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2Université Libre de Bruxelles and International Solvay Institutes,
ULB-Campus Plaine CP231, B-1050 Brussels, Belgium

One may write the Maxwell equations in terms of two gauge potentials, one electric and one
magnetic, by demanding that their field strengths should be dual to each other. This requirement
is the condition of twisted self-duality. It can be extended to p-forms in spacetime of D dimensions,
and it survives the introduction of a variety of couplings among forms of different rank, and also
to spinor and scalar fields, which emerge naturally from supergravity. In this paper we provide
a systematic derivation of the action principle, whose equations of motion are the condition of
twisted self-duality. The derivation starts from the standard Maxwell action, extended to include
the aforementioned couplings, and proceeds via the Hamiltonian formalism through the resolution
of Gauss’ law. In the pure Maxwell case we recover in this way an action that had been postulated
by other authors, through an ansatz based on an action given earlier by us for untwisted self-duality.
Those authors also extended their ansatz to include Chern-Simons couplings. In that case, we find
a different result. The derivation from the standard extended Maxwell action implies of course that
the theory is Lorentz-invariant and can be locally coupled to gravity. Nevertherless we include a
direct compact Hamiltonian proof of these properties, which is based on the surface-deformation
algebra. The symmetry in the dependence of the action on the electric and magnetic variables is
manifest, since they appear as canonical conjugates. Spacetime covariance, although present, is not
manifest.

PACS numbers: 11.15.-q,11.30.Ly,04.65.+e

I. INTRODUCTION

The symmetry between electricity and magnetism is a
fascinating subject. It originated in the Maxwell equa-
tions, but it has shown a remarkable resilience in front
of further developments. It survived when spacetime was
liberated from the requirement of being four dimensional
and also when the door was opened for p-forms of an arbi-
trary rank to come in, as generalizations of the 1-form of
the Maxwell theory. Today this electric-magnetic “du-
ality principle” permeates our thinking in supergravity
and string theory.

The duality principle leads naturally to a reformulation
of the Maxwell equations, and also of its generalizations
mentioned above. One regards the Maxwell equations
as the conditions for the existence of the usual “electric
potential” 1-form A and a second “magnetic potential”
1-form B. If one demands that the corresponding field
strengths (curvature 2-forms) be the dual of each other
one obtains the Maxwell equations. This requirement
is called “twisted self-duality” [1]. The term “twisted”
is introduced because the forms are not self-dual, but
are rather, as it was just said, dual to each other. If
both curvature forms are grouped into a two-component
colum, then that colum is related to its dual by an off-
diagonal “twist matrix”.

When the topology of spacetime is trivial Maxwell
equations imply in turn the twisted self duality condition,
because every closed two-form is then exact. For non-
trivial topologies additional considerations are needed,
which will be addressed in [2] (see also [3]). This paper
will be concerned only with the case of trivial topology.

An important motivation for undertaking the present
work was the necessity to dispel the widespread miscon-
ception that twisted (and untwisted) self-duality can only
be discussed at the level of the equations of motion.
This misconception, which would impede the quan-

tum implementation of duality, has been quite resilient
in spite of the fact that the duality invariance of the
Maxwell action in four dimensions was already proven
in [4] and that the action for untwisted self-duality was
given in reference [5] for chiral p-forms in 2p+ 2 dimen-
sions. The action of [5] was then used in [6] as the starting
point to arrive at an action for twisted self-duality.
The theme of this paper is a systematic derivation of

the action for twisted self-duality from the Maxwell ac-
tion with Chern-Simons and other p-form couplings. For
the pure Maxwell case, the action that we find coincides
with that of [6]. However, when the Chern-Simons cou-
pling is brought in, the two actions differ and connot be
reconciled. We trace the discrepancy and show that the
action of [6] is not gauge invariant and does not give the
Chern-Simons equations of motion even in the temporal
gauge.
The action that we deal with is local in space and time

and it is quadratic in the fields for the free theories. It
is Lorentz invariant and it can also be locally coupled
to the gravitational field. The symmetry in the depen-
dence of the action on the electric and magnetic variables
is manifest, since they appear as canonical conjugates.
Spacetime covariance, although present, is not manifest.
The non-manifest character of spacetime covariance is

in sharp constrast with the manifest validity of the dual-
ity principle. It would appear therefore that in order to
spell out the consequences of the duality principle one has
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to necessarily relegate spacetime covariance to a lesser
role. This feature was already encountered in the past
in the demonstration of off-shell duality invariance in a
variety of contexts [4, 7, 8], including linearized gravity
[9, 10], in spite of the intimate connection of the latter
with spacetime covariance. It is also present in the action
for chiral bosons [11] and self-dual p-forms [5] and was
particularly emphasized in [6]. One cannot help but feel
that this is an important lesson for the investigations of
more general “hidden symmetries” [12]. Although non-
manifest, the spacetime covariance of the action may be
proven directly in the present formulation, and in a com-
pact manner, by verifying that the energy and momen-
tum densities satisfy the algebra of surface deformations
[13–15].

Other actions have been proposed [16–18] that are
manifestly duality and Lorentz invariant. These actions
contain additional fields and additional gauge symme-
tries. They are non-polynomial even when the interac-
tions are switched off. To get a tractable action, one
must fix the new gauge symmetry in a way that breaks
Lorentz invariance. In particular, for the case of a 3-form
with Chern-Simons couplings in eleven dimensions, our
action coincides with the one given earlier in [17] when
the additional gauge freedom is fixed in a very simple
form.

The situation here is strongly reminiscent of that en-
countered by ourselves quite a way back, when we devel-
opped a Lorentz-invariant formulation of the Hamilto-
nian dynamics of the superparticle [19]. We introduced
then extra gauge variables, and concluded that the re-
sult was “rather involved”. Again in that case, the non-
manifest Lorentz invariant formulation remained by far
the simplest one.

The paper is organized so as to go go through a number
of cases of increasing complexity, treating in detail the
simplest of them and then just indicating the results for
the more complicated ones. This we do for the sake of
focusing on the central point without being distracted by
unessential technical burdens. Thus, Section 2 is devoted
to the implementation of twisted self-duality for a single
Maxwell p-form, in D spacetime dimensions. We focus
on the case of a 1-form and then indicate the results for
a general p. It is explained how the marginal cases p = 0
and p = D − 2 fit into the scheme.

The starting point is the Hamiltonian formulation of
the standard Maxwell action in tems of a p-form poten-
tial A, which we call the “purely electric formulation”.
The key step, first devised in [4], is solving its Gauss law
without going to the reduced phase space, i.e., without
fixing the gauge. Since the Gauss law is the vanishing of
the divergence of a local vector density , its solution au-
tomatically brings in a (D − p− 2)-form B, which is the
magnetic potential. The desired “electric-magnetic ac-
tion” is then obtained by introducing the solution of the
Gauss constraint of the the original purely electric action
back into it. Thus the fact that the Gauss constraint is

a local divergence is far from being a technicality. It is,
rather a profound manifestation of the duality principle.
Section 3 is devoted to the inclusion of a Chern-Simons

term. There again we analyze in detail the simplest case,
that is, p = 1, D = 3, and then indicate explicitly the re-
sults for the generalization to p = 3, D = 11, which is of
special interest because it arises in supergravity. The pro-
cedure applies however quite generally, since the Gauss
constraint is a divergence for all cases when a Chern-
Simons form can be written.
The next step in increasing complexity is taken in sec-

tion 4, where we show that our procedure can be applied
to the coupling among a 1-form and a 2-form that arises
in Einstein-Maxwell supergravity in ten dimensions, and
indicate its generalization to couplings between several
p-forms of different degrees. We also remark that the
procedure can be applied straightforwardly to Pauli cou-
plings to spinors and to couplings to uncharged scalars.
Finally section 5 is devoted to concluding remarks.

II. TWISTED SELF-DUALITY FOR A

MAXWELL p-FORM IN D SPACETIME

DIMENSIONS

A. Twisted Self-Duality

For a p-form in D spacetime dimensions, there exists
a straightforward generalization of the Maxwell action,

S[Aλ1···λp
] =

∫

dDx

(

−
1

2(p+ 1)!
Fλ1···λp+1F

λ1···λp+1

)

,

(II.1)
with,

Fλ1···λp+1 = (p+ 1)∂[λ1
Aλ2···λp+1]. (II.2)

The square bracket indicates complete antisymmetriza-
tion in the enclosed indices, normalized by dividing by
the appropriate factorial so that it is idempotent. In
terms of forms,

F = dA, (II.3)

with

F =
1

(p+ 1)!
Fλ1···λp+1dx

λ1 ∧ · · · ∧ dxλp+1 , (II.4)

and

A =
1

p!
Aλ1···λp

dxλ1 ∧ · · · ∧ dxλp . (II.5)

The equations of motion obtained by demanding that
the action (II.1) be stationary with respect to variations
of the potential A are,

d ∗F = 0. (II.6)
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On the other hand, it follows from the definition (II.3)
that

dF = 0. (II.7)

For a spacetime with the topology of Rn, the general
solution to the equation of motion (II.6) is,

∗F = dB, (II.8)

for some (D−p−2)-formB. We will call the original form
A the “electric potential” and the form B just introduced
the “magnetic potential”.
The electric and magnetic potentials are related

through the fact that their curvatures are the duals of
each other. One may then rewrite Maxwell’s equations
in the form,

∗F = H, (−1)(p+1)(D−1)−1 ∗H = F, (II.9)

where

H = dB (II.10)

is the curvature of B. Here, we have used the iden-
tity ∗∗ω = (−1)k(D−1)−1ω where ω is a k-form in a D-
dimensional Minkowski spacetime. In matrix form,

F = S ∗F , (II.11)

where,

F =

(

F
H

)

, S =

(

0 (−1)(p+1)(D−1)−1

1 0

)

. (II.12)

One refers to (II.11) as the twisted self-dual formulation
of Maxwell’s equations [1].
All the steps and concepts are already contained in

the case p = 1 which we will treat in detail to avoid
unnecessary cluttering with indices. We will give at the
end of the section the results for the general case.

B. The Case p = 1

When p = 1, the action (II.1) reduces to

S[Aµ] = −
1

4

∫

dDxFµνF
µν , (II.13)

with

Fµν = ∂µAν − ∂νAµ. (II.14)

The corresponding Hamiltonian form is,

S[Ai, π
i, A0] =

∫

dDx
(

πiȦi −H−A0G
)

, (II.15)

with,

H =
1

2

(

EkEk +
1

(D − 3)!
Bk1···kD−3Bk1···kD−3

)

, (II.16)

and,

G = −πk
,k . (II.17)

Here, the electric field Ek is just the conjugate momentum
πk,

Ek = πk , (II.18)

while the magnetic field Bk1···kD−3 is given by,

Bk1···kD−3 =
1

2
ǫk1···kD−3mnFmn . (II.19)

When the Hamiltonian equations of motion hold, one
finds Ek = −F 0k.
The gauge transformations read

δΛAi = ∂kΛ (II.20)

δΛπ
i = 0. (II.21)

1. Magnetic Potential

The solution of the constraint G = 0 is,

πk =
1

(D − 3)!
ǫkj1j2···jD−2∂[j1Bj2···jD−2 ] , (II.22)

and it brings in a (D − 3)-form Bj1···jD−3 which is the
magnetic dual of Ai.
Since the electric field is gauge invariant, the (D − 3)-

form Bj1···jD−3 may be assumed not to transform under
the gauge transformations (II.20) and (II.21). However,
since only the field strength,

Hj1j2···jD−2 = (D − 2)∂[j1Bj2···jD−2], (II.23)

of Bj1···jD−3 appears, the expression (II.22) is invariant
if one transforms Bj1···jD−3 as

δΛ̃Bj1···jD−3 = (D − 3)∂[j1 Λ̃j2···jD−3 ] , (II.24)

where Λ̃j1···jD−4 is an arbitrary (D− 4)-form. The gauge
invariant field strength (II.23) coincides, up to the sign
facor (−1)D−2, with the spatial dual of the electric field
Ek of the original one-potential (electric) formulation,

Hj1j2···jD−2 = (−1)D−2ǫj1j2···jD−2mEm, (II.25)

Ek =
1

(D − 2)!
ǫkj1j2···jD−2Hj1j2···jD−2 , (II.26)

and fulfills,

∂[j1Hj2···jD−1] = 0. (II.27)
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2. Two-Potential Action

We now pass to show how our systematic procedure
leads to the two-potential action first postulated in [6] as
an extension of the untwisted self-duality action of [5].
In terms of the electric and magnetic potentials

(Ak, Bj1···jD−3 ), the action (II.15) takes the form,

S[Ak, Bj1···jD−3 ] =
∫

dDx

(

1

(D − 2)!
ǫkj1j2···jD−2Hj1j2···jD−2 Ȧk

−H) , (II.28)

with,

H =
1

2

(

1

(D − 2)!
Hj1j2···jD−2H

j1j2···jD−2

+
1

(D − 3)!
Bk1···kD−3Bk1···kD−3

)

.(II.29)

One may give a manifestly gauge invariant form to
(II.28),

S[Ak, Bj1···jD−3 ] =
∫

dDx

(

1

(D − 2)!
ǫkj1j2···jD−2Hj1j2···jD−2F0k

−H) , (II.30)

where,

F0k = ∂0Ak − ∂kA0. (II.31)

Expressions (II.28) and (II.30) coincide because the tem-
poral component A0 appears only through a total deriva-
tive.

3. Two-Potential Equations of Motion

The equations of motion that follow from demanding
that the action be stationary are

∂k

(

Hki1···iD−3 + ǫkmi1···iD−3 Ȧm

)

= 0 (II.32)

∂m

(

Fmk +
1

(D − 3)!
ǫmki1···iD−3 Ḃi1···iD−3

)

= 0 (II.33)

Equation (II.32) implies,

Hki1···iD−3 + ǫkmi1···iD−3Ȧm = ǫkmi1···iD−3∂mA0, (II.34)

for some function A0, in terms of which, recalling (II.31),
one can write

Hki1···iD−3 + ǫkmi1···iD−3F0m = 0. (II.35)

Similarly, Eq. (II.33) implies,

Fmk +
1

(D − 3)!
ǫmki1···iD−3 Ḃi1···iD−3

=
1

(D − 4)!
ǫmki1···iD−3∂i1B0i2···iD−3 , (II.36)

for some functions B0i2···iD−3 . Defining

H0i1i2···iD−3 = Ḃi1···iD−3−(D−3)∂[i1B0i2···iD−3 ], (II.37)

one can rewrite (II.36) as,

Fmk +
1

(D − 3)!
ǫmki1···iD−3H0i1···iD−3 = 0. (II.38)

To derive (II.35) and (II.36) from (II.32) and (II.33), one
must use the fact that the Betti numbers b1 and bD−3 of
R

D−1 vanish.
Eqs. (II.35) and (II.36) are the twisted self-duality

equations (II.11). More precisely, they are the purely
spatial components of (II.11), but these are equivalent
to the full set (II.11). Indeed, this set is redundant since
half of the equations in (II.11) – which may be thought of
as being the equations with one index equal to zero – are
consequences of the other half – which may be thought
of as the purely spatial equations. Therefore, we have
found an action for the twisted self-duality equations,
which may be written in the equivalent forms (II.28) or
(II.30).

4. Symplectic Structure

The Poisson brackets of the magnetic and electric field
strengths that follow from the kinetic term in the action
(II.28) are,

[Bi1···iD−3(x),Bj1···jD−3 (y)] = 0, (II.39)

[Bi1···iD−3(x), Hj1···jD−2 (y)]

= (−1)D−2 (D − 2)! δ
i1···iD−3k
j1···jD−2

δ,k(x, y), (II.40)

[Hi1···iD−2(x), Hj1···jD−2 (y)] = 0, (II.41)

where δ
i1···iD−3k
j1···jD−2

is the Kronecker delta in the space of

fully antisymmetric tensors of rank (D − 2),

δ
i1···iD−2

j1···jD−2
= δ

[i1
j1
δi2j2 · · · δ

iD−2 ]
jD−2

. (II.42)

One sees that the electric and magnetic field strengths
are canonically conjugate.
There is a way to rewrite the kinetic term in the action

(II.30) that makes the twist matrix S appear explicitly
and exhibits thereby its connection with the symplectic
structure. We start with the observation that H ∧F is a
total derivative,

H ∧ F = d(B ∧ F ). (II.43)
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Now, the spacetime exterior derivative d can be split as
d = dS+dt, where dS is the spatial exterior derivative and
dt = dt ∂

∂t
is the exterior derivative in the time direction.

Similarly, any form can be split as A = AS + At, where
AS is the purely spatial part of A, while At is the piece
linear in dt. Therefore,

H ∧ F = HS ∧ Ft +Ht ∧ FS (II.44)

= HS ∧ Ft + FS ∧Ht, (II.45)

since FS is a 2-form, and therefore commutes with Ht.
Here, HS = dSBS , Ht = dtBS + dSBt, and similar for-
mulas hold for FS and Ft in terms of At and AS .
The kinetic term in the action (II.30) can be rewritten,

after integration by parts, as,
∫

dDx
1

(D − 2)!
ǫkj1j2···jD−2Hj1j2···jD−2F0k

=
1

2

∫

dDxǫkj1j2···jD−2

(

1

(D − 2)!
Hj1j2···jD−2F0k

−
1

2!(D − 3)!
Fkj1H0j2···jD−2

)

. (II.46)

In terms of forms, the integrand in (II.46) is,

K =
1

2
(HS ∧ Ft − FS ∧Ht), (II.47)

and it is similar in form to the topological invariantH∧F ,
but differs from it in the relative sign of the second term.
This sign difference makes (II.47) not to be a total deriva-
tive. Note, however, that in spite of the sign change,
At and Bt still enter the kinetic term through a total
derivative and drop out from the action because, e.g.,
FS ∧ dSBt = dS(FS ∧Bt) since dSFS = d2SAS = 0.
Collecting the curvatures as (F a) = (F,H), one finds

that,

K =
1

2
SabF

a
S ∧ F b

t , (II.48)

and therefore, the kinetic term of the action – and hence
the symplectic form – are intimately connected with the
twist matrix.
We conclude this subsection by pointing out that it

follows from the previous discussion that adding an arbi-
trary symmetric matrix Mab to the antisymmetric twist
matrix Sab,

K ′ =
1

2
(Sab +Mab)F

a
S ∧ F b

t , (II.49)

changes the action by a total derivative. As we shall see
below, it turns out that in the presence of couplings, non-
vanishing choices of Mab might be convenient to exhibit
explicitly the gauge symmetries.

5. Lorentz Invariance and Coupling to Gravity

The Gauss constraint is not changed by the coupling to
gravity because the gauge transformation of a form does

not depend on the metric. One can therefore introduce
the magnetic potential in exactly the same way.
The linear momentum (generator of spatial Lie deriva-

tives) obtained from the action of the two-potential the-
ory is,

Hi = FikE
k = −Bj1···jD−3Hij1···jD−3 . (II.50)

The coupling to gravity is achieved by changing the
Hamiltonian density H in the action (II.28) by,

N⊥H⊥ +NkHk, (II.51)

whereN⊥ andNk are the lapse and the shift appearing in
the Hamiltonian formulation in curved space, and where
H⊥ is given by,

H⊥ =
1

2

(

1

(D − 2)!
g

1
2Hj1j2···jD−2H

j1j2···jD−2

+
1

(D − 3)!
g−

1
2Bk1···kD−3Bk1···kD−3

)

(II.52)

where the indices are raised or lowered with gij or gij ,
respectively. The generators H⊥ and Hi obey the alge-
bra,

[H(x),H(y)] =
(

Hi(x) +Hi(y)
)

δ,i(x, y),(II.53)

[H(x),Hi(y)] = H(y)δ,i(x, y), (II.54)

[Hi(x),Hj(y)]

= Hi(y)δ,j(x, y) +Hj(x)δ,i(x, y), (II.55)

which shows that the coupling to gravity is generally co-
variant and, in particular, that in flat space the theory
is Lorentz invariant. Note that in comparison with the
standard Hamiltonian formulation in the electric repre-
sentation, there is no Gauss constraint in the right-hand
side of the algebra since here Gauss’ law is identically
satisfied.

C. The Case 0 < p < D − 2

We now pass to show how, also in this case, our sys-
tematic procedure leads to the two-potential action first
postulated in [6] as an extension of the untwisted self-
duality action of [5].
By following the same steps as in the case p = 1, one

obtains the two-potential action

S[Ak1···kp
, Bj1···jD−p−2 ] =

∫

dDx

(

ǫk1···kpj1···jD−p−1

p! (D − p− 1)!
Hj1···jD−p−1 Ȧk1···kp

−H) , (II.56)

with,

H =
1

2

(

1

(D − p− 1)!
Hj1···jD−p−1Hj1 · · · jD−p−1

+
1

(D − p− 2)!
Bj1···jD−p−2Bj1···jD−p−2

)

. (II.57)
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Here, Hj1···jD−p−1 is the gauge invariant field strength of
the magnetic potential,

Hj1j2···jD−p−1 = (D − p− 1)∂[j1Bj2···jD−p−1] (II.58)

(equal on-shell to ± the spatial dual of F0k1···kp−1), while

Bj1···jD−p−2 is the magnetic field,

Bj1···jD−p−2 =
1

(p+ 1)!
ǫj1···jD−p−2k1···kp+1Fk1···kp+1

(II.59)
Again, one may give a manifestly gauge invariant form

to (II.56),

S[Ak1···kp
, Bj1···jD−p−2 ]

=

∫

dDx

(

ǫk1···kpj1···jD−p−1

p! (D − p− 1)!
Hj1···jD−p−1F0k1···kp

−H) , (II.60)

since in this expression, the temporal component
A0k1···kp−1 appears only through a total derivative.
All the comments and conclusions of the previous sub-

section go through unchanged. In particular, the fact
that the integrand of the kinetic term can be written as,

K =
1

2
SabF

a
SF

b
t (II.61)

(up to a total derivative), where Sab is the (antisymmetric
or symmetric) “twisting” matrix appearing in the twisted
self-duality equations, remains true.

D. The Case p = 0 or p = D − 2

In the case 0 < p < D − 2, one could have started
from the electric formulation and introduce the magnetic
potential by solving the Gauss electric constraint, or con-
versely, one could have started from the magnetic formu-
lation, solve the magnetic Gauss constraint and introduce
the electric potential. However, when p = 0, there is no
constraint to be solved in the electric formulation and
when p = D − 2, there is no constraint to be solved in
the magnetic formulation.
Nevertheless, one can fit these “marginal cases” in the

present treatment by slightly streching the argument.
One cannot take over the form of the constraint equa-
tions from the generic dimensions because, as we just
said, those equations are not present. However, one can
take over the form of their solutions. That is, if we start
from the electric formulation, we set, when p = 0,

πA = ∂j
(

ǫji1i2···iD−2Bi1i2···iD−2

)

, (II.62)

in order to introduce the magnetic potential, which can
always be done since it does not restrict πA. The re-
sulting key formulas of the previous subsection hold then
unchanged. Conversely, if one had started from the mag-
netic formulation for p = D−2, the magnetic momentum
would be a scalar density and one would write

πB = ∂j
(

ǫji1i2···iD−2Ai1i2···iD−2

)

, (II.63)

to introduce the electric potential Ai1i2···iD−2 .

E. The cases p = D − 1 and p ≥ D

The cases p = D−1 and p ≥ D do not fit in the present
treatment. When p = D − 1, the constraints imply that
there are no local degrees of freedom. When p = D, the
curvature is identically zero and so is the action. There
are again no local degrees of freedom. Both cases belong
with the topological considerations of [2]. When p > D,
the problem is empty because A ≡ 0.

III. INTRODUCTION OF A CHERN-SIMONS

TERM

This section is devoted to the inclusion of a Chern-
Simons term. We will again analyze in detail the simplest
case, that is, p = 1, D = 3, and then indicate explicitly
the results for the generalization to p = 3, D = 11, which
is of special interest because it arises in supergravity. The
procedure applies however to all the other cases.
Unlike the pure Maxwell case, the action that we find

differs from, and cannot be reconciled with, the one pre-
viously postulated in [6]. The discrepancy is discussed in
subsection IIIA 6 below.
For the case of a 3-form with Chern-Simons couplings

in eleven dimensions, our action coincides with the one
given earlier in [17] when the additional gauge freedom
is fixed in a very simple form.

A. The Simplest Setting: Maxwell-Chern-Simons

Action in 3 Dimensions

It turns out that, as it is often the case, many of the
key aspects are present in the simplest low dimensional
model: This subsection is devoted to analyze the problem
in three-dimensional spacetime.
The twisted self-duality equations take the form (II.11)

with the definition (II.10) modified to read [1],

H = dB − 4αA. (III.1)

1. One-Potential Action

The Lagrangian form of the Maxwell-Chern-Simons ac-
tion is [20],

S[Aµ] =

∫

d3x

(

−
1

4
FµνF

µν − αǫλµνFλµAν

)

, (III.2)

and the corresponding Hamiltonian form is,

S[Ai, π
i, A0] =

∫

d3x
(

πiȦi −H −A0G
)

, (III.3)

with,

H =
1

2

(

EkEk + B2
)

, (III.4)
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and,

G = −πk
,k−αǫkmFkm = −

(

πk + 2αǫkmAm

)

,k
. (III.5)

Here, the electric field Ek is related to the conjugate mo-
mentum πk through

Ek = πk − 2αǫkmAm , (III.6)

while the magnetic field B is given by,

B =
1

2
ǫmnFmn . (III.7)

We use the convention ǫ012 = 1 = −ǫ012. One has Ek =
−F 0k when the Hamiltonian equations of motion hold.
We see from (III.5) that the gauge generator G remains

the divergence of a local vector density, as required by
the duality principle when implemented according to our
procedure.
The gauge transformations read

δΛAi = ∂kΛ (III.8)

δΛπ
i = 2αǫkm∂mΛ (III.9)

Contrary to what happens in the case with no Chern-
Simons term, the conjugate momentum πi is no longer
gauge invariant. But the electric field E i remains so.

2. Magnetic Potential

The solution of the constraint G = 0 is,

πk + 2αǫkmAm = ǫkm∂mB , (III.10)

and it brings in a scalar field B, which is the magnetic
dual of Ai.
The gauge transformation for B will be taken to be,

δΛB = 4αΛ , (III.11)

which solves the variation of (III.10) given (III.8) and
(III.9). For an open space, this equation incorporates
the requirement that the gauge transformation should be
“proper” in the sense of [21, 22]. For a compact space,
other additional considerations are needed, which will be
adressed in [2]. The gauge invariant field strength of the
magnetic potential B is,

Hk = ∂kB − 4αAk, (III.12)

and coincides, through (III.6) and (III.10), with the neg-
ative of the spatial dual of the electric field Ek of the
original one-potential (electric) formulation,

Hk = −ǫkmEm, Ek = ǫkmHm. (III.13)

It follows from its definition (III.12) that the gauge in-
variant field strength Hk fulfills,

∂iHj − ∂jHi = −4αFij = −4αǫijB (III.14)

3. Two-Potential Action

In terms of the electric and magnetic potentials
(Ak, B), the action (III.3) takes the form,

S[Ak, B] =

∫

d3x
(

ǫkm∂mBȦk − 2αǫkmAmȦk −H
)

,

(III.15)
with,

H =
1

2

(

HkHk + B2
)

. (III.16)

Through integration by parts, one may rewrite (III.15)
as,

S[Ak, φ] =

∫

d3x

(

1

2
ǫkmHmȦk −

1

4
ǫkmFkmḂ −H

)

,

(III.17)
an expression in which only the gauge invariant field
strengths and the time derivatives of Ak and B ap-
pear. One may give a manifestly gauge invariant form
to (III.17),

S[Aµ, φ] =

∫

d3x

(

1

2
ǫkmHmF0k −

1

4
ǫkmFkmH0 −H

)

,

(III.18)
where,

H0 = ∂0B − 4αA0, (III.19)

F0k = ∂0Ak − ∂kA0. (III.20)

Expressions (III.17) and (III.18) coincide because the
temporal component A0 appears only through a total
derivative. Note again the emergence of the structure
1
2SabF

a
SF

b
t , where the curvatures are now the full gauge

invariant curvatures.

4. Two-Potential Equations of Motion

The equations of motion that follow from demanding
that the action be stationary are

∂k

(

Hk + ǫkmȦm

)

= 0 (III.21)

−ǫkm∂m

(

Ḃ + B
)

+ 4α
(

Hk + ǫkmȦm

)

= 0(III.22)

Equation (III.21) implies,

Hk + ǫkmȦm = ǫkm∂mA0, (III.23)

for some function A0, in terms of which, recalling (III.19)
and (III.20), one can therefore write

Hk + ǫkmF0m = 0. (III.24)

Taking (III.24) into account, Eq. (III.22) becomes,

∂m (H0 + B) = 0, (III.25)



8

which implies,

H0 + B = 0. (III.26)

Again, just as when we established (III.11), one must im-
pose boundary conditions at infinity or make additional
special considerations for compact spaces [2].
Eqs. (III.24) and (III.26) are the twisted self-duality

equations (II.11) with H given by (III.1). Therefore, we
have found an action for them, which may be written in
the equivalent forms (III.15), (III.17) or (III.18).

5. Lorentz Invariance and Coupling to Gravity

The Poisson brackets of the electric and magnetic field
strengths that follow from the action (III.15) are

[B(x),B(y)] = 0, (III.27)

[B(x), Hk(y)] = −δ,k(x, y) (III.28)

[Hk(x), Hm(y)] = −4αǫkmδ(x, y) (III.29)

Comparing (III.29) with (II.41), we see that when α 6=
0, the magnetic strengths have non zero bracket among
themselves. Therefore, a purely magnetic representation
of the Maxwell-Chern-Simons theory does not exist.
The linear momentum (generator of spatial Lie deriva-

tives) obtained from the action of the two-potential the-
ory is,

Hi = ǫkmFikHm = −BHi. (III.30)

The coupling to gravity is achieved by changing the
Hamiltonian density H in the action (III.15) by,

N⊥H⊥ +NkHk, (III.31)

whereN⊥ andNk are the lapse and the shift appearing in
the Hamiltonian formulation in curved space, and where
H⊥ is given by,

H⊥ =
1

2

(

g
1
2 gijHiHj + g−

1
2B2

)

. (III.32)

The generators H⊥ and Hi obey the algebra (II.53),
(II.54) and (II.55), which shows that the coupling to grav-
ity is generally covariant and, in particular, that in flat
space the theory is Lorentz invariant.

6. Comparison with the action of [6]

We now compare and contrast our results for the
Chern-Simons coupling with [6].
The action of [6] is written in terms of a (p+ 1)-form

Ω, which, for the simplest case treated in this subsection,
is a 2-form that one obtains from (III.1) to be,

Ω = −4α ∗A . (III.33)

Inserting the expression (III.33) into the integral (2.39)
of [6], one finds,

2α

∫

d3x
(

ǫijFijA0 − 2Ak∂kB
)

(III.34)

The integral (III.34) is to be compared with the difference
between (III.15) and the free action. There are several
key differences that prevent one from reconciling both
expressions, namely: (i) The integral (III.34) depends on
A0 and therefore it is not gauge invariant. In contradis-
tinction, the counterpart to (III.34) in our action does
not depend on A0, and it is gauge invariant; (ii) Even in
the A0 = 0 gauge, the functional forms are essentially dif-
ferent. For example, (III.34) is only linear in α, whereas
our action contains as well a piece proportional to α2.
If one were to take the form Ω used in the action of

[6] as a prescribed external field, then the corresponding
equation of motion would be Eq. (2.38) of [6], which
is indeed a twisted self-duality condition. However, this
external field setting (which the present method could
also handle) is quite different from the Maxwell-Chern-
Simons theory, which is a closed system.
We see therefore no escape to the conclusion that

(III.34) does not lead to the two-potential version of
the standard Chern-Simons action. This analysis goes
through unchanged in the more general cases discussed
below.

B. Maxwell-Chern-Simons Action For a 3-Form in

Eleven Dimensions

1. One-Potential Action

The standard single-potential Maxwell-Chern-Simons
action is given by,

S[Aλµν ] =

∫

d11x

(

−
1

2 · 4!
FλµνρF

λµνρ

−αǫλ1λ2···λ11Fλ1···λ4Fλ5···λ8Aλ9λ10λ11

)

, (III.35)

with,

Fλµνρ = 4∂[λAµνρ]. (III.36)

The square bracket indicates complete antisymmetriza-
tion in the enclosed indices normalized by dividing by
the appropriate factorial so that it is idempotent. We set
ǫ0 1 ··· 9 10 = 1 = −ǫ0 1 ··· 9 10.
The twisted self-duality equations take again the form

(II.11) with the definition (II.10) modified to read [1],

H ∼ dB + αA ∧ F. (III.37)

The Hamiltonian action is

S[Aijk, π
ijk, A0ij ] =

∫

d11x

(

πijkȦijk −H−
1

2!
A0ijG

ij

)

,

(III.38)
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with

H =
1

2

(

1

3!
E ijkEijk +

1

6!
Bi1···i6Bi1···i6

)

, (III.39)

and

Gij = −6πkij
,k − 6α ǫijk1···k8Fk1···k4Fk5···k8

= −6
(

πkij

+4αǫkijm1···m7Fm1···m4Am5m6m7

)

,k
. (III.40)

Here, the electric field E ijk is related to the conjugate
momentum πijk through

1

3!
E ijk = πijk − 8αǫijki1···i7Fi1···i4Ai5i6i7 , (III.41)

while the magnetic field Bi1···i6 is given by

Bi1···i6 =
1

4!
ǫi1···i6j1j2j3j4Fj1j2j3j4 . (III.42)

One has E ijk = −F 0ijk on Hamiltonian shell.
The gauge transformations read

δΛAijk = 3∂[iΛjk] (III.43)

δΛπ
ijk

= 24αǫijkm1···m7Fm1···m4∂[m5
Λm6m7] (III.44)

2. Magnetic Potential

The solution of the constraint Gij = 0 is,

πijk + 4αǫijkm1···m7Fm1···m4Am5m6m7

=
1

3! 6!
ǫijkm1···m7∂m1Bm2···m7 , (III.45)

and it brings in a 6-form Bi1···i6 which is the magnetic
dual of Aijk.
The gauge transformation for Bi1···i6 will be taken to

be,

δΛ,Λ̃Bi1···i6 = 6
(

∂[i1 Λ̃i2···i6] + 3! 6! 6αF[i1···i4Λi5i6]

)

.

(III.46)
The gauge invariant field strength of the magnetic po-

tential Bi1···i6 is

Hi1···i7 = 7
(

∂[i1Bi2···i7] − 12α 3! 6!F[i1···i4Ai5i6i7]

)

(III.47)
and coincides through (III.41) and (III.45) with the neg-
ative of the spatial dual of the electric field E ijk of the
original one-potential (electric) formulation. One gets
from the definition (III.47)

∂[i0Hi1···i7] = −3α 3! 7!F[i1i2i3i4Fi0i5i6i7] (III.48)

3. Two-Potential Action

In terms of the electric and magnetic potentials
(Ak1k2k3 , Bi1···i6 ), the action (III.38) takes the form,

S[Ak1k2k3 , Bi1i2i3i4i5i6 ] =
∫

d11x

(

1

3! 6!
ǫijkm1···m7∂m1Bm2···m7

−4αǫijkm1···m7Fm1···m4Am5m6m7

)

Ȧijk

−

∫

d11xH, (III.49)

with,

H =
1

2

(

1

7!
Hi1···i7H

i1···i7 +
1

6!
Bi1···i6Bi1···i6

)

. (III.50)

As in the 3-dimensional case, one may give a manifestly
gauge invariant form to (III.49). Using form notations to
avoid lengthy formulas, one finds,

S[Aµ1µ2µ3 , Bµ1µ2µ3µ4µ5µ6 ] =

1

2

∫
(

HS ∧ Ft − FS ∧Ht +
1

3
(HS ∧ Ft + FS ∧Ht)

)

−

∫

d11xH (III.51)

where the temporal components of the curvatures are,

H0m1···m6

= ∂0Bm1···m6 + 6∂[m1
Bm2···m6]0

−12α 3! 6!
(

4F0[m1m2m3
Am4m5m6]

+3F[m1···m4
Am5m6]0

)

, (III.52)

F0i1i2i3 = ∂0Ai1i2i3 − 3∂[i1Ai2i3]0. (III.53)

The two expressions (III.49) and (III.51) coincide because
the temporal components of the electric and magnetic
potentials drop out (they appear only through a total
derivative).
The Poisson brackets of the electric and magnetic field

strengths that follow from the action (III.49) are

[Bi1···i6(x),Bj1···j6(y)] = 0, (III.54)

[Bi1···i6(x), Hk1···k7(y)] = 7! δi1···i6i7k1···k7
δ,i7(x, y) (III.55)

[Hk1···k7(x), Hm1···m7(y)]

= −16αǫk1···k7i1i2i3ǫm1···m7j1j2j3

×Bi1i2i3j1j2j3δ(x, y) (III.56)

One easily verifies as in the previous subsection that
the variational equations are the twisted self-duality
equations. Therefore, we have found an action for them,
which may be written in the equivalent forms (III.49) or
(III.51). Similarly, coupling to gravity and demonstra-
tion of Lorentz invariance proceed along the same lines.
The two-potential action discussed in this section is dif-

ferent from that of [6] (see subsubsection III A 6). On the
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other hand, as it was anticipated in the introduction, the
present two-potential action coincides with that of [17],
when the auxiliary vector vn appearing therein is gauge
fixed to have only a non-zero constant time component,
i.e., vn = (1, 0, ..., 0).

IV. COUPLED FORMS OF DIFFERENT RANK

In this section we show that our procedure can be ap-
plied to the coupling among a 1-form and a 2-form, which
arises in ten-dimensional Einstein-Maxwell supergravity
[23] (N = 1, D = 10 supergravity coupled to one Maxwell
multiplet), and indicate its generalization to couplings of
the same type between several p-forms of different rank.
The dimensional reduction of this case to 4 dimensions
was considered in [6]. We also explain how the proce-
dure can be applied straightforwardly to Pauli couplings
to spinors and to couplings to uncharged scalars.
In ten-dimensional Einstein-Maxwell supergravity, one

has a 1-form A(1)and a 2-form A(2) and the part of the
action relevant to our problem is,

S = −
1

2

∫

d10x

(

1

2!
F (1)
µν F (1)µν +

1

3!
F (2)
µνρF

(2)µνρ

)

(IV.1)
where the curvatures are,

F (1) = dA(1) (IV.2)

F (2) = dA(2) − αF (1) ∧ A(1). (IV.3)

The gauge transformations, which leave the curvatures
invariant, are,

δΛ(1),Λ(2)A(1) = dΛ(1), δΛ(1),Λ(2)A(2) = dΛ(2)+αA(1)∧dΛ(1),
(IV.4)

where Λ(1) and Λ(2) are a 0-form and a 1-form, respec-
tively.
If one passes to the Hamiltonian form, one obtains the

Gauss constraints

G(1) = −∂j

(

π
j

(1) + 2απij

(2)A
(1)
i

)

(IV.5)

Gi
(2) = −2∂jπ

ij

(2). (IV.6)

where π
j

(1) and π
ij

(2) are the canonical conjugates to A
(1)
i

and A
(2)
ij , respectively. The constraints generate the

gauge transformations (IV.4).
Both G(1) and Gi

(2) are local divergences and therefore

our procedure can be applied. The magnetic potentials
are introduced by solving the Gauss constraints in the
form,

πi
(1) =

1

7!
ǫij1j2···j8∂[j1B

(1)
j2···j8]

−
2α

2! 6!
ǫijm1···m7∂[m1

B
(2)
m2···m7A

(1)
i ] , (IV.7)

π
ij

(2) =
1

2! 6!
ǫijm1···m7∂[m1

B
(2)
m2···m7]

. (IV.8)

Here B(1) and B(2) are the dual magnetic 7-form and
6-form, respectively.

The electric-magnetic action that incorporates the du-
ality principle is again simply the Hamiltonian action
written down explicitly in [24], in which one has ex-
pressed the conjugate momenta in terms of the magnetic
potentials. The equations of motion obtained from the
action are the twisted self-duality equations in Hamilto-
nian form.

The complete Lagrangian of ten-dimensional Einstein-
Maxwell supergravity differs from the integrand of (IV.1)
by terms in which the curvatures of A(1) and A(2) are
coupled to spinor and scalar fields. These fields are in-
variant under the gauge transformations of the 1-form
and the 2-form. Therefore the gauge constraints for the
complete theory are just those written above and thus
the electric-magnetic action action can be completed to
the full theory – a step that will not be taken explicitly
in the present work.

Although it will not be discussed here, the procedure
goes through for more complicated supergravities, where
interactions of the same type among a collection of p-
forms appear. In that case, for the procedure to work,
it must be possible to define the gauge transformations
for the p-forms so that the gauge parameters appear al-
ways differentiated. This requirement is equivalent to de-
manding that the constraints can be chosen to be local
divergences. It can be shown, following the lines of [1],
that this can indeed always be arranged. For the case of
type IIB supergravity, the two-potential action has been
discussed in the manifestly Lorentz invariant formalism
in [18], where it has been shown explicitly that the equa-
tions of motion are the desired ones. Since, by construc-
tion, the same holds true if one applies our method, we
conclude that the two actions should coincide when the
auxiliary gauge freedom of the manifestly Lorentz invari-
ant formalism is appropriately fixed.

Finally we would like to emphasize that for Yang-Mills
couplings, the procedure does not go through because, in
the gauge transformations, the gauge parameter appears
undifferentiated.

V. CONCLUSION

This paper has been devoted to providing a systematic
derivation from the Maxwell action of the action princi-
ple which yields the condition of electric-magnetic self-
duality as its equation of motion. It is hoped that our
results will help dispel the widespread misconception that
twisted (and untwisted) self-duality can only be discussed
at the level of the equations of motion.

In the pure Maxwell case we recover in this way an
action that had been postulated by other authors [6] by
boldly extending the one given earlier by us [5] for un-
twisted self-duality. However, when Chern-Simons cou-
plings are brought in, we find an action which differs
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from, and cannot be reconciled with, the one previously
postulated.
We would like to emphasize that our systematic deriva-

tion relegates spacetime covariance to a lesser role than
that of electric-magnetic symmetry. This feature, pre-
viously encountered in several other instances, might
convey an important lesson for the investigations of
more general “hidden symmetries” that extend electric-
magnetic duality, such as E10 or E11 [12].
Although our discussion has covered an ample realm

of cases of physical interest, they were all concerned with
p-forms, which are totally antisymmetric tensors. There
are important cases, which were not covered herein and
which will be addressed in a forthcoming publication [25].
They are linearized gravity [9] and higher spin fields [26].
In those cases, the electric and magnetic “superpoten-
tials” have mixed symmetries.
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