξ

|∆m| . (1.3)

We will always assume that

√
ξ

|∆m| ≫ 1 , (1.4)

and, in the second part, the logarithm of the above parameter will be considered to be
(arbitrarily) large.

In our derivation we take advantage of the presence of this IR logarithm in the world-
sheet theory. We extract the most singular terms in the limit in which the logarithm (1.3)
tends to infinity. This allows us to find the exact metric (in the above limit). In this way
we arrive at the zn model on the string world sheet. This model is novel; it was not known
so far. We start its investigation and uncover interesting features.

Next, we compare the zn model with the weighted CP(Nf − 1) model suggested by
Hanany and Tong [11,14] as the world-sheet theory. First, we explicitly verify that our field-
theory result is different from the string theory prediction: the scalar curvatures for the two
metrics (ours and the Hanany–Tong one) are not the same. Still quasiclassical excitation
spectra of two models coincide.

Summarizing, our main task with regards to non-Abelian semilocal strings is two-fold.
First, at large ρ (where ρ is the size of the string) we derive the Kähler potential on the target
space as an expansion in the powers of 1/|ρ|, keeping the leading and the first subleading
terms. The limit of large L is not used here. The second task, the central point of our paper,
is to use the limit ln

√
ξ

|∆m| ≫ 1 to derive the exact world-sheet model (which, in this case,

corresponds to small ρ ≪ ξ−1/2).
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The organization of the paper is as follows. In Sec. 2 we introduce the bulk model,
construct the semilocal string and calculate its world-sheet effective action. We derive the
corresponding Kähler potential, including the first correction in the inverse size of the string.
In Sec. 3 we calculate the exact metric of the world-sheet theory in the limit of the large IR
logarithm. Section 4 is devoted to nonvanishing masses introduced in and their impact on the
string world-sheet theory. In Sec. 5 we calculate the quasiclassical spectrum of excitations in
the world-sheet theory. In Sec. 6 we review the Hanany–Tong world-sheet theory obtained
from D-branes and compare it to our field-theory result. The D-brane derivation is blind to
infrared logarithms implying a model different from the zn model. In Sec. 7 we present the
world-sheet effective theory below the crossover (i.e. at small ξ) and compare it with the
weighted CP(Nf − 1) model. Finally, we conclude and summarize our results in Sec. 8.

2 Non-Abelian Semilocal Strings from Field Theory

In this section we will derive the string world-sheet theory in the limit of large ρ, where ρ is
a size modulus, |ρ|2ξ ≫ 1. In this limit a natural expansion parameter appears, namely the
one given in Eq. (2.30) below. We will use it in calculating the effective action to the leading
and the first subleading order. Later on (in Sec. 3) we will relax the constraint |ρ|2ξ ≫ 1.
At first we must introduce our basic bulk model, on which will rely not only in this section,
but throughout the paper.

2.1 The Bulk Theory

Our starting point is a U(N) gauge theory with extended N = 2 supersymmetry and Nf =
N + Ñ fundamental hypermultiplets. The bosonic part of the model 1 is (see e. g. [3])

S =

∫

d4x

{

1

4g2
(F 0

µν)
2 +

1

4g2
(F a

µν)
2 +

1

g2
|∂µφ0|2 + 1

g2
|Dµφ

a|2 + |∇µq
A|2+

+
g2

2

(

1

g2
fabcφ̄bφc + q̄AT aqA

)2

+
g2

8
(|qA|2 −Nξ)2 +

+
1

2

∣

∣

∣

∣

(φ0 2√
2N

+ φa2T a +
√
2mA)q

A

∣

∣

∣

∣

2

, (2.1)

with:

A = 1, 2, . . . , Nf ∇µ = ∂µ −
i√
2N

A0
µ − iT aAa

µ . (2.2)

The real parameter ξ is the Fayet–Iliopoulos (FI) term [39]. As we will see shortly, a nonva-
nishing ξ puts the theory into the Higgs phase. Moreover, the superscripts 0 and a refer to

1The complete bosonic sector includes, in addition, Nf antifundamental multiplets q̃A. We set them to
zero, q̃A = 0, as they are trivial in the classical configurations to be discussed below.
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the U(1) and SU(N) parts of the gauge group, respectively. For simplicity we choose both
gauge couplings to be equal. This assumption is not necessary and could have been readily
lifted, but we prefer to work with a single gauge coupling g. If the mass parameters mA are
taken real, we can consistently consider the adjoint fields a0, aa to be real as well on the
solitonic solutions. The above expression then simplifies,

S =

∫

d4x

{

1

4g2
(F 0

µν)
2 +

1

4g2
(F a

µν)
2 +

1

g2
|∂µφ0|2 + 1

g2
|Dµφ

a|2 + |∇µq
A|2+

+
g2

2

(

q̄AT aqA
)2

+
g2

8
(q̄AqA −Nξ)2 +

1

2

∣

∣

∣

∣

(

φ0 2√
2N

+ φa2T a +
√
2mA

)

qA
∣

∣

∣

∣

}

.

(2.3)

It is convenient to organize all fields into matrices, of sizes N ×N and N ×Nf , respectively,

Fµν ≡ F 0
µν

1N√
2N

+ F a
µνT

a, Φ ≡
√
2

(

φ0 1N√
2N

+ φaT a

)

, Q ≡ qAi . (2.4)

Using the notation above, the action (2.3) can be written in the following compact form:

S =

∫

d4xTr

{

1

2g2
F 2
µν +

1

g2
|DµΦ|2 + |∇µQ|2+ g2

4
(QQ̄− ξ)2 + |ΦQ +QM |2

}

,

(2.5)

where the square mass matrix M is defined as

MAB = δABmA =











m1 0 · · · 0
0 m2 · · · 0
... · · · . . .

...
0 · · · · · · mNf











. (2.6)

The nonvanishing (s)quark masses break the SU(N)F flavor symmetry down to U(1)N−1
F .

Note that we can always absorb a unit mass matrix into a shift of the adjoint field Φ. Then,
with no loss of generality, we can always set

N
∑

A=1

mA = 0 .

This model described in great detail in [3] has a number of isolated vacua at generic
masses. We choose the vacuum where first N quark flavors condense. Up to gauge symmetry
transformations we have

Φ0 = −M, Q =
√

ξ (1N , 0Ñ) . (2.7)
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This vacuum is invariant under a “color-flavor locked” global symmetry HC+F,
2

HC+F(Φ) = HCΦH
−1
C = Φ , HC+F(Q) ≡ HCQH−1

F , HC = HF . (2.8)

The above symmetry plays an important role in the study of the moduli space of solitons.
It is determined by the vacuum value of Φ. In the most general case, in which some of the
mass parameters are degenerate, it is given by the stabilizer of the adjoint field,

HC+F = S(U(n1)×U(n2) · · · × U(nq)), n1 + · · ·+ nq = N . (2.9)

Equation (2.9) assumes that there are q sets of fields with degenerate masses. The theory
has two parameters with mass dimension one, m ∼ mi and

√
ξ, while the dynamical scale Λ

is implicit.3 For the time being we will impose the constraints

m ≪
√

ξ , Λ ≪
√

ξ . (2.10)

Then the bulk theory is at weak coupling, and we can reliably deal with the (s)quark masses
as small deformations of the world-sheet theory. In this regime, the symmetry breaking
pattern reduces to

U(N)C × SU(N)F

√
ξ−→ SU(N)C+F

m−→ HC+F . (2.11)

In particular, in the equal-mass limit the global symmetry group of the bulk theory is

SU(N)C+F × SU(Ñ)F ×U(1) , (2.12)

broken down to U(1)(Nf−1) by generic quark mass differences.
At the quantum level, the theory develops a strong coupling scale Λ. The Higgsing at

the scale
√
ξ freezes the one-loop running of the gauge coupling at the value

8π2

g2
= (N − Ñ) ln

√
ξ

Λ
. (2.13)

The theory is asymptotically free for N > Ñ , and conformally invariant at N = Ñ . We
will assume, in the following N > Ñ . For large values of the FI term, ξ ≫ Λ, weak
coupling regime sets in (complete Higgsing!), and we can reliably construct semiclassical
vortex solutions.

2Note that the vacuum is also invariant under an additional HF = S(U(ñ1)×· · ·×U(ñp)) flavor symmetry

(ñ1 + · · ·+ ñp = Ñ).
3For convenience we chose the masses mi to be all of the same order m.
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BPS equations

The first step in the studies of the BPS-saturated strings is to consider the set of the first-
order differential equations known as the Bogomol’nyi equations [44], which follow from the
Bogomol’nyi completion of the action (2.5) [4, 11–14, 18, 45],

S =

∫

d4xTr

{

1

g2

(

F12 +
g2

2
(QQ̄− ξ)

)2

+

+ |∇1Q+ i∇2Q|2 + |ΦQ +QM |2 + ξ F12 +

+
1

g2
(Fik)

2 + (∇kQ)∗(∇kQ) +
1

g2
(Fkl)

2

}

,

i = 1, 2, k, l = 0, 3 . (2.14)

In our notation, i = 1, 2 denotes the transverse (with respect to the string) directions, while
k = 0, 3 are the space-time coordinates on the string world-sheet.

The Bogomol’nyi equations are obtained, for static solutions, by requiring each positive-
definite contributions above to vanish,

∇1Q+ i∇2Q = 0 ,

F12 +
g2

2
(QQ̄− ξ) = 0 . (2.15)

The string tension is given by the last term in the second line in (2.14), the topological term,

T = ξ

∫

d2xTrF12 = 2πξ n , (2.16)

where n is the quantized magnetic flux, or equivalently, the total number of strings.

2.2 Non-Abelian Semilocal Strings: Ñ = 1

In this section we will consider the simplest theory which supports semilocal strings, with a
single “additional” flavor, Ñ = 1. Semilocal strings are present when the set of vacua of the
theory is not simply-connected [29]. Actually, the correct topological object to examine in
connection with the semilocal strings is the second homotopy group of the vacuum manifold,
which, in the present case, is the complex projective space,

π2(Mvac) = π2 (CP(N − 1)) = Z . (2.17)

Equation (2.17) is relevant for the extension of the ANO string in the corresponding semilocal
string. The homotopy group in (2.17) is the one lying behind the description of lumps in
the associated nonlinear sigma-model, which arises as the low-energy limit of the theory
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(2.1). This is the main reason why semilocal strings are similar to lumps [28, 37, 38]. As
lumps, the semilocal strings have power-law behaviors at large distances, and possess new
size moduli determining their characteristic thickness. Nevertheless, they still retain their
nature of strings (flux tubes), which is manifest when we send the size moduli to zero. In
this limit we recover just the ANO string, with its exponential behavior [26].

Topological stability of the non-Abelian strings is due to the fact that

ZN ∈ U(1) and π1(U(1)× SU(N)/ZN ) = Z . (2.18)

Much in the same way as the ANO string, they can be elevated to the semilocal strings,
see [3]. The winding structure inherent to the non-Abelian vortices, in the context of the
semilocal strings, is discussed in the subsequent sections, Eq. (2.19) and below.

2.2.1 Ansatz

Our task is to explicitly construct a single semilocal string. For the time being we will
set all mass parameters to zero. This is the situation when the full color-flavor symmetry
SU(N)C+F is preserved, and strings develop size moduli.4 As was shown in [11–14], we can
easily embed the Abelian ANO-type string into a larger non-Abelian gauge group to obtain
the so-called ZN string [3]. This can be done by choosing the following ansatz for the matter
fields [31]:

Q0 =











φ1(r) 0 0 0 0

0
. . .

...
...

...
... . . . φ1(r) 0 0
0 . . . 0 φ2(r)e

iθ φ3(r)











. (2.19)

Equation (2.19) corresponds to a special embedding in which a nontrivial topological winding
is provided by the N -th flavor. Technically, it is more convenient to work in the singular
gauge in which the fields assume the following form:

Q0 =







φ1(r) 0 0 0
...

. . .
...

...
0 . . . φ2(r) φ3(r)






≡

≡
(

φ1(r)− n0 n
∗
0(φ1(r)− φ2(r)) |n0 φ3(r)

)

,

(2.20)

while the gauge fields are

A0,i = ǫij
xj

r2
f(r)







0 . . . 0
...

. . .
...

0 . . . 1






≡ n0 n

∗
0 ǫij

xj

r2
f(r) . (2.21)

4We will reintroduce masses in Sec. 4
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In the expressions above we introduced an N -component vector n0 transforming in the
fundamental representation of the color flavor group HC+F,

n0 =











0
...
0
1











, n ≡ HC+F n0 . (2.22)

Given the ZN string, and acting on the solution (2.21) with a generic color-flavor trans-
formation, we get the most general vortex-string solution in terms of the orientational vector
n,

Q =

(

φ1(r)− nn∗(φ1(r)− φ2(r)) |nφ3(r)

)

,

Ai = nn∗ ǫij
xj

r2
f(r) , (2.23)

where the complex N -vector ni is obviously subject to the condition

|ni|2 = 1. (2.24)

2.2.2 BPS equations and solutions

The non-Abelian Bogomol’nyi equations reduce to those of the Abelian extended Higgs
model. With the ansatz (2.23), we get the following set of equations:

rφ′
1(r) = 0 ,

rφ′
2(r)− f(r)φ2(r) = 0 ,

rφ′
3(r)− (f(r)− 1)φ3(r) = 0 ,

1

r
f ′(r) +

g2

2
(φ2

2(r) + |φ3(r)|2 − ξ) = 0 . (2.25)

Note that the first and third equations for φ1 and φ3 can be identically solved by

φ1(r) =
√

ξ, φ3 =
ρ

r
φ2 . (2.26)

In the expression above, ρ is a complex modulus which parametrizes the size of the semilo-
cal string. The remaining set of two coupled differential equations, then, must be solved
numerically, since no analytical solution is known to exist.

Nevertheless, the peculiarity of the system above is that it admits regular and smooth
solutions in the limit of large gauge coupling (the so-called sigma model limit), g → ∞. It is
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even more remarkable that the same system can be solved algebraically at any finite power
in a 1/g2 expansion. Keeping only the terms of the order of 1/g2, the solution is

φ2 = φ2,0 +
1

g2
δφ2 =

√

ξ
r

√

r2 + |ρ|2
+

1

g2
δφ2 ,

f = f0 +
1

g2
δf =

|ρ2|
r2 + |ρ|2 +

1

g2
δf ,

δφ2 = − 1√
ξ

2r|ρ|2
(r2 + |ρ|2)5/2 , δf =

8

ξ

r2|ρ|2
(r2 + |ρ|2)3 . (2.27)

If we analyze more carefully the validity of the power expansion, by imposing the conditions

δφ2/(g
2φ2,0) ≪ 1 , δf/(g2f0) ≪ 1 , (2.28)

we find

1

g
√
ξ|ρ| =

λloc

λsemi

≪ 1 , λloc =
1

g
√
ξ
, λsemi = |ρ| . (2.29)

Thus, the correct expansion parameter is

1/(g
√

ξ|ρ|) , (2.30)

or the ratio of the semilocal string size to the characteristic size of the local string.

2.2.3 The Effective Action

To calculate the effective action on the string world sheet, one first must promote the orien-
tational and size moduli to fields depending on the world-sheet coordinates t and z ≡ x3,

n → n(t, x3), ρ → ρ(t, x3) . (2.31)

In doing so one has to improve the ansatz (2.23) by including a nontrivial expression for the
world-sheet components of the gauge potential [13], namely,

Ak = −i

(

∂knn∗ − n ∂kn
∗ − 2nn∗(n∗∂kn)

)

ω(r)

−i n n∗
(

ρ∗∂kρ− ρ∂kρ
∗ + 2|ρ|2(n∗∂kn)

)

γ(r) , (2.32)

where we introduced two profile functions ω(r) and γ(r), to be determined from a mini-
mization procedure. Note that expression (2.32) is a refined ansatz as compared to the one
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introduced in Refs. [13,31], which does not includes the second term proportional to γ. The
resulting expression for the field strength is

Fik = ∂iAk − ∂kAi − i[Ai, Ak]

= −∂k(nn∗)ǫij
xj

r2
f(r)(1− ω(r))

− i

(

∂knn∗ − n ∂kn
∗ − 2nn∗(n∗∂kn)

)

xi

r
ω′(r)

− i n n∗
(

ρ∗∂kρ− ρ∂kρ
∗ + 2|ρ|2(n∗∂kn)

)

xi

r
γ′(r)

− nn∗ǫij
xj

r2
∂kf(r) , (2.33)

where the prime in ω′ and γ′ stands for the first derivative with respect to r.
As a second step, we evaluate the action (2.14) on the semilocal solution (2.23), in

conjunction with (2.32). We will keep the terms quadratic in the time derivatives with
respect to the world-sheet coordinates,

Leff =

∫

dx1dx2Tr

{

1

g2
(Fik)

2 + (∇kQ)∗(∇kQ)

}

. (2.34)

2.2.4 The Gauge Kinetic Term

Evaluation of the gauge kinetic term using the above ansätze is straightforward,

1

g2
Tr (Fik)

2 =
1

g2

(

2

r2
f 2(1− ω)2 + 2ω′2

)

[

∂kn
∗∂kn + (∂kn

∗n)2
]

− 1

g2
(

γ′2) [ρ∗∂kρ− ρ∂kρ
∗ + 2|ρ|2(n∗∂kn)

]2

+
1

g2
1

r2
(∂|ρ|2f)

2
[

∂k|ρ|2
]2

. (2.35)
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2.2.5 The Matter Fields

Now we pass to the matter fields. Referring the reader to Appendix A for details we present
here the result of a straightforward albeit rather tedious calculation,

Tr [(∇kQ)∗(∇kQ)]

=

[

2(
√

ξ − φ2)
2(1− ω) +

|ρ|2
r2

|φ2|2(1− 2ω) +

(

ξ + |φ2
2|(1 +

|ρ|2
r2

)

)

ω2

]

×
[

∂kn
∗∂kn+ (∂kn

∗n)2
]

+

[(

1 +
|ρ|2
r2

)

(∂|ρ|2φ2)
2 +

1

r2
φ2 ∂|ρ|2φ2

]

(∂k|ρ|2)2

+
1

|r|2 |φ2|2|∂kρ+ ρ(n∗∂kn)|2 +
1

r2
|φ2|2(ρ∗∂kρ− ρ∂kρ

∗ + 2|ρ|2 n∗∂kn)
2γ

− |φ2
2|(1 +

|ρ|2
r2

)(ρ∗∂kρ− ρ∂kρ
∗ + 2|ρ|2 n∗∂kn)

2γ2

}

, (2.36)

where we took advantage of the exact (to all orders in 1/g2) equations (2.26).

2.2.6 Determination of ω(r) and γ(r)

To determine the profile functions ω(r) and γ(r), we have to minimize the expression given
by the sum of two pieces (2.35) and (2.36). The minimization with respect of ω(r) was
performed in Refs. [13, 31]. It gives the following differential equation:

− 2

g2
ω′′ − 2

g2r
ω′ − 2

g2r2
f 2(1− ω) +

(

ξ + φ2
2 +

|ρ|2
r2

φ2
2

)

ω

− (ξ − φ2)
2 +

|ρ|2
r2

φ2
2 = 0 , (2.37)

which is exactly solved by

ω = 1− φ2√
ξ
. (2.38)

Minimization with respect to γ gives, on the other hand,

2
g2
γ′′ + 2

g2r
γ′ + 1

r
φ2
2 − 2rφ2

2

(

1 + |ρ|2
r2

)

γ = 0 . (2.39)

The equation above is solved algebraically at zeroth order in 1/g2 by

γ =
1

2

1

r2 + |ρ|2 +
1

g2
δγ .
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We do not evaluate explicitly the term δγ, since it turns out that it does not contribute, at
the same order 1/g2, to the effective action.

2.2.7 1/(g2ξ|ρ|2) corrections to the effective action

We now have all ingredients necessary to calculate the low-energy effective action for the
non-Abelian semilocal string, up to the order 1/(g2ξ|ρ|2). By evaluating the action given by
(2.35) and (2.36), exploiting the expressions for the fields (2.27) and (2.38), and integrating
over the transverse plane, we arrive at 5

Leff = πξ

(

ln
L2

|ρ|2
)

∣

∣∂k(ρ n)
∣

∣

2 − πξ|∂kρ+ ρ (n∗∂kn)|2

+
2π

g2
[

∂kn
∗∂kn+ (∂kn

∗n)2
]

.

(2.40)

The first term explicitly exhibits the infrared divergence mentioned in Sec. 1. An IR divergent
integral in the perpendicular plane is cut off at L at large distances. Thus, the large-size
constant L is introduced to keep the integrations over the transverse plane finite. This
divergent term was first calculated in Ref. [31]. In this paper we used the very same approach
in order to obtain its correct expression, which is now consistent with the results of Refs.
[37,38], obtained through the moduli matrix formalism. The last term in Eq. (2.40) is a finite
contribution to the metric corresponding to the standard Fubini–Study metric on CP(N−1).

2.2.8 The Kähler Potential

The effective action (2.40) describes 1/2-BPS saturated solitons preserving N = (2, 2) su-
persymmetry in 1+1 dimensions, on the world sheet. As such, the metric of the world-sheet
sigma model must be given by a Kähler potential,

gφl,φm̄
= ∂φl

∂φm̄
K(φl, φm̄) . (2.41)

Now we will establish its form.
To begin with, let us first introduce a set of holomorphic coordinates bi and c on the

target space,

bi =
ni

nN
, c = ρ nN , i = 1, ..., N − 1 , (2.42)

implying that

|ρ|2 = (1 +
∑

i

|bi|2)|c|2 . (2.43)

5See Appendix A for more details.
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It is not difficult to show, after some algebra, that the following Kähler potential gives the
correct metric on the target space:

Keff(bi, c, b̄i, c̄) = πξ

(

1 +
∑

i

|bi|2
)

|c|2 ln
L2

(1 +
∑

i |bi|2)|c|2

+ πξ(1 +
∑

i

|bi|2)|c|2 +
2π

g2
ln(1 +

∑

i

|bi|2)

= πξ |ρ|2
(

ln
L2

|ρ|2
)

+ πξ|ρ|2 + 2π

g2
ln

(

1 +
∑

i

|bi|2
)

.

(2.44)

Note that the above expression is invariant under the color-flavor isometry, as it should be,
of course. The first two terms depend only on the physical size |ρ|, which is an obvious
invariant. The last term, on the other hand, is invariant up to Kähler transformations.

Let us recall here that the Kähler potential in the case of the local non-Abelian string,
when ρ = 0 takes the form [11–14, 45]

Keff(b, 0, b̄, 0) =
4π

g2
ln

(

1 +
∑

i

|bi|2
)

. (2.45)

We would like to draw attention to the difference of a factor two in the coefficients in front of
the logarithms in the expressions (2.44) and (2.45). These two terms do not have to coincide,
since they are calculated in the opposite limits ρ → ∞ and ρ → 0, respectively .

2.3 Ñ > 1

Now we will lift the requirement Ñ = 1. Generalization to a generic number of flavors
requires more algebra, but is quite straightforward. One has to introduce Ñ complex size
moduli ρj, one for for each additional flavor. Ñ BPS equations for the fields qN+j are now
exactly solved by the following ansatz:

qN+j =
ρj
r
n φ2(r), j = 1, . . . , Ñ . (2.46)

The ansatz for the gauge potential must be also generalized, namely,

Ak = −i

(

∂knn∗ − n ∂kn
∗ − 2nn∗(n∗∂kn)

)

ω(r)

−i n n∗
Ñ
∑

j

(

ρ∗j∂kρj − ρj∂kρ
∗
j + 2ρjρ

†
j(n

∗∂kn)

)

γ(r) . (2.47)
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The total size of the string |ρ|2 is now given by

|ρ|2 =
Ñ
∑

j=1

|ρj|2 . (2.48)

Taking into account these relatively insignificant modifications, one gets the effective action
in the form

Leff = πξ

(

ln
L2

|ρ|2
)

∑

j

|∂k(nρj)|2 − πξ
1

|ρ|2
∣

∣

∣

∣

∑

j

(ρ∗jn
∗)∂k(nρj)

∣

∣

∣

∣

2

− 2π

g2

(

1

|ρ|2
∑

j

|∂k(nρj)|2 −
1

|ρ|4
∣

∣

∣

∣

∑

j

(ρ∗jn
∗)∂k(nρj)

∣

∣

∣

∣

2
)

+
4π

g2

[

∂kn
∗∂kn+ (∂kn

∗n)2
]

. (2.49)

The Kähler potential

Again, it is convenient to introduce a Kähler potential for (2.49). We introduce a set of
holomorphic coordinates bi and cj , in parallel with (2.42),

bi =
ni

nN

, cj = ρj nN ,

|ρ|2 =

(

1 +
∑

i

|bi|2
)

∑

j

|cj|2 ,

i = 1, ..., N − 1, j = 1, . . . , Ñ . (2.50)

Then, in terms of these coordinates we have

Keff(bi, cj, b̄i, c̄j) = πξ |ρ|2 ln L2

|ρ|2 + πξ|ρ|2 − 2π

g2
ln(|ρ|2)

+
4π

g2
ln

(

1 +
∑

i

|bi|2
)

= πξ |ρ|2 ln L2

|ρ|2 + πξ|ρ|2 − 2π

g2
ln

(

∑

j

|cj|2
)

+
2π

g2
ln

(

1 +
∑

i

|bi|2
)

.

(2.51)
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3 Exact World-Sheet Theory

In this section we take advantage of the presence of the IR divergent term lnL/|ρ| ≫ 1 in
the Kähler potential. Considering the infrared logarithm as a large parameter (in fact, the
largest) we relax the condition ρg

√
ξ ≫ 1 and obtain the exact metric of the world-sheet

theory to the leading order in the IR logarithm. By saying ‘exact’ we mean that there is no
expansion in 1/(|ρ|2 ξ) in this metric, unlike the results in Sec. 2.2.8 or 2.3.

Consider first the case Ñ = 1. The world-sheet theory (2.40) has the form

Seff =

∫

d2x

{

2πξ ln
L

|ρ| |∂k(ρ ni)|2 + finite terms

}

, (3.1)

where finite terms are those which do not contain the infrared logarithm. We stress that our
derivation in Sec. 2 gives us the exact expression in front of the IR logarithm. The reason is
that the logarithmically divergent term in the world-sheet theory comes from the long-range
power tails of the string solution which we know exactly. Corrections to the string solution
associated with the string core at r ∼ 1/g

√
ξ (which we do not control) do not produce the

infrared divergent terms in the world-sheet action.
Following [31] we introduce a new variable z replacing the ρ modulus

z = ρ

[

2πξ ln
L

|ρ|

]1/2

. (3.2)

With the logarithmic accuracy we rewrite the world-sheet theory in terms of this new variable
z as

Seff =

∫

d2x
{

|∂k(zni)|2 + finite terms
}

, (3.3)

where in the finite terms we have to express ρ in terms of z. We will justify momentarily
that in the path integral the field z(x) is not large. In fact it is of order of one, z ∼ 1.
Given that the IR logarithm is large this means that ρ is in fact small. This means that
we can take the limit ρ → 0 in the finite terms in Eqs. (3.1) and (3.3). With vanishing ρ,
the semilocal non-Abelian string reduces to the usual (local) non-Abelian string, for which
world sheet theory is given by the CP(N − 1) model [11–14]. Thus, we can write

finite terms |ρ→0 → CP(N − 1) model , (3.4)

and the bosonic part of the action of the world-sheet theory takes the form

Seff =

∫

d2x

{

|∂k(zni)|2 +
4π

g2

[

|∂kni|2 + (n∗
i ∂kni)

2
]

}

. (3.5)
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In terms of new variables the infrared logarithm disappeared! Now it is clear that typical
fluctuations of the z field are z ∼ 1. In Sec. 4 we will introduce mass terms in (3.5) which
will make this observation even more evident.

Equation (3.5) presenting a new world-sheet model in the semilocal string problem, to
replace that of Hanany and Tong, is one of our main results.

We stress that the only approximation used here is that the infrared logarithm is large,

ln (Lg
√

ξ) ≫ 1. (3.6)

In fact, in order to write (3.4) and (3.5) we need ρ to be much smaller than the string core,
ρ ≪ 1/g

√
ξ. In terms of the field z this reduces to

|z|2 ≪ 1

g2
ln (Lg

√

ξ), (3.7)

which is obviously satisfied in the limit L → ∞.
In Sec. 4 we will introduce the (s)quark mass terms and show that in this case the

infrared cutoff L is replaced by the inverse of a typical mass difference L → 1/∆m. Then,
instead of (3.7) we have

|z|2 ≪ 1

g2
ln

(

g
√
ξ

∆m

)

. (3.8)

The latter condition (3.7) is still satisfied provided ∆m is taken small enough. The parameter
g
√
ξ determines the size of the string core and should be understood as an ultraviolet (UV)

cutoff for the low-energy effective world-sheet theory (3.5), see for example [3].
Now, let us generalize (3.5) to the case Ñ > 1. Starting with (2.49) and following the

same steps which leads us to (3.5) we get

Seff =

∫

d2x

{

|∂k(zjni)|2 +
4π

g2

[

|∂kni|2 + (n∗
i ∂kni)

2
]

}

, (3.9)

where i = 1, ..., N , while j = 1, ..., Ñ and we introduced new fields zj ,

zj = ρj

[

2πξ ln
L

|ρ|

]1/2

. (3.10)

Eq. (3.9) is our final result for the effective low energy theory on the world sheet of the
non-Abelian semilocal string. Proceeding to (N + Ñ − 1) complex independent variables bi,
and ϕj,

bi =
ni

nN
, ϕj = zj nN , i = 1, ..., (N − 1), j = 1, ..., Ñ (3.11)
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( c.f. (2.50)) we can write down the Kähler potential for the theory (3.9) in the form

Keff(bi, ϕj, b̄i, ϕ̄j) =

Ñ
∑

j=1

(

|ϕj|2 +
N−1
∑

i=1

|(ϕjbi)|2
)

+
4π

g2
ln

(

1 +

N−1
∑

i=1

|bi|2
)

≡ |ζ |2 + 4π

g2
ln

(

1 +

N−1
∑

i=1

|bi|2
)

, (3.12)

where we defined

|ζ |2 =
Ñ
∑

j=1

(

|ϕj|2 +
N−1
∑

i=1

|(ϕjbi)|2
)

. (3.13)

This Kähler potential gives us the world-sheet theory written in the geometric formulation
in terms of (N+Ñ−1) unconstrained complex variables. The disadvantage of this geometric
formulation is that the global SU(N) symmetry is not manifest much in the same way as for
CP(N − 1) model. For Ñ = 1 the Kähler potential (3.12) describes the blow-up of CN at
the origin.

In Sec. 4 we will derive the world sheet theory for the case of unequal quark masses,
rewrite it in terms of a U(1) gauge theory and discuss its perturbative spectrum.

4 Inclusion of Quark Masses

4.1 World-Sheet Theory

Now we assume that the quark mass differences (mA − mB) are nonvanishing in the bulk
theory (2.1). This generates a mass-dependent potential on the non-Abelian semilocal string
world sheet [31]. In addition, a natural IR cutoff appears which converts (1.2) in (1.3).

The leading term in this potential contains the IR logarithm,

Veff = V IR−log
eff + V finite

eff . (4.1)

The first term here was calculated in [31] in the case N = 2. We briefly review this calculation
and then generalize it to arbitrary N .

Consider first Ñ = 1. The IR-logarithmic contribution to the potential arises from the
last term in the bulk action (2.1) with A = N + 1,

∫

d4x
∣

∣(Φ +mN+1) q
N+1
∣

∣

2
, (4.2)

where Φ can be replaced by its vacuum expectation value (VEV) (2.7) with the logarithmic
accuracy. Substituting the string solution for the extra flavor qN+1 (2.23) and using (2.26)
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and (2.27) we get

∫

d4x

N
∑

i=1

|mi −mN+1|2 |ni|2 ξ
|ρ|2
r2

. (4.3)

The integral over r in the perpendicular plane gives the IR logarithm,

V IR−log
eff = 2πξ

∫

d2x ln

(

1

|∆m||ρ|

) N
∑

i=1

|ρ|2 |mi −mN+1|2 |ni|2. (4.4)

Here we replaced the IR cutoff L with 1/∆m, which is a typical scale of quark mass differ-
ences, ∆m ∼ (mA −mB). The reason for this is that at (mA −mB) 6= 0 the Higgs branch
of the theory is lifted and we do not have massless squarks in the bulk theory. All profile
functions for the string solution are modified at large r ≥ |∆m|−1 acquiring an exponential
fall-off ∼ exp (− |∆m| r) [31]. Using the variable z (3.2) we can rewrite (4.4) as

Veff =

∫

d2x

N
∑

i=1

|z|2 |mi −mN+1|2 |ni|2 + V finite
eff . (4.5)

Now we will follow the same logic that lead us to the exact world-sheet kinetic terms
(3.5). Namely, to determine the finite part of the potential in (4.5) we take the limit ρ → 0.
In this limit the semilocal string reduces to the local non-Abelian string. Its potential on
the world sheet is given by the twisted mass terms of the CP(N − 1) model [13,14], see also
the review [3]. The result for the logarithmic part can be rewritten in terms of z, as was
done in Sec. 3. In this way we arrive at

Veff =

∫

d2x

{

N
∑

i=1

|z|2 |mi −mN+1|2 |ni|2

+
4π

g2





N
∑

i=1

|mi −m|2 |ni|2 −
∣

∣

∣

∣

∣

N
∑

i=1

(mi −m) |ni|2
∣

∣

∣

∣

∣

2










, (4.6)

where m is the average of the first N quark masses,

m ≡ 1

N

N
∑

i=1

mi . (4.7)

Generalization of (4.6) to the case Ñ > 1 is straightforward. Our final result for the
bosonic action of the world-sheet theory for the non-Abelian semilocal string is

Seff =

∫

d2x

{

|∂k(zjni)|2 +
4π

g2

[

|∂kni|2 + (n∗
i ∂kni)

2
]

+ |mi −mj |2 |zj|2|ni|2

+
4π

g2





N
∑

i=1

|mi −m|2 |ni|2 −
∣

∣

∣

∣

∣

N
∑

i=1

(mi −m) |ni|2
∣

∣

∣

∣

∣

2










, (4.8)

20



where mj (j = 1, ..., Ñ) denote masses of the last Ñ quarks of the bulk theory.
This theory is exact in the limit of the large IR logarithm in the same sense as in Sec. 3.

The only approximation we use is the condition (3.8) which is obviously satisfied once g
√
ξ

is considered as an ultraviolet cutoff for the theory (4.8). In particular, we assume that

|mA| ≪ g
√

ξ, A = 1, ..., Nf . (4.9)

The model (4.8) has a hidden U(1) gauge (local) symmetry,

ni → eiα ni, zj → e−iα zj (4.10)

and therefore the number of (real) degrees of freedom is

2(N + Ñ)− 1− 1 = 2(N + Ñ − 1) , (4.11)

where we subtracted two degrees of freedom associated with the condition (2.24), as well as
one U(1) phase (4.10), from the total number of components of ni and zj .

4.2 Gauge formulation

N = (2, 2) supersymmetric CP(N − 1) model can be nicely formulated in terms of a U(1)
gauge theory in the limit of the strong gauge coupling. In this limit gauge fields and their
superpartners become auxiliary [46, 47]. Following the same line of reasoning we consider
the local symmetry (4.10) as a gauge symmetry and rewrite the theory (4.8) as

Seff =

∫

d2x

{

|∂k(zjni)|2 + |∇kni|2 +
1

4e2
F 2
kl +

1

e2
|∂kσ|2

+ |mi −mj |2 |zj|2|ni|2 +
∣

∣

∣

√
2σ +mi

∣

∣

∣

2

|ni|2 +
e2

2

(

|ni|2 −
4π

g2

)2
}

,

i = 1, ..., N , j = 1, ..., Ñ , (4.12)

where the covariant derivatives are defined as

∇k = ∂k − iAk . (4.13)

It is assumed that at the very end we take limit e2 → ∞.
Note, that we rescale fields ni and zj in (4.12), which leads to the following D-term

condition:

|ni|2 =
4π

g2
(4.14)
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(in the limit e2 → ∞), instead of (2.24). Moreover, in this limit the gauge field Ak and its
N = 2 bosonic superpartner σ become auxiliary and can be eliminated,

Ak = −i n∗
i ∂kni,

√
2σ = −

∑

i

mi |ni|2. (4.15)

The global symmetry of the world sheet theory (4.12) is (the same as in the bulk theory,
see (2.12))

SU(N)× SU(Ñ)× U(1) (4.16)

broken down to U(1)(Nf−1) by the (s)quark mass differences.

4.3 An Alternative Gauge Formulation

The gauge formulation described in Sec. 4.2 is simple, but it has the disadvantage of including
a nonstandard kinetic term which is quartic in fields. In this section we propose an alternative
formulation in terms of a gauged linear sigma model with the standard kinetic terms which
reduce, at low energies, to the models (4.8) and (4.12). The model presented this section
can be considered as an UV completion of the model (4.12). This can be achieved at a price
of including a potential term.

4.3.1 N = 2, Ñ = 1

For the sake of clarity, let us start from the simplest case. We will extend the construction
to the most general case in Sec. 4.3.2. The U(1) gauged linear sigma model has the following
action:

Seff =

∫

d2x

{

|∂kZi|2 + |∇kni|2 +
∣

∣∇̄kR
∣

∣

2
+

1

4e2
F 2
kl +

1

e2
|∂kσ|2

+
∣

∣

∣

√
2σ +mi

∣

∣

∣

2

|ni|2 +
∣

∣

∣

√
2σ
∣

∣

∣

2

|R|2 +

+
e2

2

(

|ni|2 − |R|2 − 4π

g2

)2

+ VF (ZA, ni, R)

}

,

i = 1, 2. (4.17)

where the Zi are neutral scalars, the fields ni have charge +1 and the field R have charge
−1. The gauge covariant derivative acting on R is, thus,

∇̄k = ∂k + iAk . (4.18)
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The first term in the third line is the D-term required by supersymmetry while the second
one

VF (ZA, ni, Rj) = |M |2(|Z1n2 − Z2n1|2 + |ni|2|R|2 + |Zi|2|R|2)

+ |mi −m|2|Zi|2 (4.19)

is a judiciously chosen F -term potential which comes from the superpotential

WF (Zi, ni, Rj) = M (Z1n2 − Z2n1)R +
1

2
(mi −m)Z2

i , (4.20)

where M is an auxiliary mass parameter (a UV parameter), to be sent to infinity. Note that
the coefficients M and mi −m act now as complex masses for all fields, while previously we
introduced the twisted masses mi only for the ni fields.

We now take the limit

e2, M → ∞ , (4.21)

and integrate out massive fields (with masses of order e, M). Integrating out the scalar
fields we obtain the following vacuum equations:

R = 0, Z1n2 = Z2n1 . (4.22)

Moreover, in the limit above, the D-term condition

|ni|2 − |R|2 = |ni|2 =
4π

g2
(4.23)

is implemented.6 The gauge field Ak and its N = (2, 2) bosonic superpartner σ become
auxiliary and can be eliminated too,

Ak = −i n∗
i ∂kni + i R∗∂kR = −i n∗

i ∂kni ,

√
2σ = −

∑

i mi|ni|2
∑

i |ni|2 + |R|2 = −
∑

i

mi|ni|2 . (4.24)

Substituting the relations above into (4.17) we obtain:

Seff =

∫

d2x

{

|∂kZ1|2 +
∣

∣

∣

∣

∂k

(

Z1
n2

n1

)∣

∣

∣

∣

2

+
4π

g2
[

|∂kni|2 + (n∗
i ∂kni)

2
]

+
4π

g2





N
∑

i=1

|mi −m|2 |ni|2 −
∣

∣

∣

∣

∣

N
∑

i=1

(mi −m) |ni|2
∣

∣

∣

∣

∣

2




+

N
∑

i=1

|mi −m|2|Z1|2 +
N
∑

i=1

|mi −m|2
∣

∣

∣

∣

Z1
n2

n1

∣

∣

∣

∣

2
}

, (4.25)

6It is important that R = 0 in the vacuum, see (4.22).
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which exactly reduces to the theory written in (4.8) with the identification

Z1 ≡ z n1 (4.26)

4.3.2 N arbitrary, Ñ > 1

Essentially the same construction as in Sec. 4.3.1 can be can be carried out in the most
general case. Consider the following gauged sigma model:

Seff =

∫

d2x

{

|∂kZA|2 + |∇kni|2 +
∣

∣∇̄kRB

∣

∣

2
+

1

4e2
F 2
kl +

1

e2
|∂kσ|2

+
∣

∣

∣

√
2σ +mi

∣

∣

∣

2

|ni|2 +
∣

∣

∣

√
2σ
∣

∣

∣

2

|RB|2 +

+
e2

2

(

|ni|2 − |RB|2 −
4π

g2

)2

+ VF (ZA, ni, RB)

}

,

A = 1, ..., ÑN , i = 1, ..., N , B = 1, ..., Ñ(N − 1) . (4.27)

Note that we introduced a large set of new charge-zero fields ZA and negatively charged
fields RB. The theory in Eq. (4.27) includes the potential VF (ZA, ni, RB),

VF (ZA, ni, RB) = |M |2
N−1
∑

o=1

Ñ
∑

p=1

|ZN(p−1)+1no+1 − ZN(p−1)+o+1n1|2 +

+ |M |2|
N−1
∑

o=1

Ñ
∑

p=1

ZN(p−1)+o+1R(N−1)(p−1)+o|2 +

+ |M |2
N−1
∑

o=1

|
Ñ
∑

p=1

ZN(p−1)+1R(N−1)(p−1)+o|2 +

+ |M |2
Ñ
∑

p=1

|
N−1
∑

o=1

no+1R(N−1)(p−1)+o|2 +

+ |M |2
N−1
∑

o=1

Ñ
∑

p=1

|n1R(N−1)(p−1)+o|2 +

+

Ñ
∑

j=1

N
∑

i=1

|mi −mj |2|ZN(j−1)+i|2 +

+ |M |2
∑

B

|RB|2 . (4.28)
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This potential is consistent with N = (2, 2) supersymmetry since it comes from the following
superpotential:

WF (ZA, ni, RB) = M

N−1
∑

o=1

Ñ
∑

p=1

R(N−1)(p−1)+o

(

ZN(p−1)+1no+1

− ZN(p−1)+o+1n1

)

+

+
1

2

Ñ
∑

j=1

N
∑

i=1

(mi −mj)Z
2
N(j−1)+i +

1

2
M
∑

B

R2
B .

(4.29)

After some straightforward but rather tedious algebra one can show that vanishing of the
potential (4.28) requires vanishing of all R fields,

RB = 0 , ∀B , (4.30)

and that the nontrivial constraints on the fields are given by imposing the vanishing of the
first line in (4.28),

ZN(p−1)+o+1 = ZN(p−1)+1
no+1

n1

, o = 1, . . . , N − 1, p = 1, . . . , Ñ . (4.31)

Using the relations above and the identifications

ZN(j−1)+1 ≡ zj n1 (4.32)

we arrive at
∑

A

|∂kZA|2 =
∑

i,j

|∂k(zjni)|2,

∑

i,j

|mi −mj |2|ZN(j−1)+i|2 =
∑

i,j

|mi −mj |2|zj |2|ni|2 .

(4.33)

This, in conjunction with the condition RB = 0 in Eq. (4.27), leads us to (4.8) again.

5 Quasiclassical spectrum

In this section we will analyze the vacuum structure and the mass spectrum in our world-
sheet zn theory. It is simpler to obtain it from the action (4.12) written in the gauged
formulation. In this paper we will limit ourselves to the quasiclassical study of the theory
(4.12) leaving its investigation at the quantum level for future work. First we will consider
perturbative spectrum.
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5.1 Perturbative Spectrum

If all quark masses are different, the theory (4.12) has N isolated vacua at

√
2σ = −mi0 , ni0 =

√

4π

g2
, ni 6=i0 = 0, zj = 0, (5.1)

where i0 can acquire any value,

i0 = 1, ..., N , while j = 1, ..., Ñ . (5.2)

The above vacua of the world-sheet theory correspond to N elementary non-Abelian
strings. The spectrum of ni 6=i0 and zj excitations can be read-off from the action (4.12),

mni
= mi −mi0 , i 6= i0, mzj = mj −mi0 . (5.3)

Now suppose that one of the masses of the first N quarks coincides with another mass
of the last Ñ quarks, mj0 = mi0 . Then the theory develops a noncompact Higgs branch
growing from the vacuum at

√
2σ = −mi0 , namely,

√
2σ = −mi0 , ni0 =

√

4π

g2
, ni 6=i0 = 0, zj 6=j0 = 0 , zj0 = z0 , (5.4)

where z0 is an arbitrary complex number. The (real) dimension of this Higgs branch is
dimH = 2.

Although both kinetic and mass terms in (4.12) acquire a dependence on z0 the masses
of ni 6=i0 and zj excitations remain the same, they are given by (5.3). It is only the field zj0
that becomes massless; it corresponds to fluctuations along the Higgs branch.

Now, let us go to very low energies, much lower than the quark mass differences |∆m|.
Then, the low-energy effective theory on the Higgs branch is just a trivial free-field theory
for the massless complex field zj0 ,

SHiggs branch =

∫

d2x |∂kzj0 |2 . (5.5)

If more than one masses of the first N quarks coincide with certain masses of the last Ñ
quarks, more noncompact Higgs branches develop. These Higgs branches are not lifted in
quantum theory. In contrast, the compact Higgs branches which classically develop provided
that several masses of first quarks coincide with each other are lifted in quantum theory much
in the same way as in CP(N − 1) model.

5.2 Semiclassical kink spectrum

In addition to perturbative excitations, the theory (4.12) supports BPS kinks interpolating
between different vacua. Let us calculate their masses in the quasiclassical approximation.
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To do so we write down the Bogomol’nyi representation for the kink energy. Assuming for
simplicity that the quark masses and σ are real and that all fields depend only on x3 we can
rewrite (4.12) in the limit e2 → ∞ as follows:

Ekink =

∫

dx3

{

|∂x3
(zjni)|2 + |∇x3

ni|2 + |mi −mj |2 |zj|2|ni|2

+
∣

∣

∣

√
2σ +mi

∣

∣

∣

2

|ni|2
}

=

∫

dx3

{

|∂x3
(zjni) + (mi −mj) zj ni|2 +

∣

∣

∣
∇x3

ni + (
√
2σ +mi)ni

∣

∣

∣

2

+
4π

g2

√
2∂x3

σ

}

, (5.6)

where we use the constraint (4.14) and dropped the boundary terms

(
√
2σ +mi) |ni|2 and (mi −mj) |zj|2|ni|2 . (5.7)

In particular, the last one vanishes at generic masses in all vacua (5.1), because zj = 0, while
on the Higgs branches (5.4) it is zero because mi0 = mj0 .

From the Bogomol’nyi representation (5.6) we see that the kink profile functions satisfy
the first-order equations

∂x3
(zjni) + (mi −mj) zj ni = 0,

∇x3
ni + (

√
2σ +mi)ni = 0, (5.8)

while the kink masses are given by the boundary term in (5.6). In particular, the mass of
the kink interpolating between the “neighboring” vacua i0 and i0 + 1 is

mkink
i0→i0+1 =

∣

∣

∣

∣

4π

g2

√
2
[

σ(x3 = ∞)− σ(x3 = −∞)
]

∣

∣

∣

∣

=

∣

∣

∣

∣

4π

g2
(mi0 −mi0+1)

∣

∣

∣

∣

. (5.9)

For generic masses the solution of the first-order equations (5.8) is particularly simple.
The first equation is solved by zj = 0, while the second one reduces to the first-order equation
for BPS kinks in the CP(N − 1) model with twisted masses [19]. Thus, the kinks’ profile
functions are the same as in the CP(N − 1) model.

We recall that the monopoles are confined in the bulk theory in the Higgs vacuum (2.7). In
fact, in the U(N) gauge theories they are presented by junctions of two different elementary
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non-Abelian strings. Since N elementary non-Abelian strings correspond to N vacua of
the world-sheet theory, the confined monopoles of the bulk theory are seen as kinks in the
world-sheet theory [18, 13, 14].

As was shown in [19], the BPS spectrum of dyons (at the singular point on the Coulomb
branch in which N quarks become massless) in the four-dimensional bulk theory (2.1), for
Nf = N , identically coincides with the BPS spectrum in the two-dimensional twisted-mass
deformed CP(N−1) model. The reason for this coincidence was revealed in [13,14]. Although
the ’t Hooft–Polyakov monopole on the Coulomb branch looks very different from the string
junction of the theory in the Higgs regime, amazingly, their masses are the same [13,14]. This
is due to the fact that the mass of the BPS states (the string junction is a 1/4-BPS state)
cannot depend on ξ because ξ is a nonholomorphic parameter. Since the confined monopole
emerges in the world-sheet theory as a kink, the Seiberg–Witten formula for its mass should
coincide with the exact result for the kink mass in two-dimensional N = 2 twisted-mass
deformed CP(N − 1) model, which is the world-sheet theory for the non-Abelian string in
the bulk theory with Nf = N . Thus, we arrive at the statement of coincidence of the BPS
spectra in both theories.

Clearly the same correspondence should be true also in the Nf > N case. Let us verify
the coincidence of the BPS spectra of the bulk and world-sheet theories in the quasiclassical
approximation. Taking the limit ξ → 0 in (2.5) we see that, in the vacuum (2.7), the massive
gauge bosons and first N quarks have masses

mN×N = mi −mi′ , i, i′ = 1, ..., N, i 6= i′, (5.10)

while the last Ñ quarks

mN×Ñ = mi −mj , i = 1, ..., N, j = 1, ..., Ñ . (5.11)

We see that this spectrum is identical to the perturbative spectrum of the world-sheet theory
(5.3).

The monopole spectrum of the bulk theory is given by the Seiberg–Witten formula [7]

mmonopole = |~aD ~nm| ≈
∣

∣

∣

∣

4π

g2
~a~nm

∣

∣

∣

∣

, (5.12)

where we use the quasiclassical approximation. Moreover, ~a represents diagonal entries of
the adjoint field Φ while ~aD stands for corresponding dual potentials and ~nm is the magnetic
charge of a monopole. In particular, for the elementary monopoles ~nm = (0, ..., 1,−1, 0, ...)
(with nonvanishing entries at the i-th and (i+ 1)-th positions) we get

mmonopole ≈
∣

∣

∣

∣

4π

g2
(mi −mi+1)

∣

∣

∣

∣

, i = 1, ..., N − 1 , (5.13)

where we use (2.7). These masses coincides with the kink masses (5.9) of the world-sheet
theory in the quasiclassical approximation. Explicit verification that the exact BPS spectra
of both theories agree is left for future work.
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6 Vortices from D-Branes: Comparing with Hanany

and Tong

6.1 Weighted CP(Nf − 1) model

As was mentioned in Sec. 1, non-Abelian semilocal strings were analyzed previously [11, 14]
within a complementary approach based on D-branes. To make contact with field theory it
is highly instructive to compare our field-theoretic results with those obtained by Hanany
and Tong. They conjectured that the effective theory on the world sheet of the non-Abelian
semilocal string is given by the weighted CP(Nf −1) model. The latter can be represented as
a strong-coupling limit (e2 → ∞) of the two-dimensional U(1) gauge theory with N positive
and Ñ negative charges, namely

SHT =

∫

d2x

{

|∇kn
w
i |2 + |∇̃kz

w
j |2 +

1

4e2
F 2
kl +

1

e2
|∂kσ|2

+
∣

∣

∣

√
2σ +mi

∣

∣

∣

2

|nw
i |2 +

∣

∣

∣

√
2σ +mj

∣

∣

∣

2 ∣
∣zwj
∣

∣

2

+
e2

2

(

|nw
i |2 − |zwj |2 −

4π

g2

)2
}

,

i = 1, ..., N, j = 1, ..., Ñ , ∇̃k = ∂k + iAk . (6.1)

With respect to the U(1) gauge field, the fields nw
i and zwi have charges +1 and −1, respec-

tively. We endow these fields with a superscript “w” (weighted) to distinguish them from
the ni and zj fields which appear in our world-sheet zn theory (4.12). If only the charge +1
fields were present, in the limit e2 → ∞ we would get a conventional twisted-mass deformed
CP(N − 1) model.

6.2 Quasiclassical spectrum

Although the weighted CP(Nf −1) model and the zn model look quite different we will show
momentarily that the quasiclassical spectra of excitations of these two models are the same.
Let us start from the perturbative spectrum.

From (6.1) we see that the Hanany–Tong world-sheet theory has N vacua (i.e. N strings
from the standpoint of the bulk theory),

√
2σ = −mi0 , nw

i0
=

√

4π

g2
, nw

i 6=i0
= zwj = 0 , (6.2)

where i0 = 1, ..., N .
In each vacuum there are 2(Nf − 1) elementary excitations, counting real degrees of

freedom, much in the same way as in (4.12). The action (6.1) contains N complex fields nw
i
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and Ñ complex fields zwj . The phase of nw
i0 is eaten by the Higgs mechanism. The condition

|nw
i0
|2 = 4π

g2
eliminates one extra field. The physical masses of the elementary excitations

mnw
i
= mi −mi0 , i 6= i0, mzwj

= mj −mi0 . (6.3)

This spectrum is identical to the perturbative spectrum of the zn model (4.12)
Now, suppose again that mj0 = mi0 . Then the theory (6.1) also develops a noncompact

Higgs branch growing from the vacuum at
√
2σ = −mi0 , namely

√
2σ = −mi0 , |nw

i0 |2 − |zwj0|2 =
4π

g2
, nw

i 6=i0 = 0, zwj 6=j0 = 0. (6.4)

The (real) dimension of this Higgs branch is two, much in the same way as for the Higgs
branch in the world-sheet theory (4.12).

Moreover, the spectrum of fields nw
i 6=i0

and zwj 6=j0
is still given by (6.3). One degree of

freedom of two complex fields nw
i0
and zwj0 is eaten by the Higgs mechanism, while the other is

fixed by the second constraint in (6.4). The remaining two degrees of freedom are massless.
They correspond to fluctuations along the Higgs branch.

We see that the perturbative spectra of these two models (4.12) and (6.1) are identical.
Now consider the effective low-energy theory on the Higgs branch (6.4). At energies

below the quark mass differences only the fields nw
i0

and zwj0 are relevant. We resolve the
constraint in the second equation in (6.4) by writing

nw
i0
=

√

4π

g2
eiα+iβ coshw, zwj0 =

√

4π

g2
eiα−iβ sinhw, (6.5)

where we introduced two phases for two complex fields. From the action (6.1) we find the
gauge potential

Ak = 2

(

∂kα +
∂kβ

cosh 2w

)

. (6.6)

Substituting this together with (6.5) into the action (6.1) we get [48]

SHT
Higgs branch =

∫

d2x cosh 2w
{

(∂kw)
2 + (∂kβ)

2 tanh2 2w
}

, (6.7)

where the common phase α is eaten by the Higgs mechanism, and we are left with a sigma
model with two real degrees of freedom.

This theory on the Higgs branch is clearly different from the free theory (5.5). The target
space in (6.7) is hyperboloid with a nonvanishing curvature. This shows that two models,
(4.12) on the one hand and (6.1) on the other are different, despite the coincidence of their
spectra.7

7Interrelation between aspects of the Hanany–Tong model and field-theoretic predictions for non-Abelian
strings was previously studied in [49] in the case of two coaxial strings. There, it was found that a limited
number of “protected” quantities, such as the BPS spectra, agree, while others (e.g. the metric) disagree.
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Now let us briefly review the kink spectrum of the weighted CP(Nf − 1) model in the
quasiclassical approximation. Assuming again the quark masses and σ to be real and all
fields depend only on x3 we cast the Bogomol’nyi representation for the kink energy in the
model (6.1) in the limit e2 → ∞ in the form

Ekink =

∫

dx3

{

|∇x3
nw
i |2 +

∣

∣∇x3
zwj
∣

∣

2
+
∣

∣

∣

√
2σ +mi

∣

∣

∣

2

|nw
i |2

+
∣

∣

∣

√
2σ +mj

∣

∣

∣

2 ∣
∣zwj
∣

∣

2
}

=

∫

dx3

{

∣

∣

∣
∇x3

nw
i + (

√
2σ +mi)n

w
i

∣

∣

∣

2

+
∣

∣

∣
∇̄x3

zwj − (
√
2σ +mj) z

w
j

∣

∣

∣

2

+
4π

g2

√
2∂x3

σ

}

. (6.8)

This representation shows that kink solutions satisfy the first-order equations

∇x3
nw
i + (

√
2σ +mi)n

w
i = 0,

∇̄x3
zwj − (

√
2σ +mj) z

w
j = 0, (6.9)

while the kink masses are given by the boundary term in (6.8). Much in the same way as in
the theory (4.12) this gives, for the kink interpolating between vacua i0 and i0 + 1,

mkink
i0→i0+1 =

∣

∣

∣

∣

4π

g2
(mi0 −mi0+1)

∣

∣

∣

∣

. (6.10)

Again, the kink spectrum we get is identical to that in (5.9) obtained in the world-sheet
theory (4.12).

In Sec. 6.3 we will show that geometries of the target spaces of these two models are
different (in the case when all fields are relevant). Given the agreement of the BPS spectra
this might seem surprising. Maybe not (cf. [49]). Such a situation could have a simple
explanation. While the Kähler potentials of two N = (2, 2) supersymmetric sigma mod-
els are different their effective twisted superpotentials could agree. This would ensure the
coincidence of their BPS spectra.

The exact BPS spectrum in the weighted CP(Nf−1) model (6.1) was originally discussed
in [47]. It was shown to agree with the BPS spectrum of the bulk theory in the vacuum (2.7)
on the Coulomb branch (i.e. at ξ → 0) [20]. This was considered to be a strong argument
supporting the conjecture that the weighted CP(Nf − 1) model (6.1) fully presents a correct
world-sheet theory on the semilocal non-Abelian string [14,31]. Now we are certain that this
conjecture is not correct. Although the BPS spectrum of weighted CP(Nf − 1) model (6.1)
coincides with that in the bulk theory, this model is different from the genuine world-sheet
theory on the semilocal non-Abelian string, the zn model (4.12).
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6.3 Comparing two metrics

The Kähler potential of the theory (6.1) can be written, using the superfield formalism, in
the following simple form:

KHT = e−V |nw
i |2 + eV |zwj |2 +

4π

g2
V,

i = 1, . . . , N, j = 1, . . . , Ñ , (6.11)

where nw
i and zwj are chiral superfields and V is a vector superfield and summations over

indices i and j are implicit. We can eliminate V by solving its equations of motion

∂VKHT = −e−V |nw
i |2 + eV |zwj |2 +

4π

g2
= 0 ;

|nw
i |2e−2V − 4π

g2
e−V − |zwj |2 = 0 . (6.12)

By virtue of the D-term condition, we can assume |nw
i |2 6= 0 whenever 4π/g2 > 0, then

e−V =
1

2|nw
i |2





4π

g2
+

√

(

4π

g2

)2

+ 4|nw
i |2|zwj |2



 . (6.13)

Substituting this expression back in the Kähler potential, we obtain, up to Kähler transfor-
mations, the exact expression

KHT =
1

2





4π

g2
+

√

(

4π

g2

)2

+ 4|Mij|2


+
2|Mij|2

4π
g2

+

√

(

4π
g2

)2

+ 4|Mij|2

− 4π

g2
ln





4π

g2
+

√

(

4π

g2

)2

+ 4|Mij|2


+
4π

g2
ln

(

1 +
|Mi1|2
|MN1|2

)

,

(6.14)

where we defined the meson fields as

Mij = nw
i z

w
j . (6.15)

Note that not all of the N × Ñ mesonic fields are independent because of the relations

MijMkl = MkjMil .
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The total number of independent complex degree of freedoms is N + Ñ − 1, which is the
total number of fields in the theory minus one complex rescaling of the fields. We can choose
the following set of independent mesons:

Mi1 = nw
i z

w
1 , MNj = nw

Nz
w
j , i 6= N . (6.16)

All other mesons are given by the formula

Mij = Mi1MNj/MN1 . (6.17)

The combination |Mij |2 can the be written as

N,Ñ
∑

i,j=1

|Mij |2 =
Ñ
∑

j=1

(

|MNj|2 +
N−1
∑

i=1

|Mi1|2|MNj |2/|MN1|2
)

. (6.18)

To compare the expression above with the field-theoretic result (3.12), we identify the set of
independent mesons used in the Kähler quotient construction with the set of moduli found
in the field-theoretic derivation,

ϕj ≡ MNj = nw
Nz

w
j , bi ≡

Mi1

MN1
=

nw
i

nw
N

, |ζ |2 ≡ |Mij |2 . (6.19)

For simplicity, let us compare the two geometries, (3.12) vs. (6.14), at first order in the
expansion for large g2. The Kähler potential obtained from the Hanany–Tong model is then

KHT = 2
√

|ζ |2 − 2π

g2
log(|ζ |2) + 4π

g2
log(1 + |bi|2) , (6.20)

while the exact Kähler potential we found in field theory is

Keff = |ζ |2 + 4π

g2
log(1 + |bi|2) . (6.21)

To explicitly demonstrate that the two geometries described above are indeed different, we
calculate the scalars curvatures of the respective target spaces and verify that they disagree.
For any Kähler manifold, the Ricci scalar can be easily calculated using the formulas

gpq̄ = ∂p∂q̄ K ,

Rpq̄ = −∂p∂q̄ (ln det gpq̄) ,

R = gpq̄Rpq̄ , p, q = 1, N + Ñ − 1 , (6.22)

where we endow the set of independent complex fields which describe the moduli space (ϕj

and bi) with indices p and q.
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Start from the case N = 2, Ñ = 1. Evaluating (6.22) using (6.20) and (6.21) which
implies

|ζ |2 = |ϕ|2(1 + |b|2) , (6.23)

we arrive at

RHT =
1

√

|ζ |2
− 2π

g2|ζ |2 +O(1/g2) ;

Reff = 0 . (6.24)

We thus conclude that the geometry of the target space derived from field theory has the
vanishing Ricci scalar, while for geometry described by the Hanany–Tong model the Ricci
scalar does not vanish, rather it falls off as 1/|ζ |.

In the case N = 2 = Ñ = 2, we consider (6.20) and (6.21) with

|ζ |2 = (|ϕ1|2 + |ϕ2|2)(1 + |b|2) . (6.25)

The Ricci scalars are then

RHT =
1

√

|ζ |2
+O(1/g2) ,

Reff = − 2

|ζ |2 +
8π

g2|ζ |4 +O(1/g2) . (6.26)

Disagreement is obvious. This parallels the conclusion of [49].

7 Duality

In this section we will discuss duality relation for the zn model. By no means this relation is
accidental. Rather it is in one-to-one correspondence with the duality relation for the bulk
theories.

7.1 Bulk Duality

As was shown in [50, 51], at
√
ξ ∼ Λ the bulk theory goes through a crossover transition to

the strong coupling regime. At small ξ (
√
ξ ≪ Λ) this regime can be described in terms of

weakly coupled dual N = 2 SQCD, with the gauge group

U(Ñ)×U(1)N−Ñ , (7.1)

and Nf flavors of light dyons. This non-Abelian N = 2 duality is, in a sense, similar to
Seiberg’s duality in N = 1 supersymmetric QCD [7, 52], for further details see [53]. Later a
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dual non-Abelian gauge group SU(Ñ) was identified on the Coulomb branch at the root of
a baryonic Higgs branch in the N = 2 supersymmetric SU(N) gauge theory with massless
quarks [54].

Light dyons are in the fundamental representation of the gauge group U(Ñ) and are
charged under Abelian factors in (7.1). In addition, there are light dyonsDl (l = Ñ+1, ..., N),
neutral under the U(Ñ) group, but charged under the U(1) factors. A small but nonvanishing
ξ triggers condensation of all these dyons,

〈DlA〉 =
√

ξ





0 . . . 0 1 . . . 0
. . . . . . . . . . . . . . . . . .
0 . . . 0 0 . . . 1



 , 〈 ¯̃DlA〉 = 0, l = 1, ..., Ñ ,

〈Dl〉 =
√

ξ, 〈 ¯̃Dl〉 = 0 , l = Ñ + 1, ..., N . (7.2)

Now, consider the equal quark mass case. Both, the gauge and flavor SU(Nf ) groups,
are broken in the vacuum. However, the color-flavor locked form of (7.2) guarantees that the
diagonal global SU(Ñ)C+F survives. More exactly, the unbroken global group of the dual
theory is

SU(N)F × SU(Ñ)C+F ×U(1) , (7.3)

the same as in the original theory, see (2.12). Here SU(Ñ)C+F is a global unbroken color-
flavor rotation, which involves the last Ñ flavors, while SU(N)F factor stands for the flavor
rotation of the first N dyons. Thus, a color-flavor locking takes place in the dual theory too,
although in a different way. Now colors are ”locked” to the last Ñ flavors instead of the first
N , see (2.7) and (7.2).

For generic quark masses the global symmetry (2.12) is broken down to U(1)Nf−1.

7.2 Dual world-sheet theory

Much in the same way as in the original theory, the presence of the global SU(Ñ)C+F group is
the reason behind the formation of the non-Abelian strings. We can repeat all the steps that
leads us to the effective world-sheet theory (4.12) on the non-Abelian semilocal string for the
dual bulk theory. Now we have Ñ orientation moduli ñj with masses mj = {mN+1, ..., mNf

}
and N size moduli z̃i with masses mi = {m1, ..., mN} (j = 1, ..., Ñ , i = 1, ..., N). The bosonic
part of the action has the form

SD
eff =

∫

d2x

{

|∂k(z̃iñj)|2 + |∇kñj |2 +
1

4ẽ2
F 2
kl +

1

ẽ2
|∂kσ|2

+ |mi −mj |2 |z̃i|2|ñj |2 +
∣

∣

∣

√
2σ +mj

∣

∣

∣

2

|ñj |2 +
ẽ2

2

(

|ñj |2 −
4π

g̃2

)2
}

,

i = 1, ..., N , j = 1, ..., Ñ , (7.4)
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where g̃2 is the dual bulk coupling, and the strong coupling limit ẽ → ∞ is assumed.
Classically, the vacua of this theory at generic quark masses are at

√
2σ = −mj0 , ñj0 =

√

4π

g̃2
, ñj 6=j0 = 0, z̃i = 0, (7.5)

where j0 can be
j0 = 1, ..., Ñ ,

while i = 1, ..., N . These vacua of the dual world-sheet theory correspond to Ñ elementary
non-Abelian strings in the dual bulk theory.

The spectrum of ñj 6=j0 and z̃i excitations is

mñj
= mj −mj0, j 6= j0, mz̃i = mi −mj0 . (7.6)

Note, that this spectrum is different from the perturbative spectrum of the original world-
sheet theory, see (5.3).

Suppose again that one of the masses of the first N quarks coincides with another mass
of the last Ñ quarks,

mj0 = mi0 .

Then the dual theory also develops a noncompact Higgs branch growing from the vacuum
at

√
2σ = −mj0 , namely,

√
2σ = −mj0 , ñj0 =

√

4π

g̃2
, ñj 6=j0 = 0 , z̃i 6=i0 = 0 , z̃i0 = z̃0 , (7.7)

where z̃0 is a complex number. The (real) dimension of this Higgs branch is dimH = 2.
Again, the masses of the ñj 6=j0 and z̃i 6=i0 excitations remain the same, they are given in

(7.6). The field z̃i0 becomes massless, it corresponds to fluctuations along the Higgs branch.
The quasiclassical kink spectrum for the dual world-sheet theory (7.4) can be obtained

much in the same way as was done for the original world-sheet theory in Sec. 5.2. Writing
down a Bogomol’nyi representation for the dual model (7.4) analogous to that in (5.6) we
get the masses of the kinks interpolating between the “neighboring” vacua j0 and j0+1, see
(7.5),

mkink
j0→j0+1 =

∣

∣

∣

∣

4π

g̃2

√
2 [σ(x3 = ∞)− σ(x3 = −∞)]

∣

∣

∣

∣

=

∣

∣

∣

∣

4π

g̃2
(mj0 −mj0+1)

∣

∣

∣

∣

.

(7.8)

It is straightforward to check that this kink spectrum coincides with the monopole spec-
trum of the dual bulk theory in the quasiclassical approximation.
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7.3 Dual weighted CP(Nf − 1) model

Let us start from Hanany and Tong. The brane-based arguments of [11, 14] can be applied
to the dual bulk theory too. This leads us to a dual weighted CP(Nf − 1). Now it has Ñ
orientational moduli ñw

j with the U(1) charge +1. In addition, it has N size moduli z̃wi with
the U(1) charge −1. The bosonic action of this model is

SD
HT =

∫

d2x

{

|∇kñ
w
j |2 + |∇̃kz̃

w
i |2 +

1

4ẽ2
F 2
kl +

1

ẽ2
|∂kσ|2

+
∣

∣

∣

√
2σ +mj

∣

∣

∣

2 ∣
∣ñw

j

∣

∣

2
+
∣

∣

∣

√
2σ +mi

∣

∣

∣

2

|z̃wi |2 +
ẽ2

2

(

|ñw
j |2 − |z̃wi |2 −

4π

g̃2

)2
}

,

i = 1, ..., N, j = 1, ..., Ñ . (7.9)

It is easy to see that the classical vacua of this model are at

√
2σ = −mj0 , ñw

j0
=

√

4π

g̃2
, ñw

j 6=j0
= 0, z̃wi = 0. (7.10)

The quasiclassical spectrum of the dual weighted CP(Nf−1) model (7.9) can be obtained
along the same lines as in Sec. 6.2. It appears to be the same as in the dual zn theory (7.4),
see (7.6) and (7.8).

In passing we should mention the following. It turns out that the weighted CP(Nf − 1)
model is selfdual [38, 50, 51]. At ξ ≫ Λ2 the original theory is at weak coupling, and (2.13)
is positive. Analytically continuing to the domain ξ ≪ Λ2, we formally make it negative,
which signals, of course, that the low-energy description in terms of the original model is
inappropriate. At ξ ≪ Λ2 the coupling of the infrared free dual bulk theory is given by

8π2

g̃2
(ξ) = (N − Ñ) ln

Λ√
ξ
= −8π2

g2
(ξ) . (7.11)

It becomes positive and the dual model assumes the role of the legitimate low-energy de-
scription (at weak coupling). A direct inspection of the dual theory action (7.9) shows that
the dual theory can be interpreted as a continuation of the sigma model (6.1) to negative
values of the coupling constant g2, where we identify

ñw
j = zwj , z̃wi = nw

i , i = 1, ..., N, j = 1, ..., Ñ . (7.12)

8 Conclusions

Our task was to work out an honest-to-god field-theoretic derivation of the world-sheet
theory for non-Abelian semilocal strings. The goal is achieved. The occurrence of the large
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IR parameter (1.3) not seen in the D-brane derivation proved to be crucial. In the limit
when IR logarithm is large the world-sheet theory is obtained exactly. On the string world
sheet we discovered a so far unknown N = 2 two-dimensional sigma model, the zn model,
with or without twisted masses. Alternative formulations of the zn model are worked out:
conventional and extended gauged formulations and a geometric formulation. We compare
the exact metric of the zn model with that of the weighted CP(Nf − 1) model conjectured
by Hanany and Tong, through D-branes. In fact these two models are essentially different.
This has been unequivocally demonstrated in certain regimes. Still quasiclassical excitation
spectra of two models coincide. An obvious task for the future is the large-N solution of the
zn model.
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A Appendix

A1. Useful formulae

For convenience we list here all the relevant traces which appear in the kinetic term for
matter fields (2.36).

∂kn
∗∂kn+ (∂kn

∗n)2 ≡
[

CPN−1
]

,

Tr

{

[

∂k(nn∗)
]

·
[

∂k(nn∗)
]

}

= 2
[

CPN−1
]

,

Tr

{

[

nn∗] ·
[

∂knn∗ − n ∂kn
∗ − 2nn∗(n∗∂kn)

]

·
[

∂k(nn∗)
]

}

= −
[

CPN−1
]

,

Tr

{

[

∂knn∗ − n ∂kn
∗ − 2nn∗(n∗∂kn)

]

·
[

∂k(nn∗)
]

}

= 0 ,

Tr

{

[

n∗] ·
[

∂knn∗ − n ∂kn
∗ − 2nn∗(n∗∂kn)

]

·
[

∂kn
]

}

= −
[

CPN−1
]

,

Tr

{

[

∂knn∗ − n ∂kn
∗ − 2nn∗(n∗∂kn)

]2
}

= −2
[

CPN−1
]

,

Tr

{

[

nn∗] ·
[

∂knn∗ − n ∂kn
∗ − 2nn∗(n∗∂kn)

]2
}

= −
[

CPN−1
]

.

(A.1)

A2. Matter fields contributions

The matter field contribution is evaluated and decomposed in terms of the dependence on
powers of the profile functions ω and γ

Tr [(∇kQ)∗(∇kQ)] = Lω0γ0 + Lω1 + Lω2 + Lγ1 + Lγ2 , (A.2)
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where

Lω0γ0 = Tr

{

[

∂k(φ1 − nn∗(φ1 − φ2))
][

∂k(φ1 − nn∗(φ1 − φ2))
]

}

+
[

∂k(n
∗φ∗

3)
][

∂k(nφ3)
]

= 2(φ1 − φ2)
2

(

(∂kn
∗∂kn) + (∂kn

∗n)2
)

+ ∂k(n
∗φ∗

3)∂k(nφ3)

+ |∂kφ1|2 + |∂kφ2|2

= 2(φ1 − φ2)
2
[

CPN−1
]

+ ∂k(n
∗φ∗

3)∂k(nφ3) + |∂kφ1|2 + |∂kφ2|2 ,

Lω1 = Tr

{

[

φ1 − nn∗(φ1 − φ2)
][

∂knn∗ − n ∂kn
∗ − 2nn∗(n∗ · ∂kn)

]

×
[

∂k(φ1 − nn∗(φ1 − φ2))
]

}

ω

+
[

n∗φ∗
3

][

∂knn∗ − n ∂kn
∗ − 2nn∗(n∗∂kn)

][

∂k(nφ3)
]

ω + c.c.

= −2

(

(φ1 − φ2)
2 + |φ3|2

)

ω
[

CPN−1
]

,

Lω2 = −Tr

{

[

φ1 − nn∗(φ1 − φ2)
][

∂knn∗ − n ∂kn
∗ − 2nn∗(n∗∂kn)

]2

×
[

φ1 − nn∗(φ1 − φ2)
]

}

ω2

−
[

n∗ φ∗
3

][

∂knn∗ − n ∂kn
∗ − 2nn∗(n∗∂kn)

]2[
nφ3

]

ω2

=

(

2φ2
1 − 2(φ1 − φ2)φ2 + (φ1 − φ2)

2 + |φ3|2
)

ω2
[

CPN−1
]

=

(

φ2
1 + φ2

2 + |φ3|2
)

ω2
[

CPN−1
]

,
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Lγ1 = Tr

{

[

φ1 − nn∗(φ1 − φ2)
][

nn∗]

×
[

∂k(φ1 − nn∗(φ1 − φ2))
]

}

(ρ∗∂kρ− ρ∂kρ
∗ + 2|ρ|2 n∗∂kn)γ

+
[

n∗φ∗
3

][

∂k(nφ3)
]

(ρ∗∂kρ− ρ∂kρ
∗ + 2|ρ|2 n∗∂kn)γ + c.c.

= (φ∗
3∂kφ3 − φ3∂kφ

∗
3 + 2|φ3|2n∗∂kn)(ρ

∗∂kρ− ρ∂kρ
∗ + 2|ρ|2 n∗∂kn)γ ,

Lγ2 = −Tr

{

[

φ1 − nn∗(φ1 − φ2)
][

nn∗][nn∗]

×
[

φ1 − nn∗(φ1 − φ2)
]

}

(ρ∗∂kρ− ρ∂kρ
∗ + 2|ρ|2 n∗∂kn)

2γ2

−
[

n∗ φ∗
3

][

nn∗][nn∗][nφ3

]

(ρ∗∂kρ− ρ∂kρ
∗ + 2|ρ|2 n∗∂kn)

2γ2

= −(φ2
2 + |φ3|2)(ρ∗∂kρ− ρ∂kρ

∗ + 2|ρ|2 n∗∂kn)
2γ2 . (A.3)

A3. Evaluation on the semilocal solution

In this section we explicitly evaluate the integrations over the transverse plane. We collect
all terms appearing in (2.35) and (2.36) in terms of various combinations of derivatives,

L∂kn∗∂kn+(∂kn∗n)2 = 2π

∫

rdr

{

1

g2

(

2

r2
f 2(1− ω)2 + 2ω′2

)

+

[

2
φ2√
ξ
(
√

ξ − φ2)
2 +

|ρ|2
r2

|φ2|2(−1 + 2
φ2√
ξ
) +

(

ξ + |φ2
2|(1 +

|ρ|2
r2

)

)(

1− φ2√
ξ

)2 ]}

×
[

∂kn
∗∂kn + (∂kn

∗n)2
]

2π

∫

rdr

{

ξ

(

1− |φ2|2
ξ

)2

+
|φ2|4
ξ

|ρ|2
r2

}

[

∂kn
∗∂kn + (∂kn

∗n)2
]

=
2π

g2
[

∂kn
∗∂kn+ (∂kn

∗n)2
]

+ 2πξ ln
L

|ρ| |ρ|
2
[

∂kn
∗∂kn+ (∂kn

∗n)2
]

. (A.4)

Note that the 1/g2 corrections drops out from the second piece. Furthermore,
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L[ρ∗∂kρ−ρ∂kρ∗+2|ρ|2(n∗∂kn)]
2

= 2π

∫

rdr

{

− 1

g2
(

γ′2)+
1

r2
|φ2|2γ − |φ2

2|(1 +
|ρ|2
r2

)γ2

}

×[ρ∗∂kρ− ρ∂kρ
∗ + 2|ρ|2 n∗∂kn]

2

= 2π

∫

rdr

{

− 1

g2
r2

(r2 + |ρ|2)4 +
1

4r2(r2 + |ρ|2) |φ2|2
}

×[ρ∗∂kρ− ρ∂kρ
∗ + 2|ρ|2 n∗∂kn]

2

=

{

− π

6g2
1

|ρ|4 +
πξ

4

1

|ρ|2 − π

3g2
1

|ρ|4
}

×[ρ∗∂kρ− ρ∂kρ
∗ + 2|ρ|2 n∗∂kn]

2 , (A.5)

and

L[∂k|ρ|2]2

= 2π

∫

rdr

{

1

g2
1

r2
(∂|ρ|2f)

2 +

[(

1 +
|ρ|2
r2

)

(∂|ρ|2φ2)
2 +

1

r2
φ2 ∂|ρ|2φ2

]}

[

∂k|ρ|2
]2

=

{

π

6g2
1

|ρ|4 − πξ

4

1

|ρ|2 +
π

3g2
1

|ρ|4
}

[

∂k|ρ|2
]2
, (A.6)

and

L|∂kρ+ρ(n∗∂kn)|2 = 2π

∫

rdr
1

r2
|φ2|2|∂kρ+ ρ(n∗∂kn)|2

=

{

2πξ ln
L

|ρ| −
2π

g2
1

|ρ|2
}

|∂kρ+ ρ(n∗∂kn)|2 (A.7)

Collecting together all the pieces we obtain the result reported in (2.40), namely,

Leff = πξ ln
L2

|ρ|2
∣

∣∂k(ρ n)
∣

∣

2 − πξ|∂kρ+ ρ (n∗∂kn)|2

+
2π

g2
[

∂kn
∗∂kn+ (∂kn

∗n)2
]

(A.8)
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